JP2004164858A - Electric insulating oil composition - Google Patents

Electric insulating oil composition Download PDF

Info

Publication number
JP2004164858A
JP2004164858A JP2002325611A JP2002325611A JP2004164858A JP 2004164858 A JP2004164858 A JP 2004164858A JP 2002325611 A JP2002325611 A JP 2002325611A JP 2002325611 A JP2002325611 A JP 2002325611A JP 2004164858 A JP2004164858 A JP 2004164858A
Authority
JP
Japan
Prior art keywords
mass
composition
oil
insulating oil
mineral oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002325611A
Other languages
Japanese (ja)
Other versions
JP4698922B2 (en
Inventor
Masaji Nakamura
正司 中村
Akiji Tanaka
明示 田中
Noritoshi Nagamatsu
典俊 永松
Kazuhiro Tejima
一裕 手島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2002325611A priority Critical patent/JP4698922B2/en
Publication of JP2004164858A publication Critical patent/JP2004164858A/en
Application granted granted Critical
Publication of JP4698922B2 publication Critical patent/JP4698922B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lubricants (AREA)
  • Organic Insulating Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric insulating oil composition excellent in practical use, with sharply improved antioxidant addition effect and excellent weather resistance, without generating sludge after a long period of use. <P>SOLUTION: The electric insulation oil composition is a refined mineral oil adjusted so as to have 97 percent by mass of saturated compound as measured by ASTM D-2007 (clay-gel analysis) and not less than 30 percent by mass of a paraffin group to total components as measured by a field ionization mass spectrometry blended with 0.1 to 0.5 percent by mass of a phenolic antioxidant at a composition total standard. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、電気絶縁油組成物に関し、さらに詳しくは、油入り変圧器などに使用される酸化安定性など実用性能に優れた酸化防止剤が添加された電気絶縁油組成物に関する。
【0002】
【従来の技術】
電気絶縁の用途の中で、油入り変圧器、特にポールトランスに代表される開放型小型変圧器においては、大型変圧器と比べ油劣化防止方式やメンテナンス状況が異なっており、一般的に大型変圧器に比べて絶縁油の劣化環境は厳しく、その劣化度合いは大きい。
一般に、電気絶縁油としては、市販の1種2号絶縁油に酸化防止剤を添加することで耐酸化寿命を延長することは知られている(例えば、特許文献1、特許文献2及び特許文献3参照)。
しかし、従来絶縁油を用いても、厳しい酸化安定性が要求される開放型小型変圧器などに適用する場合には、未だ耐候性は不十分であり、使用中にスラッジの発生は避けられず、また油面計の汚れにより現場の維持管理が困難となるなどの問題がある。
また、電気絶縁油の鉱油精製工程において、活性白土処理することが有効なことは知られているが(例えば、特許文献4,特許文献5及び特許文献6参照)、この場合、環境保護の観点からは、廃白土処理の問題が生じる。
さらに、最近では、精製鉱油中のクレーゲル分析による極性物質の含有量を特定範囲にした電気絶縁油鉱油も提案されている(例えば、特許文献7参照)。しかし、この場合にも、耐候性は未だ不十分であり、酸化安定性の一層の向上が望まれるのが実状である。
【0003】
【特許文献1】
特開平9−272891号公報
【特許文献2】
特開平11−329079号公報
【特許文献3】
特開2000−306430号公報
【特許文献4】
特開平6−325622号公報
【特許文献5】
特開平9−279160号公報
【特許文献6】
特開2000−345177号公報
【特許文献7】
特開2002−260445号公報
【0004】
【発明が解決しようとする課題】
本発明は、このような状況下で、従来の電気絶縁油組成物における酸化防止剤の添加効果をさらに向上させ、耐候性に優れると共に、長期間使用してもスラッジの発生がない実用性能に優れた電気絶縁油組成物を得ることを目的とするものである。
【0005】
【課題を解決するための手段】
本発明者らは鋭意研究の結果、電界イオン化質量分析法により測定されたパラフィン類を一定比率以上にした特定性状の精製鉱油にフェノール系酸化防止剤を添加することが有効なことを見出し、本発明を完成したものである。
すなわち、本発明は、ASTM D−2007(クレーゲル分析)により測定された飽和化合物分が97質量%以上で、かつ電界イオン化質量分析法により測定された全組成分に対するパラフィン類の比率が30質量%以上であるように調整された精製鉱油に、組成物全量基準で、0.1〜0.5質量%のフェノール系酸化防止剤を配合することを特徴とする電気絶縁油組成物を提供するものである。
【0006】
【発明の実施の形態】
本発明の電気絶縁油組成物は、その製造方法に応じて多種多様な所望の組成や性状を有するものを得ることができるが、基油としては、ASTM D−2007のいわゆるクレーゲル分析による飽和化合物分が97質量%以上で、かつ電界イオン化質量分析による全組成分に対するパラフィン類の比率が30質量%以上である精製鉱油を用いることが必要である。
【0007】
本発明における精製鉱油の製造に用いられる原料原油としては、パラフィン基系原油,ナフテン基系原油,および混合基系原油いずれも使用できるが、パラフィン基系原油が好ましい。
このような精製鉱油は、例えば上記の原油を蒸留して得られた留出油及び/又はワックスを含む留出油(常圧換算で250〜500℃)を水素化改質、水素化精製、溶剤精製、水素化脱蝋、溶剤脱蝋等の各公知の精製プロセスを適宜組み合わせて製造したものを適宜混合することにより精製鉱油を得ることができる。また、所望によりさらに白土処理を行ってもよい。ここで、留出油とは原油を常圧蒸留するか、あるいは常圧蒸留の残渣油を減圧蒸留して得られたものを意味する。
上記公知のプロセスを適宜選定し、又は得られた精製鉱油を適宜ブレンドすることによって、本発明におけるASTM D−2007(クレーゲル分析)による飽和化合物分が97質量%以上で、かつ電界イオン化質量分析(FieldIonization質量分析)による全組成分に対するパラフィン類の比率が30質量%以上である精製鉱油を得ることができる。
【0008】
本発明において用いる精製鉱油は、ASTM D−2007(クレーゲル分析)による飽和化合物分が97質量%以上とする必要があり、そのことにより優れた酸化安定性を得ることができる。クレーゲル分析による飽和化合物分が97質量%未満であると、芳香族分や極性物質は多くなり、酸化安定性が悪くなる場合がある。
また、この精製鉱油は、電界イオン化質量分析で測定された全組成分に対するパラフィン類の比率が30質量%以上であることが必要である。全組成分に対するパラフィン類の比率が30質量%未満であると、充分な耐候性が得られず、絶縁油は変色しスラッジが発生する場合がある。この観点から、さらにパラフィン類の比率は35質量%以上、特に40質量%以上が好ましい。
【0009】
次に、上記の精製鉱油に配合されるフェノール系酸化防止剤としては、例えば2,6−ジ−tert−p−クレゾール;2,6−ジ−tert−ブチル−4−エチルフェノールなどのモノフェノール系、4,4’−メチレンビス(2,6−ジ−tert−ブチルフェノール);2,2’−メチレンビス(4−エチル−6−tert−ブチルフェノール)などのジフェノール系を挙げることができる。該フェノール系酸化防止剤は一種又は二種以上を組み合わせて使用してもよい。
上記のフェノール系酸化防止剤の配合量は、組成物全量基準で、0.1〜0.5質量%である。0.1質量%未満では酸化安定性が悪く、耐候性も低下し、使用中に絶縁油は変色しスラッジが発生する場合がある。また、0.5質量%を超えると電気特性が劣る場合がある。この点から、さらに0.1〜0.3質量%が好ましい。
【0010】
また、上記により得られる本発明の電気絶縁油組成物は、硫黄分が10質量ppm以下、全窒素分の含有量が5質量ppm以下であり、かつ40℃における動粘度が5〜15mm/sであることが好ましい。
電気絶縁油組成物中の硫黄分が10質量ppmを超えると、酸化安定性、耐候性が低下し、油の変色やスラッジの発生がみられる場合がある。
全窒素分の含有量が5質量ppmを超えると色相劣化を引き起こし、また誘電正接(tan δ)を悪化させる場合がある。この点から、全窒素分の含有量は3質量ppm以下がさらに好ましい。
また、40℃における動粘度については、5mm/s未満では、揮発性が高くなり引火点が低下し、取扱いにおいて安全上問題がある場合があり、15mm/sを超えると、流動性が低く取扱いに難点がある場合がある。この観点から、さらに好ましくは6〜13mm/sである。なお、特に粘度指数が高く、低流動点の電気絶縁油を得るためには、ワックスを水素化脱蝋装置で、おだやかに処理した異性化油を添加することが好ましい。
【0011】
本発明の電気絶縁油組成物には、必要に応じて、ベンゾトリアゾールなどの金属不活化剤を、組成物全量基準で0〜40質量ppm、及び/又はポリアルキルメタクリレートなどの流動点降下剤を0〜0.5質量%を本発明の目的を阻害しない範囲で配合することができる。
なお、本発明の電気絶縁油組成物に用いられる精製鉱油は、日本工業規格(JIS C 2320−1993)のうち、電気絶縁油1種2号の規格に合格するものである。
【0012】
【実施例】
次に、本発明を実施例により具体的に説明するが、これらの実施例になんら制限されるものではない。
なお、本発明における各種精製鉱油、及び電気絶縁油についての試験法は下記によるものである。
A.精製鉱油の評価法
(1)クレーゲル分析
ASTM D−2007により、精製鉱油中の飽和化合物分、芳香族分、極性物質の組成分析を行い、質量割合(%)として求めた。
(2)電界イオン化質量分析法(FI−MS分析法)
前記クレーゲル分析により、芳香族分及び極性物質を除いた飽和化合物分のみを実測試料とし、該試料中のパラフィン類、ナフテン類についてのタイプ分析を行い、全組成分に対する質量割合(%)として求めた。
本分析装置には、二重収束型質量分析計〔日本電子(株)製,SX−102A型〕を用い、直接導入−電界イオン化(Field Ionization)−質量分析(MS)法により測定した。この場合のイオン化条件は、加速電圧8kV,カソード電圧2kVとした。
【0013】
(3)動粘度(40℃);JIS K−2283に準拠して測定した。
(4)硫黄分 ;JIS K−2541に準拠して測定した。
(5)全窒素分 ;JIS K−2609に準拠して測定した。
(6)流動点 ;JIS K−2269に準拠して測定した。
B.電気絶縁油組成物の評価法
(7)電気特性 ;JIS C−2101に準拠して測定した。
(8)酸化安定性;JIS C−2101に準拠し、120℃で150時間後のスラッジ量(質量%)と全酸価(mgKOH/g)を測定した。
(9)耐候試験 ;室内窓際での保管を4カ月間行った後で、油外観及びスラッジ発生の程度を評価した。
【0014】
実施例1
パラフィン基系原油を常圧蒸留し、その常圧残渣油を減圧蒸留して得た減圧留出油を水素化改質精製、水素化脱蝋、水素化仕上げの順に処理した後、さらに減圧蒸留により所定粘度に調整して軽質留分の精製鉱油Aを得た。分析の結果、精製鉱油Aは、クレーゲル分析による飽和化合物分は97.07質量%であり、FI−MS法(タイプ分析)による全組成分に対するパラフィン類の比率は41.8質量%であった。分析結果を第1表に示す。
この精製鉱油Aに、組成物全量基準で0.3質量%の2,6−ジ−tert−ブチル−p−クレゾール(DBPC)を配合して電気絶縁油組成物Aを調製し、電気特性、酸化安定性及び耐候試験について評価した。結果を第2表に示す。
比較例1
パラフィン基系原油を常圧蒸留し、その常圧残渣油を減圧蒸留して得た減圧留出油を水素化改質精製油、水素化仕上げ、水素化脱蝋の順に処理し、所定粘度に調整して精製鉱油Cを得た。分析の結果、精製鉱油Cは、クレーゲル分析による飽和化合物分97.84質量%を含有し、FI−MS法による全組成分に対するパラフィン類の比率が18.8質量%であった。分析結果を第1表に示す。
この精製鉱油Cに、組成物全量基準で0.3質量%のDBPCを配合して電気絶縁油組成物Cを調製し、前記項目の評価を行った。結果を第2表に示す。
【0015】
実施例2
前記の精製鉱油Aと精製鉱油Cを等質量割合でブレンドして、クレーゲル分析による飽和化合物分97.45質量%を含有し、FI−MS法による全組成分に対するパラフィン類の比率が30.3質量%である精製鉱油Bを得た。分析結果を第1表に示す。
この精製鉱油Bに、組成物全量基準で0.3質量%のDBPCを配合して電気絶縁油組成物Bを調製し、前記項目の評価を行った。結果を第2表に示す。
比較例2
パラフィン基系原油を常圧蒸留し、その常圧残渣油を減圧蒸留して得た減圧留出油を水素化改質精製、溶剤脱蝋の順に処理し、所定粘度に調整して精製鉱油Dを得た。分析の結果、精製鉱油Dは、クレーゲル分析による飽和化合物分82.71質量%を含有し、FI−MS法による全組成分に対するパラフィン類の比率が13.6質量%であった。分析結果を第1表に示す。
この精製鉱油Dに、組成物全量基準で0.3質量%のDBPCを配合し、次いで組成物全量基準で1.5質量%の活性白土処理を行って電気絶縁油組成物Dを調製し、前記項目の評価を行った。結果を第2表に示す。
【0016】
比較例3
オーストラリア産ナフテン系原油を常圧蒸留し、その常圧残渣油を減圧蒸留して得た減圧蒸留油を溶剤精製、水素化精製の順に処理して、クレーゲル分析による飽和化合物分71.91質量%を含有し、FI−MS法による全組成分に対するパラフィン類の比率が5.8質量%である精製鉱油Eを得た。分析結果を第1表に示す。
この精製鉱油Eに、組成物全量基準で0.3質量%のDBPCを配合し、次いで組成物全量基準で1.5質量%の活性白土処理を行って電気絶縁油組成物Eを調製し、前記項目の評価を行った。結果を第2表に示す。
実施例3
前記精製鉱油Aに、組成物全量基準で0.1質量%のDBPCを配合し、電気絶縁油組成物Fを調製し、前記項目の評価を行った。結果を第2表に示す。
比較例4
前記精製鉱油Aに、組成物全量基準で0.05質量%のDBPCを配合し、電気絶縁油組成物Gを調製し、前記項目の評価を行った。結果を第2表に示す。
【0017】
【表1】

Figure 2004164858
【0018】
【表2】
Figure 2004164858
【0019】
【表3】
Figure 2004164858
【0020】
上記の結果より、本発明における実施例1〜3の電気絶縁油組成物は、良好な電気特性と酸化安定性に優れると共に、耐候性にも優れていることが分かる。しかも、本発明においては、用いる精製鉱油の白土処理を行うことなく、優れた性能の電気絶縁油組成物を得ることができる。
【0021】
【発明の効果】
本発明の電気絶縁油組成物は、従来品よりも、酸化防止剤の添加効果が著しく向上し、酸化安定性に優れると共に、耐候性にも優れているので、長期間使用してもスラッジの発生がない実用性能に優れた電気絶縁油組成物を得ることができる。また、本発明の電気絶縁油組成物は、必ずしも白土処理を必要としないので、環境上の面からも好ましい。
したがって、本発明の電気絶縁油組成物は、油入り変圧器、油入り遮断器、油入りケーブル、油入りコンデンサ等、特に小型の開放式変圧器などの用途に好適に使用することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electric insulating oil composition, and more particularly, to an electric insulating oil composition to which an antioxidant excellent in practical performance such as oxidative stability used for an oil-containing transformer or the like is added.
[0002]
[Prior art]
Among the electrical insulation applications, oil-immersed transformers, especially open-type small transformers such as pole transformers, have different oil deterioration prevention methods and maintenance conditions than large transformers. Deterioration environment of insulating oil is more severe than that of vessels, and the degree of deterioration is greater.
In general, as an electric insulating oil, it is known that an antioxidant is added to a commercially available Class 1 No. 2 insulating oil to extend the oxidation resistance life (for example, Patent Document 1, Patent Document 2, and Patent Document 2). 3).
However, even when conventional insulating oils are used, when applied to open-type small transformers that require strict oxidation stability, the weather resistance is still insufficient, and sludge generation during use is inevitable. In addition, there is a problem that it is difficult to maintain and manage the site due to contamination of the oil level gauge.
In addition, it is known that activated clay treatment is effective in the mineral oil refining process of electrical insulating oil (see, for example, Patent Documents 4, 5 and 6), but in this case, from the viewpoint of environmental protection. Causes a problem of waste clay treatment.
Furthermore, recently, an electrical insulating oil mineral oil in which the content of a polar substance in a refined mineral oil by a clay gel analysis is set in a specific range has been proposed (for example, see Patent Document 7). However, even in this case, the weather resistance is still insufficient, and in fact, further improvement in oxidation stability is desired.
[0003]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 9-272891 [Patent Document 2]
JP-A-11-329079 [Patent Document 3]
JP 2000-306430 A [Patent Document 4]
JP-A-6-325622 [Patent Document 5]
JP-A-9-279160 [Patent Document 6]
Japanese Patent Application Laid-Open No. 2000-345177 [Patent Document 7]
JP-A-2002-260445
[Problems to be solved by the invention]
Under such circumstances, the present invention further improves the effect of adding an antioxidant in a conventional electric insulating oil composition, and has excellent weather resistance and practical performance with no generation of sludge even when used for a long time. It is intended to obtain an excellent electric insulating oil composition.
[0005]
[Means for Solving the Problems]
The present inventors have conducted intensive studies and found that it is effective to add a phenolic antioxidant to refined mineral oil having a specific property of paraffins measured by field ionization mass spectrometry at a certain ratio or more. The invention has been completed.
That is, in the present invention, the saturated compound content measured by ASTM D-2007 (Clay-gel analysis) is 97% by mass or more, and the ratio of paraffins to the total composition measured by electric field ionization mass spectrometry is 30% by mass. What provides an electrical insulating oil composition characterized by blending 0.1 to 0.5% by mass, based on the total amount of the composition, of a phenolic antioxidant with the refined mineral oil adjusted as described above. It is.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
The electrical insulating oil composition of the present invention can have various desired compositions and properties depending on the production method. As the base oil, a saturated compound according to the so-called clay gel analysis of ASTM D-2007 is used. It is necessary to use a refined mineral oil whose content is 97% by mass or more and whose ratio of paraffins to all components by field ionization mass spectrometry is 30% by mass or more.
[0007]
As the raw crude oil used in the production of the refined mineral oil in the present invention, any of paraffin-based crude oil, naphthene-based crude oil, and mixed-base crude oil can be used, but paraffin-based crude oil is preferable.
Such a refined mineral oil is obtained by, for example, distilling oil obtained by distilling the above-mentioned crude oil and / or distillate containing wax (250 to 500 ° C. in terms of normal pressure) by hydro-reforming, hydro-refining, A refined mineral oil can be obtained by appropriately mixing those produced by appropriately combining known purification processes such as solvent refining, hydrodewaxing, and solvent dewaxing. Further, if necessary, a clay treatment may be further performed. Here, the distillate refers to one obtained by distilling crude oil at normal pressure or distilling residual oil of normal pressure under reduced pressure.
By appropriately selecting the above-described known process or appropriately blending the obtained refined mineral oil, the saturated compound content according to ASTM D-2007 (Clay-gel analysis) in the present invention is 97% by mass or more, and electric field ionization mass spectrometry ( A refined mineral oil in which the ratio of paraffins to the total composition by Field Ionization mass spectrometry is 30% by mass or more can be obtained.
[0008]
The refined mineral oil used in the present invention must have a saturated compound content of 97% by mass or more according to ASTM D-2007 (Clay-gel analysis), whereby excellent oxidation stability can be obtained. If the content of the saturated compound is less than 97% by mass according to the clay gel analysis, the aromatic content and the polar substance are increased, and the oxidation stability may be deteriorated.
Further, in this refined mineral oil, it is necessary that the ratio of paraffins to all components measured by field ionization mass spectrometry is 30% by mass or more. If the ratio of paraffins to all components is less than 30% by mass, sufficient weather resistance cannot be obtained, and the insulating oil may be discolored and sludge may be generated. In this respect, the proportion of paraffins is more preferably 35% by mass or more, and particularly preferably 40% by mass or more.
[0009]
Next, examples of the phenolic antioxidant to be mixed with the above-mentioned refined mineral oil include monophenols such as 2,6-di-tert-p-cresol; and 2,6-di-tert-butyl-4-ethylphenol. And diphenols such as 4,4′-methylenebis (2,6-di-tert-butylphenol); and 2,2′-methylenebis (4-ethyl-6-tert-butylphenol). The phenolic antioxidants may be used alone or in combination of two or more.
The compounding amount of the phenolic antioxidant is 0.1 to 0.5% by mass based on the total amount of the composition. If the amount is less than 0.1% by mass, the oxidation stability is poor, the weather resistance is reduced, and the insulating oil may be discolored and sludge may be generated during use. On the other hand, if it exceeds 0.5% by mass, the electrical characteristics may be poor. In this respect, the content is more preferably 0.1 to 0.3% by mass.
[0010]
Further, the electric insulating oil composition of the present invention obtained as described above has a sulfur content of 10 mass ppm or less, a total nitrogen content of 5 mass ppm or less, and a kinematic viscosity at 40 ° C. of 5 to 15 mm 2 / It is preferably s.
When the sulfur content in the electric insulating oil composition exceeds 10 mass ppm, oxidation stability and weather resistance are reduced, and discoloration of oil and generation of sludge may be observed.
If the total nitrogen content exceeds 5 ppm by mass, the hue may be degraded and the dielectric loss tangent (tan δ) may be degraded. In this respect, the total nitrogen content is more preferably 3 ppm by mass or less.
Also, the kinematic viscosity at 40 ° C., is less than 5 mm 2 / s, volatility is high flash point is lowered, there may be a safety problem in handling, when it exceeds 15 mm 2 / s, the fluidity It may be difficult to handle. From this viewpoint, it is more preferably 6 to 13 mm 2 / s. In order to obtain an electric insulating oil having a particularly high viscosity index and a low pour point, it is preferable to add an isomerized oil obtained by mildly treating a wax with a hydrodewaxing apparatus.
[0011]
In the electric insulating oil composition of the present invention, if necessary, a metal deactivator such as benzotriazole, 0 to 40 mass ppm based on the total amount of the composition, and / or a pour point depressant such as polyalkyl methacrylate. 0 to 0.5% by mass can be blended within a range not to impair the object of the present invention.
In addition, the refined mineral oil used for the electrical insulating oil composition of the present invention is one that passes the electrical insulating oil Type 1 No. 2 standard of Japanese Industrial Standards (JIS C 2320-1993).
[0012]
【Example】
Next, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.
The test methods for various refined mineral oils and electric insulating oils in the present invention are as follows.
A. Evaluation method of refined mineral oil (1) Clay gel analysis According to ASTM D-2007, the composition analysis of saturated compounds, aromatics, and polar substances in refined mineral oil was performed and determined as mass ratio (%).
(2) Field ionization mass spectrometry (FI-MS analysis)
According to the clay gel analysis, only the saturated compound content excluding the aromatic component and the polar substance was used as an actual measurement sample, and the type analysis was performed on paraffins and naphthenes in the sample, and the mass ratio (%) with respect to the total composition was determined. Was.
A double focusing mass spectrometer (Model SX-102A, manufactured by JEOL Ltd.) was used in this analyzer, and the measurement was performed by direct introduction-field ionization-mass spectrometry (MS). The ionization conditions in this case were an acceleration voltage of 8 kV and a cathode voltage of 2 kV.
[0013]
(3) Kinematic viscosity (40 ° C.): measured according to JIS K-2283.
(4) Sulfur content; measured in accordance with JIS K-2541.
(5) Total nitrogen content: measured according to JIS K-2609.
(6) Pour point: measured according to JIS K-2269.
B. Evaluation method of electrical insulating oil composition (7) Electrical properties: Measured according to JIS C-2101.
(8) Oxidation stability: The sludge amount (% by mass) and the total acid value (mgKOH / g) after 150 hours at 120 ° C. were measured according to JIS C-2101.
(9) Weather resistance test: After storage for 4 months at the interior window, the oil appearance and the degree of sludge generation were evaluated.
[0014]
Example 1
A paraffin-based crude oil is subjected to atmospheric distillation, and a vacuum distillate obtained by vacuum distillation of the atmospheric residue is subjected to hydro-refining and refining, hydro-dewaxing, and hydrofinishing in this order. To obtain a purified mineral oil A of a light fraction. As a result of the analysis, the purified mineral oil A was found to have a saturated compound content of 97.07% by mass as determined by Clay-gel analysis, and a ratio of paraffins to the total composition by FI-MS (type analysis) of 41.8% by mass. . The results of the analysis are shown in Table 1.
This refined mineral oil A was blended with 0.3% by mass of 2,6-di-tert-butyl-p-cresol (DBPC) based on the total amount of the composition to prepare an electrical insulating oil composition A, Oxidation stability and weather resistance were evaluated. The results are shown in Table 2.
Comparative Example 1
A paraffin-based crude oil is subjected to atmospheric distillation, and a vacuum distillate obtained by distilling the atmospheric residual oil under reduced pressure is processed in the order of hydro-refined refined oil, hydro-finishing, hydro-dewaxing to a predetermined viscosity. After adjustment, refined mineral oil C was obtained. As a result of the analysis, the refined mineral oil C contained 97.84% by mass of a saturated compound by Clay-gel analysis, and the ratio of paraffins to the total composition by FI-MS was 18.8% by mass. The results of the analysis are shown in Table 1.
To this refined mineral oil C, 0.3% by mass of DBPC based on the total amount of the composition was blended to prepare an electric insulating oil composition C, and the above items were evaluated. The results are shown in Table 2.
[0015]
Example 2
The above-mentioned refined mineral oil A and refined mineral oil C were blended at an equal mass ratio, and contained 97.45 mass% of a saturated compound content by clay gel analysis, and the ratio of paraffins to the total composition by FI-MS was 30.3. Refined mineral oil B was obtained by mass%. The results of the analysis are shown in Table 1.
To this refined mineral oil B, 0.3% by mass of DBPC based on the total amount of the composition was blended to prepare an electric insulating oil composition B, and the above items were evaluated. The results are shown in Table 2.
Comparative Example 2
Atmospheric distillation of paraffin-based crude oil, vacuum distillation of the residual oil at reduced pressure, and treatment of reduced-pressure distillate obtained by hydro-refining and refining and solvent dewaxing in order, and adjusting to a predetermined viscosity, refined mineral oil D Got. As a result of the analysis, the refined mineral oil D contained 82.71% by mass of a saturated compound by Clay-gel analysis, and the ratio of paraffins to the total composition by FI-MS was 13.6% by mass. The results of the analysis are shown in Table 1.
To this refined mineral oil D, 0.3% by mass of DBPC based on the total amount of the composition was blended, and then an activated clay treatment of 1.5% by mass based on the total amount of the composition was performed to prepare an electric insulating oil composition D. The above items were evaluated. The results are shown in Table 2.
[0016]
Comparative Example 3
The naphthenic crude oil produced in Australia was subjected to atmospheric distillation, and the vacuum residue obtained by vacuum distillation of the atmospheric residue was treated in the order of solvent purification and hydrorefining to obtain a saturated compound content of 71.91% by mass by clay gel analysis. And refined mineral oil E containing 5.8% by mass of paraffins based on the total composition by FI-MS. The results of the analysis are shown in Table 1.
To this refined mineral oil E, 0.3% by mass of DBPC based on the total amount of the composition was blended, and then an activated clay treatment of 1.5% by mass based on the total amount of the composition was performed to prepare an electric insulating oil composition E. The above items were evaluated. The results are shown in Table 2.
Example 3
0.1 mass% of DBPC based on the total amount of the composition was blended with the refined mineral oil A to prepare an electrical insulating oil composition F, and the above items were evaluated. The results are shown in Table 2.
Comparative Example 4
The refined mineral oil A was blended with 0.05% by mass of DBPC based on the total amount of the composition to prepare an electrical insulating oil composition G, and the above items were evaluated. The results are shown in Table 2.
[0017]
[Table 1]
Figure 2004164858
[0018]
[Table 2]
Figure 2004164858
[0019]
[Table 3]
Figure 2004164858
[0020]
From the above results, it can be seen that the electrical insulating oil compositions of Examples 1 to 3 of the present invention have excellent electrical properties and oxidation stability, and also have excellent weather resistance. Moreover, in the present invention, an electric insulating oil composition having excellent performance can be obtained without performing clay treatment on the refined mineral oil to be used.
[0021]
【The invention's effect】
The electrical insulating oil composition of the present invention has a remarkably improved effect of adding an antioxidant, has excellent oxidation stability, and has excellent weather resistance as compared with conventional products. It is possible to obtain an electric insulating oil composition excellent in practical performance without generation. Further, the electric insulating oil composition of the present invention does not necessarily require clay treatment, and is therefore preferable from an environmental point of view.
Therefore, the electrical insulating oil composition of the present invention can be suitably used for applications such as an oil-immersed transformer, an oil-immersed circuit breaker, an oil-immersed cable, an oil-immersed capacitor and the like, particularly a small open-type transformer.

Claims (2)

ASTM D−2007(クレーゲル分析)により測定された飽和化合物分が97質量%以上で、かつ電界イオン化質量分析法により測定された全組成分に対するパラフィン類の比率が30質量%以上であるように調整された精製鉱油に、組成物全量基準で、0.1〜0.5質量%のフェノール系酸化防止剤を配合することを特徴とする電気絶縁油組成物。Adjusted so that the saturated compound content measured by ASTM D-2007 (Clay gel analysis) is 97% by mass or more, and the ratio of paraffins to the total composition measured by field ionization mass spectrometry is 30% by mass or more. An electrically insulating oil composition comprising 0.1 to 0.5% by mass of a phenolic antioxidant, based on the total amount of the composition, in the refined mineral oil obtained. 硫黄分が、10質量ppm以下、全窒素分の含有量が5質量ppm以下であり、かつ40℃における動粘度が5〜15mm/sである請求項1に記載の電気絶縁油組成物。The electric insulating oil composition according to claim 1, wherein the sulfur content is 10 mass ppm or less, the total nitrogen content is 5 mass ppm or less, and the kinematic viscosity at 40 ° C is 5 to 15 mm 2 / s.
JP2002325611A 2002-11-08 2002-11-08 Electrical insulating oil composition Expired - Fee Related JP4698922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002325611A JP4698922B2 (en) 2002-11-08 2002-11-08 Electrical insulating oil composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002325611A JP4698922B2 (en) 2002-11-08 2002-11-08 Electrical insulating oil composition

Publications (2)

Publication Number Publication Date
JP2004164858A true JP2004164858A (en) 2004-06-10
JP4698922B2 JP4698922B2 (en) 2011-06-08

Family

ID=32804781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002325611A Expired - Fee Related JP4698922B2 (en) 2002-11-08 2002-11-08 Electrical insulating oil composition

Country Status (1)

Country Link
JP (1) JP4698922B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006052157A (en) * 2004-08-10 2006-02-23 Idemitsu Kosan Co Ltd Diluent oil for reaction in decomposition treatment of organic halogen compound and alkali metal dispersion in oil
JP2006052220A (en) * 2005-08-09 2006-02-23 Idemitsu Kosan Co Ltd Diluent oil for reaction in decomposition treatment of organic halogen compound and alkali metal dispersion in oil
KR100802896B1 (en) 2006-11-17 2008-02-13 에스케이에너지 주식회사 Paraffin-based electric insulating oil and method for preparing the same
JP2011246674A (en) * 2010-05-31 2011-12-08 Mitsubishi Electric Corp Electrical insulation oil and oil-filled electric device
JP2012156232A (en) * 2011-01-25 2012-08-16 Mitsubishi Electric Corp Diagnostic method for oil-filled electric apparatus
CN104250577A (en) * 2013-06-26 2014-12-31 中国石油化工股份有限公司 Electrical insulating oil and use thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006052157A (en) * 2004-08-10 2006-02-23 Idemitsu Kosan Co Ltd Diluent oil for reaction in decomposition treatment of organic halogen compound and alkali metal dispersion in oil
JP2006052220A (en) * 2005-08-09 2006-02-23 Idemitsu Kosan Co Ltd Diluent oil for reaction in decomposition treatment of organic halogen compound and alkali metal dispersion in oil
KR100802896B1 (en) 2006-11-17 2008-02-13 에스케이에너지 주식회사 Paraffin-based electric insulating oil and method for preparing the same
JP2011246674A (en) * 2010-05-31 2011-12-08 Mitsubishi Electric Corp Electrical insulation oil and oil-filled electric device
JP2012156232A (en) * 2011-01-25 2012-08-16 Mitsubishi Electric Corp Diagnostic method for oil-filled electric apparatus
CN104250577A (en) * 2013-06-26 2014-12-31 中国石油化工股份有限公司 Electrical insulating oil and use thereof

Also Published As

Publication number Publication date
JP4698922B2 (en) 2011-06-08

Similar Documents

Publication Publication Date Title
EP1896556B1 (en) Oxidative stable oil formulation
KR101509246B1 (en) Electrical insulating oil and method for producing the same
RU2418847C2 (en) Composition of electrically insulating oil
JP6298446B2 (en) Electrical insulating oil composition
US6280659B1 (en) Vegetable seed oil insulating fluid
JP5102452B2 (en) Electrical insulation oil
EP3681986B1 (en) Transformer oil basestock and transformer oil composition comprising the same
CN101273416B (en) A mineral insulating oil, a process for preparing a mineral insulating oil, and a process for using a mineral insulating oil
JP2010251072A (en) Electric insulating oil composition
JP2004164858A (en) Electric insulating oil composition
JP5248049B2 (en) Electrical insulating oil composition
RU2447137C2 (en) Transformer oil composition
JP4740429B2 (en) Electrical insulating oil composition
EP1023733B1 (en) Food grade dielectric fluid
CN113881481B (en) Natural ester insulating liquid
JP7382886B2 (en) Electrical insulation oil composition
JP3690649B2 (en) Electric insulating oil and base oil for electric insulating oil
JP2002260445A (en) Electrical insulating oil
El-Gayar et al. Transformer oils prepared from the vacuum distillates of Egyptian crude paraffinic petroleum
WO2023190828A1 (en) Electrical insulation oil composition
JP2022157909A (en) Electrical insulation oil composition
JP2002367431A (en) Insulating oil composition
JP5913174B2 (en) Lubricating oil base oil production method, lubricating oil base oil, and lubricating oil composition
CN117222755A (en) heat treatment oil
CA2299516A1 (en) Dielectric fluid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080411

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080411

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081016

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20081121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110302

LAPS Cancellation because of no payment of annual fees