JP2004168088A - Device and method of inspecting underwater structure - Google Patents

Device and method of inspecting underwater structure Download PDF

Info

Publication number
JP2004168088A
JP2004168088A JP2002333019A JP2002333019A JP2004168088A JP 2004168088 A JP2004168088 A JP 2004168088A JP 2002333019 A JP2002333019 A JP 2002333019A JP 2002333019 A JP2002333019 A JP 2002333019A JP 2004168088 A JP2004168088 A JP 2004168088A
Authority
JP
Japan
Prior art keywords
vehicles
vehicle
underwater
pipe
inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002333019A
Other languages
Japanese (ja)
Inventor
Masamichi Tomita
正道 富田
Yuji Hosoda
祐司 細田
Hiroshi Endo
遠藤  洋
Kenichi Otani
健一 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002333019A priority Critical patent/JP2004168088A/en
Publication of JP2004168088A publication Critical patent/JP2004168088A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device of inspecting a structure including an underwater structure that moves on the structure for inspection efficiently and assuredly on the structure. <P>SOLUTION: This device of inspecting an underwater structure includes three vehicles 1 to 3 each having magnetic crawlers 6 using a magnet 4 for a crawler belt 5. The vehicles 1 to 3 are connected to each other in series by two articulated arms 7. There are imaging device 9 for taking images of a surface of a steel tower 12 that is an underwater structure, an illuminating device 10 for illuminating the surface of the steel tower 12, and a welding torch 12 for repairing a pipe 13 of the steel tower 12 on the vehicles 1 to 3. The vehicles 1 to 3 are connected to a controlling device 30 by a cable 11. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、水中に浸漬される構造物の点検装置および点検方法に係り、特に海洋油田のプラットフォームの鉄塔を点検する装置および点検方法に関する。
【0002】
【従来の技術】
海洋石油生産設備を外側から目視検査するのに使用される無人潜水機(TM308)の例が、非特許文献1の第286頁から第287頁に記載されている。同文献の第356頁から第360頁には、海洋の石油やマンガン資源を開発するためまたは開発機を保持および点検するための海洋ロボットが記載されている。その実証機は油圧駆動の双腕マニピュレータを有し、マスタースレーブ方式で操作される。そして走行制御のために、水力および方向を連続的に変化可能なバリベックプロペラが用いられている。
【0003】
建設工事場などで足場を必要とせずに溶接部を検査したり小物を運搬する多目的移動ロボットの例が、特許文献1に記載されている。この公報に記載のロボットは、柱や梁に取り付く状態とそれらから解除される状態を選択可能な2つのハンド部を有している。そして2つのハンド部は、本体に対して旋回可能であるとともに、旋回軸線に直交する軸を枢軸として俯仰できる。
【0004】
軽量小型の磁気クローラロボットを用いてボイラ炉内等の高所壁面で点検作業するためのロボットが特許文献2に記載されている。この公報に記載のロボットは無限軌道式の磁気走行装置であり、永久磁石を装備して人手によると困難な作業環境にある目的物に取り付き、遠隔操作で機動性を発揮している。また、特許文献3には磁気吸着式のクローラ作業装置が記載されている。
【特許文献1】
特開平6−226658号公報(図1)
【特許文献2】
特開平11−79020号公報(第4頁、図1)
【特許文献3】
特開平10−109671号公報(図3)
【非特許文献1】
山本欣市・柿倉正義編著「極限作業ロボット そのメカニズムと設計技術」、(株)工業調査会、1992年7月
【0005】
【発明が解決しようとする課題】
上記非特許文献1に記載の無人潜水機(TM308)および海洋ロボットは、いずれも水中遊泳式の点検補修装置であり、鉄塔表面に貼りついて潜行する方式と比べると点検対象域に至るまでの移動時間が短くて済むという利点を有する。しかしながら、遊泳機構を備えているので機体が大きく、波や海流の影響で水中構造物のパイプに機体が衝突する恐れがあり、水中構造物の内部水域に装置が進入するのが困難である。また、いずれの装置も遊泳しながらアームでパイプを把持したり放して移動するので慎重な遠隔操作が必要であり、水中構造物回りで機体を高速に移動させるのが困難である。
【0006】
上記特許文献1に記載のロボットは、尺取虫型の構造のために移動速度が遅く、巨大な構造物を対象として作業を行わせるには効率が低くなる。特許文献2に記載のロボットは、平面または曲率半径の大きな連続曲面を走行可能であるが、直径が点検装置の寸法と同程度の円柱状の鋼管を組んだ鉄塔において、鋼管表面に吸着して走行してから鋼管の分岐部位を乗り移って移動することについては考慮されていない。さらに、特許文献3に記載のクローラ型作業装置でも、水中での動作については考慮されていない。
【0007】
本発明は上記従来技術の不具合に鑑みなされたものであり、その目的は水中構造物をも含む構造物の点検装置が、構造物上を高効率にかつ確実に点検移動できることにある。
【0008】
【課題を解決するための手段】
上記目的を達成するための本発明の特徴は、履帯に磁石を用いた磁気クローラを有する複数台の車両と、この車両を直列に連結する多関節型アームと、この多関節型アームと車両を制御する制御手段とを備えたものである。そしてこの特徴において、車両は少なくとも3台あり、多関節型アームは少なくとも2台あることが望ましく、車両はそれぞれ水中構造物からの離脱手段を有するのがよい。さらに、水中構造物を補修する補修装置を設けるのがよく、水中構造物の地図データベースと、車両の水中構造物上での位置を計測する位置測定装置とを備えるのがよい。
【0009】
上記目的を達成するための本発明の他の特徴は、履帯に磁石を用いた磁気クローラを有する複数台の車両を直列に連結した水中構造物の点検装置を用いて水中構造物を点検する方法において、水中構造物上を車体が移動するときは履体の磁石の磁力により車体を構造物に吸引させ、構造物間を乗り移るときは複数の車両を連結する多関節型アームを用いて車両を乗り移る構造物に位置決めするものである。
【0010】
【発明の実施の形態】
以下、図面を用いて本発明に係る水中構造物の点検装置の一実施例を説明する。図1は本発明に水中構造物の点検装置の一実施例の正面図および側面図、図2は水中構造物の一例である鉄塔の斜視図、図3は水中構造物の点検装置の動作を説明する図である。本実施例では、水中構造物は鉄塔であり、水中は海中をも含む。
【0011】
3台の車両1〜3は、前後方向に連結されている。各車両1〜3は、磁石4を含む履帯5が無限軌道を形成する磁気クローラ6を、車両1〜3の左右側部に一対備えている。各車両1〜3を、2本の6自由度多関節型アーム7が直列に連結している。先頭車両1には、ハンドリング装置8と水中および空気中の双方で使用可能な照明装置が取り付けられている。ハンドリング装置8の先端部には、これも水中と空気中の双方で使用可能な撮像装置9が取付けられている。末尾車両3には、制御装置30からの制御信号を入力するケーブル11が連結されている。
【0012】
磁気クローラ6の履帯5は、図1の正面図に示すように、鋼製パイプ13の軸線15に沿って進行するときは、この断面円形のパイプ13落ちにくいように底面側が上面側より幅が狭くなる逆ハの字形状をしている。なお、各履帯5とパイプ14の表面16との接触面積が増すように、クローラ6全体はなじみ機構により変形可能となっている。車両1〜3の底面には、油圧ジャッキ31が取付けられている。
【0013】
鉄塔12のジョイント部である分岐部17には、パイプ溶接部18が形成されている。この溶接部18は、海水による侵食等のため頻繁に亀裂19が発生しやすい。そこでこの亀裂19を補修するために、補修装置20すなわち水中溶接トーチ21を車両1に備える。この補修装置20の位置と姿勢は、車両1に搭載したハンドリング装置22により保持される。パイプ13の海面付近の部分または水中に浸漬される部分には、フジツボをはじめとする貝類23が付着する。この貝類23を剥ぎ取る剥ぎ取り手段24を、末尾車両3に搭載する。
【0014】
鉄塔12には、所定の位置に車両1〜3を位置決めするのに用いる位置測定装置25を取付けている。ここでは、図2に示すように3個の音響標識26を各パイプ13に取付けた。車両1〜3の後部には、受信素子25A〜25Cが設けられている。各車両1〜3または制御装置30は、音響標識26、26、…から送信された音波が各受信素子25A〜25Cまで伝わる時間から、車両1〜3の位置を求める。制御装置30は、点検対象の鉄塔12の設計データから作成した地図データベース27を備えている。
【0015】
次にこのように構成した本実施例の水中構造物の検査装置の動作手順を、説明する。水中構造物の検査装置を、はじめ操作者が鉄塔12のパイプ13の表面に磁気吸着させる。これは水中であっても、海面上であってもよい。作業対象が水中鉄塔のときは、船舶に車両を搭載し、この船舶から鉄塔12の水面上の部位に吸着させる。あるいは鉄塔12の上端部の作業スペースから鉄塔12の水面上の部位に吸着させる。制御装置30は、船上または鉄塔12の上端部の作業スペースに据え置く。作業対象が橋脚の場合には、橋上から橋脚の水面上の部位に吸着させる。作業対象が通常の空中の鉄塔のときは、地面付近の基部でパイプ13に吸着させる。この場合、制御装置30は地上に仮設される基地局に設けられる。
【0016】
操作者は、先頭車両1のハンドリング装置8の先端に設けた撮像装置9の出力画像を見ながらハンドリング装置8を遠隔操作する。そして、撮像装置9の視線方向を操作する。照明装置10は、任意の方向に投光可能になっている。各車両1〜3が連結されているから、各車両1〜3は磁気クローラ6を駆動することにより、一斉にパイプ13の表面16上をパイプ13の軸線方向15に走行する。
【0017】
ここで、本発明の特徴である鉄塔12のジョイント部17の乗り移り動作を説明する。水中構造物の点検装置がパイプ13a上を走行して、鉄塔12のジョイント部17にさしかかったら、先頭車両1の底面部に備えた油圧ジャッキ31を作動させる。そして、先頭車両1を鉄塔12のパイプ13aから引き離す。先頭車両1と中間車両2とをつなぐ多関節型アーム7の関節部28には駆動源29が内蔵されており、この駆動源29を作動させて先頭車両1をパイプ13aから持ち上げる。持ち上げられた先頭車両1は、位置及び方向を変更可能になる。そこで、制御装置30からの指令により、先頭車両1を他のパイプ13bに乗り移らせる。
【0018】
先頭車両1がパイプ13bに乗り移ったら、多関節型アーム7のサーボ制御を解除して先頭車両1を上向きに走行させる。それとともに、中間車両2および末尾車両3を、パイプ13b上を前進させる。中間車両2が乗り移りの位置に達したら、中間車両2の底面部に取付けた油圧ジャッキ31を作動させる。中間車両2の前後に配置した2本の多関節型アーム7を用いて中間車両2をパイプ13aから持ち上げる。中間車両2が浮いた状態になったら、先頭車両1と末尾車両3を前進させて、中間車両2を乗り移るパイプ13bに吸引できるようにする。
【0019】
中間車両2がパイプ13bに乗り移ったら、車両1〜3を前進させる。そして末尾車両3が乗り移り位置に達したら、末尾車両3の底面部に取付けた油圧ジャッキ31を駆動する。中間車両2と末尾車両3とをつなぐ多関節型アーム7の関節部には駆動源29が内蔵されているので、この駆動源29を駆動して、末尾車両3をパイプ13aから持ち上げる。車両1、2を前進させ、末尾車両3をパイプ13に乗り移させる。
【0020】
次に、点検動作に移行する。パイプ13bに取付けた音響標識26からの信号を、先頭車両1の位置測定装置25Aが受信する。この受信データを制御装置30が備える鉄塔12の地図データ27と比較し、制御装置30が車両1の位置を特定する。同様に、車両2、3の位置測定装置25B,25Cを用いて車両2、3の位置を特定する。車両1〜3の位置が特定されたら、地図データ27と一緒または別個に記憶された点検データを用いて点検が必要な個所を点検していく。これは、例えば、溶接個所である。
【0021】
予め定めた点検位置について、異常の有無をハンドリング装置8の先端に取り付けた撮像装置9を用いて目視点検する。この点検結果を地図27データ上に書き込む。なお、予め点検位置を定める代わりに、ハンドリング装置8を操作して隈なく一方から他方へと撮像装置9を走査させるようにしてもよい。そして、その走査で見つけた異常または損傷の発生位置を、地図27データ上に書き込むようにしてもよい。
【0022】
鉄塔12の海面付近や水中に浸漬した部位にフジツボ等の貝類23が付着しているときは、撮像装置9から送られた画像を見ながら、末尾車両5に搭載した剥ぎ取り手段24を用いて遠隔操作で貝類23を削り落とす。剥ぎ取り手段24は、貝類23をパイプ13bから剥ぎ取る他に、パイプ13aとパイプ13bのジョイント部17等に付着または堆積した物を除去するのにも使用される。このように付着物または堆積物をパイプ13表面等から取り去ることにより、パイプ13等に発生する亀裂19の有無が容易に確認できる。
【0023】
車両1〜3が、パイプ13の周方向に移動する動作を、図4を用いて説明する。車両1〜3をパイプ13の軸線方向に走行させ、所定位置で停止させる。車両1〜3が停止したら、車両1〜3をパイプ13の周方向に移動させるために、先頭車両1の底面部に備えた油圧ジャッキ31を作動させる。先頭車両1のパイプ13への磁気吸引を解放し、先頭車両1と中間車両2とをつなぐ多関節型アーム7の関節部28に内蔵した駆動源29を作動させる。多関節型アーム7は、先頭車両1をパイプ13から持ち上げ、先頭車両1を周方向に移動させる。この操作を車両2、3について順次繰り返し、パイプ13の周方向に車両2、3を移動させる。
【0024】
撮像装置9を用いた点検動作でパイプ等に亀裂19が発見されたら、先頭車両に搭載した補修装置22が備える水中溶接トーチ21を用いて、パイプ13の亀裂19を補修する(図1参照)。図2に示したパイプ13の溶接部18には特に、亀裂19が発生しやすいので、撮像装置9で観察しながら水中で遠隔操作でTIG溶接する。
【0025】
なお、本実施例では海洋油田プラットフォームの鉄塔の水中部位を作業対象物として説明したが、本発明は水中構造物に限定されるものではない。各種部品を空気中仕様の部品に交換すれば、(1)トラス構造の橋脚の水中および空気中部位、(2)橋梁、(3)化学プラント配管などの構造物の点検作業や補修作業にも適用できる。
【0026】
本実施例によれば、磁気クローラが鉄塔を確実に把持できるので点検装置が鉄塔から脱落するのを回避できる。また、鉄塔のパイプ表面を車両が移動中にパイプに衝突するのも回避できる。さらに、ジョイント部をも容易に通過できるとともに、ジョイント部の点検作業も実施できる。パイプを軸線方向に移動するときは、複数の車両を連結したまま拘束されることが無いので、高速走行が可能になる。特にパイプを組み立てた複雑な構造の鉄塔が海水中に浸漬されているときに好適である。
【0027】
なお上記実施例では、油圧ジャッキ31を用いて車両の位置や姿勢を変化させているが、油圧ジャッキを省いて多関節型アーム7の関節部28に設けた駆動源29の駆動力を用いて各車両1〜3をパイプ13から引き離すようにしてもよい。この場合、点検装置がより簡素化し遠隔操作が容易になる。
【0028】
上記実施例では各車両の駆動電源を操作装置に設けて、ケーブル11で各車両に送るようにしているが、各車両が蓄電池を有するようにしてもよい。また、履体に含まれる磁石を永久磁石としたが、電磁石と永久磁石を併用してパイプからの離脱の際は電磁石を作動させないようにしてもよい。この場合離脱に要する力を低減できる。当然永久磁石は保護手段により破壊等を防止されている。
【0029】
【発明の効果】
以上述べたように本発明によれば、複数の車両を連結しその車両を接続する多関節型アームを設けたので、車両のパイプ間の乗り移りが容易になり、水中に浸漬された構造物の点検が容易になるとともに確実に点検できる。また無人で点検できるので、損傷の有無や表面状態の点検作業および補修作業を安全かつ安価に実行できる。
【図面の簡単な説明】
【図1】本発明に係る水中構造物の点検装置の一実施例の正面図及び側面図。
【図2】本発明に係る水中構造物の斜視図。
【図3】水中構造物の点検装置の動作を説明する図。
【図4】図1に示した水中構造物の点検装置の上面図。
【符号の説明】
1…先頭車両、2…中間車両、3…末尾車両、4…磁石、5…履帯、6…磁気クローラ、7…多関節型アーム、8…ハンドリング装置、9…撮像装置、10…照明装置、11…ケーブル、12…鉄搭、13…鋼製パイプ、14…円柱、15…軸線、16…円柱表面、17…ジョイント部、18…溶接部、19…亀裂、21…水中溶接トーチ、22…補修装置、23…貝類、24…剥ぎ取り手段、25…位置測定装置、25A〜25C…位置測定装置、26…音響標識、27…地図データ、28…関節部、29…駆動源、30…制御装置、31…油圧ジャッキ。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an inspection device and an inspection method for a structure immersed in water, and more particularly to an inspection device and an inspection method for a steel tower on a platform of an offshore oil field.
[0002]
[Prior art]
An example of an unmanned submersible (TM308) used to visually inspect an offshore oil production facility from the outside is described in Non-Patent Document 1 at pages 286 to 287. On pages 356 to 360 of the document, a marine robot for developing marine petroleum and manganese resources or for holding and checking a developed machine is described. The demonstration machine has a hydraulically driven dual-arm manipulator and is operated in a master-slave manner. For traveling control, a Varibec propeller capable of continuously changing hydraulic power and direction is used.
[0003]
Patent Literature 1 discloses an example of a multipurpose mobile robot that inspects welds and transports small articles without requiring a scaffold at a construction site or the like. The robot described in this publication has two hand units capable of selecting a state of attaching to a pillar or a beam and a state of releasing from the state. The two hand units are pivotable with respect to the main body, and can be lowered about an axis orthogonal to the pivot axis.
[0004]
Patent Literature 2 discloses a robot for performing inspection work on a high place wall such as in a boiler furnace using a lightweight and small magnetic crawler robot. The robot described in this publication is an endless track type magnetic traveling device, which is equipped with a permanent magnet and is attached to an object in a work environment that is difficult for humans to exercise, thereby exhibiting mobility by remote control. Patent Document 3 discloses a magnetic attraction type crawler working device.
[Patent Document 1]
JP-A-6-226658 (FIG. 1)
[Patent Document 2]
JP-A-11-79020 (page 4, FIG. 1)
[Patent Document 3]
Japanese Patent Application Laid-Open No. 10-109671 (FIG. 3)
[Non-patent document 1]
Edited by Kinichi Yamamoto and Masayoshi Kakikura, "Extreme Work Robots: Mechanisms and Design Techniques," Industrial Research Institute, July 1992 [0005]
[Problems to be solved by the invention]
The unmanned underwater vehicle (TM308) and the marine robot described in Non-Patent Document 1 are both underwater swimming type inspection and repair devices, and move to the inspection target area as compared with a method of sticking to the surface of a steel tower and submerging. This has the advantage that the time is short. However, since the body is large since it has a swimming mechanism, the body may collide with a pipe of the underwater structure due to the influence of waves or ocean currents, and it is difficult for the device to enter the internal water area of the underwater structure. In addition, since all the devices move while holding or releasing the pipe with the arm while swimming, careful remote control is required, and it is difficult to move the aircraft at high speed around the underwater structure.
[0006]
The robot described in Patent Literature 1 has a slow moving speed due to the structure of the shading insect type, and is inefficient when working on a huge structure. The robot described in Patent Literature 2 can travel on a flat surface or a continuous curved surface having a large radius of curvature. However, in a steel tower having a columnar steel pipe having a diameter approximately equal to the dimension of the inspection device, it is adsorbed on the steel pipe surface. No consideration is given to moving over the branch portion of the steel pipe after traveling. Furthermore, even in the crawler-type working device described in Patent Document 3, operation in water is not considered.
[0007]
SUMMARY OF THE INVENTION The present invention has been made in view of the above-described disadvantages of the related art, and an object of the present invention is to enable an inspection device for a structure including an underwater structure to inspect and move over a structure with high efficiency and reliability.
[0008]
[Means for Solving the Problems]
A feature of the present invention to achieve the above object is that a plurality of vehicles having a magnetic crawler using a magnet in a crawler belt, an articulated arm connecting the vehicles in series, and the articulated arm and the vehicle And control means for controlling. In this aspect, it is desirable that there be at least three vehicles and at least two articulated arms, and that each of the vehicles has means for releasing from the underwater structure. Further, a repair device for repairing the underwater structure is preferably provided, and a map database of the underwater structure and a position measuring device for measuring the position of the vehicle on the underwater structure are preferably provided.
[0009]
Another feature of the present invention to achieve the above object is to provide a method for inspecting an underwater structure using an underwater structure inspection device in which a plurality of vehicles having a magnetic crawler using a magnet in a crawler belt are connected in series. In, when the car body moves on the underwater structure, the car body is attracted to the structure by the magnetic force of the magnet of the footwear, and when moving between the structures, the vehicle is moved using the articulated arm that connects a plurality of vehicles. It is for positioning on a moving structure.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of an inspection device for an underwater structure according to the present invention will be described with reference to the drawings. FIG. 1 is a front view and a side view of an embodiment of an underwater structure inspection apparatus according to the present invention. FIG. 2 is a perspective view of a steel tower as an example of an underwater structure. FIG. FIG. In this embodiment, the underwater structure is a steel tower, and the underwater includes the sea.
[0011]
The three vehicles 1 to 3 are connected in the front-rear direction. Each of the vehicles 1 to 3 includes a pair of magnetic crawlers 6 on which the crawler belts 5 including the magnets 4 form an endless track on the left and right sides of the vehicles 1 to 3. Each of the vehicles 1 to 3 is connected with two 6-DOF articulated arms 7 in series. The leading vehicle 1 is provided with a handling device 8 and a lighting device that can be used both underwater and in the air. At the tip of the handling device 8, an imaging device 9, which can be used both in water and in the air, is attached. A cable 11 for inputting a control signal from the control device 30 is connected to the last vehicle 3.
[0012]
When the crawler belt 5 of the magnetic crawler 6 advances along the axis 15 of the steel pipe 13 as shown in the front view of FIG. It has an inverted inverted V shape. The entire crawler 6 can be deformed by a running-in mechanism so that the contact area between each crawler belt 5 and the surface 16 of the pipe 14 increases. Hydraulic jacks 31 are attached to the bottom surfaces of the vehicles 1 to 3.
[0013]
A pipe welding portion 18 is formed at a branch portion 17 that is a joint portion of the steel tower 12. In the welded portion 18, cracks 19 are likely to occur frequently due to erosion by seawater or the like. Therefore, in order to repair the crack 19, a repair device 20, that is, an underwater welding torch 21 is provided in the vehicle 1. The position and orientation of the repair device 20 are held by a handling device 22 mounted on the vehicle 1. Shells 23 including barnacles adhere to a portion of the pipe 13 near the sea surface or a portion immersed in water. The peeling means 24 for peeling off the shellfish 23 is mounted on the trailing vehicle 3.
[0014]
A position measuring device 25 used for positioning the vehicles 1 to 3 at predetermined positions is attached to the steel tower 12. Here, three acoustic markers 26 were attached to each pipe 13 as shown in FIG. The receiving elements 25A to 25C are provided at the rear of the vehicles 1 to 3. Each of the vehicles 1 to 3 or the control device 30 obtains the position of each of the vehicles 1 to 3 from the time when the sound waves transmitted from the acoustic markers 26, 26, ... are transmitted to each of the receiving elements 25A to 25C. The control device 30 includes a map database 27 created from design data of the steel tower 12 to be inspected.
[0015]
Next, the operation procedure of the underwater structure inspection apparatus of the present embodiment configured as described above will be described. First, the operator magnetically attaches the inspection device for the underwater structure to the surface of the pipe 13 of the steel tower 12. This may be underwater or at sea level. When the work target is an underwater steel tower, a vehicle is mounted on a ship, and the ship is caused to adsorb to a site on the water surface of the steel tower 12 from the ship. Alternatively, the work is adsorbed from the work space at the upper end of the tower 12 to a site on the water surface of the tower 12. The control device 30 is installed in a work space on the ship or at the upper end of the steel tower 12. If the work target is a pier, the pier is adsorbed from the bridge to a site on the water surface of the pier. When the work target is a normal air tower, the work is sucked to the pipe 13 at the base near the ground. In this case, the control device 30 is provided in a temporary base station on the ground.
[0016]
The operator remotely operates the handling device 8 while viewing the output image of the imaging device 9 provided at the tip of the handling device 8 of the leading vehicle 1. Then, the direction of the line of sight of the imaging device 9 is operated. The lighting device 10 can project light in an arbitrary direction. Since each of the vehicles 1 to 3 is connected, each of the vehicles 1 to 3 travels simultaneously on the surface 16 of the pipe 13 in the axial direction 15 of the pipe 13 by driving the magnetic crawler 6.
[0017]
Here, the transfer operation of the joint portion 17 of the steel tower 12, which is a feature of the present invention, will be described. When the underwater structure inspection device travels on the pipe 13a and approaches the joint portion 17 of the steel tower 12, the hydraulic jack 31 provided on the bottom portion of the leading vehicle 1 is operated. Then, the leading vehicle 1 is separated from the pipe 13a of the tower 12. A drive source 29 is incorporated in a joint 28 of the articulated arm 7 that connects the leading vehicle 1 and the intermediate vehicle 2, and the drive source 29 is operated to lift the leading vehicle 1 from the pipe 13a. The position and direction of the lifted leading vehicle 1 can be changed. Therefore, the leading vehicle 1 is transferred to another pipe 13b according to a command from the control device 30.
[0018]
When the leading vehicle 1 moves on to the pipe 13b, the servo control of the articulated arm 7 is released and the leading vehicle 1 runs upward. At the same time, the intermediate vehicle 2 and the last vehicle 3 are advanced on the pipe 13b. When the intermediate vehicle 2 reaches the transfer position, the hydraulic jack 31 attached to the bottom of the intermediate vehicle 2 is operated. The intermediate vehicle 2 is lifted from the pipe 13a using the two articulated arms 7 arranged before and after the intermediate vehicle 2. When the intermediate vehicle 2 is in a floating state, the leading vehicle 1 and the trailing vehicle 3 are moved forward so that the pipes 13b through which the intermediate vehicle 2 moves can be sucked.
[0019]
When the intermediate vehicle 2 has moved onto the pipe 13b, the vehicles 1 to 3 are advanced. When the last vehicle 3 reaches the transfer position, the hydraulic jack 31 attached to the bottom surface of the last vehicle 3 is driven. Since the drive source 29 is built in the joint of the articulated arm 7 connecting the intermediate vehicle 2 and the last vehicle 3, the drive source 29 is driven to lift the last vehicle 3 from the pipe 13a. The vehicles 1 and 2 are advanced, and the trailing vehicle 3 is transferred to the pipe 13.
[0020]
Next, the operation shifts to an inspection operation. The signal from the acoustic sign 26 attached to the pipe 13b is received by the position measuring device 25A of the leading vehicle 1. The received data is compared with the map data 27 of the steel tower 12 provided in the control device 30, and the control device 30 specifies the position of the vehicle 1. Similarly, the positions of the vehicles 2 and 3 are specified using the position measurement devices 25B and 25C of the vehicles 2 and 3. When the positions of the vehicles 1 to 3 are specified, locations requiring an inspection are inspected using inspection data stored together with or separately from the map data 27. This is, for example, a welding point.
[0021]
At a predetermined inspection position, the presence or absence of an abnormality is visually inspected using the imaging device 9 attached to the tip of the handling device 8. This inspection result is written on the map 27 data. Instead of setting the inspection position in advance, the imaging device 9 may be scanned from one side to the other by operating the handling device 8. Then, the location of the abnormality or damage found by the scanning may be written on the map 27 data.
[0022]
When shellfish 23 such as barnacles are attached to the vicinity of the sea surface of the steel tower 12 or a part immersed in water, the peeling means 24 mounted on the trailing vehicle 5 is used while watching the image sent from the imaging device 9. The shells 23 are scraped off by remote control. The peeling means 24 is used not only for peeling off the shellfish 23 from the pipe 13b but also for removing substances attached or deposited on the joint portion 17 of the pipes 13a and 13b. By removing the deposits or deposits from the surface of the pipe 13 or the like, the presence or absence of a crack 19 generated in the pipe 13 or the like can be easily confirmed.
[0023]
The operation of the vehicles 1 to 3 moving in the circumferential direction of the pipe 13 will be described with reference to FIG. The vehicles 1 to 3 are driven in the axial direction of the pipe 13 and stopped at a predetermined position. When the vehicles 1 to 3 stop, the hydraulic jack 31 provided on the bottom surface of the leading vehicle 1 is operated to move the vehicles 1 to 3 in the circumferential direction of the pipe 13. The magnetic attraction to the pipe 13 of the leading vehicle 1 is released, and the drive source 29 incorporated in the joint 28 of the articulated arm 7 connecting the leading vehicle 1 and the intermediate vehicle 2 is operated. The articulated arm 7 lifts the leading vehicle 1 from the pipe 13 and moves the leading vehicle 1 in the circumferential direction. This operation is sequentially repeated for the vehicles 2 and 3, and the vehicles 2 and 3 are moved in the circumferential direction of the pipe 13.
[0024]
If a crack 19 is found in a pipe or the like in an inspection operation using the imaging device 9, the crack 19 in the pipe 13 is repaired using the underwater welding torch 21 provided in the repair device 22 mounted on the leading vehicle (see FIG. 1). . Since a crack 19 is particularly likely to occur in the welded portion 18 of the pipe 13 shown in FIG. 2, TIG welding is performed by remote control underwater while observing with the imaging device 9.
[0025]
In this embodiment, the underwater part of the steel tower of the offshore oil field platform has been described as the work target, but the present invention is not limited to underwater structures. If various parts are replaced with parts of the specification in the air, inspection and repair work of structures such as (1) underwater and air parts of truss structure piers, (2) bridges, (3) chemical plant piping etc. Applicable.
[0026]
According to this embodiment, since the magnetic crawler can securely hold the steel tower, it is possible to prevent the inspection device from dropping off the steel tower. Further, it is possible to avoid collision with the pipe while the vehicle is moving on the pipe surface of the steel tower. Further, it is possible to easily pass through the joint portion, and to carry out inspection work of the joint portion. When the pipe is moved in the axial direction, a plurality of vehicles are connected without being restrained, so that high-speed traveling is possible. It is particularly suitable when a steel tower having a complicated structure assembled with pipes is immersed in seawater.
[0027]
In the above embodiment, the position and posture of the vehicle are changed using the hydraulic jack 31. However, the hydraulic jack is omitted, and the driving force of the drive source 29 provided in the joint 28 of the articulated arm 7 is omitted. The vehicles 1 to 3 may be separated from the pipe 13. In this case, the inspection device is simplified and remote operation is facilitated.
[0028]
In the above embodiment, the driving power supply of each vehicle is provided in the operating device and is sent to each vehicle by the cable 11, but each vehicle may have a storage battery. Further, although the magnet included in the footwear is a permanent magnet, the electromagnet may not be operated when the magnet is separated from the pipe by using the electromagnet and the permanent magnet together. In this case, the force required for detachment can be reduced. Naturally, the permanent magnet is prevented from being broken or the like by the protection means.
[0029]
【The invention's effect】
As described above, according to the present invention, since the articulated arm that connects a plurality of vehicles and connects the vehicles is provided, it is easy to transfer between pipes of the vehicle, and the structure of a structure immersed in water is provided. Inspection is easy and reliable. In addition, since the inspection can be performed unattended, the inspection work and the repair work for the presence or absence of damage and the surface condition can be performed safely and inexpensively.
[Brief description of the drawings]
FIG. 1 is a front view and a side view of an embodiment of an underwater structure inspection device according to the present invention.
FIG. 2 is a perspective view of an underwater structure according to the present invention.
FIG. 3 is a diagram illustrating the operation of the inspection device for underwater structures.
FIG. 4 is a top view of the underwater structure inspection device shown in FIG. 1;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Leading vehicle, 2 ... Intermediate vehicle, 3 ... Trailing vehicle, 4 ... Magnet, 5 ... Crawler track, 6 ... Magnetic crawler, 7 ... Articulated arm, 8 ... Handling device, 9 ... Imaging device, 10 ... Lighting device, DESCRIPTION OF SYMBOLS 11 ... Cable, 12 ... Iron tower, 13 ... Steel pipe, 14 ... Cylinder, 15 ... Axis line, 16 ... Cylinder surface, 17 ... Joint part, 18 ... Welded part, 19 ... Crack, 21 ... Underwater welding torch, 22 ... Repair device, 23 shellfish, 24 peeling means, 25 position measuring device, 25A to 25C position measuring device, 26 acoustic sign, 27 map data, 28 joint, 29 driving source, 30 control Device, 31 ... hydraulic jack.

Claims (6)

履帯に磁石を用いた磁気クローラを有する複数台の車両と、この車両を直列に連結する多関節型アームと、この多関節型アームと前記車両を制御する制御手段とを備えたことを特徴とする水中構造物の点検装置。A plurality of vehicles having a magnetic crawler using a magnet in a crawler belt, an articulated arm for connecting the vehicles in series, and control means for controlling the articulated arm and the vehicle. Inspection equipment for underwater structures. 前記車両は少なくとも3台あり、前記多関節型アームは少なくとも2台あることを特徴とする請求項1に記載の水中構造物の点検装置。The underwater structure inspection device according to claim 1, wherein the vehicle has at least three, and the articulated arm has at least two. 前記車両はそれぞれ水中構造物からの離脱手段を有することを特徴とする請求項1または2に記載の水中構造物の点検装置。The inspection apparatus for underwater structures according to claim 1 or 2, wherein each of the vehicles has means for detaching from the underwater structures. 履帯に磁石を用いた磁気クローラを有する複数台の車両を直列に連結した水中構造物の点検装置を用いて水中構造物を点検する方法において、水中構造物上を車体が移動するときは履体の磁石の磁力により車体を構造物に吸引させ、構造物間を乗り移るときは複数の車両を連結する多関節型アームを用いて車両を乗り移る構造物に位置決めすることを特徴とする水中構造物の点検方法。In a method of inspecting an underwater structure using an underwater structure inspection device in which a plurality of vehicles having a magnetic crawler using a magnet in a crawler belt are connected in series, when a vehicle body moves on the underwater structure, The structure of an underwater structure, characterized in that the body is attracted to the structure by the magnetic force of the magnet, and when moving between the structures, the vehicle is positioned on the structure to which the vehicle is to be transferred using an articulated arm connecting a plurality of vehicles. Inspection method. 水中構造物を補修する補修装置を設けたことを特徴とする請求項1または2に記載の水中構造物の点検装置。The inspection device for an underwater structure according to claim 1 or 2, further comprising a repair device for repairing the underwater structure. 水中構造物の地図データベースと、前記車両の水中構造物上での位置を計測する位置測定装置とを備えたことを特徴とする請求項1、2、3または5のいずれか1項に記載の水中構造物の点検装置。The map database of an underwater structure, and a position measuring device that measures a position of the vehicle on the underwater structure is provided, according to any one of claims 1, 2, 3, and 5. Inspection device for underwater structures.
JP2002333019A 2002-11-18 2002-11-18 Device and method of inspecting underwater structure Pending JP2004168088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002333019A JP2004168088A (en) 2002-11-18 2002-11-18 Device and method of inspecting underwater structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002333019A JP2004168088A (en) 2002-11-18 2002-11-18 Device and method of inspecting underwater structure

Publications (1)

Publication Number Publication Date
JP2004168088A true JP2004168088A (en) 2004-06-17

Family

ID=32697844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002333019A Pending JP2004168088A (en) 2002-11-18 2002-11-18 Device and method of inspecting underwater structure

Country Status (1)

Country Link
JP (1) JP2004168088A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102290192A (en) * 2011-05-05 2011-12-21 北京理工大学 Magnetic block design method for magnetic wall-climbing robot and magnetic block
JP2012141476A (en) * 2011-01-04 2012-07-26 Shimizu Corp Photographic device
JP2013053871A (en) * 2011-09-01 2013-03-21 Kajima Corp Quality evaluation method and quality evaluation device
JP2014503062A (en) * 2010-10-25 2014-02-06 ロッキード マーティン コーポレイション Remote detection of flooded components
JP2014094642A (en) * 2012-11-08 2014-05-22 Tokyo Institute Of Technology Group-movable body of magnetic attraction vehicle
WO2022024478A1 (en) * 2020-07-31 2022-02-03 Jfeスチール株式会社 Inspection apparatus, inspection system, inspection method, and member repairing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014503062A (en) * 2010-10-25 2014-02-06 ロッキード マーティン コーポレイション Remote detection of flooded components
JP2012141476A (en) * 2011-01-04 2012-07-26 Shimizu Corp Photographic device
CN102290192A (en) * 2011-05-05 2011-12-21 北京理工大学 Magnetic block design method for magnetic wall-climbing robot and magnetic block
JP2013053871A (en) * 2011-09-01 2013-03-21 Kajima Corp Quality evaluation method and quality evaluation device
JP2014094642A (en) * 2012-11-08 2014-05-22 Tokyo Institute Of Technology Group-movable body of magnetic attraction vehicle
WO2022024478A1 (en) * 2020-07-31 2022-02-03 Jfeスチール株式会社 Inspection apparatus, inspection system, inspection method, and member repairing method
JPWO2022024478A1 (en) * 2020-07-31 2022-02-03
JP7205642B2 (en) 2020-07-31 2023-01-17 Jfeスチール株式会社 Inspection device, inspection system, inspection method, and member repair method

Similar Documents

Publication Publication Date Title
US5947051A (en) Underwater self-propelled surface adhering robotically operated vehicle
CN103785923B (en) A kind of local dry underwater welding robot based on ROV
Bogue The role of robotics in non‐destructive testing
US20140147217A1 (en) Method and device for assembling or disassembling a structure under water
CN109715491A (en) Underwater vehicle and inspection method
Armada et al. Application of CLAWAR machines
EP1796105A3 (en) A method of inspecting or utilizing tools in a nuclear reactor environment
Bogue Applications of robotics in test and inspection
Fahrni et al. Scope and feasibility of autonomous robotic subsea intervention systems for offshore inspection, maintenance and repair
Deepak et al. Development of in-pipe robots for inspection and cleaning tasks: Survey, classification and comparison
JP2004168088A (en) Device and method of inspecting underwater structure
CN104653864A (en) Stone falling pipe stone dumping device for treating suspended spanning of submarine pipeline
NO20220916A1 (en) Modular underwater vehicle having modules that are orientable with respect to one another
RU2468960C1 (en) All-purpose self-propelled submersible system for inspection and repair of waterworks
CN205971769U (en) A bathyscaph for detecting dark submarine pipeline way
RU110065U1 (en) UNIVERSAL RELEASED SYSTEM FOR THE EXAMINATION AND REPAIR OF HYDROTECHNICAL AND OIL AND GAS INDUSTRY INFRASTRUCTURE
Dissanayake et al. Adaptable legged-magnetic adhesion tracked wheel robotic platform for misaligned mooring chain climbing and inspection
US20130336724A1 (en) Device and method for performing an operation on an at least partially submerged structure
Liu et al. Application of service robots for building NDT inspection tasks
Bloss How do you decommission a nuclear installation? Call in the robots
Dissanayake et al. Tracked-wheel crawler robot for vertically aligned mooring chain climbing design, simulation and validation of a climbing robot for mooring chains
Liu et al. Infrastructure robotics: Research challenges and opportunities
Bostelman et al. Stability of an underwater work platform suspended from an unstable reference
Yuan et al. Development of an inspection robot for long‐distance transmission pipeline on‐site overhaul
Dissanayake Development of a Chain Climbing Robot and an Automated Ultrasound Inspection System for Mooring Chain Integrity Assessment