JP2004164982A - Protective circuit for cell - Google Patents

Protective circuit for cell Download PDF

Info

Publication number
JP2004164982A
JP2004164982A JP2002328992A JP2002328992A JP2004164982A JP 2004164982 A JP2004164982 A JP 2004164982A JP 2002328992 A JP2002328992 A JP 2002328992A JP 2002328992 A JP2002328992 A JP 2002328992A JP 2004164982 A JP2004164982 A JP 2004164982A
Authority
JP
Japan
Prior art keywords
circuit
short
charge
battery
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2002328992A
Other languages
Japanese (ja)
Inventor
Masaki Nagaoka
正樹 長岡
Akihiko Kudo
彰彦 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2002328992A priority Critical patent/JP2004164982A/en
Publication of JP2004164982A publication Critical patent/JP2004164982A/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a protective circuit for a cell capable of breaking charge and discharge currents at overcharge without using a semiconductor device for conducting the control of the charge and discharge currents. <P>SOLUTION: A cell module 9 has a built-in short-circuit permitting circuit 20 permitting the short circuit of charge and discharge currents between a positive charge and discharge terminal and a negative charge and discharge terminal. The short-circuit permitting circuit 20 is structured of transistors 3, 4, and resistors 7, 8. An output terminal of an overcharge detecting circuit 2 is connected to a base of the transistor 3, and a collector is connected to a positive terminal of the topmost unit cell. An emitter is connected to the end of a resistor 8 with the other end connected to the negative charge and discharge terminal, and separated from a point connected to the base of the transistor 4. A collector of the transistor 4 is connected to the end of the resistor 7 with the other end connected to the positive charge and discharge terminal, and the emitter is connected to the negative charge and discharge terminal. A fuse 5 is melted by short circuiting the short-circuit permitting circuit 20 at the overcharge. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は電池用保護回路に係り、特に、1個以上の単電池を有する電池の+端子と+充放電端子との間又は電池の−端子と−充放電端子との間に過大電流遮断用ヒューズを挿入した電池用保護回路に関する。
【0002】
【従来の技術】
従来、電池用保護回路には、過充電時の過充電電圧を検出して充電電流を遮断する回路が用いられてきた。特に最近実用化されたリチウムイオン電池では、その高エネルギー密度の特性故に過充電時の安全性に問題があり、過充電時に電池内圧が極めて高くなる場合がある。このため、リチウムイオン電池(単電池)を複数個直列又は並列に接続した組電池では、過充電時の安全性を確保するために、全単電池の電圧を検出して、過充電電圧を検出したときに組電池への充電電流を遮断する保護回路が用いられてきた。すなわち、このような保護回路では充放電ラインに半導体素子が挿入されており、正常時(過充電等の電池異常時以外の時)には半導体素子をオン状態として充放電電流の通電を許容し、過充電時(電池異常時)には半導体素子をオフ状態として充放電電流を遮断することで各単電池を保護している(例えば、特許文献1参照)。
【0003】
図2はこのような保護回路の一例を示したものである。組電池1を構成する各単電池の電圧は対応する各過充電検出回路2で判定され、過充電検出回路2は正常時にハイレベル信号(Hi)を出力する。全単電池が正常なときは、過充電出力信号としてHiが出力される。過充電出力信号がHiで出力されることにより、FET等の半導体素子を含んで構成されるスイッチ10がオン状態となり、充放電電流の通電が許容される。一方、過充電時には、過充電出力信号がローレベル信号(Lo)で出力される。これにより、スイッチ10がオフ状態となり、充放電電流が遮断される。
【0004】
【特許文献1】
特開2002−186173号公報
【0005】
【発明が解決しようとする課題】
ところが、上記従来の保護回路では、正常時に半導体素子をオン状態としなければ充放電ができないため、想定される充放電電流を連続的に通電可能な半導体素子が必要となる。従って、組電池を大電流で充放電する場合には半導体素子の発熱、容積が大きくなると共に、コスト高となる、という問題がある。特に、最近実用化されている電気自動車用のリチウムイオン二次電池等では、100Aオーダの充放電電流が通電されるので、大電流を許容する半導体素子を電池モジュール9側に設けることが発熱、容積及びコストの点で難しく、電池モジュール9側には過充電信号端子のみを具備して充放電電源6側で充電電流を遮断する構成とするものが多い(図2参照)。しかし、この構成では電池モジュール側に充放電電流を遮断する素子を内蔵していないので、例えば、充放電電源側が故障し電池モジュールが過充電された場合に充電電流の遮断が行えず、組電池を構成する各単電池の安全性を損ねる可能性を有している。
【0006】
本発明は上記事案に鑑み、充放電電流を通電制御する半導体素子を用いずに、過充電時に充放電電流の遮断が可能な電池用保護回路を提供することを課題とする。
【0007】
【課題を解決するための手段】
上記課題を解決するために、本発明は、1個以上の単電池を有する電池の+端子と+充放電端子との間又は前記電池の−端子と−充放電端子との間に過大電流遮断用ヒューズを挿入した電池用保護回路において、前記+充放電端子と前記−充放電端子との間に短絡を許容するための短絡許容回路を有し、前記単電池が過充電となった場合に前記短絡許容回路を動作させて前記電池に短絡電流を流し、前記過大電流通電用ヒューズを遮断することを特徴とする。
【0008】
本発明では、正常時には、充放電電流が過大電流遮断用ヒューズを介して流れることで電池の充放電が行われ、過充電時には、+充放電端子と−充放電端子と間に設けられた短絡許容回路が動作し、ヒューズに短絡電流が流れヒューズの溶断により充電電流が遮断される。本発明によれば、+充放電端子と−充放電端子との間に短絡を許容するための短絡許容回路を有するので、過充電時に充放電電流を遮断することができると共に、正常時に大電流での充放電が可能であり、かつ、通常の充放電電流制御用の半導体素子が不要となるので、半導体素子の発熱・容積・コストを抑えた電池用保護回路を得ることができる。
【0009】
この場合に、短絡許容回路は、半導体素子又はリレーを有して構成するようにしてもよい。また、複数個の単電池で構成される組電池で電圧が高い場合には、短絡電流が大きすぎて半導体素子又はリレー等の接点が瞬時に溶断して過大電流遮断用ヒューズを溶断できない可能性もあるので、短絡許容回路は電流制限用の素子を有して構成することで、確実にヒューズを溶断して過充電電流を遮断することができる。更に、短絡許容回路が動作する時間を該短絡許容回路が損傷しない時間に制限すれば、過充電後、ヒューズを交換することで電池の充放電の復帰が可能となると共に、半導体素子又はリレー等の容量を小さくして、発熱・容積・コストを抑えることができる。
【0010】
【発明の実施の形態】
以下、図面を参照して本発明に係る電池用保護回路を電池モジュールに適用した実施の形態について説明する。
【0011】
図1に示すように、本実施形態の電池モジュール9は、複数個の単電池を直列接続して構成した組電池1を備えている。単電池1には、例えば、マンガン酸リチウムを正極活物質とした正極と、非晶質炭素を負極活物質とした負極とを、6フッ化リン酸リチウムを有機溶媒に溶解した非水電解液等を介してカップリングしたリチウムイオン二次電池を用いることができる。
【0012】
組電池1の最上位単電池の+端子は過大電流遮断用のヒューズ5の一端に接続されており、ヒューズ5の他端は電池モジュール9の+充放電端子を介して充放電電源6に接続されている。一方、組電池の最下位単電池の−端子は−充放電端子を介して充放電電源6に接続されている。なお、充放電電源6は、電池モジュール9の充電時には充電器として機能し、電池モジュール9の放電時には負荷として機能するものである。
【0013】
組電池1を構成する各単電池の+端子及び−端子は、単電池の電圧が、予め定められた電圧(過充電電圧)以上か否かを判定する過充電検出回路2に接続されている。過充電検出回路2は、例えば、OPアンプ及び抵抗で構成することができる。
【0014】
また、電池モジュール9は、+充放電端子と−充放電端子との間に充放電電流の短絡を許容する短絡許容回路20を内蔵している。短絡許容回路20は、NPN型のトランジスタ3、4及びトランジスタ3、4への短絡電流を制限するための抵抗7、8で構成されている。詳述すれば、各過充電検出回路2の出力端子がトランジスタ3のベースに接続されており、トランジスタ3のコレクタは最上位単電池の+端子に接続されている。トランジスタ3のエミッタは他端が−充放電端子に接続された抵抗8の一端に接続されており、そこから分岐してトランジスタ4のベースに接続されている。トランジスタ4のコレクタは、他端が+充放電端子に接続された抵抗7の一端に接続されており、エミッタは−充放電端子に接続されている。
【0015】
次に、本実施形態の電池モジュール9の動作について説明する。
【0016】
組電池1を構成する各単電池の電圧は各過充電検出回路2で判定され、正常時に過充電検出回路2はLoを出力する。これにより、トランジスタ3はオフ状態となり、トランジスタ4もオフ状態となるため、短絡電流はヒューズ5には流れない。過充電時には、過充電検出回路2はHiの信号を出力し、トランジスタ3がオン状態となり、トランジスタ4もオン状態となる。これにより、組電池1の最上位単電池の+端子、ヒューズ5、抵抗7、トランジスタ4、組電池1の最下位単電池の−端子には閉回路が形成され、短絡電流が抵抗7を通じてヒューズ5に流れ、ヒューズ5が溶断し、充電電流を遮断する。ヒューズ5が溶断すると、閉回路は開回路となり、トランジスタ4には短絡電流が流れなくなる。従って、トランジスタ4に短絡電流が流れるのは、ヒューズ5に短絡電流が流れ始めてから溶断するまでの極めて短い時間である。
【0017】
次に、本実施形態の電池モジュール9の作用等について説明する。
【0018】
本実施形態の電池モジュール9は、+充放電端子と−充放電端子との間に充放電電流の短絡を許容する短絡許容回路20を内蔵しているため、発熱・容積・コストの面で問題となる充放電電流を通電制御する半導体素子(図2のスイッチ10)を用いずに、過充電時に短絡許容回路20を動作させヒューズ5を溶断することで充放電電流の遮断を行っている。ヒューズ5を溶断するには大電流が必要であるが、電池モジュール9では、その電力を組電池1から取り出しており、特別な電源は必要なく、かつ、ヒューズ5の溶断時間は短時間で良いため、発熱・容積・コストの小さい比較的小容量の半導体素子(トランジスタ3、4)を用いて短絡許容回路20を構成することができる。従って、本実施形態の電池モジュール9によれば、従来の電池用保護回路のように、充放電電流の通電を許容する半導体素子は不要となり、過充電時にヒューズ6の溶断電流を短時間流す半導体素子で構成することが可能なため、発熱・容積・コストを抑えることができる。
【0019】
また、本実施形態の電池モジュール9では、ヒューズ5が溶断した場合に、ヒューズ5を交換するだけで再使用可能であり、かつ、短絡許容回路20は充放電電源6側ではなく電池モジュール9側に内蔵可能なため、電池モジュール9単体で単電池の過充電保護ができる点、工業的価値極めて大なるものである。
【0020】
更に、本実施形態の電池モジュール9では、短絡許容回路20に短絡電流を制限する抵抗7、8を有して構成したので、半導体素子(トランジスタ3、4)が瞬時に溶断してヒューズ5を溶断できないという可能性を排除している。従って、電池モジュール9では、確実に充放電電源6からの過充電電流を遮断することができる。
【0021】
なお、本実施形態では、短絡許容回路20を構成する半導体素子にバイポーラ・トランジスタを例示したが、本発明はこれに限定されることなく、電界効果トランジスタ(FET)等を用いるようにしてもよい。また、本実施形態では、短絡許容回路20を半導体素子を有して構成する例を示したが、本発明はこれに制限されず、例えば、トランジスタ4をリレーに代える等、リレーを有して構成するようにしてもよい。このような構成でも、抵抗7はリレーの接点が瞬時に溶断することを防止し、ヒューズ5の溶断を確保する機能を有している。
【0022】
また、本実施形態では、ヒューズ5を最上位単電池の+端子と電池モジュール9の+充放電端子との間に挿入した例を示したが、ヒューズ5は最下位単電池の−端子と電池モジュール9の−充放電端子との間に挿入するようにしてもよい。
【0023】
【発明の効果】
以上説明したように、本発明によれば、+充放電端子と−充放電端子との間に短絡を許容するための短絡許容回路を有するので、過充電時に充放電電流を遮断することができると共に、正常時に大電流での充放電が可能であり、かつ、通常の充放電電流制御用の半導体素子が不要となるので、半導体素子の発熱・容積・コストを抑えた電池用保護回路を得ることができる、という効果を得ることができる。
【図面の簡単な説明】
【図1】本発明が適用可能な実施形態の電池モジュールのブロック回路図である。
【図2】従来の電池用保護回路を示すブロック回路図である。
【符号の説明】
1 組電池(電池)
3、4 トランジスタ(半導体素子)
5 ヒューズ
7、8 抵抗(電流制限用の素子)
9 電池モジュール(電池用保護回路)
20 短絡許容回路
[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a protection circuit for a battery, and more particularly, to an overcurrent protection circuit between a + terminal and a + charge / discharge terminal of a battery having one or more cells or between a − terminal and a −charge / discharge terminal of the battery. The present invention relates to a battery protection circuit in which a fuse is inserted.
[0002]
[Prior art]
Conventionally, as a battery protection circuit, a circuit that detects an overcharge voltage at the time of overcharge and cuts off a charging current has been used. In particular, lithium ion batteries that have recently been put to practical use have a problem in safety during overcharge due to their high energy density characteristics, and the internal pressure of the battery may become extremely high during overcharge. For this reason, in an assembled battery in which a plurality of lithium-ion batteries (unit cells) are connected in series or in parallel, in order to ensure safety during overcharge, the voltage of all the units is detected and the overcharge voltage is detected. In such a case, a protection circuit that cuts off the charging current to the battery pack has been used. In other words, in such a protection circuit, a semiconductor element is inserted into the charge / discharge line, and in a normal state (other than at the time of a battery abnormality such as overcharging), the semiconductor element is turned on to allow a charge / discharge current to flow. At the time of overcharging (battery abnormality), each cell is protected by turning off the charge / discharge current by turning off the semiconductor element (for example, see Patent Document 1).
[0003]
FIG. 2 shows an example of such a protection circuit. The voltage of each cell constituting the assembled battery 1 is determined by the corresponding overcharge detection circuit 2, and the overcharge detection circuit 2 outputs a high-level signal (Hi) when normal. When all the cells are normal, Hi is output as the overcharge output signal. When the overcharge output signal is output at Hi, the switch 10 including the semiconductor element such as the FET is turned on, and the supply of the charge / discharge current is allowed. On the other hand, at the time of overcharging, an overcharge output signal is output as a low level signal (Lo). As a result, the switch 10 is turned off, and the charge / discharge current is cut off.
[0004]
[Patent Document 1]
JP-A-2002-186173
[Problems to be solved by the invention]
However, in the conventional protection circuit, charging and discharging cannot be performed unless the semiconductor element is turned on in a normal state. Therefore, a semiconductor element capable of continuously supplying an assumed charging and discharging current is required. Therefore, when the battery pack is charged and discharged with a large current, there is a problem that the heat generation and the volume of the semiconductor element increase and the cost increases. In particular, in a lithium-ion secondary battery for an electric vehicle that has recently been put into practical use, a charge / discharge current of the order of 100 A is applied. Therefore, it is necessary to provide a semiconductor element that allows a large current on the battery module 9 side, thereby generating heat. In many cases, the battery module 9 has only an overcharge signal terminal and the charging / discharging power supply 6 interrupts the charging current (see FIG. 2). However, in this configuration, since the element for interrupting the charging / discharging current is not built in the battery module side, for example, when the charging / discharging power supply side fails and the battery module is overcharged, the charging current cannot be interrupted. Has the possibility of impairing the safety of each unit cell constituting.
[0006]
The present invention has been made in view of the above circumstances, and has as its object to provide a battery protection circuit that can cut off a charge / discharge current at the time of overcharge without using a semiconductor element that controls the conduction of the charge / discharge current.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides an overcurrent interruption between a + terminal and a + charge / discharge terminal of a battery having one or more single cells or between a − terminal and a −charge / discharge terminal of the battery. In the battery protection circuit with a fuse inserted therein, the battery protection circuit has a short-circuit permitting circuit for allowing a short circuit between the + charge / discharge terminal and the − charge / discharge terminal. A short-circuit current is supplied to the battery by operating the short-circuit permitting circuit, and the fuse for applying an excessive current is cut off.
[0008]
According to the present invention, the battery is charged and discharged by the charge / discharge current flowing through the overcurrent cutoff fuse during normal operation, and the short circuit provided between the + charge / discharge terminal and the −charge / discharge terminal during overcharge. The allowable circuit operates, a short-circuit current flows through the fuse, and the charging current is cut off by blowing the fuse. According to the present invention, a short-circuit permitting circuit for permitting a short circuit between the + charge / discharge terminal and the − charge / discharge terminal is provided. And a semiconductor device for controlling a normal charge / discharge current is not required, so that a battery protection circuit with reduced heat generation, volume and cost of the semiconductor device can be obtained.
[0009]
In this case, the short-circuit allowable circuit may include a semiconductor element or a relay. Also, when the voltage is high in an assembled battery composed of a plurality of cells, the short-circuit current may be too large and the contacts of a semiconductor element or a relay may be blown instantaneously and the overcurrent cutoff fuse may not be blown. Since the short-circuit permitting circuit includes a current limiting element, the fuse can be surely blown to cut off the overcharge current. Furthermore, if the time during which the short-circuit allowable circuit operates is limited to a time during which the short-circuit allowable circuit is not damaged, the charge and discharge of the battery can be restored by replacing the fuse after overcharging, and at the same time, a semiconductor element or a relay, etc. , The heat generation, volume and cost can be suppressed.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment in which a battery protection circuit according to the present invention is applied to a battery module will be described with reference to the drawings.
[0011]
As shown in FIG. 1, the battery module 9 of the present embodiment includes an assembled battery 1 configured by connecting a plurality of unit cells in series. The cell 1 includes, for example, a nonaqueous electrolyte obtained by dissolving a positive electrode using lithium manganate as a positive electrode active material and a negative electrode using amorphous carbon as a negative electrode active material, in which lithium hexafluorophosphate is dissolved in an organic solvent. A lithium-ion secondary battery coupled via the like can be used.
[0012]
The + terminal of the uppermost unit cell of the assembled battery 1 is connected to one end of a fuse 5 for interrupting excessive current, and the other end of the fuse 5 is connected to a charging / discharging power supply 6 via a + charging / discharging terminal of the battery module 9. Have been. On the other hand, the negative terminal of the lowest unit cell of the assembled battery is connected to the charging / discharging power supply 6 via the negative charging / discharging terminal. The charge / discharge power supply 6 functions as a charger when the battery module 9 is charged, and functions as a load when the battery module 9 discharges.
[0013]
The + terminal and the-terminal of each cell constituting the assembled battery 1 are connected to an overcharge detection circuit 2 which determines whether or not the voltage of the cell is equal to or higher than a predetermined voltage (overcharge voltage). . The overcharge detection circuit 2 can be composed of, for example, an OP amplifier and a resistor.
[0014]
In addition, the battery module 9 has a built-in short-circuit permitting circuit 20 that allows a short-circuit of the charge / discharge current between the + charge / discharge terminal and the −charge / discharge terminal. The short-circuit permitting circuit 20 includes NPN transistors 3 and 4 and resistors 7 and 8 for limiting a short-circuit current to the transistors 3 and 4. More specifically, the output terminal of each overcharge detection circuit 2 is connected to the base of the transistor 3, and the collector of the transistor 3 is connected to the + terminal of the highest cell. The other end of the emitter of the transistor 3 is connected to one end of a resistor 8 whose other end is connected to a negative charge / discharge terminal. The collector of the transistor 4 is connected to one end of the resistor 7 whose other end is connected to the + charge / discharge terminal, and the emitter is connected to the −charge / discharge terminal.
[0015]
Next, the operation of the battery module 9 of the present embodiment will be described.
[0016]
The voltage of each cell constituting the assembled battery 1 is determined by each overcharge detection circuit 2, and the overcharge detection circuit 2 outputs Lo when normal. As a result, the transistor 3 is turned off and the transistor 4 is also turned off, so that no short-circuit current flows through the fuse 5. At the time of overcharge, the overcharge detection circuit 2 outputs a Hi signal, the transistor 3 is turned on, and the transistor 4 is also turned on. As a result, a closed circuit is formed between the + terminal of the uppermost unit cell of the assembled battery 1, the fuse 5, the resistor 7, the transistor 4, and the-terminal of the lowermost unit cell of the assembled battery 1. 5, the fuse 5 is blown, and the charging current is cut off. When the fuse 5 is blown, the closed circuit becomes an open circuit, and no short-circuit current flows through the transistor 4. Therefore, the short-circuit current flows through the transistor 4 for a very short time from when the short-circuit current starts flowing through the fuse 5 to when it is blown.
[0017]
Next, the operation and the like of the battery module 9 of the present embodiment will be described.
[0018]
Since the battery module 9 of the present embodiment has a built-in short-circuit allowable circuit 20 for allowing a short circuit of the charging / discharging current between the + charging / discharging terminal and the − charging / discharging terminal, there is a problem in terms of heat generation, volume, and cost. The charge / discharge current is cut off by operating the short-circuit permitting circuit 20 and blowing the fuse 5 at the time of overcharge, without using the semiconductor element (the switch 10 in FIG. 2) for controlling the conduction of the charge / discharge current. Although a large current is required to blow the fuse 5, the battery module 9 draws its power from the battery pack 1, does not require a special power supply, and requires a short blow time for the fuse 5. Therefore, the short-circuit allowable circuit 20 can be configured by using a relatively small-capacity semiconductor element (transistors 3 and 4) having small heat generation, volume, and cost. Therefore, according to the battery module 9 of the present embodiment, unlike the conventional battery protection circuit, a semiconductor element that allows the charging and discharging current to flow is not required, and a semiconductor that allows the fusing current of the fuse 6 to flow for a short time during overcharge. Since it can be constituted by elements, heat generation, volume and cost can be suppressed.
[0019]
Further, in the battery module 9 of the present embodiment, when the fuse 5 is blown, the fuse 5 can be reused simply by replacing the fuse 5, and the short-circuit allowable circuit 20 is provided not on the charge / discharge power supply 6 side but on the battery module 9 side. Since the battery module 9 can be incorporated in the battery module 9 alone, overcharge protection of a single cell can be achieved, which is an extremely large industrial value.
[0020]
Furthermore, in the battery module 9 of the present embodiment, since the short-circuit allowable circuit 20 is configured to include the resistors 7 and 8 for limiting the short-circuit current, the semiconductor elements (transistors 3 and 4) are instantaneously blown and the fuse 5 is blown. It eliminates the possibility that it cannot be blown. Therefore, in the battery module 9, the overcharge current from the charging / discharging power supply 6 can be reliably shut off.
[0021]
In the present embodiment, a bipolar transistor is exemplified as the semiconductor element constituting the short-circuit allowable circuit 20, but the present invention is not limited to this, and a field effect transistor (FET) or the like may be used. . Further, in the present embodiment, an example in which the short-circuit permitting circuit 20 is configured to include a semiconductor element has been described. However, the present invention is not limited to this, and includes, for example, a relay such as replacing the transistor 4 with a relay. It may be configured. Even in such a configuration, the resistor 7 has a function of preventing the contact of the relay from being blown instantaneously and ensuring that the fuse 5 is blown.
[0022]
Further, in the present embodiment, the example in which the fuse 5 is inserted between the + terminal of the uppermost unit cell and the + charge / discharge terminal of the battery module 9 is shown. It may be inserted between the negative and charge / discharge terminals of the module 9.
[0023]
【The invention's effect】
As described above, according to the present invention, a short-circuit permitting circuit for permitting a short circuit between the + charge / discharge terminal and the −charge / discharge terminal is provided, so that the charge / discharge current can be cut off during overcharge. At the same time, it is possible to charge and discharge with a large current in a normal state, and it is not necessary to use a semiconductor element for normal charge / discharge current control, so that a battery protection circuit that suppresses heat generation, volume, and cost of the semiconductor element is obtained. Can be obtained.
[Brief description of the drawings]
FIG. 1 is a block circuit diagram of a battery module according to an embodiment to which the present invention can be applied.
FIG. 2 is a block circuit diagram showing a conventional battery protection circuit.
[Explanation of symbols]
1 assembled battery (battery)
3, 4 transistor (semiconductor element)
5 Fuse 7, 8 resistance (element for current limiting)
9 Battery module (battery protection circuit)
20 Short circuit allowable circuit

Claims (4)

1個以上の単電池を有する電池の+端子と+充放電端子との間又は前記電池の−端子と−充放電端子との間に過大電流遮断用ヒューズを挿入した電池用保護回路において、前記+充放電端子と前記−充放電端子との間に短絡を許容するための短絡許容回路を有し、前記単電池が過充電となった場合に前記短絡許容回路を動作させて前記電池に短絡電流を流し、前記過大電流通電用ヒューズを遮断することを特徴とする電池用保護回路。In a battery protection circuit, an overcurrent cutoff fuse is inserted between a positive terminal and a positive charging / discharging terminal of a battery having one or more single cells or between a negative terminal and a negative charging / discharging terminal of the battery. A short-circuit permitting circuit for permitting a short circuit between the + charge / discharge terminal and the -charge / discharge terminal, and when the single cell becomes overcharged, the short-circuit permitting circuit is operated to short-circuit the battery A protection circuit for a battery, wherein a current flows and a fuse for applying an excessive current is cut off. 前記短絡許容回路は、半導体素子又はリレーを有して構成されていることを特徴とする請求項1に記載の電池用保護回路。The protection circuit for a battery according to claim 1, wherein the short-circuit allowable circuit includes a semiconductor element or a relay. 前記短絡許容回路は、電流制限用の素子を有して構成されていることを特徴とする請求項1又は請求項2に記載の電池用保護回路。The battery protection circuit according to claim 1, wherein the short-circuit allowable circuit includes a current limiting element. 前記短絡許容回路が動作する時間を該短絡許容回路が損傷しない時間に制限したことを特徴とする請求項1乃至請求項3のいずれか1項に記載の電池用保護回路。4. The battery protection circuit according to claim 1, wherein a time during which the short-circuit allowable circuit operates is limited to a time during which the short-circuit allowable circuit is not damaged. 5.
JP2002328992A 2002-11-13 2002-11-13 Protective circuit for cell Abandoned JP2004164982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002328992A JP2004164982A (en) 2002-11-13 2002-11-13 Protective circuit for cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002328992A JP2004164982A (en) 2002-11-13 2002-11-13 Protective circuit for cell

Publications (1)

Publication Number Publication Date
JP2004164982A true JP2004164982A (en) 2004-06-10

Family

ID=32807118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002328992A Abandoned JP2004164982A (en) 2002-11-13 2002-11-13 Protective circuit for cell

Country Status (1)

Country Link
JP (1) JP2004164982A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100659829B1 (en) 2004-08-30 2006-12-19 삼성에스디아이 주식회사 battery pack
JP2015165735A (en) * 2014-02-28 2015-09-17 株式会社東芝 battery module
CN105406526A (en) * 2015-11-04 2016-03-16 北方工业大学 Novel Buck-Boost converter and integrated design circuit of charge and discharge circuit and equalizing circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100659829B1 (en) 2004-08-30 2006-12-19 삼성에스디아이 주식회사 battery pack
JP2015165735A (en) * 2014-02-28 2015-09-17 株式会社東芝 battery module
CN105406526A (en) * 2015-11-04 2016-03-16 北方工业大学 Novel Buck-Boost converter and integrated design circuit of charge and discharge circuit and equalizing circuit

Similar Documents

Publication Publication Date Title
JP3248851B2 (en) Battery protection device
US7898216B2 (en) Rechargeable battery device having a protection circuit for protecting from overcharge and overdischarge
CN103493255B (en) The battery pack of the fail safe improved
JP5683372B2 (en) Charge / discharge control device, battery pack, electric device, and charge / discharge control method
JP5209122B2 (en) Apparatus and method for protecting battery pack by sensing destruction of sense resistor
JPH04331425A (en) Overcharge preventing device and overdischarge preventing device
JP2010200598A (en) Battery pack and overdischarge protection method
KR101093982B1 (en) Battery pack and driving method thereof
JPH10136576A (en) Protection device of secondary battery
KR101222334B1 (en) Battery pack
JP2003142162A (en) Battery pack
JPH11206025A (en) Battery management device and battery pack using the same
JP5064776B2 (en) Pack battery
KR20180028239A (en) Battery pack
JP2000102185A (en) Secondary battery pack
JP4342657B2 (en) Secondary battery device and secondary battery protection device
JP2001112182A (en) Protective circuit for secondary battery
JPH1141823A (en) Overcharging prevention device
JP2004127532A (en) Battery pack
JP2010212166A (en) Lithium ion secondary battery system
WO2004070908A1 (en) Secondary cell with bypass resistor and secondary cell protective method
JP2004164982A (en) Protective circuit for cell
JP2004320924A (en) Overcharge protection device for secondary battery, power supply device, and charging control method of secondary battery
JP2003111268A (en) Secondary battery with overcharge protection circuit
KR100624942B1 (en) Battery pack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060718

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20060915