JP2004164966A - Focused ion beam device for transmission electron microscope sample processing equipped with writing function by coding relevant information - Google Patents
Focused ion beam device for transmission electron microscope sample processing equipped with writing function by coding relevant information Download PDFInfo
- Publication number
- JP2004164966A JP2004164966A JP2002328528A JP2002328528A JP2004164966A JP 2004164966 A JP2004164966 A JP 2004164966A JP 2002328528 A JP2002328528 A JP 2002328528A JP 2002328528 A JP2002328528 A JP 2002328528A JP 2004164966 A JP2004164966 A JP 2004164966A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- ion beam
- mark
- focused ion
- information
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Sampling And Sample Adjustment (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、透過型電子顕微鏡の試料を作成する過程で自己識別等関連情報をコード化したマークを書き込む試料製造集束イオンビーム装置に関する。
【0002】
【従来の技術】
透過型電子顕微鏡(以下TEMと略称する)観察用の断面試料を、集束イオンビーム装置を用いた薄片化加工によって作成することは周知であり、ウエハ状の試料から機械的に小片を切り出しそれを加工する方法と、ウエハのままエッチング加工して薄片化された試料を取り出す方法とが知られている。本発明は後者の方法で作成されるTEM試料に関するもので、このTEM試料製造方法は図4の(a)に示すように加工部分にまずガス銃により原料ガスを噴射させながらイオンビームを照射して保護用のデポ膜を形成させて、続いて(b)に示すように試料の面上方から集束イオンビームを照射し観察断面の後側をエッチング加工により掘り込み、ついで同様の方法で(c)に示すように観察断面の前側をエッチング加工により掘り込む。集束イオンビーム装置で観察断面薄片部の両側に四角い前方穴,後方穴を空ける。該前方穴の大きさは試料台をチルトして観察断面を走査イオン顕微鏡で観察できる程度の大きさに、後方穴は、幅は前方穴と同じで奥行きは2/3程度に穿設される。穴掘り加工によって観察面がダメージを受けているのでビーム電流を抑えた仕上加工を施し、表面を研磨する。(d)に図示したように試料面をチルトして観察断面として薄片化加工された試料の周辺部に、矢印のように集束イオンビームを照射して切り込み加工(ボトムカット)を行い、図5に示すようにマニピュレータ(ガラスプローブ)を操作してこの切片試料を試料本体から切り離しコロジオン膜張付けメッシュ(150メッシュ)等の上に移動させて載置する。メッシュ面上に切り出した切片試料が付着し、TEM観察用の試料作成が完成する。出来上がった試料は直径約3mm程度のメッシュ基台に10μm四方程度の切片が固定されたものであり、その取扱い管理は試料サイズが極めて小さいゆえに厄介である。
【0003】
そのような事情の下でユーザの間では、サイズが極めて小さいTEM試料のその取扱い管理に合理的な手段の開発が求められている。従来、顕微鏡試料における微細な観察箇所をアクセスする便利な手法が、特開平4−282545号公報(特許文献1)に、提示されている。この手法は集束イオンビーム装置(以下FIB装置と略称する。)を用い、走査型電子顕微鏡(以下SEMと略称する。)やTEMの試料を前処理加工するに際して、同一試料面上に欠陥部などの着目観察部位が複数箇所存在してもアクセスし易くすることを目的とし、図6に示すようにFIBで加工する場所の近傍に当該着目観察部を特徴付ける文字記号といったキャラクタをFIBで加工するといったものである。TEM試料を扱うといっても薄片化加工を施した後切りとってメッシュ上に固定し仕上げたTEM試料ではなく、その前処理段階で加工のためにウエハ等大きな試料上で観察断面をアクセスする際、位置特定を容易にしようという課題に基く技術的思想であって、今サンプルが微小サイズであることに基づくTEM試料自体の取扱い管理の困難を解決するものではない。
【0004】
【特許文献1】
特開平4−282545号公報 3頁第3欄、4欄,図1
【0005】
【発明が解決しようとする課題】
本発明の課題は、サイズが微小であることにより厄介な問題となっているTEM試料の取扱い管理を、簡便かつ容易に実行できるようにTEM試料自体に必要情報を付与する特別の加工を加えるTEM試料加工用集束イオンビーム装置を提供することにある。
【0006】
【課題を解決するための手段】
本発明の集束イオンビーム装置は、試料を特定する情報及び/又は試料に付随する情報を入力すると、該情報をコード化したマークに変換する手段と、該マークを試料面に加工すべく集束イオンビームの照射位置を制御する信号をつくって偏向手段に印加する手段とを備え、TEM試料本体に試料整理情報をマーク形態で書き込むようにした。
マーク形成は集束イオンビームを用いたエッチング加工、原料ガスと集束イオンビーム照射によるデポジション、原料ガスと電子ビーム照射によるデポジションで実行する。
【0007】
【発明の実施の形態】
本発明はサイズが微小であることにより厄介な問題となっているTEM試料の取扱い管理を簡便かつ容易に実行できるように、TEM試料自体に試料整理情報をマーク形態で書き込むようにすることに想到したものである。そして、TEM試料を制作する集束イオンビーム装置に、試料を特定する情報であるとか試料に付随する諸情報を入力する手段と、該情報をコード化したマークに変換する手段と、該マークを試料面に加工すべく集束イオンビーム(以下FIBと略称する。
)の照射位置を制御する信号をつくって偏向手段に印加する手段とを備えるようにし、TEM試料本体に薄片化加工の過程で、当該TEM試料を特定する情報あるいはその試料に付随する関連情報を書き込み付与するようにした。書き込む位置は図1に示したように試料として観察対象とはならない試料周辺位置とし、所定位置に決めておくと試料の整理に便利がよい。
【0008】
試料に直接書き込む手法は、FIBを用いたエッチング加工、原料ガスとFIB照射によるデポジション、あるいは原料ガスと電子ビーム照射によるデポジションでマーク形成できるようにした。マークは数字、バーコード、あるいは特殊記号等適宜の形態で表すことができる。図2に示すようにマークの特定はコード化ルールを記憶したROMを備えておき、キーボード等の入力手段(入力操作部12)によって入力された情報を該ROMに記憶されたコード化ルールにしたがってマークに変換する。TEM試料を制作するFIB装置に備えられたコンピュータ10は、該マークを認識する。それと共に、該マークを試料表面に書き込み加工するため、荷電粒子ビームを偏向走査するためのXY偏向制御信号を生成し、装置のデフレクタ4に送信する。この荷電粒子ビームはFIBに限定されない。観察用の電子鏡筒を供えたものにあってはその電子ビームを用いた加工であってもよい。TEM試料表面にはダメージを与える危険があることから可能な限りイオンビームを照射したくないという事情がある。マーク形成を電子ビームを用いたデポジションで行なうことはその点で好ましいことである。
【0009】
【実施例1】
本発明の1実施例を図2,3を参照しながら説明する。本実施例のTEM試料加工用FIB装置は、図3に示した一般のFIB装置の基本構成である、イオン源1、コンデンサレンズ,ビームブランカー,アライナ,アパーチャー,対物レンズを含むイオン光学系3(コンデンサレンズ、ビームブランカー、アライナ、アパーチャー、対物レンズ)、イオンビームの偏向走査を行わせるデフレクタ4、二次荷電粒子検出器5、ガス銃6、ステージ駆動機構7aを備えた試料ステージ7、チャージニュートライザ8、入力操作部12、コンピュータ10そしてディスプレイ11を備えたものである。コンピュータ10からは、加速電圧、イオン光学系、偏向走査、ガス供給、試料ステージ駆動を制御する各種制御信号が出力される。
本実施例の装置は特徴的構成として、図2に示すようにコンピュータ10内にキーボード等からなる入力操作部12によって入力される情報をマークに変換するコード化ルールを記憶したROMを備える。また、該ROMのコード化ルールに従い入力された情報をマークに変換する機能と、該マークを認識する機能とともに、該マークを試料表面に書き込み加工するため、荷電粒子ビームを偏向走査するためのXY偏向制御信号を生成する機能を備えたものである。そして、コンピュータ10内で生成されたXY偏向制御信号をデフレクタ4に送信し、イオンビーム2を偏向制御して試料9の所定箇所にマークを加工する。この加工形態はスパッタエッチング、ガスアシストエッチング、デポジションのいずれをも実行できる。更に、本実施例はマーク加工がなされた断面試料をピックアップしメッシュ上に移送する機能を持ったガラスプローブをもつマニピュレータと、メッシュをセットしておく専用トレーとを備えている。
【0010】
本装置を用いたTEM試料製作工程を示す。試料を試料ステージ7に載置し、TEM試料として切り出す領域の近傍所定位置に基準点となるドリフトマークを試料面にFIBを用いたスパッタエッチングでつける。なお、これはデポジションによるマーク表示であってもよい。このドリフトマークを基準点として特定される試料領域表面に図4の(a)と同様に保護用のカバーデポジションを施す。続いて図4の(b)(c)と同様に観察断面の両側部分に前方穴、後方穴をエッチング加工により穿設する。この際のビーム電流は高電流とし、所謂粗加工を行なう。
この粗加工により、表面にカーテン状のひだ(カーテン効果)が生じた場合は試料を表面に沿ってチルトさせ、ビーム電流を少し落した状態で異なる角度からFIBを照射するようにしてカーテン効果を解消させる所謂中加工を行なう。このときのステージ移動に際して、位置合わせのため、先のドリフトマークを検出して位置の確認を行ないながら、この加工を実施する。カーテン効果が著しくないときはこの中加工は省略してもよい。この段階での試料表面は、中加工若しくは粗加工によってエッチングされたものであるから、その表面はダメージを受けた状態となっている。そこで表面を研磨する仕上加工が施されることになる。その際のエッチング加工はビーム電流を低く落して行なわれる。この加工の際、残し幅が50nm〜100nmと大変狭いので、加工位置を厳密に決めることが求められる。その上、試料は薄片化されているため熱によって変形を起こす状態にあるため、位置ズレを起こしやすという問題もある。そこで、ドリフトマークを基準にして位置合わせを繰返しながら慎重に作業を進めることになる。以上の作業は従来から行なわれてきたFIB装置を用いたTEM試料作成工程と大きな差異はない。
【0011】
本発明の特徴点はこれ以降の作業に対応する。仕上げ加工が行われた段階で試料ステージを試料断面を寝かせる方向にチルトさせ、試料断面の観察対象外領域である部分、この例では試料断面の左下部にFIB照射位置を合わせる。この製作しているTEM試料を特定する情報或いは該試料に付随する情報を、入力操作部12から入力する。この入力情報をROM10bに格納されているコード変換情報に照らしてマーク変換部10aでコード変換させる。このコードマークをコンピュータ上で認識させる。そして、このコードマークを試料表面にFIBによってエッチング加工するためのXY偏向制御信号を、XY偏向制御信号生成部10cで演算する。該演算によって生成されたXY偏向制御信号を、デフレクタ4へ出力しイオンビームを照射することにより、図1に示されるように試料断面部の左下部にコード化されたマークが刻まれる。
この段階で図4の(d)と同様に薄片化加工された試料断面の周辺部に切り込みを入れる所謂ボトムカットを施す。図1に示すようにボトムカットが行なわれた薄片加工された断面部は試料本体とは1点支持の状態でつながっている。このコード化されたマークが刻まれた試料断面に、図5に示したのと同じ手法で、マニピュレータを操作して、ボトムカットされた断面試料を試料本体から切り離し、専用トレー内のコロジオン膜張付けメッシュ(150メッシュ)等の上に移動させて載置する。メッシュ面上に切り出した切片試料が付着し、TEM観察用の試料作成が完成する。
以上のTEM試料製作工程は、マニュアル操作によって実行できるだけでなく、諸条件を事前に設定入力して置くことで一連のプロセスをプログラム化しておくことで自動化することができる。
【0012】
このようにして製作された本発明のTEM試料はTEMの試料ステージに載置され、透過像として観察に供される。その際観察断面を従来の通り顕微鏡像としてディスプレイ上に表示することができるだけでなく、本発明によって作成されたTEM試料は試料の周辺部(上の例では左下領域)に該試料に付随した情報をコード化し、マークとして加工表示されているので、このマークも顕微鏡像としてとらえて画像表示させることが可能である。そのコード情報から基(もと)情報をオペレータが判読して該試料の付随情報を認識した上で断面観察を行なうことができる。又、当該TEMがコード情報を判読して基(もと)データに逆変換して表示する機能を備えたものである場合には、表等の形態で該試料の付随情報をディスプレイ表示させることができ、断面観察像と付随情報を切替え表示したり、ウインドウ表示の形態で分割表示か重ね表示させることができる。検査実務上極めて利便性が高いものとなる。
【0013】
【発明の効果】
本発明のTEM試料加工用FIB装置は、試料を特定する情報及び/又は試料に付随する情報を入力する手段と、該入力された情報をコード化したマークに変換する手段と、該マークを試料面に書き込み加工すべく荷電粒子ビームの照射位置を制御する信号をつくって偏向手段に印加する手段とを備えたことにより、TEM試料自体に該TEM試料に関連する情報を書き込むことができるので、本発明のFIB装置で作成したTEM試料が極めて微小なサイズの試料であるにもかかわらず、その特定・管理を容易に間違い無く行なうことが出来る。
そして、実際の試料観察においては、当該試料の関連情報を参照しながらの検査が出来るため、実務上極めて利便性が高いものとなる。
また、本発明の特徴点である試料面のマークの加工形成は、FIBによるスパッタエッチングによって加工するもの、あるいは原料ガスを噴射させて形成するデポジションによるものであるから、本来のFIB装置の機能の延長として容易に実施することができる。
【図面の簡単な説明】
【図1】本発明のFIB装置によって加工され、切片として切り出す前のTEM試料を示す図である。
【図2】本発明のTEM試料加工用FIB装置の主要構成を示すブロック図である。
【図3】TEM試料加工用FIB装置の基本構成を示す図である。
【図4】TEM試料加工プロセスを説明する図である。
【図5】薄片化加工されたTEM試料切片をメッシュ上に固定するプロセスを説明する図である。
【図6】FIB加工によりSEM試料とTEM試料の特定を容易にする従来技術を示す図である。
【符号の説明】
1 イオン源 10 コンピュータ
2 イオンビーム 10a マーク変換部
3 イオン光学系 10b ROM
4 デフレクタ 10c XY偏向制御信号生成部
5 二次荷電粒子検出器
6 ガス銃
7 試料ステージ
7a ステージ駆動機構
8 チャージニュートライザ
9 試料[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a sample manufacturing focused ion beam apparatus for writing a mark encoding related information such as self-identification in the process of preparing a sample for a transmission electron microscope.
[0002]
[Prior art]
2. Description of the Related Art It is well known that a cross-sectional sample for observation with a transmission electron microscope (hereinafter abbreviated as TEM) is formed by slicing using a focused ion beam apparatus. There are known a processing method and a method of taking out a thinned sample by performing etching processing on a wafer. The present invention relates to a TEM sample prepared by the latter method. In this TEM sample manufacturing method, as shown in FIG. 4A, a processing portion is irradiated with an ion beam while first spraying a raw material gas with a gas gun. Then, a focused ion beam is irradiated from above the surface of the sample, and the back side of the observation section is dug by etching, as shown in FIG. As shown in ()), the front side of the observation section is dug by etching. A square front hole and a rear hole are made on both sides of the observation section thin section using a focused ion beam apparatus. The size of the front hole is such that the observation section can be observed with a scanning ion microscope by tilting the sample stage, and the rear hole has the same width as the front hole and a depth of about 2/3. . Since the observation surface has been damaged by the digging process, the surface is polished by performing the finishing process with the beam current suppressed. As shown in FIG. 5D, the periphery of the sample, which has been sliced as an observation cross section by tilting the sample surface, is irradiated with a focused ion beam as shown by an arrow to perform a cutting process (bottom cut), and FIG. As shown in (1), the manipulator (glass probe) is operated to separate this section sample from the sample body, move it onto a collodion membrane-attached mesh (150 mesh) or the like, and mount it. The section sample cut out on the mesh surface adheres, and the preparation of the sample for TEM observation is completed. The completed sample has a section of about 10 μm square fixed on a mesh base having a diameter of about 3 mm, and its handling and management are troublesome because the sample size is extremely small.
[0003]
Under such circumstances, there is a demand among users for the development of rational means for managing the handling of extremely small TEM samples. 2. Description of the Related Art Conventionally, a convenient method for accessing a fine observation point in a microscope sample has been proposed in Japanese Patent Application Laid-Open No. 4-282545 (Patent Document 1). This method uses a focused ion beam apparatus (hereinafter abbreviated as FIB apparatus), and when a scanning electron microscope (hereinafter abbreviated as SEM) or a TEM sample is pre-processed, a defect or the like is present on the same sample surface. For the purpose of facilitating access even if there are a plurality of observation sites of interest, a character such as a character symbol characterizing the observation unit of interest is processed by the FIB near the place to be processed by the FIB as shown in FIG. Things. When handling the TEM sample, it is not a TEM sample that has been sliced and then cut out, fixed on a mesh and finished, but when accessing the observation cross section on a large sample such as a wafer for processing in the pre-processing stage This is a technical idea based on the problem of making it easy to specify the position, and does not solve the difficulties in handling and managing the TEM sample itself based on the fact that the sample is now very small.
[0004]
[Patent Document 1]
JP-A-4-282545,
[0005]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION An object of the present invention is to provide a TEM sample that has special processing for giving necessary information to the TEM sample itself so that handling and management of the TEM sample, which is a troublesome problem due to its small size, can be performed easily and easily. An object of the present invention is to provide a focused ion beam apparatus for processing a sample.
[0006]
[Means for Solving the Problems]
The focused ion beam apparatus according to the present invention is configured such that, when information for specifying a sample and / or information associated with the sample is input, a means for converting the information into a coded mark, and a focused ion beam for processing the mark on the sample surface. Means for generating a signal for controlling the irradiation position of the beam and applying the signal to the deflecting means, so that the sample arrangement information is written in a mark form on the TEM sample main body.
The mark is formed by etching using a focused ion beam, deposition by irradiation of a source gas and a focused ion beam, and deposition by irradiation of a source gas and an electron beam.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention has been made to write sample arrangement information in a mark form on the TEM sample itself so that handling and management of the TEM sample, which is a troublesome problem due to its small size, can be performed easily and easily. It was done. A means for inputting information specifying the sample or various information accompanying the sample to a focused ion beam apparatus for producing a TEM sample; a means for converting the information into a coded mark; Focused ion beam (hereinafter abbreviated as FIB) for processing into a surface.
) For generating a signal for controlling the irradiation position and applying the signal to the deflecting means. In the process of thinning the TEM sample body, information for specifying the TEM sample or related information accompanying the sample is provided. Writing was added. The writing position is, as shown in FIG. 1, a peripheral position of the sample which is not to be observed as a sample, and it is convenient to arrange the sample if it is determined at a predetermined position.
[0008]
As a method of writing directly on the sample, a mark can be formed by etching using FIB, deposition by irradiation of a source gas and FIB, or deposition by irradiation of a source gas and electron beam. The mark can be represented in an appropriate form such as a number, a bar code, or a special symbol. As shown in FIG. 2, a mark is provided in a ROM storing coding rules, and information input by input means such as a keyboard (input operation unit 12) is specified according to the coding rules stored in the ROM. Convert to mark. The
[0009]
One embodiment of the present invention will be described with reference to FIGS. The FIB apparatus for processing a TEM sample according to the present embodiment is an ion optical system 3 (including an
As a characteristic configuration, the apparatus according to the present embodiment includes, as shown in FIG. 2, a ROM in which a coding rule for converting information input by an
[0010]
4 shows a TEM sample manufacturing process using this apparatus. The sample is placed on the sample stage 7, and a drift mark serving as a reference point is formed at a predetermined position near a region to be cut out as a TEM sample on the sample surface by sputter etching using FIB. Note that this may be a mark display by deposition. A protective cover deposition is performed on the surface of the sample area specified using the drift mark as a reference point, as in FIG. Subsequently, as in FIGS. 4B and 4C, a front hole and a rear hole are formed on both sides of the observation section by etching. The beam current at this time is set to a high current, and so-called rough processing is performed.
When curtain-shaped folds (curtain effect) occur on the surface due to this rough processing, the sample is tilted along the surface, and the FIB is irradiated from a different angle with a slightly reduced beam current to reduce the curtain effect. The so-called medium processing to eliminate the problem is performed. When the stage is moved at this time, this processing is performed while detecting the preceding drift mark and confirming the position for alignment. If the curtain effect is not significant, the intermediate processing may be omitted. Since the sample surface at this stage has been etched by medium processing or rough processing, the surface is in a damaged state. Therefore, a finishing process for polishing the surface is performed. The etching process at that time is performed by lowering the beam current. At the time of this processing, since the remaining width is very narrow, 50 nm to 100 nm, it is necessary to determine the processing position strictly. In addition, since the sample is in a state of being deformed by heat due to thinning, there is also a problem that the position is easily shifted. Therefore, the work must be carefully performed while repeating the positioning with reference to the drift mark. The above operation is not much different from the conventional TEM sample preparation process using the FIB apparatus.
[0011]
The features of the present invention correspond to the subsequent work. At the stage where the finishing process has been performed, the sample stage is tilted in a direction in which the sample cross section is laid down, and the FIB irradiation position is adjusted to a portion that is a non-observation area of the sample cross section, in this example, the lower left portion of the sample cross section. Information for specifying the TEM sample being manufactured or information accompanying the sample is input from the
At this stage, a so-called bottom cut in which a cut is made in the periphery of the section of the sample that has been sliced in the same manner as in FIG. As shown in FIG. 1, the sliced section where the bottom cut has been performed is connected to the sample body in a state of being supported at one point. In the same manner as shown in FIG. 5, the manipulator is operated to separate the bottom-cut cross-section sample from the sample main body and apply the collodion film in the special tray to the sample cross section on which the coded mark is engraved. It is moved and placed on a mesh (150 mesh) or the like. The section sample cut out on the mesh surface adheres, and the preparation of the sample for TEM observation is completed.
The above-mentioned TEM sample manufacturing process can be performed not only by manual operation but also can be automated by programming a series of processes by setting and inputting various conditions in advance.
[0012]
The TEM sample of the present invention thus manufactured is placed on a TEM sample stage, and is used for observation as a transmission image. At this time, not only can the observed cross section be displayed on a display as a microscope image as in the conventional case, but also the TEM sample prepared according to the present invention has information attached to the sample at the periphery (lower left region in the above example) of the sample. Is encoded and processed and displayed as a mark, so that this mark can also be captured as a microscope image and displayed as an image. The operator can read the base (original) information from the code information and recognize the accompanying information of the sample before observing the cross section. If the TEM has a function of reading the code information and converting it back to the original (original) data and displaying it, the accompanying information of the sample should be displayed on the display in the form of a table or the like. The cross-sectional observation image and the accompanying information can be switched and displayed, or can be divided and displayed in the form of a window. It is extremely convenient for inspection work.
[0013]
【The invention's effect】
The FIB apparatus for processing a TEM sample according to the present invention includes means for inputting information for specifying a sample and / or information associated with the sample, means for converting the input information into a coded mark, and Means for generating a signal for controlling the irradiation position of the charged particle beam for writing on the surface and applying the signal to the deflection means, so that information related to the TEM sample can be written to the TEM sample itself. Even though the TEM sample created by the FIB apparatus of the present invention is a sample having an extremely small size, it is possible to easily specify and manage the TEM sample without fail.
In actual sample observation, inspection can be performed while referring to relevant information of the sample, which is extremely convenient in practice.
Further, the processing and formation of the mark on the sample surface, which is a feature of the present invention, is performed by sputter etching using FIB or by deposition formed by injecting a raw material gas. It can be easily implemented as an extension of.
[Brief description of the drawings]
FIG. 1 is a diagram showing a TEM sample processed by an FIB apparatus of the present invention before being cut out as a section.
FIG. 2 is a block diagram showing a main configuration of a TEM sample processing FIB apparatus of the present invention.
FIG. 3 is a diagram showing a basic configuration of a FIB apparatus for processing a TEM sample.
FIG. 4 is a diagram illustrating a TEM sample processing process.
FIG. 5 is a diagram illustrating a process of fixing a sliced TEM sample section on a mesh.
FIG. 6 is a diagram showing a conventional technique that facilitates identification of a SEM sample and a TEM sample by FIB processing.
[Explanation of symbols]
DESCRIPTION OF
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002328528A JP2004164966A (en) | 2002-11-12 | 2002-11-12 | Focused ion beam device for transmission electron microscope sample processing equipped with writing function by coding relevant information |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002328528A JP2004164966A (en) | 2002-11-12 | 2002-11-12 | Focused ion beam device for transmission electron microscope sample processing equipped with writing function by coding relevant information |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004164966A true JP2004164966A (en) | 2004-06-10 |
Family
ID=32806811
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002328528A Pending JP2004164966A (en) | 2002-11-12 | 2002-11-12 | Focused ion beam device for transmission electron microscope sample processing equipped with writing function by coding relevant information |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004164966A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007180403A (en) * | 2005-12-28 | 2007-07-12 | Hitachi High-Technologies Corp | Charged particle beam apparatus, semiconductor inspection apparatus and sample processing method |
JP2010507783A (en) * | 2006-10-20 | 2010-03-11 | エフ・イ−・アイ・カンパニー | Method and sample structure for creating S / TEM sample |
US8357913B2 (en) | 2006-10-20 | 2013-01-22 | Fei Company | Method and apparatus for sample extraction and handling |
JP2014066705A (en) * | 2012-09-25 | 2014-04-17 | Fei Co | System and method for ex situ analysis of substrate |
JP2014130145A (en) * | 2012-12-31 | 2014-07-10 | Fei Co | Method for preparing samples for imaging |
WO2019220543A1 (en) * | 2018-05-15 | 2019-11-21 | 株式会社日立ハイテクノロジーズ | Charged particle beam device, sample processing method, and observation method |
-
2002
- 2002-11-12 JP JP2002328528A patent/JP2004164966A/en active Pending
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4685627B2 (en) * | 2005-12-28 | 2011-05-18 | 株式会社日立ハイテクノロジーズ | Sample processing method |
JP2007180403A (en) * | 2005-12-28 | 2007-07-12 | Hitachi High-Technologies Corp | Charged particle beam apparatus, semiconductor inspection apparatus and sample processing method |
US8890064B2 (en) | 2006-10-20 | 2014-11-18 | Fei Company | Method for S/TEM sample analysis |
US9349570B2 (en) | 2006-10-20 | 2016-05-24 | Fei Company | Method and apparatus for sample extraction and handling |
US8357913B2 (en) | 2006-10-20 | 2013-01-22 | Fei Company | Method and apparatus for sample extraction and handling |
US8525137B2 (en) | 2006-10-20 | 2013-09-03 | Fei Company | Method for creating S/TEM sample and sample structure |
US9581526B2 (en) | 2006-10-20 | 2017-02-28 | Fei Company | Method for S/TEM sample analysis |
JP2010507782A (en) * | 2006-10-20 | 2010-03-11 | エフ・イ−・アイ・カンパニー | Method and sample structure for creating S / TEM sample |
JP2010507783A (en) * | 2006-10-20 | 2010-03-11 | エフ・イ−・アイ・カンパニー | Method and sample structure for creating S / TEM sample |
US8993962B2 (en) | 2006-10-20 | 2015-03-31 | Fei Company | Method and apparatus for sample extraction and handling |
US9275831B2 (en) | 2006-10-20 | 2016-03-01 | Fei Company | Method for S/TEM sample analysis |
US9336985B2 (en) | 2006-10-20 | 2016-05-10 | Fei Company | Method for creating S/TEM sample and sample structure |
JP2014066705A (en) * | 2012-09-25 | 2014-04-17 | Fei Co | System and method for ex situ analysis of substrate |
JP2014130145A (en) * | 2012-12-31 | 2014-07-10 | Fei Co | Method for preparing samples for imaging |
WO2019220543A1 (en) * | 2018-05-15 | 2019-11-21 | 株式会社日立ハイテクノロジーズ | Charged particle beam device, sample processing method, and observation method |
US11268915B2 (en) | 2018-05-15 | 2022-03-08 | Hitachi High-Tech Corporation | Charged particle beam device, method for processing sample, and observation method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5541411A (en) | Image-to-image registration focused ion beam system | |
JP6552383B2 (en) | Automated TEM sample preparation | |
US7414252B2 (en) | Method and apparatus for the automated process of in-situ lift-out | |
US5905266A (en) | Charged particle beam system with optical microscope | |
JP5719494B2 (en) | Subsurface imaging using electron beams | |
KR102579329B1 (en) | CAD-assisted TEM prep recipe creation | |
JP2007018934A (en) | Formation and observation method of sample as well as charged particle beam device | |
JP3041599B2 (en) | Coordinate setting optical observation device and position information storage method | |
US6332962B1 (en) | Thin-film magnetic recording head manufacture using selective imaging | |
KR20190114769A (en) | Charged particle beam apparatus | |
CN109841534B (en) | Method for observing cross section processing and charged particle beam device | |
JP2005114578A (en) | Sample preparation method device and sample observation device | |
JP2004164966A (en) | Focused ion beam device for transmission electron microscope sample processing equipped with writing function by coding relevant information | |
US20040227082A1 (en) | TEM sample equipped with an identifying function, focused ion beam device for processing TEM sample, and transmission electron microscope | |
JP2012022903A (en) | Charged particle beam application device and method for detecting reference mark in charged particle beam application device | |
WO2021171490A1 (en) | Semiconductor analysis system | |
JP4996206B2 (en) | Shape observation apparatus and shape observation method | |
JP2003197138A (en) | Charged beam device, method for measuring pattern, and method for manufacturing semiconductor device | |
JP2005201810A (en) | Dimension measuring instrument, dimension measuring method, and program | |
JP5189916B2 (en) | Fine sample processing method, observation method, and apparatus | |
JP2007179929A (en) | Charged particle beam device, and sample image displaying method | |
WO2022137401A1 (en) | Charged particle beam device | |
JPH11219680A (en) | Converged ion beam machining method | |
JP2003166918A (en) | Method of preparing sample for observing crystal defect in semiconductor single crystal | |
JP2004301557A (en) | Method for machining object to be observed and micromachining method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20040304 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20040526 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050714 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080229 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080311 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080708 |