JP2004165942A - Two-frequency common antenna system - Google Patents

Two-frequency common antenna system Download PDF

Info

Publication number
JP2004165942A
JP2004165942A JP2002328980A JP2002328980A JP2004165942A JP 2004165942 A JP2004165942 A JP 2004165942A JP 2002328980 A JP2002328980 A JP 2002328980A JP 2002328980 A JP2002328980 A JP 2002328980A JP 2004165942 A JP2004165942 A JP 2004165942A
Authority
JP
Japan
Prior art keywords
dipole
frequency
antenna
dual
antenna device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002328980A
Other languages
Japanese (ja)
Other versions
JP3839393B2 (en
Inventor
Yasutaka Kobanawa
康隆 小塙
Shunichi Nishizawa
俊一 西澤
Tsuyoshi Suga
剛志 須賀
Hiroki Yagi
宏樹 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
DKK Co Ltd
Original Assignee
Denki Kogyo Co Ltd
NTT Docomo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kogyo Co Ltd, NTT Docomo Inc filed Critical Denki Kogyo Co Ltd
Priority to JP2002328980A priority Critical patent/JP3839393B2/en
Publication of JP2004165942A publication Critical patent/JP2004165942A/en
Application granted granted Critical
Publication of JP3839393B2 publication Critical patent/JP3839393B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a two-frequency common antenna system which has an excellent and stable return loss characteristic and a high gain in a high frequency band and can share frequencies of a mobile communication system even with an ordinary whip antenna. <P>SOLUTION: This antenna system 10 is a dipole 12 composed of dipole elements 12a and 12b of metal foils which have arbitrary widths on a dielectric substrate 11 to share two frequency bands, and characterized in that a position shifting from the geometric center point CO between both ends of the dipole elements by a certain length along the length of the dipole elements is regarded as the feed center point C of the dipole 12. The dipole 12 is made to resonate at a frequency fed from common feeders 15a and 15b through the feed center point C, the dipole element 12a which is shorter between the dipole elements is fed from the feeders through the feed center point C to make its dipole element length resonate at a frequency f2 (f2>f1), and the operation mode is set to a whip antenna. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、例えば移動通信方式における移動局用アンテナ装置に関し、特に、2つの周波数帯域で共用特性が要求される、ダイポールアンテナとホイップアンテナとからなる2周波共用アンテナ装置に関する。
【0002】
【従来の技術】
従来、この種の2周波共用アンテナ装置については、例えば、図6に示すような、ホイップアンテナ型のものがある。
図6において、前記2周波共用アンテナ装置1には、そのアンテナ素子2の途中に直列に挿入される、コイル等が用いられたトラップ回路3と、前記アンテナ装置1の給電点に2周波共用の給電整合回路4とを有する。5は給電線路である。
【0003】
前記給電整合回路4は、整合回路のローデイングコイルL1とコンデンサC1とからなる。この場合、給電点の構造はローデイングコイルL1があり、2周波でインピーダンスの整合を行うために、所望する高い周波数帯域においてローディングコイルL1のインダクタンス分を少なくする働きの前記コンデンサC1を該コイルL1の途中から並列に配置して、2周波で共振させるものが多い。
【0004】
前記ローディングコイルL1は、周波数が低い場合は、前記コイルL1及びその製作精度をそれほど必要としないでインピーダンスを整合させることができるが、周波数が1GHz以上になると、2周波共用を実現させるためには、前記コイルL1及び前記コンデンサC1の接合精度及び前記コイルL1部分の損失等を無視できないものとなる。
【0005】
【発明が解決しようとする課題】
近年の移動通信システムにおいては、同一エリア内で複数の周波数を受信可能な移動体通信用端末が普及してきている。これは、ある周波数帯が混み入っている場合、違う周波数帯に振り分けるといったシステムである。
それに伴い、前記移動体端末の補助アンテナとして、小型で2周波を共用するアンテナが必要とされる場所の存在が期待又は待望されていた。
【0006】
また、500MHz帯以下の車載アンテナに比べて、携帯電話の周波数帯は高いため、通常のホイッブアンテナでは周波数を共用することが難しく、実現したとしてもコストがかさんでしまい現実的ではないという問題点があった。よって、高い周波数帯域でのリターンロス特性が良好で安定し、かつ安価なアンテナが必要とされてきた。
【0007】
本発明はかかる点に鑑みなされたもので、その目的は前記問題点を解消し、高い周波数帯域でのリターンロス特性が良好で安定し、高利得で、かつ通常のホイッブアンテナでも移動通信方式の周波数が共用できる安価な、2周波共用アンテナ装置を提供することにある。
【0008】
【課題を解決するための手段】
前記目的を達成するための本発明の2周波共用アンテナ装置の構成は、2つの周波数帯を共用するために、誘電体基板上に任意の幅を有する金属箔、又は任意の幅を有する金属平板によるダイポール素子からなるダイポールを形成し、前記ダイポール素子の両端間の幾何学的中心から該ダイポール素子の長さ方向にある長さずらした位置を前記ダイポールの給電中心点とし、前記ダイポールが該給電中心点を介して共通の給電線路から給電する第1の周波数f1で共振されるダイポールアンテナであるとともに、前記給電中心点を介して前記給電線路から給電し、前記ダイポール素子のうち短い方の前記ダイポール素子長にて第2の周波数f2(f2>f1)で共振させ、かつ動作モードをホイップアンテナにする2周波共用アンテナ装置である。
【0009】
前記ある長さは、前記幾何学的中心から、前記短い方のダイポール素子の端から前記第2の周波数f2の波長の1/4の位置までの長さである2周波共用アンテナ装置である。
【0010】
前記ダイポールアンテナのダイポール素子が同一の前記誘電体基板に複数対が形成され、ダイバーシチアンテナとして動作させる2周波共用アンテナ装置である。
【0011】
前記給電線路が平衡回路、平衡不平衡変換回路、不平衡回路のマイクロストリップ線路又はバランにより構成される2周波共用アンテナ装置である。
【0012】
本発明の2周波共用アンテナ装置は、2つの周波数帯を共用するために、以上のように構成されているので、低い第1の周波数f1でダイポールアンテナとして共振、動作させるとともに、それぞれの長さの異なる2個の前記ダイポール素子のうち、主として短い方のダイポール素子長において高い第2の周波数f2(f2>f1)で共振させ、かつホイップアンテナとして動作させている。
【0013】
【発明の実施の形態】
以下、図面に基づいて本発明の好適な実施の形態を例示的に詳しく説明する。図1及び図2は、本発明の2周波共用アンテナ装置の一実施の形態を示す図で、図1は、前記2周波共用アンテナ装置の構成を示す正面構成図、図2は、前記アンテナ装置が2周波のうち低い第1の周波数f1と、高い第2の周波数f2とでそれぞれ共振するときの点線で電流分布を示す図である。
【0014】
図1において、、前記2周波共用アンテナ装置1は、誘電体基板11の一方の面に形成された任意の幅を有する金属箔からなり、第1の周波数f1が0.8GHz帯(その波長はλ1)、第2の周波数f2が1.5GHz帯(その波長はλ2)に使用される2周波共用のアンテナの場合を示し、第1のダイポール12を構成する直線状に形成される2個のダイポール素子12a,12bは、前記周波数f1に共振するように、その両端間の長さが約(λ1)/2に形成される。
【0015】
前記ダイポール素子12a,12bの両端間の長さの、前記周波数f1の約(λ1)/2の幾何学的中心点C0から該ダイポール素子12a,12bの長さ方向で、一方の該ダイポール素子12aの端から前記周波数f2の約(λ2)/4にある点までずらした位置を前記アンテナ装置10の給電中心点Cとし、前記ダイポール素子12a,12bのうち短い方の、長さが約(λ2)/4の前記ダイポール素子12aを、前記周波数f2で共振させている。
【0016】
前記アンテナ装置10の前記給電中心点Cから、前記ダイポール素子12a,12bに垂直方向(図1の下方垂直方向)の中心線C1上に設けられた長さLのスリット19の両側に、任意の幅を有する金属箔からなるU字形状のダイポールU字形バラン部分13aが形成されるとともに、それぞれの端13b,13cは前記ダイポール素子12a,12bのそれぞれの端に接続されるように形成されている。
【0017】
したがって、第2のダイポール13は、前記ダイポール素子12a,12bと前記ダイポールU字形バラン部分13aとから形成され、前記ダイポール素子12aを前記周波数f2で共振させている。
また、前記第2のダイポール13を形成する、前記ダイポール素子12a,12bと前記ダイポールU字形バラン部分13aとの全長は、図2に示すように、前記周波数f2の波長λ2の約1.5倍であり、前記スリット19の長さLは、前記周波数f2の約(λ2)/4以上で、後記バラン14とのインピーダンス整合により決められるか、又は、後記中央給電点20から前記周波数f2の波長λ2の約1/4にしている。
【0018】
前記第1及び第2のダイポール12,13へ給電するための給電線路は、前記誘電体基板11の他方の面側に形成される給電線路15aと前記ダイポールU字形バラン部分13aのU字の底部が給電線路15bを形成する。
【0019】
前記誘電体基板11の他方の面(図1で裏側)に形成される給電線路15aは、その一方は、前記中心線C1上に設けられる前記スリット19の一方の側(図1で左側)に沿って形成されるとともに、前記中央給電点20付近において逆「U」字形状に方向を反転し、再び前記スリット19の他方の側(図1で右側)に沿ってバラン14を形成し、その他方は、前記誘電体基板11の下端にある給電端に接続されている。
【0020】
前記バラン14は、その長さを、前記中央給電点20から前記第2の周波数f2の約(λ2)/4に形成して整合をとっている。そして、前記第1、第2のダイポール12,13のそれぞれの放射素子としての、前記ダイポール素子12a,12b;12a,12b,13aには、前記給電線路15a,15bから前記中央給電点20を介して、前記所定周波数の電力が給電されている。
【0021】
このように、前記バラン14の構造はオープン構造である。なお、前記給電線路15a,15bを含む前記バラン14を、給電バラン部17として、図1の鎖線で囲む部分を示す。
【0022】
そして、前記ダイポール素子12aをホイップアンテナとして動作させている。この場合、前記アンテナ装置10の該ダイポール素子12aによるホイップアンテナは、接地板などのアースを必要としないアンテナとなる。
なお、図2に示すように、前記第2の周波数f2による電流分布が、その波長λ2の3/2の長さにわたるホイップアンテナは、該アンテナの下方に接地板などのアースを必要とせず、それでいて垂直面の指向性において、水平方向に放射することが可能となるアンテナである。
【0023】
前記アンテナ装置10は、前記中央給電点20からみると、左右非対称な変形ダイポールアンテナ装置である。
また、前記アンテナ装置10は、前記ダイポール素子12a,12b,13aを同一の前記誘電体基板11に複数対を上下方向に形成して、2周波共用のダイバーシチアンテナとして動作させることができる。
【0024】
本実施の形態では、前記第1及び第2のダイポール12,13を、前記誘電体基板11の一方の面に、金属箔により形成する例について説明したが、これに代えて、金属平板から形成させてもよい。
また、本実施の形態において、使用される一方の周波数f1を0.8GHz帯、他方の周波数f2を1.5GHz帯にしているが、本発明は、これに限定されずに、他の周波数でも勿論よいが、好ましくは、前記周波数f2は、前記周波数f1の約2倍である。
【0025】
このような、前記2周波共用アンテナ装置10についての、各周波数帯、すなわち第1の周波数f1=0.8GHz帯、第2の周波数f2=1.5GHz帯における、周波数対反射減衰量特性は、図3に示すように広帯域特性が得られている。
【0026】
また、前記2周波共用アンテナ装置10について、前記ダイポール素子12aをホイップアンテナとして動作させたときの水平面内指向特性図で、第1の周波数f1=0.8GHz帯、第2の周波数f2=1.5GHz帯における、磁界面内指向特性を、図4(a)及び図4(b)に示す。
同様に、垂直面内指向特性図で、第1の周波数f1=0.8GHz帯、第2の周波数f2=1.5GHz帯における、電界面内指向特性を、図5(a)及び図5(b)に示す。
【0027】
前記2周波共用アンテナ装置10は、前記給電線路15a,15bに、平衡回路、平衡不平衡変換回路、不平衡回路のマイクロスロリップ線路、又はバランなどを、それぞれを接続し構成することができる。
【0028】
なお、本発明の技術は前記実施例における技術に限定されるものではなく、同様な機能を果たす他の態様の手段によってもよく、また本発明の技術は前記構成の範囲内において種々の変更、付加が可能である。
【0029】
【発明の効果】
以上の説明から明らかなように本発明の2周波共用アンテナ装置によれば、2つの周波数帯を共用するために、誘電体基板上にダイポールを形成し、そのダイポール素子の両端間の幾何学的中心から該ダイポール素子の長さ方向にある長さずらした位置を前記ダイポールの給電中心点とし、前記ダイポールが該給電中心点を介して共通の給電線路から給電する第1の周波数f1で共振されるダイポールアンテナであるとともに、前記給電中心点を介して前記給電線路から給電し、前記ダイポール素子のうち短い方の前記ダイポール素子長にて第2の周波数f2(f2>f1)で共振させ、かつ動作モードをホイップアンテナにするので、高い周波数帯域でのリターンロス特性が良好で安定し、高利得で、かつ通常のホイッブアンテナでも移動通信方式の周波数が共用できるとともに、小型化が可能な安価な、2周波共用ダイポールアンテナ装置が得られるという優れた効果を奏する。
【0030】
また、本発明によれば、従来のものに比べて、前記トラップ回路及び給電点において整合素子等を使用することなく、すなわちインダクタンス部分(前記コイル)及び容量部分を必要とせずに、誘電体基板上に前記ダイポール素子を構成することができるため、製作精度が高く、量産するのに非常に効率的である。コイルにおける損失等がないため、高い利得を安定して得ることができるという効果がある。
【図面の簡単な説明】
【図1】本発明の2周波共用アンテナ装置の一実施の形態を示す図で、前記2周波共用アンテナ装置の構成を示す正面構成図である。
【図2】図1の前記アンテナ装置のダイポールが2周波のうち低い第1の周波数f1と、高い第2の周波数f2とでそれぞれ共振するときの点線で電流分布を示す図である。
【図3】図1の2周波共用アンテナ装置の周波数対反射減衰量特性図である。
【図4】図1の2周波共用アンテナ装置の水平面内指向特性図で、図4(a)は、第1の周波数f1=0.8GHzにおける磁界面内指向特性図、図4(b)は、第2の周波数f2=1.5GHzにおける磁界面内指向特性図である。
【図5】図1の2周波共用アンテナ装置の垂直面内指向特性図で、図5(a)は、第1の周波数f1=0.8GHzにおける電界面内指向特性図、図5(b)は、第2の周波数f2=1.5GHzにおける電界面内指向特性図である。
【図6】従来の2周波共用アンテナ装置の例で、ホイップアンテナ型のアンテナ装置の構成を示す説明図である。
【符号の説明】
10 2周波共用アンテナ装置
11 誘電体基板
12 第1のダイポール
12a,12b ダイポール素子
13 第2のダイポール
13a ダイポールU字形バラン部分
13b,13c 端
14 バラン
15,15a,15b 給電線路
17 給電バラン部
19 スリット
20 中央給電点
C 給電中心点
C0 幾何学的中心点
C1 中心線
f1,f2 周波数
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a mobile station antenna device in, for example, a mobile communication system, and more particularly to a dual frequency antenna device including a dipole antenna and a whip antenna, which is required to have shared characteristics in two frequency bands.
[0002]
[Prior art]
Conventionally, as this type of dual-frequency antenna device, there is, for example, a whip antenna type as shown in FIG.
In FIG. 6, the dual-frequency antenna device 1 includes a trap circuit 3 including a coil and the like, which is inserted in series in the middle of the antenna element 2, and a dual-frequency dual-use antenna at a feed point of the antenna device 1. And a power supply matching circuit 4. 5 is a feed line.
[0003]
The feed matching circuit 4 includes a loading coil L1 and a capacitor C1 of the matching circuit. In this case, the structure of the feeding point includes a loading coil L1, and in order to perform impedance matching at two frequencies, the coil C1 is used to reduce the inductance of the loading coil L1 in a desired high frequency band. Are arranged in parallel in the middle of the process and resonate at two frequencies.
[0004]
When the frequency of the loading coil L1 is low, the impedance can be matched without much need for the coil L1 and its manufacturing accuracy. However, when the frequency becomes 1 GHz or more, in order to realize dual frequency sharing, In addition, the joining accuracy of the coil L1 and the capacitor C1, the loss of the coil L1, and the like cannot be ignored.
[0005]
[Problems to be solved by the invention]
In mobile communication systems in recent years, mobile communication terminals capable of receiving a plurality of frequencies within the same area have become widespread. This is a system in which when a certain frequency band is crowded, it is assigned to a different frequency band.
Along with this, the existence of a place where a small antenna that shares two frequencies is required as an auxiliary antenna of the mobile terminal has been expected or long-awaited.
[0006]
In addition, since the frequency band of a mobile phone is higher than that of an on-board antenna of the 500 MHz band or less, it is difficult to share the frequency with a normal whip antenna, and even if it is realized, the cost is increased and it is not realistic. There was a problem. Therefore, there is a need for an antenna that has good and stable return loss characteristics in a high frequency band and is inexpensive.
[0007]
The present invention has been made in view of the above circumstances, and an object of the present invention is to solve the above-mentioned problems, to provide a good and stable return loss characteristic in a high frequency band, a high gain, and a mobile communication system even with a normal whip antenna. It is an object of the present invention to provide an inexpensive dual-frequency antenna device that can share the same frequency.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the configuration of the dual-frequency antenna device of the present invention is a metal foil having an arbitrary width on a dielectric substrate, or a metal flat plate having an arbitrary width, in order to share two frequency bands. A dipole consisting of a dipole element is formed, and a position shifted by a length in the length direction of the dipole element from a geometric center between both ends of the dipole element is set as a feeding center point of the dipole, and the dipole is used as the feeding center. A dipole antenna that resonates at a first frequency f1 that is fed from a common feed line via a center point, and is fed from the feed line via the feed center, and the shorter one of the dipole elements A dual-frequency antenna device that resonates at a second frequency f2 (f2> f1) with a dipole element length and operates in a whip antenna mode. That.
[0009]
In the dual frequency antenna device, the certain length may be a length from the geometric center to an end of the shorter dipole element and a position at a quarter of the wavelength of the second frequency f2.
[0010]
This is a dual-frequency antenna device in which a plurality of pairs of dipole elements of the dipole antenna are formed on the same dielectric substrate and operated as a diversity antenna.
[0011]
The dual-frequency antenna device, wherein the feed line is constituted by a balanced circuit, a balanced-unbalanced conversion circuit, a microstrip line of an unbalanced circuit, or a balun.
[0012]
Since the dual-frequency antenna device of the present invention is configured as described above to share two frequency bands, it resonates and operates as a dipole antenna at a low first frequency f1, and operates at the respective lengths. Of the two dipole elements different from each other, resonance is performed at a high second frequency f2 (f2> f1) mainly at the shorter dipole element length, and the dipole element is operated as a whip antenna.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a preferred embodiment of the present invention will be illustratively described in detail with reference to the drawings. 1 and 2 are views showing one embodiment of a dual-frequency antenna device according to the present invention. FIG. 1 is a front view showing the configuration of the dual-frequency antenna device, and FIG. FIG. 7 is a diagram showing a current distribution with dotted lines when resonance occurs at a low first frequency f1 and a high second frequency f2 of the two frequencies, respectively.
[0014]
In FIG. 1, the dual-frequency antenna device 1 is made of a metal foil having an arbitrary width formed on one surface of a dielectric substrate 11 and has a first frequency f1 in a 0.8 GHz band (its wavelength is λ1), the case where the second frequency f2 is an antenna shared by two frequencies used in the 1.5 GHz band (its wavelength is λ2), and two linearly formed two dipoles constituting the first dipole 12 are shown. The length between both ends of the dipole elements 12a and 12b is formed to be approximately (λ1) / 2 so as to resonate at the frequency f1.
[0015]
One of the dipole elements 12a, 12b extends from the geometric center point C0 of the length between both ends of the dipole elements 12a, 12b at about (λ1) / 2 of the frequency f1 in the length direction of the dipole elements 12a, 12b. A position shifted from the end of the antenna f to a point at about (λ2) / 4 of the frequency f2 is defined as a feeding center point C of the antenna device 10, and the shorter one of the dipole elements 12a and 12b has a length of about (λ2). ) / 4 of the dipole element 12a is resonated at the frequency f2.
[0016]
From the feeding center point C of the antenna device 10, on both sides of a slit 19 having a length L provided on a center line C1 in a direction perpendicular to the dipole elements 12a and 12b (downward vertical direction in FIG. 1). A U-shaped dipole U-shaped balun portion 13a made of a metal foil having a width is formed, and respective ends 13b and 13c are formed so as to be connected to respective ends of the dipole elements 12a and 12b. .
[0017]
Accordingly, the second dipole 13 is formed of the dipole elements 12a and 12b and the dipole U-shaped balun portion 13a, and resonates the dipole element 12a at the frequency f2.
The total length of the dipole elements 12a and 12b and the dipole U-shaped balun portion 13a forming the second dipole 13 is about 1.5 times the wavelength λ2 of the frequency f2 as shown in FIG. The length L of the slit 19 is about (λ2) / 4 or more of the frequency f2 and is determined by impedance matching with the later-described balun 14 or the wavelength of the frequency f2 from the central feeding point 20 described later. It is about 1/4 of λ2.
[0018]
A feed line for feeding power to the first and second dipoles 12 and 13 includes a feed line 15a formed on the other surface side of the dielectric substrate 11 and a U-shaped bottom of the dipole U-shaped balun portion 13a. Form the feed line 15b.
[0019]
A feed line 15a formed on the other surface (the back side in FIG. 1) of the dielectric substrate 11 has one end on one side (the left side in FIG. 1) of the slit 19 provided on the center line C1. Along the other side of the slit 19, a balun 14 is formed along the other side (the right side in FIG. 1) of the slit 19. The other end is connected to a feeding end at the lower end of the dielectric substrate 11.
[0020]
The balun 14 is formed so that its length is approximately (λ2) / 4 of the second frequency f2 from the central feeding point 20 and is matched. The dipole elements 12a, 12b; 12a, 12b, 13a as radiating elements of the first and second dipoles 12, 13, respectively, are provided from the feed lines 15a, 15b via the central feed point 20. Thus, the power of the predetermined frequency is supplied.
[0021]
Thus, the structure of the balun 14 is an open structure. In addition, a portion surrounding the balun 14 including the power supply lines 15a and 15b as a power supply balun portion 17 by a chain line in FIG. 1 is illustrated.
[0022]
The dipole element 12a operates as a whip antenna. In this case, the whip antenna using the dipole element 12a of the antenna device 10 is an antenna that does not require a ground such as a ground plate.
As shown in FIG. 2, the whip antenna whose current distribution at the second frequency f2 extends over a length of 3/2 of the wavelength λ2 does not require a ground such as a ground plate below the antenna. Still, the antenna can radiate in the horizontal direction with the directivity of the vertical plane.
[0023]
The antenna device 10 is a deformed dipole antenna device that is asymmetric when viewed from the center feeding point 20.
Further, the antenna device 10 can operate as a diversity antenna shared by two frequencies by forming a plurality of pairs of the dipole elements 12a, 12b, 13a on the same dielectric substrate 11 in the vertical direction.
[0024]
In the present embodiment, an example in which the first and second dipoles 12 and 13 are formed on one surface of the dielectric substrate 11 with a metal foil has been described. You may let it.
Further, in the present embodiment, one frequency f1 used is in the 0.8 GHz band and the other frequency f2 is in the 1.5 GHz band. However, the present invention is not limited to this, and other frequencies f1 may be used in other frequencies. Of course, preferably, the frequency f2 is about twice the frequency f1.
[0025]
The frequency versus return loss characteristics of each of the frequency bands, that is, the first frequency f1 = 0.8 GHz band and the second frequency f2 = 1.5 GHz band, of the dual-band antenna device 10 are as follows. As shown in FIG. 3, broadband characteristics are obtained.
[0026]
Further, with respect to the dual-frequency antenna device 10, when the dipole element 12a is operated as a whip antenna, a directional characteristic diagram in a horizontal plane shows a first frequency f1 = 0.8 GHz band, a second frequency f2 = 1. FIGS. 4A and 4B show the in-plane directional characteristics of the magnetic field in the 5 GHz band.
Similarly, in the vertical plane directional characteristics, the electric field in-plane directional characteristics at the first frequency f1 = 0.8 GHz band and the second frequency f2 = 1.5 GHz band are shown in FIGS. It is shown in b).
[0027]
The dual-frequency antenna device 10 can be configured by connecting a balanced circuit, a balanced-unbalanced conversion circuit, a microslip line of an unbalanced circuit, or a balun to the feed lines 15a and 15b, respectively.
[0028]
Note that the technology of the present invention is not limited to the technology in the above-described embodiment, and may be implemented by means of another embodiment that performs the same function. Addition is possible.
[0029]
【The invention's effect】
As is apparent from the above description, according to the dual-frequency antenna device of the present invention, a dipole is formed on a dielectric substrate in order to share two frequency bands, and a geometrical configuration between both ends of the dipole element is formed. A position shifted from the center by a length in the length direction of the dipole element is set as a feeding center point of the dipole, and the dipole is resonated at a first frequency f1 fed from a common feeding line through the feeding center point. A dipole antenna, and feeds power from the feed line via the feed center point, and resonates at a second frequency f2 (f2> f1) with the shorter dipole element length of the dipole elements; and Operation mode is set to whip antenna, so return loss characteristics in high frequency band are good and stable, high gain, and can move with normal whip antenna With frequency can be shared Shin method of inexpensive it can be downsized, an excellent effect that dualband dipole antenna device is obtained.
[0030]
According to the present invention, a dielectric substrate is used without using a matching element or the like at the trap circuit and the feeding point, that is, without using an inductance part (the coil) and a capacitance part as compared with the conventional one. Since the dipole element can be formed thereon, the manufacturing accuracy is high and it is very efficient for mass production. Since there is no loss or the like in the coil, there is an effect that a high gain can be stably obtained.
[Brief description of the drawings]
FIG. 1 is a view showing one embodiment of a dual-frequency antenna device according to the present invention, and is a front view showing the configuration of the dual-frequency antenna device.
FIG. 2 is a diagram showing a current distribution by a dotted line when the dipole of the antenna device of FIG. 1 resonates at a low first frequency f1 and a high second frequency f2 among two frequencies.
FIG. 3 is a diagram illustrating frequency versus return loss characteristics of the dual frequency antenna device of FIG. 1;
4A and 4B are directional characteristics diagrams in a horizontal plane of the dual-frequency antenna device of FIG. 1; FIG. 4A is a directional characteristics diagram in a magnetic field plane at a first frequency f1 = 0.8 GHz; FIG. FIG. 9 is a diagram showing a directivity characteristic in a magnetic field plane at a second frequency f2 = 1.5 GHz.
5A is a directional characteristic diagram in a vertical plane of the dual-frequency antenna device of FIG. 1, and FIG. 5A is a directional characteristic diagram in an electric field plane at a first frequency f1 = 0.8 GHz; FIG. FIG. 5 is a diagram showing the in-plane directional characteristics at the second frequency f2 = 1.5 GHz.
FIG. 6 is an explanatory view showing a configuration of a whip antenna type antenna device as an example of a conventional dual frequency antenna device.
[Explanation of symbols]
Reference Signs List 10 dual frequency antenna device 11 dielectric substrate 12 first dipole 12a, 12b dipole element 13 second dipole 13a dipole U-shaped balun portion 13b, 13c end 14 balun 15, 15a, 15b feed line 17 feed balun portion 19 slit 20 Central feeding point C Feeding center point C0 Geometric center point C1 Center lines f1, f2 Frequency

Claims (4)

2つの周波数帯を共用するために、誘電体基板上に任意の幅を有する金属箔、又は任意の幅を有する金属平板によるダイポール素子からなるダイポールを形成し、前記ダイポール素子の両端間の幾何学的中心から該ダイポール素子の長さ方向にある長さずらした位置を前記ダイポールの給電中心点とし、前記ダイポールが該給電中心点を介して共通の給電線路から給電する第1の周波数f1で共振されるダイポールアンテナであるとともに、前記給電中心点を介して前記給電線路から給電し、前記ダイポール素子のうち短い方の前記ダイポール素子長にて第2の周波数f2(f2>f1)で共振させ、かつ動作モードをホイップアンテナにすることを特徴とする2周波共用アンテナ装置。In order to share the two frequency bands, a dipole composed of a dipole element made of a metal foil having an arbitrary width or a metal flat plate having an arbitrary width is formed on a dielectric substrate, and a geometry between both ends of the dipole element is formed. A position shifted by a distance in the length direction of the dipole element from the target center is defined as a feeding center point of the dipole, and the dipole resonates at a first frequency f1 at which the dipole feeds from a common feeding line via the feeding center point. A dipole antenna, and feeds power from the feed line via the feed center point, and resonates at a second frequency f2 (f2> f1) with the shorter dipole element length of the dipole elements. A dual-frequency antenna device wherein the operation mode is a whip antenna. 前記ある長さは、前記幾何学的中心から、前記短い方のダイポール素子の端から前記第2の周波数f2の波長の1/4の位置までの長さであることを特徴とする請求項1に記載の2周波共用アンテナ装置。2. The device according to claim 1, wherein the certain length is a length from the geometric center to a position corresponding to a quarter of a wavelength of the second frequency f <b> 2 from an end of the shorter dipole element. 3. 2. The dual-frequency antenna device according to item 1. 前記ダイポールアンテナのダイポール素子が同一の前記誘電体基板に複数対が形成され、ダイバーシチアンテナとして動作させることを特徴とする請求項1又は請求項2に記載の2周波共用アンテナ装置。3. The dual-frequency antenna device according to claim 1, wherein a plurality of pairs of the dipole elements of the dipole antenna are formed on the same dielectric substrate to operate as a diversity antenna. 4. 前記給電線路が平衡回路、平衡不平衡変換回路、不平衡回路のマイクロストリップ線路又はバランにより構成されることを特徴とする請求項1又は請求項2に記載の2周波共用アンテナ装置。3. The dual-frequency antenna device according to claim 1, wherein the feed line includes a balanced circuit, a balanced-unbalanced conversion circuit, a microstrip line of an unbalanced circuit, or a balun. 4.
JP2002328980A 2002-11-13 2002-11-13 Dual frequency antenna device Expired - Lifetime JP3839393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002328980A JP3839393B2 (en) 2002-11-13 2002-11-13 Dual frequency antenna device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002328980A JP3839393B2 (en) 2002-11-13 2002-11-13 Dual frequency antenna device

Publications (2)

Publication Number Publication Date
JP2004165942A true JP2004165942A (en) 2004-06-10
JP3839393B2 JP3839393B2 (en) 2006-11-01

Family

ID=32807109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002328980A Expired - Lifetime JP3839393B2 (en) 2002-11-13 2002-11-13 Dual frequency antenna device

Country Status (1)

Country Link
JP (1) JP3839393B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007295277A (en) * 2006-04-25 2007-11-08 Denki Kogyo Co Ltd Antenna device
JP2008153967A (en) * 2006-12-18 2008-07-03 Denki Kogyo Co Ltd Antenna device
JP2008527876A (en) * 2005-01-17 2008-07-24 アンテノヴァ・リミテッド Pure dielectric antenna and related devices
JP2009100031A (en) * 2007-10-12 2009-05-07 Konica Minolta Holdings Inc Antenna apparatus and electronic equipment
JP2011035471A (en) * 2009-07-29 2011-02-17 Fujikura Ltd Dipole antenna device
JP2012049852A (en) * 2010-08-27 2012-03-08 Mitsubishi Electric Corp Antenna device
CN106785491A (en) * 2016-12-30 2017-05-31 歌尔科技有限公司 A kind of dipole dual-band antenna and electronic product
KR101991706B1 (en) * 2017-12-28 2019-09-30 주식회사 에이스테크놀로지 Antenna for Vehicle-to-Vehicle Communication
CN112448125A (en) * 2019-08-28 2021-03-05 深圳市卓睿通信技术有限公司 Double-frequency directional antenna and unmanned aerial vehicle remote controller
CN115313019A (en) * 2022-08-15 2022-11-08 中国电子科技集团公司第五十四研究所 Detachable convertible directional and omnidirectional dipole antenna

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0555610U (en) * 1991-12-24 1993-07-23 日本電業工作株式会社 Dipole antenna
JPH0652215U (en) * 1992-12-16 1994-07-15 八重洲無線株式会社 Wideband printed antenna
JPH06209205A (en) * 1992-02-26 1994-07-26 Flachglas Ag Structural body of antenna to be mounted on window aperture part of metallic car body
JPH07131231A (en) * 1993-11-05 1995-05-19 Mitsubishi Cable Ind Ltd Antenna for mobile communication equipment
JPH0878930A (en) * 1994-08-31 1996-03-22 Fujitsu Ltd Portable radio equipment
JPH08186420A (en) * 1994-12-28 1996-07-16 Zanavy Informatics:Kk Print antenna
JPH10150319A (en) * 1996-11-18 1998-06-02 Nippon Dengiyou Kosaku Kk Dipole antenna with reflecting plate
JP2000031732A (en) * 1998-07-10 2000-01-28 Nippon Dengyo Kosaku Co Ltd Antenna in common use for polarized wave
JP2000244241A (en) * 1999-02-23 2000-09-08 Nippon Dengyo Kosaku Co Ltd Array antenna
JP2001185938A (en) * 1999-12-27 2001-07-06 Mitsubishi Electric Corp Two-frequency common antenna, multifrequency common antenna, and two-frequency and multifrequency common array antenna
JP2001284946A (en) * 2000-03-30 2001-10-12 Ntt Docomo Inc Wide band antenna and array antenna device
JP2002118419A (en) * 2000-10-11 2002-04-19 Nippon Dengyo Kosaku Co Ltd Antenna
JP2002135044A (en) * 2000-10-20 2002-05-10 Nippon Hoso Kyokai <Nhk> Circularly polarized wave antenna and circularly polarized wave array antenna
JP2002141732A (en) * 2000-11-02 2002-05-17 Hiroyuki Arai Two-element meandering line sleeve antenna
JP2002151924A (en) * 2000-11-13 2002-05-24 Samsung Yokohama Research Institute Co Ltd Mobile terminal
JP2003051708A (en) * 2001-08-06 2003-02-21 Nippon Dengyo Kosaku Co Ltd Antenna
JP2003209429A (en) * 2002-01-11 2003-07-25 Ntt Docomo Inc Double resonance antenna device

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0555610U (en) * 1991-12-24 1993-07-23 日本電業工作株式会社 Dipole antenna
JPH06209205A (en) * 1992-02-26 1994-07-26 Flachglas Ag Structural body of antenna to be mounted on window aperture part of metallic car body
JPH0652215U (en) * 1992-12-16 1994-07-15 八重洲無線株式会社 Wideband printed antenna
JPH07131231A (en) * 1993-11-05 1995-05-19 Mitsubishi Cable Ind Ltd Antenna for mobile communication equipment
JPH0878930A (en) * 1994-08-31 1996-03-22 Fujitsu Ltd Portable radio equipment
JPH08186420A (en) * 1994-12-28 1996-07-16 Zanavy Informatics:Kk Print antenna
JP3085524B2 (en) * 1996-11-18 2000-09-11 日本電業工作株式会社 Dipole antenna with reflector
JPH10150319A (en) * 1996-11-18 1998-06-02 Nippon Dengiyou Kosaku Kk Dipole antenna with reflecting plate
JP2000031732A (en) * 1998-07-10 2000-01-28 Nippon Dengyo Kosaku Co Ltd Antenna in common use for polarized wave
JP2000244241A (en) * 1999-02-23 2000-09-08 Nippon Dengyo Kosaku Co Ltd Array antenna
JP2001185938A (en) * 1999-12-27 2001-07-06 Mitsubishi Electric Corp Two-frequency common antenna, multifrequency common antenna, and two-frequency and multifrequency common array antenna
JP2001284946A (en) * 2000-03-30 2001-10-12 Ntt Docomo Inc Wide band antenna and array antenna device
JP2002118419A (en) * 2000-10-11 2002-04-19 Nippon Dengyo Kosaku Co Ltd Antenna
JP2002135044A (en) * 2000-10-20 2002-05-10 Nippon Hoso Kyokai <Nhk> Circularly polarized wave antenna and circularly polarized wave array antenna
JP2002141732A (en) * 2000-11-02 2002-05-17 Hiroyuki Arai Two-element meandering line sleeve antenna
JP2002151924A (en) * 2000-11-13 2002-05-24 Samsung Yokohama Research Institute Co Ltd Mobile terminal
JP2003051708A (en) * 2001-08-06 2003-02-21 Nippon Dengyo Kosaku Co Ltd Antenna
JP2003209429A (en) * 2002-01-11 2003-07-25 Ntt Docomo Inc Double resonance antenna device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008527876A (en) * 2005-01-17 2008-07-24 アンテノヴァ・リミテッド Pure dielectric antenna and related devices
JP2007295277A (en) * 2006-04-25 2007-11-08 Denki Kogyo Co Ltd Antenna device
JP4579186B2 (en) * 2006-04-25 2010-11-10 電気興業株式会社 Antenna device
JP2008153967A (en) * 2006-12-18 2008-07-03 Denki Kogyo Co Ltd Antenna device
JP2009100031A (en) * 2007-10-12 2009-05-07 Konica Minolta Holdings Inc Antenna apparatus and electronic equipment
JP2011035471A (en) * 2009-07-29 2011-02-17 Fujikura Ltd Dipole antenna device
JP2012049852A (en) * 2010-08-27 2012-03-08 Mitsubishi Electric Corp Antenna device
CN106785491A (en) * 2016-12-30 2017-05-31 歌尔科技有限公司 A kind of dipole dual-band antenna and electronic product
CN106785491B (en) * 2016-12-30 2023-07-21 歌尔科技有限公司 Dipole dual-frequency antenna and electronic product
KR101991706B1 (en) * 2017-12-28 2019-09-30 주식회사 에이스테크놀로지 Antenna for Vehicle-to-Vehicle Communication
CN112448125A (en) * 2019-08-28 2021-03-05 深圳市卓睿通信技术有限公司 Double-frequency directional antenna and unmanned aerial vehicle remote controller
CN115313019A (en) * 2022-08-15 2022-11-08 中国电子科技集团公司第五十四研究所 Detachable convertible directional and omnidirectional dipole antenna
CN115313019B (en) * 2022-08-15 2023-11-07 中国电子科技集团公司第五十四研究所 Detachable convertible directional and omnidirectional dipole antenna

Also Published As

Publication number Publication date
JP3839393B2 (en) 2006-11-01

Similar Documents

Publication Publication Date Title
KR100771775B1 (en) Perpendicular array internal antenna
US7589686B2 (en) Small ultra wideband antenna having unidirectional radiation pattern
US6218992B1 (en) Compact, broadband inverted-F antennas with conductive elements and wireless communicators incorporating same
US6489925B2 (en) Low profile, high gain frequency tunable variable impedance transmission line loaded antenna
JP3753436B2 (en) Multiband printed monopole antenna
JP4423809B2 (en) Double resonance antenna
JP2017511667A (en) Antenna system using capacitively coupled loop antenna with provision of antenna isolation
US8618998B2 (en) Compact circular polarized antenna with cavity for additional devices
JP2005538623A (en) Combined multiband antenna
TW201445809A (en) Multi-band antenna
US9899737B2 (en) Antenna element and antenna device comprising such elements
CN102396108A (en) Wideband antenna using coupling matching
JP4021642B2 (en) Antenna structure and radio apparatus
JP2001244731A (en) Antenna system and array antenna using the same
JP2005508099A (en) Multiband antenna for mobile equipment
US10297928B2 (en) Multi-port, multi-band, single connected multiple-input, multiple-output antenna
US20020024474A1 (en) Planar sleeve dipole antenna
CN102823058B (en) Support the broadband internal antenna utilizing electromagnetic coupled of improved-type impedance matching
CN102576936A (en) Methods for reducing near-field radiation and specific absorption rate (SAR) values in communications devices
CN102439790A (en) Multimode antenna structure
JP3839393B2 (en) Dual frequency antenna device
CN113451788B (en) Antenna, antenna module and wireless network equipment
US8199065B2 (en) H-J antenna
JP4948373B2 (en) antenna
JP2009111959A (en) Parallel 2-wire antenna and wireless communication device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060802

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3839393

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term