JP2004165436A - Method of manufacturing semiconductor light emitting device - Google Patents

Method of manufacturing semiconductor light emitting device Download PDF

Info

Publication number
JP2004165436A
JP2004165436A JP2002329638A JP2002329638A JP2004165436A JP 2004165436 A JP2004165436 A JP 2004165436A JP 2002329638 A JP2002329638 A JP 2002329638A JP 2002329638 A JP2002329638 A JP 2002329638A JP 2004165436 A JP2004165436 A JP 2004165436A
Authority
JP
Japan
Prior art keywords
layer
current confinement
emitting device
semiconductor light
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002329638A
Other languages
Japanese (ja)
Inventor
Hironobu Sai
寛展 斎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2002329638A priority Critical patent/JP2004165436A/en
Publication of JP2004165436A publication Critical patent/JP2004165436A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a semiconductor light emitting device with high yield which is excellent in emission properties and equipped with a current constriction layer of high performance. <P>SOLUTION: The method of manufacturing the semiconductor light emitting device 1 provided with the current constriction layer comprises processes of successively laminating a lower clad layer 5, a lower spacer layer 6, an active layer 7, an upper spacer layer 8, a current constriction layer 10a, and an upper clad layer 9 on a substrate; irradiating the current constriction layer 10a with a laser beam whose wavelength is specified so as to enable only material forming the current constriction layer to absorb the laser beam as the laser beam is focused on the current constriction layer; and forming a current constriction part by modifying the crystal structure of a part irradiated with the laser beam. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、電流狭窄層を備える半導体発光素子の製造方法に関する。
【0002】
【従来の技術】
半導体発光素子の代表例である化合物半導体レーザは、光通信機器や記録装置等に広く用いられている。図3は化合物半導体レーザの一例を模式的に示す断面図であるが、図示されるように化合物半導体レーザ1は、第1電極3と、第2電極2と、これら第1電極3及び第2電極2の間に設けられた複数の化合物半導体層とから構成されている。化合物半導体層は、例えば半導体基板4(例えばn−GaAs)と、その上面に形成された下部クラッド層(例えばAlGa1−xGa)5と、下部スペーサ層(例えばAlGa1−yAs)6を介してその上面に形成された活性層7と、上部スペーサ層(例えばAlGa1−uAs)8を介してその上面に形成された上部クラッド層(例えばAlGa1−rGa)9とから構成されている。また、第2電極2は上部クラッド層9の上に形成されたコンタクト層11を介して形成され、第1電極3は半導体基板5からなる電極形成面に形成されている。
【0003】
また、化合物半導体レーザ1では、その発光効率を高めるために、上部スペーサ層8の上に、所定幅にわたり開口した電流狭窄部10aを有する電流狭窄層10が形成される場合が多い。この電流狭窄層10は、GaAs等からなる薄膜を成膜し、電流狭窄部10aをエッチングにより除去して形成されるのが一般的である(例えば、特許文献1参照)。そのため、電流狭窄層10を有する化合物半導体レーザ1の製造は、従来では以下の方法で行われている。
【0004】
先ず、図4に示すように、MOCVD法等により、図3に示す層構成において、第1の電極3を除く電流狭窄層10までを形成する。次いで、フォトリソ工程により、電流狭窄部10aに対応させてレジスト30による開口(例えばスリット)31を形成する。そして、このレジスト30の開口31を通じて適当なエッチャント40を電流狭窄層10に作用させ、電流狭窄部10aに相当する部分を除去する。その後、図示は層略するが、レジスト30を除去し、再びMOCVD法等により上部スペーサ8より上の各層を順次積層し、最後に第1電極3及び第2電極2を蒸着する。
【0005】
しかし、上記の製造方法では、電流狭窄部10aを形成した後にレジスト30を除去しなければならないが、除去手段としてはエッチングが一般的であり、電流狭窄層10の上面が荒らされることが多い。そのため、その上に形成される上部スペーサ8の成膜状況が悪化して膜質が劣化したり膜厚が変動し、更にはコンタミが混入する可能性が高くなる。
【特許文献1】
特開2000−31585号公報(第2頁、図4)
【0006】
【発明が解決しようとする課題】
上記のように、従来の電流狭窄層を有する半導体発光素子の製造方法では、発光特性が低下したり、素子毎に特性のバラツキが発生して製品歩留まりにも悪影響が出やすい。
【0007】
そこで、本発明は、発光特性に優れ高性能の電流狭窄層を有する半導体発光素子を、高歩留まりで製造することが可能な方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者は、上記の課題を解決すべく鋭意検討した結果、電流狭窄層の形成に際し、電流狭窄層を形成する材料に吸収される特定波長のレーザ、好ましくはフェムト秒レーザを照射することにより、レーザ光の照射部分の結晶構造が変化して抵抗値が変化し、他の部位に何ら影響を与えること無く電流狭窄部を形成できることを見出し、本発明を完成するに至った。
【0009】
即ち、本発明は、電流狭窄層を備える半導体発光素子の製造方法において、基板上に順次、下部クラッド層、下部スペーサ層、活性層、上部スペーサ層、電流狭窄層及び上部クラッド層を積層した後、前記電流狭窄層に焦点を合わせて該電流狭窄層を形成する材料のみに吸収される波長のレーザ光を照射し、レーザ光照射部分の結晶構造を変化させて電流狭窄部を形成することを特徴とする半導体発光素子の製造方法である。
【0010】
また、本発明は、電流狭窄層を備える半導体発光素子の製造方法において、基板上に順次、下部クラッド層、下部スペーサ層、活性層、上部スペーサ層、電流狭窄層及び上部クラッド層を積層した後、短パルスレーザを照射して多光子吸収過程により前記電流狭窄層のレーザ照射部分の結晶構造を変化させて電流狭窄部を形成することを特徴とする半導体発光素子の製造方法である。
【0011】
【発明の実施の形態】
以下、本発明に関して図面を参照して詳細に説明する。但し、本発明では電流狭窄層を有する半導体発光素子全般が対象となり、また素子自体の構造や構成には制限がなく、本実施形態では図3に示した化合物半導体レーザ1を例示して説明する。
【0012】
本発明の製造方法では、先ず、図1に示すように、図3に示す化合物半導体層の全ての層を連続して形成する。即ち、MOCVD法等により、半導体基板4の上に順次、下部クラッド層5と、下部スペーサ層6と、活性層7と、上部スペーサ層8と、電流狭窄層10と、上部クラッド層9とを連続して成膜する。従来では電流狭窄層10のエッチング作業があるため、上部クラッド層9の成膜を別途行う必要がある。これに対して本発明では、上部クラッド層9まで連続して成膜できるため、成膜工程が一度で済み、製造効率の上でも有利である。
【0013】
尚、各層の組成や層厚は、発光特性等に応じて適宜設計されるが、例えば以下とすることができる。n−GaAs基板4の上に、50nmの(SnドープAl0.9Ga0.1As/Al0.12Ga0.88As)ペアを35ペア積層して下部クラッド層5を形成し、その上にAl0.6Ga0.4Asを60nm成膜して下部スペーサ層6を設け、その上に10nmのAl0.3Ga0.7Asバリア層と40nmのGaAsウエル層とを交互に合計50nmの厚みで形成して活性層7とし、その上にAl0.6Ga0.4Asを60nm成膜して上部スペーサ層8を設け、その上に電流狭窄層10用のGaAsを100nm成膜し、更にその上に(CドープAl0.9Ga0.1As/Al0.12Ga0.88As)ペアを23層積層して上部クラッド層9を形成する。
【0014】
次いで、図2に示すように、上記の化合物半導体層をXYステージ100に載置する。そして、レーザ源200からレーザ光Lを出射し、光学系300により化合物半導体層に入射させ、電流狭窄層10にレーザ光Lの焦点を合わせる。尚、XYステージ100は3次元方向に移動可能であり、レーザ光Lを電流狭窄層10に焦点させ、かつ電流狭窄層10の内部でレーザLを水平移動させる構成となっている。
【0015】
レーザLの波長は、特に上部クラッド層9の形成材料を透過し、電流狭窄層10の形成材料にのみ吸収されるように選択され、例えばGaAsの場合には720〜800nmの波長のレーザ光Lを照射する。このレーザ光Lの照射により、電流狭窄層10の中でレーザ光Lが照射された部分の結晶構造が変化して非照射部分との間で抵抗値に差が生じ、結果として電流狭窄部10aが形成される。
【0016】
ここで、結晶構造の変化の程度により抵抗値の変化の仕方が異なるため、レーザ光Lの照射強度に応じてその照射様式を選択する必要がある。具体的には、結晶構造が大きく変化してアモルファス化すると、抵抗値も大きく増加する。そこで、結晶構造をアモルファス化できるほどの高出力のレーザ光Lを用い、電流狭窄部10aが形成されるべき部分を除く電流狭窄層10の全面にわたり一様に照射することにより、照射部分が高抵抗化し、それに伴い非照射部分が相対的に低抵抗化されて電流狭窄部10aとなる。
【0017】
また、低出力のレーザ光Lを照射することにより、照射部分を低抵抗化することができる。そこで、低抵抗化に適した低出力のレーザ光Lを電流狭窄部10aの形成領域に照射することにより、直接的に電流狭窄部10aを形成することができる。
【0018】
尚、上記の照射部分を高抵抗化または低抵抗化するための照射強度は、電流狭窄層10の形成材料及びレーザ光源200を考慮して適宜選択される。また、レーザ光源200としては、パルスレーザが好ましく、パルス幅と出射強度とにより照射強度を的確に安定して制御することができる。
【0019】
また、レーザ光Lとして短パルスレーザを照射することもできる。この短パルスレーザは、所謂「多光子吸収過程」により結晶構造を変化させる作用を有する。中でもフェムト秒パルスレーザは、照射部分において熱が発生する前に瞬時に結晶構造を変化させることができ、非照射部分が熱的ダメージを受けないため、電流狭窄部10aをより高精度で形成できる。尚、照射条件は、電流狭窄層10の形成材料に応じて適宜選択される。
【0020】
そして、電流狭窄部10aを形成した後、従来と同様にして第1電極3及び第2電極2を形成して、化合物半導体レーザが完成する。
【0021】
上記のように、本発明の製造方法では、エッチング手法を用いることなく電流狭窄層10を形成できるため、コンタミの混入のおそれがなく、また他の半導体層に悪影響を与えることもない。
【0022】
【発明の効果】
以上説明したように、本発明によれば、発光特性に優れ高性能の電流狭窄層を有する半導体発光素子を高歩留まりで製造することが可能になる。
【図面の簡単な説明】
【図1】本発明の半導体発光素子の製造方法の一工程を示す断面図であり、化合物半導体層のみを示す図である。
【図2】本発明の半導体発光素子の製造方法において、レーザ照射工程を説明するための模式図である。
【図3】従来並びに本発明の化合物半導体レーザの構成を模式的に示す断面図である。
【図4】従来の電流狭窄層の形成方法を説明するための模式図である。
【符号の説明】
1 半導体発光素子(化合物半導体レーザ)
2 第2電極
3 第1電極
4 半導体基板
5 下部クラッド層
6 下部スペーサ層
7 活性層
8 上部スペーサ層
9 上部クラッド層
10 電流狭窄層
10a 電流狭窄部
11 コンタクト層
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a semiconductor light emitting device having a current confinement layer.
[0002]
[Prior art]
Compound semiconductor lasers, which are typical examples of semiconductor light emitting devices, are widely used in optical communication devices, recording devices, and the like. FIG. 3 is a cross-sectional view schematically showing an example of the compound semiconductor laser. As shown, the compound semiconductor laser 1 has a first electrode 3, a second electrode 2, and a first electrode 3 and a second electrode 3. And a plurality of compound semiconductor layers provided between the electrodes 2. Compound semiconductor layer, for example a semiconductor substrate 4 (for example, n + -GaAs), a lower cladding layer formed on the upper surface (for example Al x Ga 1-x Ga) 5, a lower spacer layer (e.g. Al y Ga 1- y as) 6 and the active layer 7 formed on the upper surface through the upper spacer layer (e.g. Al u Ga 1-u as) upper cladding layer formed on the upper surface via the 8 (e.g. Al r Ga 1 -R Ga) 9. Further, the second electrode 2 is formed via a contact layer 11 formed on the upper clad layer 9, and the first electrode 3 is formed on an electrode formation surface made of the semiconductor substrate 5.
[0003]
In the compound semiconductor laser 1, a current confinement layer 10 having a current confinement portion 10a opened over a predetermined width is often formed on the upper spacer layer 8 in order to increase the light emission efficiency. The current confinement layer 10 is generally formed by forming a thin film made of GaAs or the like and removing the current confinement portion 10a by etching (for example, see Patent Document 1). Therefore, the manufacture of the compound semiconductor laser 1 having the current confinement layer 10 is conventionally performed by the following method.
[0004]
First, as shown in FIG. 4, in the layer configuration shown in FIG. 3, up to the current confinement layer 10 except for the first electrode 3 is formed by MOCVD or the like. Next, an opening (for example, a slit) 31 of the resist 30 is formed corresponding to the current constriction 10a by a photolithography process. Then, an appropriate etchant 40 is applied to the current confinement layer 10 through the opening 31 of the resist 30 to remove a portion corresponding to the current confinement portion 10a. Thereafter, although illustration is omitted, the resist 30 is removed, the respective layers above the upper spacer 8 are sequentially laminated again by the MOCVD method or the like, and finally, the first electrode 3 and the second electrode 2 are deposited.
[0005]
However, in the above-described manufacturing method, the resist 30 must be removed after the current confinement portion 10a is formed. However, etching is generally used as a removing means, and the upper surface of the current confinement layer 10 is often roughened. Therefore, the film formation condition of the upper spacer 8 formed thereon is deteriorated, the film quality is degraded, the film thickness is changed, and the possibility of contamination is increased.
[Patent Document 1]
JP-A-2000-31585 (page 2, FIG. 4)
[0006]
[Problems to be solved by the invention]
As described above, in the conventional method of manufacturing a semiconductor light-emitting device having a current confinement layer, the light-emitting characteristics are deteriorated, and the characteristics vary from device to device, so that the product yield is likely to be adversely affected.
[0007]
Therefore, an object of the present invention is to provide a method capable of manufacturing a semiconductor light emitting device having a current confinement layer having excellent light emitting characteristics and high performance at a high yield.
[0008]
[Means for Solving the Problems]
The present inventor has conducted intensive studies to solve the above-described problems, and as a result, when forming a current confinement layer, by irradiating a laser of a specific wavelength absorbed by a material forming the current confinement layer, preferably a femtosecond laser The present inventors have found that the crystal structure of the portion irradiated with the laser beam changes, the resistance value changes, and the current confinement portion can be formed without affecting other portions. Thus, the present invention has been completed.
[0009]
That is, the present invention provides a method for manufacturing a semiconductor light emitting device having a current confinement layer, comprising: sequentially stacking a lower cladding layer, a lower spacer layer, an active layer, an upper spacer layer, a current confinement layer, and an upper cladding layer on a substrate. Forming a current confinement portion by irradiating a laser beam having a wavelength that is absorbed only by a material forming the current confinement layer by focusing on the current confinement layer, and changing a crystal structure of a laser light irradiated portion. This is a method for manufacturing a semiconductor light emitting device.
[0010]
Further, according to the present invention, in a method for manufacturing a semiconductor light emitting device including a current confinement layer, after sequentially laminating a lower cladding layer, a lower spacer layer, an active layer, an upper spacer layer, a current confinement layer, and an upper cladding layer on a substrate, A method of manufacturing a semiconductor light-emitting device, comprising irradiating a short pulse laser to change a crystal structure of a laser-irradiated portion of the current confinement layer by a multiphoton absorption process to form a current confinement portion.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings. However, the present invention covers the entire semiconductor light emitting device having a current confinement layer, and the structure and configuration of the device itself are not limited. In the present embodiment, the compound semiconductor laser 1 shown in FIG. 3 will be described as an example. .
[0012]
In the manufacturing method of the present invention, first, as shown in FIG. 1, all layers of the compound semiconductor layer shown in FIG. 3 are continuously formed. That is, the lower cladding layer 5, the lower spacer layer 6, the active layer 7, the upper spacer layer 8, the current confinement layer 10, and the upper cladding layer 9 are sequentially formed on the semiconductor substrate 4 by MOCVD or the like. Films are formed continuously. Conventionally, since the current confinement layer 10 is etched, it is necessary to separately form the upper cladding layer 9. On the other hand, in the present invention, since the film can be continuously formed up to the upper clad layer 9, only one film forming step is required, which is advantageous in terms of manufacturing efficiency.
[0013]
The composition and layer thickness of each layer are appropriately designed according to the light emission characteristics and the like, and may be, for example, as follows. On the n + -GaAs substrate 4, 35 pairs of 50 nm (Sn-doped Al 0.9 Ga 0.1 As / Al 0.12 Ga 0.88 As) pairs are laminated to form the lower cladding layer 5, An Al 0.6 Ga 0.4 As film is formed thereon to a thickness of 60 nm to provide a lower spacer layer 6, and a 10 nm Al 0.3 Ga 0.7 As barrier layer and a 40 nm GaAs well layer are alternately formed thereon. An active layer 7 is formed to a total thickness of 50 nm, and an upper spacer layer 8 is formed thereon by forming an Al 0.6 Ga 0.4 As film of 60 nm, and GaAs for the current confinement layer 10 is formed thereon. An upper cladding layer 9 is formed by stacking 23 layers of (C-doped Al 0.9 Ga 0.1 As / Al 0.12 Ga 0.88 As) pairs thereon.
[0014]
Next, as shown in FIG. 2, the compound semiconductor layer is mounted on the XY stage 100. Then, the laser light L is emitted from the laser source 200 and is made incident on the compound semiconductor layer by the optical system 300 to focus the laser light L on the current confinement layer 10. The XY stage 100 is movable in a three-dimensional direction, focuses the laser light L on the current confinement layer 10, and horizontally moves the laser L inside the current confinement layer 10.
[0015]
The wavelength of the laser L is selected so as to transmit through the material for forming the upper cladding layer 9 and to be absorbed only by the material for forming the current confinement layer 10. For example, in the case of GaAs, the laser light L having a wavelength of 720 to 800 nm is used. Is irradiated. The irradiation of the laser beam L changes the crystal structure of the portion of the current confinement layer 10 irradiated with the laser beam L, causing a difference in resistance between the portion and the non-irradiation portion. As a result, the current confinement portion 10a Is formed.
[0016]
Here, since the manner of changing the resistance value differs depending on the degree of change in the crystal structure, it is necessary to select the irradiation mode according to the irradiation intensity of the laser beam L. Specifically, when the crystal structure changes significantly and becomes amorphous, the resistance value also greatly increases. Therefore, by using a laser beam L having a high output enough to make the crystal structure amorphous, the entire area of the current confinement layer 10 except for the part where the current confinement part 10a is to be formed is uniformly irradiated, so that the irradiation part becomes high. As a result, the non-irradiated portion is relatively reduced in resistance and becomes the current constriction portion 10a.
[0017]
Further, by irradiating the laser beam L with low output, the resistance of the irradiated portion can be reduced. Therefore, by irradiating the low-power laser beam L suitable for lowering the resistance to the region where the current constriction portion 10a is formed, the current constriction portion 10a can be directly formed.
[0018]
The irradiation intensity for increasing or decreasing the resistance of the irradiated portion is appropriately selected in consideration of the material for forming the current confinement layer 10 and the laser light source 200. The laser light source 200 is preferably a pulse laser, and the irradiation intensity can be controlled accurately and stably by the pulse width and the emission intensity.
[0019]
Further, a short pulse laser can be applied as the laser light L. This short pulse laser has an effect of changing the crystal structure by a so-called “multiphoton absorption process”. Above all, the femtosecond pulse laser can change the crystal structure instantaneously before heat is generated in the irradiated part, and the non-irradiated part is not thermally damaged, so that the current confinement part 10a can be formed with higher accuracy. . The irradiation conditions are appropriately selected according to the material for forming the current confinement layer 10.
[0020]
Then, after forming the current confinement portion 10a, the first electrode 3 and the second electrode 2 are formed in the same manner as in the related art, and the compound semiconductor laser is completed.
[0021]
As described above, in the manufacturing method of the present invention, the current confinement layer 10 can be formed without using an etching method, so that there is no possibility of contamination and no adverse effect on other semiconductor layers.
[0022]
【The invention's effect】
As described above, according to the present invention, it is possible to manufacture a semiconductor light-emitting device having a high-performance current confinement layer with excellent light-emitting characteristics at a high yield.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing one step of a method for manufacturing a semiconductor light-emitting device of the present invention, showing only a compound semiconductor layer.
FIG. 2 is a schematic diagram for explaining a laser irradiation step in the method for manufacturing a semiconductor light emitting device of the present invention.
FIG. 3 is a cross-sectional view schematically showing a configuration of a compound semiconductor laser of the related art and the present invention.
FIG. 4 is a schematic view for explaining a conventional method of forming a current confinement layer.
[Explanation of symbols]
1 Semiconductor light emitting device (compound semiconductor laser)
2 Second electrode 3 First electrode 4 Semiconductor substrate 5 Lower cladding layer 6 Lower spacer layer 7 Active layer 8 Upper spacer layer 9 Upper cladding layer 10 Current confinement layer 10a Current confinement part 11 Contact layer

Claims (5)

電流狭窄層を備える半導体発光素子の製造方法において、
基板上に順次、下部クラッド層、下部スペーサ層、活性層、上部スペーサ層、電流狭窄層及び上部クラッド層を積層した後、前記電流狭窄層に焦点を合わせて該電流狭窄層を形成する材料のみに吸収される波長のレーザ光を照射し、レーザ光照射部分の結晶構造を変化させて電流狭窄部を形成することを特徴とする半導体発光素子の製造方法。
In a method for manufacturing a semiconductor light emitting device including a current confinement layer,
After sequentially laminating a lower cladding layer, a lower spacer layer, an active layer, an upper spacer layer, a current confinement layer and an upper cladding layer on a substrate, only the material for forming the current confinement layer by focusing on the current confinement layer A method for manufacturing a semiconductor light-emitting device, comprising: irradiating a laser beam having a wavelength absorbed by a laser beam to change a crystal structure of a portion irradiated with the laser beam to form a current constriction portion.
レーザ光の照射部分をアモルファス化して非照射部分に比べて高抵抗化し、前記非照射部分を電流狭窄部とすることを特徴とする請求項1記載の半導体発光素子の製造方法。2. The method for manufacturing a semiconductor light emitting device according to claim 1, wherein a portion irradiated with the laser beam is made amorphous to have a higher resistance than a non-irradiated portion, and the non-irradiated portion is a current constriction portion. レーザ光の照射部分を非照射部分に比べて低抵抗化し、前記照射部分を電流狭窄部とすることを特徴とする請求項1記載の半導体発光素子の製造方法。2. The method for manufacturing a semiconductor light emitting device according to claim 1, wherein a portion irradiated with the laser beam has a lower resistance than a non-irradiated portion, and the irradiated portion is a current confinement portion. レーザ光源としてパルスレーザを用いることを特徴とする請求項1〜3の何れか1項に記載の半導体発光素子の製造方法。The method for manufacturing a semiconductor light emitting device according to claim 1, wherein a pulse laser is used as a laser light source. 電流狭窄層を備える半導体発光素子の製造方法において、
基板上に順次、下部クラッド層、下部スペーサ層、活性層、上部スペーサ層、電流狭窄層及び上部クラッド層を積層した後、短パルスレーザを照射して多光子吸収過程により前記電流狭窄層のレーザ照射部分の結晶構造を変化させて電流狭窄部を形成することを特徴とする半導体発光素子の製造方法。
In a method for manufacturing a semiconductor light emitting device including a current confinement layer,
After sequentially laminating a lower cladding layer, a lower spacer layer, an active layer, an upper spacer layer, a current confinement layer, and an upper cladding layer on a substrate, a laser of the current confinement layer is irradiated by a short pulse laser and subjected to a multiphoton absorption process. A method for manufacturing a semiconductor light emitting device, comprising forming a current confinement portion by changing a crystal structure of an irradiated portion.
JP2002329638A 2002-11-13 2002-11-13 Method of manufacturing semiconductor light emitting device Withdrawn JP2004165436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002329638A JP2004165436A (en) 2002-11-13 2002-11-13 Method of manufacturing semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002329638A JP2004165436A (en) 2002-11-13 2002-11-13 Method of manufacturing semiconductor light emitting device

Publications (1)

Publication Number Publication Date
JP2004165436A true JP2004165436A (en) 2004-06-10

Family

ID=32807576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002329638A Withdrawn JP2004165436A (en) 2002-11-13 2002-11-13 Method of manufacturing semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP2004165436A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006043690A1 (en) * 2004-10-20 2006-04-27 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method, laser irradiation apparatus and method for manufacturing semiconductor device
JP2007250909A (en) * 2006-03-16 2007-09-27 Sumitomo Electric Ind Ltd Semiconductor light emitting device
JP2012054570A (en) * 2004-06-30 2012-03-15 Cree Inc Light-emitting device with current inhibition structure and method for manufacturing the same
US8541788B2 (en) 2005-01-24 2013-09-24 Cree, Inc. LED with current confinement structure and surface roughening
US8704240B2 (en) 2004-06-30 2014-04-22 Cree, Inc. Light emitting devices having current reducing structures
US9177811B2 (en) 2007-03-23 2015-11-03 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012054570A (en) * 2004-06-30 2012-03-15 Cree Inc Light-emitting device with current inhibition structure and method for manufacturing the same
US8704240B2 (en) 2004-06-30 2014-04-22 Cree, Inc. Light emitting devices having current reducing structures
WO2006043690A1 (en) * 2004-10-20 2006-04-27 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method, laser irradiation apparatus and method for manufacturing semiconductor device
US7585791B2 (en) 2004-10-20 2009-09-08 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method, laser irradiation apparatus and method for manufacturing semiconductor device
US8541788B2 (en) 2005-01-24 2013-09-24 Cree, Inc. LED with current confinement structure and surface roughening
US8772792B2 (en) 2005-01-24 2014-07-08 Cree, Inc. LED with surface roughening
JP2007250909A (en) * 2006-03-16 2007-09-27 Sumitomo Electric Ind Ltd Semiconductor light emitting device
US9177811B2 (en) 2007-03-23 2015-11-03 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US10032919B2 (en) 2007-03-23 2018-07-24 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US10541337B2 (en) 2007-03-23 2020-01-21 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
JP5496657B2 (en) Laser machining of workpieces containing low dielectric materials
JP4671793B2 (en) Semiconductor laser device and manufacturing method thereof
JP2000101139A (en) Semiconductor light-emitting element, manufacture thereof and device using the same
US6888866B2 (en) Semiconductor laser device with a current non-injection region near a resonator end face, and fabrication method thereof
JP2002353568A5 (en)
JP2011124311A (en) Manufacturing method for semiconductor light-emitting element and laminated structure
JPH08222371A (en) Method for finely patterning electroluminescent element, and element obtained thereby
JP2004165436A (en) Method of manufacturing semiconductor light emitting device
JP6886493B2 (en) Quantum well passivation structure for laser surface
JP2007294732A (en) Semiconductor laser device and method of manufacturing the same
KR102069724B1 (en) Laser ablation process for manufacturing submounts for laser diode and laser diode units
JP5521055B2 (en) Thin-film solar cell module manufacturing equipment
JP2007234796A (en) Nitride semiconductor laser device, and its manufacturing method
JP3537196B2 (en) Method of manufacturing solar cell module
JP2002299761A (en) Semiconductor light-emitting device of surface-emitting type, and method of manufacturing the same
JP2008226884A (en) Method for fabricating n-type group xiii nitride semiconductor, surface light-emitting laser, method for fabricating current pinching structure in surface light-emitting laser, method for changing resistance of nitride semiconductor, and method for fabricating emiconductor laser
JPH10125632A (en) Method and apparatus for laser etching
JP2001210851A (en) Integrated thin-film solar cell
JP2004165361A (en) Compound semiconductor element and its manufacturing method
JP2006128675A (en) Method of manufacturing multiwavelength semiconductor laser
JPH09307195A (en) Method for manufacturing semiconductor element
JP2001239379A (en) Machining method by high-power ultra short pulse laser
JPH06244497A (en) Semiconductor laser device
JP4915598B2 (en) Method for manufacturing light emitting device
JP2009111058A (en) Method of manufacturing semiconductor laser element

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20041126

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060425

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070417

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071129