JP2004162549A - Method for operating refrigerating machine - Google Patents

Method for operating refrigerating machine Download PDF

Info

Publication number
JP2004162549A
JP2004162549A JP2002327048A JP2002327048A JP2004162549A JP 2004162549 A JP2004162549 A JP 2004162549A JP 2002327048 A JP2002327048 A JP 2002327048A JP 2002327048 A JP2002327048 A JP 2002327048A JP 2004162549 A JP2004162549 A JP 2004162549A
Authority
JP
Japan
Prior art keywords
screw compressor
refrigerant
refrigerator
condenser
operating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002327048A
Other languages
Japanese (ja)
Inventor
Seiji Yoshimura
省二 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2002327048A priority Critical patent/JP2004162549A/en
Publication of JP2004162549A publication Critical patent/JP2004162549A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for operating a refrigerating machine for performing a stable operation of the refrigerating machine by surely supplying coolant to bearing and shaft seal part at the time of starting the machine and reducing maintenance cost in a compact state. <P>SOLUTION: This coolant cooling and refrigerating machine 1 is constituted by communicating a coolant circulating flow passage 3 interposed with a condenser 4, an expansion valve 5 and an evaporator 5 in order from a discharge port 2b side from the discharge port 2b to a suction port 2a of a screw compressor 2. A coolant supply flow passage 7 interposed with a throttle means 8 is branched from between the condenser 4 and the expansion valve 5 of the coolant circulating flow passage 3 to supply coolant to a rotor chamber, the bearing and the shaft seal part of the screw compressor 2. At the time of starting the screw compressor 2, the screw compressor 2 is shifted to a rated operation of a rated number N<SB>2</SB>of rotation after an operation of an initial number N<SB>1</SB>of rotation at low speed for prescribed time. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、冷凍機の運転方法に係り、より詳しくは、スクリュ圧縮機のスクリュロータを支持する軸受、および軸封部に冷媒を確実に供給することにより、これらの部位の焼付きや早期磨耗を防止し得るようにした冷凍機の運転方法に関するものである。
【0002】
【従来の技術】
スクリュ圧縮機を備えた冷凍機としては、例えば下記に示すような構成のものが知られている。以下、従来例に係るコンパウンド二段スクリュ圧縮機を備えた冷凍機を、圧縮機を含む冷凍サイクル構成図の図3を参照しながら説明する。
先ず、前記コンパウンド二段スクリュ圧縮機の構成を説明すると、低段ケーシング51内にロータ52,53が収納されており、それぞれ軸受61,62で支持されている。高段ケーシング54内にロータ55,56が収納されており、それぞれ軸受64,65で支持されている。モータ57は、モータケーシング58内に収納されており、低段ケーシング51と高段ケーシング54との間に配設されている。符号63はモータ57の軸受であり、低段のロータ52と高段のロータ54との軸は継手83を介して直結されている。なお、符号59はガスの吸入口であり、符号60はガスの吐出口である。
【0003】
前記コンパウンド二段スクリュ圧縮機を含む冷凍機の冷凍サイクルは、オイルセパレータ77、オイルクーラ78、コンデンサ79、エバポレータ80、吸入ガスストレーナ81からなり、油はオイルストレーナ82を通るように構成されている。従って、この冷凍サイクルによれば、圧縮機から吐出された冷媒と油はオイルセパレータ77で分離され、冷媒はコンデンサ79、エバポレータ80へと流れ、吸入ガスストレーナ81を経てコンパウンド二段スクリュ圧縮機に戻される。また、オイルセパレータ77で分離された油はオイルクーラ78で冷却されて適温になった後オイルストレーナ82を経て、圧縮機の軸受およびロータ室へ供給されるようになっている。この場合、運転中では、オイルセパレータ77からコンデンサ79、オイルクーラ78、オイルストレーナ82は常に高圧(例えば、4900hPa)になっている(例えば、特許文献1参照。)。
【0004】
【特許文献1】
特開平1−273894号公報(第2頁、第1図)
【0005】
【発明が解決しようとする課題】
上記特許文献1に記載されている冷凍機の冷凍サイクルの場合、コンパウンド二段スクリュ圧縮機の運転中においては、上記のとおり、オイルセパレータからコンデンサ、オイルクーラ、オイルストレーナ等の油供給元は常に高圧なっていて、油供給先のロータ室、軸受部、軸封部は相対的に低圧である。そのため、油供給元から油供給先のロータ室、軸受部、軸封部に安定して油が供給される。
【0006】
一方、コンパウンド二段スクリュ圧縮機の運転が停止されると、油供給元が低圧(例えば、980hPa)になり、油供給先のロータ室、軸受部、軸封部が油供給元に対して相対的に低圧にならない状況にもなり得る。ところが、油には粘性がある。従って、油供給先が供給元に対して相対的に低圧にならない状況で、いきなりコンパウンド二段スクリュ圧縮機を高速回転で運転したとしても、潤滑材としての油の油膜が切れることがないので、軸受が焼付いたり、早期磨耗したりするような恐れがない。
【0007】
しかしながら、上記特許文献1に記載されている冷凍サイクルの場合には、オイルセパレータからコンデンサ、オイルクーラ、オイルストレーナ等のための油用配管が必要であって、この油用配管が装置全体に占める割合が大きいため、装置自体が嵩高となる。また、装置自体の設置スペースが大きくなると共に、装置が複雑となり、それだけ高コストになるのに加えて、メインテナンスコストも嵩むため、ランニングコストが割高になるという問題もある。
【0008】
上記のような問題を解決するためには、スクリュ圧縮機のロータ室、軸受部、軸封部に対して油の代わりに冷媒を供給して、潤滑、冷却等を行わせる構成、いわば冷媒冷却冷凍機の構成にすればよいと考えられる。しかしながら、スクリュ圧縮機のロータ室、軸受部、軸封部に冷媒を供給する構成にすると、スクリュ圧縮機を再起動する際に問題が生じ易い。
【0009】
より詳しくは、スクリュ圧縮機の運転停止により、冷媒供給先のロータ室、軸受部、軸封部が冷媒供給元に対して相対的に低圧にならない状況になって冷媒供給元から冷媒供給先への冷媒の供給がストップすると、冷媒は低粘性であるために油のように供給先に溜まり難く、また冷媒が蒸発してしまう可能性もある。
従って、油を供給する構成のスクリュ圧縮機の場合と同様の起動を行うと、潤滑材としての冷媒が必要部位に存在していないため、軸受の焼付きや早期磨耗などが発生し、スクリュ圧縮機の運転に支障が生じることになる。
【0010】
従って、本発明の目的は、スクリュ圧縮機の起動時に、スクリュロータを支持する軸受、および軸封部に冷媒を確実に供給して冷凍機の安定運転を可能ならしめ、しかもコンパクトでメインテナンスコストを低減し得る冷凍機の運転方法を提供することである。
【0011】
【課題を解決するための手段】
本発明は、上記実情に鑑みてなされたものであって、従って上記課題を解決するために、本発明の請求項1に係る冷凍機の運転方法が採用した手段の特徴とするところは、スクリュ圧縮機の吐出口から吸込口に、前記吐出口側から順に、凝縮器、膨張弁、および蒸発器が介装された冷媒循環流路が連通してなる冷凍機の運転方法において、起動時に、前記スクリュ圧縮機を低速回転数で運転し、所定時間経過後に、前記低速回転数より高速の定格回転数で運転するところにある。
【0012】
本発明の請求項2に係る冷凍機の運転方法が採用した手段の特徴とするところは、スクリュ圧縮機の吐出口から吸込口に、前記吐出口側から順に、凝縮器、膨張弁、および蒸発器が介装された冷媒循環流路が連通してなる冷凍機の運転方法において、起動時に、前記スクリュ圧縮機を駆動するモータをONにして前記スクリュ圧縮機を所定時間回転させた後に前記モータをOFFにする動作を反復し、その後に前記スクリュ圧縮機を定格回転数で運転するところにある。
【0013】
本発明の請求項3に係る冷凍機の運転方法が採用した手段の特徴とするところは、請求項1または2のうちの何れか一つの項に記載の冷凍機の運転方法において、前記冷凍機は、前記凝縮器内の液状の冷媒を前記スクリュ圧縮機のロータ室、前記スクリュロータを支持する軸受、および軸封部に供給する冷媒供給流路を前記スクリュ圧縮機に連通させると共に、この冷媒供給流路に絞り手段を介装した冷媒冷却冷凍機であるところにある。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態に係る冷凍機の運転方法を、添付図面を順次参照しながら説明する。図1(a)は、本実施の形態に係る冷凍機の運転方法を実施する冷媒冷却冷凍機の模式的系統図であり、また図1(b)は、縦軸にスクリュ圧縮機のロータ回転数をとり、横軸に経過時間をとって示す本実施の形態に係る冷媒冷却冷凍機の運転方法1の説明図である。
【0015】
先ず、本発明の運転方法1を実施する本実施の形態に係る冷媒冷却冷凍機の構成を、図1(a)を参照しながら説明する。図1(a)に示す符号1は、冷媒冷却冷凍機であり、この冷媒冷却冷凍機1は、インバータ制御により回転数可変制御可能なモータ9により駆動される単段式のスクリュ圧縮機2を備えている。
このスクリュ圧縮機2のケーシングのロータ室内には、互いに噛合する雌雄一対の、図示しないスクリュロータが、両端側が図示しない軸受により支えられて収容されている。そして、このスクリュ圧縮機2の吐出口2bから吸込口2aに、後述する冷媒循環流路3が連通している。
【0016】
前記冷媒循環流路3には、スクリュ圧縮機2の吐出口2b側から吸込口2a側に向かって順に、凝縮器4、膨張弁5、および蒸発器6が介装されている。
さらに、前記冷媒循環流路3の凝縮器4と膨張弁5との間から、絞り手段8が介装され、前記スクリュ圧縮機2のロータ室に冷媒を供給する冷媒供給流路7が連通している。また、この冷媒供給流路7に介装された前記絞り手段8の下流側から、前記スクリュ圧縮機2の吸込口側の軸受と軸封部とに冷媒を供給する第1分岐冷媒供給流路7aが分岐すると共に、吐出口側の軸受と軸封部に冷媒を供給する第2分岐冷媒供給流路7bが分岐している。なお、絞り手段8としては、絞り機能を有するものであれば良く、例えばオリフィス、固定絞り弁、可変絞り弁等を採用することができる。
【0017】
以下、上記構成になる冷媒冷却冷凍機1の作用態様を説明すると、吸込口2aからスクリュ圧縮機2に吸込まれたガス状の冷媒は、雌雄一対のスクリュロータで圧縮されて吐出口2bから吐出される。この吐出口2bから吐出された冷媒は凝縮器4に流入し、凝縮器4での熱交換により熱を奪われ、冷却されて凝縮し、液状になって膨張弁5の方向に流れる。膨張弁5の方向に流れる冷媒の一部は、前記冷媒供給流路7に分流し、残りの冷媒は膨張弁5に導かれる。そして、この膨張弁5に導かれた冷媒は、この膨張弁5を通過する過程で断熱膨張により一部を残して気化して、気液混合状態で蒸発器6に流入する。次いで、この蒸発器6を通過する過程で熱交換により外部から熱を奪って蒸発し、ガス状になった冷媒が蒸発器6からスクリュ圧縮機2の吸込口2aに吸込まれる。
【0018】
一方、冷媒供給流路7に分流した冷媒の一部(上記のとおり、凝縮器4で熱を奪われて冷却されている)は、絞り手段8を通過する過程で部分的に気化し、気液混合状態でロータ室に導かれる。また、第1分岐冷媒供給流路7aを通して吸込口2a側の軸受および軸封部に導かれると共に、第2分岐冷媒供給流路7bを通して吐出口2b側の軸受および軸封部に導かれる。
【0019】
そして、ロータ室に導かれた気液混合状態の冷媒により、雌雄一対のロータとロータ室の内壁面との間のシールおよび潤滑が行われる。また、液状態の冷媒が気化する際に周囲から気化熱を奪う作用によって、ロータ室内での圧縮作用に伴う昇温部位が冷却される。さらに、第1,2分岐冷媒供給流路7a,7bを通して軸受および軸封部に導かれた気液混合状態の冷媒により、軸受の潤滑と軸封部のシールが行われることとなる。
【0020】
前記冷媒供給流路7を通してロータ室に導かれた冷媒と、前記第1分岐冷媒供給流路7aを通して吸込口2a側の軸受および軸封部に導かれた冷媒は蒸発器6からスクリュ圧縮機2に吸込まれるガス状の冷媒と共にロータ室内で圧縮されて吐出口2bから凝縮器4に吐出される。また、第2分岐冷媒供給流路7bを通して吐出口2b側の軸受および軸封部に導かれた冷媒もロータ室内で圧縮されたガス状の冷媒に随伴して吐出口2bから吐出される。そして、吐出口2bから吐出されたガス状の冷媒は、凝縮器4を経て液状になった後に、再び膨張弁5側と絞り手段8側とに分流し、これ以後は上記と同様にして繰返し循環される。
【0021】
ところで、冷媒冷却冷凍機1の上記のような運転の後、スクリュ圧縮機2の駆動を停止させると、液状の冷媒が凝縮器4の底部に溜まる。この冷媒冷却冷凍機1の系内圧力は、外気温度に対応する冷媒の圧力になるから、スクリュ圧縮機の吸込部、吐出部、および凝縮器4内の圧力は同圧になり、潤滑、冷却必要部位に冷媒が存在しなくなる。そのために、運転停止後のスクリュ圧縮機2の起動に際しては、特許文献1に記載された冷凍機と同様に、直ちに定格回転数で運転すると、軸受の焼付きや早期磨耗が生じ、冷媒冷却冷凍機1の安定運転に支障が生じることとなる。
【0022】
ところで、軸受は、低速回転、低負荷である場合には、短時間であれば無潤滑(潤滑材が供給されない状態)であったとしても破損するようなことがない。
そこで、発明者等は、潤滑、冷却必要部位に冷媒が供給されるまでの間、スクリュ圧縮機2を低速回転、低負荷で運転した後、定格運転に移行するという運転方法を採用すれば、軸受の焼付きや早期磨耗を防止することができると考え、この運転方法を試みた。以下、図1(b)を参照しながら、上記実施の形態に係る冷媒冷却冷凍機1の運転方法1を説明する。
【0023】
即ち、モータ9(このモータ9はインバータ制御により回転数可変制御可能である)の駆動開始によって、冷媒冷却冷凍機1を起動時させるときには、先ずスクリュ圧縮機2を駆動するモータ9の初動回転数Nを、例えば400〜1000rpmの低速回転数にセットして、例えば時刻Tに起動運転を開始する。
このようにして、冷媒冷却冷凍機1の起動運転が開始されると、このモータ9の回転数は、図1(b)において実線によって示すように、運転時間の経過に連れて回転数が上昇して400〜1000rpmでサチレートするが、そのまま時刻Tまで低速回転、低負荷回転を継続する。そして、時刻Tにモータ9の回転数を3600rpmの定格回転数Nにセットして、冷媒冷却冷凍機1を定格運転に移行させる。
【0024】
このスクリュ圧縮機2の場合には、容積式の圧縮機であるために、たとえ低速回転であっても雌雄一対のロータが回転すれば冷媒を吐出させることができる。そのため、400〜1000rpmの初動回転数N(実際には、N以下の回転数であっても冷媒が吐出される)であっても、時刻Tから時刻Tの間の低速運転により、このスクリュ圧縮機2の吸込圧力が下がり、凝縮器4内の圧力よりも低圧になる。従って、凝縮器4内の圧力とスクリュ圧縮機2の吸込圧力との差圧により、凝縮器4内の冷媒が冷媒供給流路7を介してスクリュ圧縮機2の軸受部に供給されるから、以後、スクリュ圧縮機2を3600rpmの定格回転数Nで運転したとしても、軸受が焼付いたり、また早期磨耗したりするような不具合が発生するような恐れがない。
【0025】
なお、スクリュ圧縮機2の初動回転数Nや、初動回転数Nの運転継続時間ΔT(=T−T)の具体的な数値は、このスクリュ圧縮機2の吸込圧力の低下速度、つまり軸受に冷媒が供給されるまでの所要時間と、経験則等によって求められる軸受の耐力とに基づいて決定される。つまり、運転継続時間ΔTはスクリュ圧縮機2の仕様等によって相違するため、一義的に決定することができない性質のものである。
【0026】
そして、この実施の形態に係る冷媒冷却冷凍機1の場合には、特許文献1に記載された冷凍機の冷凍サイクルの場合と異なり、オイルセパレータからコンデンサ、オイルクーラ、オイルストレーナ等が不要である。つまり、これらオイルセパレータ、コンデンサ、オイルクーラ、オイルストレーナ等のための油用配管が不要である。従って、冷媒冷却冷凍機自体がコンパクトになり、冷媒冷却冷凍機自体の設置スペースが小さくなると共に、冷媒冷却冷凍機の構成が簡単になり、低コストになるのに加えて、メインテナンスコストも低減されるため、ランニングコストの削減も可能になるという経済効果がある。
【0027】
次に、冷媒冷却冷凍機の運転方法2を、縦軸にスクリュ圧縮機のロータ回転数をとり、横軸に経過時間をとって示す冷媒冷却冷凍機の運転方法2の説明図の図2を参照しながら説明する。なお、この運転方法2を実施する冷媒冷却冷凍機のスクリュ圧縮機を駆動するモータは、回転数が一定(回転数可変制御ができない)のモータの場合である。
【0028】
この冷媒冷却冷凍機の運転方法2の場合には、上記のとおり、モータの回転数が一定であるために、起動に際してスクリュ圧縮機を、運転方法1のように、低速回転させることができない。そこで、図2に示すように、起動時に所定時間回転を上昇させた後、回転数を低下させ、また所定時間回転数を上昇させた後に回転数を低下させるというように、スクリュ圧縮機の回転数上昇、回転数低下を所定時間反復(いわゆる、インチングを行うような操作である)させた後に、定格回転数Nでの定格運転に移行させる。
【0029】
より詳しくは、例えば時刻T1aにモータをONにし、時刻T1bにOFFにする。そして、モータが惰性により回転している間の時刻T1cにモータをONにし、時刻T1dにOFFにすると共に、モータが惰性により回転している間の時刻TにONにして定格回転数Nでの運転に移行させるものである。なお、この場合には、時刻T1a,T1b、T1c,T1d,Tの間の各時間間隔は、例えば1秒間程度である。
【0030】
従って、この冷媒冷却冷凍機の運転方法2によれば、モータのON,OFFの繰返し操作によるモータの回転数上昇、回転数低下を反復する間に、凝縮器内の圧力とスクリュ圧縮機の吸込圧力との間に差圧が生じる。そして、この差圧により、凝縮器内の冷媒がスクリュ圧縮機の軸受部に供給されるから、以後スクリュ圧縮機を3600rpmの定格回転数Nで運転しても、軸受が焼付いたり、早期磨耗したりするようなことがない。従って、この冷媒冷却冷凍機の運転方法2によれば、上記運転方法1の場合と同様の効果が得られる。
【0031】
以上の実施の形態においては、冷媒供給流路7を冷媒循環流路3の凝縮器4と膨張弁5との間から分岐させた場合を例として説明したが、冷媒供給流路7を凝縮器4に直に接続し、凝縮器4内の液状の冷媒をロータ室、軸受、および軸封部に供給する構成にすることができる。また、以上の実施の形態においては、冷凍機が冷媒冷却冷凍機であり、かつこの冷媒冷却冷凍機に含まれているスクリュ圧縮機が単段式である場合を例として説明したが、本発明の技術的思想を、例えば特許文献1に記載されているような冷凍機のコンパウンド二段スクリュ圧縮機に対しても適用することができる。従って、上記実施の形態に係る冷媒冷却冷凍機の構成に限定されるものではなく、また本発明の技術的思想を逸脱しない範囲内における設計変更等は自由自在である。
【0032】
【発明の効果】
以上詳述したように、本発明の請求項1乃至3に係る冷凍機の運転方法によれば、起動時の低速回転または 所定時間回転させた後に運転を停止させる動作を反復することにより、スクリュ圧縮機の吸込圧力が下がり、凝縮器内の圧力よりも低圧になる。従って、凝縮器内の圧力とスクリュ圧縮機の吸込圧力との差圧により、凝縮器内の冷媒がスクリュ圧縮機の軸受部に供給されるから、以後スクリュ圧縮機を定格回転数で運転しても、軸受が焼付いたり、早期磨耗したりするようなことがない。
【0033】
また、冷凍機が冷媒冷却冷凍機である場合、特許文献1に記載された冷凍機の冷凍サイクルと異なり、オイルセパレータからコンデンサ、オイルクーラ、オイルストレーナ等が不要であって、それらの油用配管が不要である。従って、冷媒冷却冷凍機自体がコンパクトになり、冷媒冷却冷凍機自体の設置スペースが小さくなると共に、冷媒冷却冷凍機の構成が簡単になり、低コストになるのに加えて、メインテナンスコストも低減されるため、ランニングコストの削減も可能になるという経済効果がある。その一方、軸受の焼付き、早期磨耗といった問題が生じ易いという懸念があったが、本発明の請求項3に係る冷凍機の運転方法によれば、その懸念を払拭することができ、上述の冷媒冷却冷凍機としての効果を充分に発揮することができる。
【図面の簡単な説明】
【図1】図1(a)は、本実施の形態に係る冷凍機の運転方法を実施する冷媒冷却冷凍機の模式的系統図であり、また図1(b)は、縦軸にスクリュ圧縮機のロータ回転数をとり、横軸に経過時間をとって示す本実施の形態に係る冷媒冷却冷凍機の運転方法1の説明図である。
【図2】縦軸にスクリュ圧縮機のロータ回転数をとり、横軸に経過時間をとって示す冷媒冷却冷凍機の運転方法2の説明図である。
【図3】従来例に係るコンパウンド二段スクリュ圧縮機を備えた冷凍機の、圧縮機を含む冷凍サイクル構成図である。
【符号の説明】
1…冷媒冷却冷凍機、2…スクリュ圧縮機、2a…吸込口、2b…吐出口、3…冷媒循環流路、4…凝縮器、5…膨張弁、6…蒸発器、7…冷媒供給流路、7a…第1分岐冷媒供給流路、7b…第2分岐冷媒供給流路、8…絞り手段、9…モータ。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a refrigerator operating method, and more particularly, to a bearing that supports a screw rotor of a screw compressor and a reliable supply of a coolant to a shaft seal portion, thereby seizing or premature wear of these portions. The present invention relates to an operation method of a refrigerator capable of preventing the occurrence of the refrigeration.
[0002]
[Prior art]
As a refrigerator equipped with a screw compressor, for example, a refrigerator having the following configuration is known. Hereinafter, a refrigerator equipped with a compound two-stage screw compressor according to a conventional example will be described with reference to FIG. 3 of a refrigeration cycle configuration diagram including the compressor.
First, the configuration of the compound two-stage screw compressor will be described. Rotors 52 and 53 are housed in a low-stage casing 51 and supported by bearings 61 and 62, respectively. Rotors 55 and 56 are housed in the high-stage casing 54 and are supported by bearings 64 and 65, respectively. The motor 57 is housed in a motor casing 58 and is provided between the low-stage casing 51 and the high-stage casing 54. Reference numeral 63 denotes a bearing of the motor 57. The shafts of the low-stage rotor 52 and the high-stage rotor 54 are directly connected via a joint 83. Reference numeral 59 denotes a gas inlet, and reference numeral 60 denotes a gas outlet.
[0003]
The refrigerating cycle of the refrigerator including the compound two-stage screw compressor includes an oil separator 77, an oil cooler 78, a condenser 79, an evaporator 80, and a suction gas strainer 81, and the oil is configured to pass through an oil strainer 82. . Therefore, according to this refrigeration cycle, the refrigerant and oil discharged from the compressor are separated by the oil separator 77, the refrigerant flows to the condenser 79 and the evaporator 80, and passes through the suction gas strainer 81 to the compound two-stage screw compressor. Will be returned. The oil separated by the oil separator 77 is cooled by an oil cooler 78 to an appropriate temperature and then supplied to a bearing and a rotor chamber of the compressor via an oil strainer 82. In this case, during operation, the pressure from the oil separator 77 to the condenser 79, the oil cooler 78, and the oil strainer 82 is always high (for example, 4900 hPa) (for example, see Patent Document 1).
[0004]
[Patent Document 1]
JP-A 1-273894 (page 2, FIG. 1)
[0005]
[Problems to be solved by the invention]
In the case of the refrigerating cycle of the refrigerator described in Patent Document 1, during the operation of the compound two-stage screw compressor, as described above, the oil supply source from the oil separator to the condenser, oil cooler, oil strainer, etc. is always The pressure is high, and the rotor chamber, the bearing portion, and the shaft seal portion to which the oil is supplied have a relatively low pressure. Therefore, oil is stably supplied from the oil supply source to the rotor chamber, the bearing portion, and the shaft seal portion at the oil supply destination.
[0006]
On the other hand, when the operation of the compound two-stage screw compressor is stopped, the oil supply source becomes low pressure (for example, 980 hPa), and the rotor chamber, the bearing portion, and the shaft seal portion of the oil supply destination are moved relative to the oil supply source. There may be situations where the pressure is not low. However, oil has viscosity. Therefore, even if the compound two-stage screw compressor is suddenly operated at high speed in a situation where the oil supply destination does not become relatively low in pressure relative to the supply source, the oil film of the oil as the lubricant does not break, There is no danger of bearing seizing or premature wear.
[0007]
However, in the case of the refrigeration cycle described in Patent Document 1, oil piping from an oil separator to a condenser, an oil cooler, an oil strainer, and the like is required, and the oil piping occupies the entire apparatus. Since the ratio is large, the device itself becomes bulky. In addition, the installation space of the device itself becomes large, the device becomes complicated, and the cost becomes high. In addition, the maintenance cost also increases, so that there is a problem that the running cost becomes high.
[0008]
In order to solve the above-mentioned problems, it is necessary to supply a refrigerant instead of oil to a rotor chamber, a bearing portion, and a shaft sealing portion of a screw compressor to perform lubrication, cooling, and so on, so to speak, refrigerant cooling. It is considered that a refrigerator may be used. However, if the configuration is such that the refrigerant is supplied to the rotor chamber, the bearing portion, and the shaft seal portion of the screw compressor, a problem is likely to occur when the screw compressor is restarted.
[0009]
More specifically, when the operation of the screw compressor is stopped, the rotor chamber, the bearing portion, and the shaft sealing portion of the refrigerant supply destination do not have a relatively low pressure with respect to the refrigerant supply source, and the refrigerant supply source to the refrigerant supply destination When the supply of the refrigerant is stopped, the refrigerant has low viscosity, so that it hardly accumulates in the supply destination like oil, and the refrigerant may evaporate.
Therefore, if the same start-up as in the case of a screw compressor configured to supply oil is performed, the coolant as a lubricant does not exist in the necessary parts, causing seizure of bearings and early wear, etc. The operation of the machine will be hindered.
[0010]
Therefore, an object of the present invention is to provide a stable operation of a refrigerator by reliably supplying a refrigerant to a bearing for supporting a screw rotor and a shaft sealing portion when a screw compressor is started, and to further reduce the maintenance cost in a compact manner. An object of the present invention is to provide a refrigerator operating method that can be reduced.
[0011]
[Means for Solving the Problems]
The present invention has been made in view of the above circumstances, and in order to solve the above problems, a feature of the means adopted by the method for operating a refrigerator according to claim 1 of the present invention is that a screw is provided. From the discharge port of the compressor to the suction port, in order from the discharge port side, a condenser, an expansion valve, and a method of operating a refrigerator in which a refrigerant circulation flow path in which an evaporator is interposed is communicated. The screw compressor is operated at a low speed, and after a lapse of a predetermined time, is operated at a rated speed higher than the low speed.
[0012]
A feature of the means adopted by the operation method of the refrigerator according to claim 2 of the present invention is that a condenser, an expansion valve, and an evaporator are sequentially provided from a discharge port to a suction port of the screw compressor from the discharge port side. In a method of operating a refrigerator in which a refrigerant circulation flow path in which a heater is interposed communicates, at startup, a motor that drives the screw compressor is turned on, and after rotating the screw compressor for a predetermined time, the motor is started. Is repeated, and thereafter the screw compressor is operated at the rated speed.
[0013]
A feature of the means adopted by the method for operating a refrigerator according to claim 3 of the present invention is that in the method for operating a refrigerator according to any one of claims 1 and 2, A refrigerant supply passage for supplying a liquid refrigerant in the condenser to a rotor chamber of the screw compressor, a bearing for supporting the screw rotor, and a shaft seal portion is communicated with the screw compressor. This is a refrigerant cooling refrigerator in which a throttling means is interposed in the supply flow path.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a method of operating a refrigerator according to an embodiment of the present invention will be described with reference to the accompanying drawings. FIG. 1A is a schematic system diagram of a refrigerant-cooled refrigerator that implements the operation method of the refrigerator according to the present embodiment, and FIG. 1B is a vertical axis in which a rotor rotation of a screw compressor is rotated. It is explanatory drawing of the operation method 1 of the refrigerant cooling refrigerator which concerns on this Embodiment which takes a number and shows the elapsed time on a horizontal axis.
[0015]
First, the configuration of a refrigerant cooling refrigerator according to the present embodiment that implements the operation method 1 of the present invention will be described with reference to FIG. Reference numeral 1 shown in FIG. 1A denotes a refrigerant cooling refrigerator. The refrigerant cooling refrigerator 1 includes a single-stage screw compressor 2 driven by a motor 9 whose rotation speed can be variably controlled by inverter control. Have.
In the rotor chamber of the casing of the screw compressor 2, a pair of male and female screw rotors (not shown) meshing with each other are accommodated with both ends supported by bearings (not shown). Further, a refrigerant circulation channel 3 described later communicates from the discharge port 2b of the screw compressor 2 to the suction port 2a.
[0016]
A condenser 4, an expansion valve 5, and an evaporator 6 are provided in the refrigerant circulation flow path 3 in order from the discharge port 2b side of the screw compressor 2 to the suction port 2a side.
Further, a throttle means 8 is interposed between the condenser 4 and the expansion valve 5 in the refrigerant circulation flow path 3, and a refrigerant supply flow path 7 for supplying refrigerant to a rotor chamber of the screw compressor 2 communicates therewith. ing. A first branch refrigerant supply passage for supplying refrigerant from a downstream side of the throttle means 8 interposed in the refrigerant supply passage 7 to a bearing and a shaft sealing portion on the suction port side of the screw compressor 2. 7a is branched, and a second branched refrigerant supply flow path 7b that supplies the refrigerant to the bearing on the discharge port side and the shaft sealing portion is branched. It should be noted that the throttle means 8 only needs to have a throttle function, and for example, an orifice, a fixed throttle valve, a variable throttle valve, or the like can be employed.
[0017]
The operation of the refrigerant cooling refrigerator 1 having the above configuration will be described below. The gaseous refrigerant sucked into the screw compressor 2 from the suction port 2a is compressed by a pair of male and female screw rotors and discharged from the discharge port 2b. Is done. The refrigerant discharged from the discharge port 2b flows into the condenser 4 and loses heat by heat exchange in the condenser 4, is cooled and condensed, becomes liquid, and flows toward the expansion valve 5. Part of the refrigerant flowing in the direction of the expansion valve 5 is diverted to the refrigerant supply channel 7, and the remaining refrigerant is guided to the expansion valve 5. The refrigerant guided to the expansion valve 5 is vaporized by adiabatic expansion while passing through the expansion valve 5, leaving a part thereof, and flows into the evaporator 6 in a gas-liquid mixed state. Next, in the process of passing through the evaporator 6, heat is removed from the outside by heat exchange to evaporate, and the gasified refrigerant is sucked from the evaporator 6 into the suction port 2a of the screw compressor 2.
[0018]
On the other hand, a part of the refrigerant diverted to the refrigerant supply flow path 7 (as described above, which is cooled by being deprived of heat by the condenser 4) is partially vaporized in a process of passing through the throttle means 8, The liquid is guided to the rotor chamber in a mixed state. In addition, it is guided to the bearing and the shaft seal on the suction port 2a side through the first branch refrigerant supply flow path 7a, and is guided to the bearing and the shaft seal part on the discharge port 2b side through the second branch refrigerant supply flow path 7b.
[0019]
Then, sealing and lubrication between the pair of male and female rotors and the inner wall surface of the rotor chamber are performed by the refrigerant in a gas-liquid mixed state guided to the rotor chamber. In addition, when the refrigerant in the liquid state evaporates, it takes away the heat of vaporization from the surroundings, thereby cooling the temperature-raising portion associated with the compression in the rotor chamber. Further, the lubrication of the bearing and the sealing of the shaft sealing portion are performed by the refrigerant in a gas-liquid mixed state guided to the bearing and the shaft sealing portion through the first and second branch refrigerant supply channels 7a and 7b.
[0020]
The refrigerant guided to the rotor chamber through the refrigerant supply passage 7 and the refrigerant guided to the bearing and the shaft seal on the suction port 2a side through the first branch refrigerant supply passage 7a are supplied from the evaporator 6 to the screw compressor 2 The refrigerant is compressed in the rotor chamber together with the gaseous refrigerant sucked into the compressor and discharged from the discharge port 2b to the condenser 4. Further, the refrigerant guided to the bearing and the shaft sealing portion on the discharge port 2b side through the second branch refrigerant supply flow path 7b is also discharged from the discharge port 2b along with the gaseous refrigerant compressed in the rotor chamber. The gaseous refrigerant discharged from the discharge port 2b passes through the condenser 4 and turns into a liquid state, and is again divided into the expansion valve 5 side and the throttle means 8 side. Circulated.
[0021]
By the way, when the operation of the screw compressor 2 is stopped after the operation of the refrigerant cooling refrigerator 1 as described above, the liquid refrigerant accumulates at the bottom of the condenser 4. Since the pressure in the system of the refrigerant cooling refrigerator 1 becomes the pressure of the refrigerant corresponding to the outside air temperature, the pressures in the suction part, the discharge part, and the condenser 4 of the screw compressor become the same, and lubrication and cooling are performed. The refrigerant does not exist at the required part. For this reason, when the screw compressor 2 is started after the operation is stopped, if the screw compressor 2 is immediately operated at the rated speed similarly to the refrigerator described in Patent Document 1, bearing seizure and early wear occur, and the refrigerant cooling refrigeration is performed. The stable operation of the machine 1 will be hindered.
[0022]
By the way, when the bearing is rotated at a low speed and has a low load, the bearing is not damaged even in a non-lubricated state (a state in which the lubricant is not supplied) for a short time.
Therefore, if the inventors adopt an operation method of operating the screw compressor 2 at low speed and low load until the refrigerant is supplied to the lubrication and cooling required parts, and then shifting to rated operation, This operation method was attempted, considering that seizure and premature wear of the bearing could be prevented. Hereinafter, the operation method 1 of the refrigerant-cooled refrigerator 1 according to the embodiment will be described with reference to FIG.
[0023]
That is, when starting the refrigerant cooling refrigerator 1 by starting the driving of the motor 9 (this motor 9 can be variably controlled by inverter control), first, the initial rotation speed of the motor 9 for driving the screw compressor 2 is started. the N 1, for example, set the slow rotational speed of 400~1000Rpm, begins the starting operation example at the time T 1.
In this way, when the start-up operation of the refrigerant cooling refrigerator 1 is started, the rotation speed of the motor 9 increases as the operation time elapses as shown by a solid line in FIG. saturates at 400~1000rpm by, but low-speed rotation as is until time T 2, continues the low load rotation. Then, the time T 2, by setting the rotational speed to rated speed N 2 of 3600rpm the motor 9 and shifts the refrigerant cooled chiller 1 in rated operation.
[0024]
In the case of the screw compressor 2, since it is a positive displacement compressor, the refrigerant can be discharged as long as the pair of male and female rotors rotate even at low speed. Therefore, (in practice, the refrigerant is discharged even N 1 below rpm) initial rotational speed N 1 of 400~1000rpm even by low speed operation between the time T 1 of the time T 2, Then, the suction pressure of the screw compressor 2 decreases, and becomes lower than the pressure in the condenser 4. Therefore, the refrigerant in the condenser 4 is supplied to the bearing of the screw compressor 2 through the refrigerant supply channel 7 by the differential pressure between the pressure in the condenser 4 and the suction pressure of the screw compressor 2. Thereafter, even if the screw compressor 2 is operated at the rated rotation speed N2 of 3600 rpm, there is no possibility that a problem such as a seizure of the bearing or early wear occurs.
[0025]
Incidentally, the rate of decrease in specific numerical values, the suction pressure of the screw compressor 2 of the initial rotational speed N 1 or screw compressor 2, the operation duration of the initial rotational speed N 1 ΔT (= T 2 -T 1) That is, it is determined based on the time required until the coolant is supplied to the bearing, and the bearing strength of the bearing determined by an empirical rule or the like. That is, since the operation continuation time ΔT differs depending on the specifications of the screw compressor 2 and the like, it cannot be uniquely determined.
[0026]
And, in the case of the refrigerant cooling refrigerator 1 according to this embodiment, unlike the case of the refrigerating cycle of the refrigerator described in Patent Document 1, a condenser, an oil cooler, an oil strainer, and the like are not required from the oil separator. . That is, there is no need for oil piping for the oil separator, condenser, oil cooler, oil strainer and the like. Therefore, the refrigerant-cooled refrigerator itself becomes compact, the installation space for the refrigerant-cooled refrigerator itself is reduced, the configuration of the refrigerant-cooled refrigerator is simplified, and in addition to low cost, the maintenance cost is also reduced. Therefore, there is an economic effect that the running cost can be reduced.
[0027]
Next, FIG. 2 of the explanatory diagram of the operation method 2 of the refrigerant cooling refrigerator in which the vertical axis indicates the rotation speed of the screw compressor rotor and the horizontal axis indicates the elapsed time is shown. It will be described with reference to FIG. The motor that drives the screw compressor of the refrigerant cooling refrigerator that implements this operation method 2 is a motor whose rotation speed is constant (rotation speed variable control cannot be performed).
[0028]
In the case of the operation method 2 of the refrigerant-cooled refrigerator, as described above, the screw compressor cannot be rotated at a low speed at the time of startup as in the operation method 1 because the rotation speed of the motor is constant as described above. Therefore, as shown in FIG. 2, the rotation of the screw compressor is increased, for example, after the rotation is increased for a predetermined time at the start, the rotation is decreased, and after the rotation is increased for a predetermined time, the rotation is decreased. the number increases, the predetermined time repeated rotational speed decrease after the allowed (so-called, a is operated such as to perform inching), shifts to the rated operation at rated speed N 2.
[0029]
More specifically, for example, the motor is turned ON at time T 1a, to OFF at time T 1b. Then, the motor is turned on at time T 1c while the motor is rotating by inertia, is turned off at time T 1d, and is turned on at time T 2 while the motor is rotating by inertia. it is intended to shift the operation of with N 2. In this case, each time interval between the times T 1a , T 1b , T 1c , T 1d , and T 2 is, for example, about 1 second.
[0030]
Therefore, according to the operation method 2 of the refrigerant cooling refrigerator, the pressure in the condenser and the suction of the screw compressor are increased while the rotation speed of the motor is repeatedly increased and decreased by the ON / OFF operation of the motor. A pressure difference is created between the pressure and the pressure. By this pressure difference, because the refrigerant in the condenser is supplied to the bearing portion of the screw compressor, even driving a subsequent screw compressor rated speed N 2 of 3600 rpm, or with bearings baked, premature wear Nothing to do. Therefore, according to the operation method 2 of the refrigerant cooling refrigerator, the same effect as that of the operation method 1 can be obtained.
[0031]
In the above embodiment, the case where the refrigerant supply flow path 7 is branched from the condenser 4 in the refrigerant circulation flow path 3 and between the expansion valve 5 is described as an example. 4, the liquid refrigerant in the condenser 4 is supplied to the rotor chamber, the bearing, and the shaft seal. Further, in the above embodiment, the case where the refrigerator is a refrigerant-cooled refrigerator and the screw compressor included in the refrigerant-cooled refrigerator is a single-stage type has been described as an example. The technical idea of the present invention can also be applied to a compound two-stage screw compressor of a refrigerator as described in Patent Document 1, for example. Therefore, the present invention is not limited to the configuration of the refrigerant cooling refrigerator according to the above-described embodiment, and can be freely changed in design without departing from the technical idea of the present invention.
[0032]
【The invention's effect】
As described above in detail, according to the refrigerator operating method according to claims 1 to 3, the screw is rotated at a low speed during start-up or the operation of stopping the operation after rotating for a predetermined time is repeated. The suction pressure of the compressor drops and becomes lower than the pressure in the condenser. Therefore, the refrigerant in the condenser is supplied to the bearing of the screw compressor by the pressure difference between the pressure in the condenser and the suction pressure of the screw compressor. In addition, the bearing does not seize or wear out early.
[0033]
Further, when the refrigerator is a refrigerant-cooled refrigerator, unlike the refrigerating cycle of the refrigerator described in Patent Literature 1, the condenser, the oil cooler, the oil strainer, and the like are not necessary from the oil separator, and the oil piping is used. Is unnecessary. Accordingly, the refrigerant-cooled refrigerator itself becomes compact, the installation space for the refrigerant-cooled refrigerator itself is reduced, and the configuration of the refrigerant-cooled refrigerator is simplified, and in addition to the cost reduction, the maintenance cost is also reduced. Therefore, there is an economic effect that the running cost can be reduced. On the other hand, there was a concern that problems such as seizure of the bearing and early wear were likely to occur. However, according to the method of operating a refrigerator according to claim 3 of the present invention, the concern can be eliminated, and the above-described problem can be solved. The effect as a refrigerant cooling refrigerator can be sufficiently exhibited.
[Brief description of the drawings]
FIG. 1A is a schematic system diagram of a refrigerant-cooled refrigerator that implements a method of operating a refrigerator according to the present embodiment, and FIG. FIG. 4 is an explanatory diagram of the operation method 1 of the refrigerant-cooled refrigerator according to the present embodiment, in which the rotational speed of the machine is taken and the elapsed time is shown on the horizontal axis.
FIG. 2 is an explanatory diagram of an operation method 2 of the refrigerant cooling refrigerator in which a vertical axis indicates a rotor rotation speed of the screw compressor and a horizontal axis indicates elapsed time.
FIG. 3 is a configuration diagram of a refrigeration cycle including a compressor of a refrigerator including a compound two-stage screw compressor according to a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Refrigerant cooling refrigerator, 2 ... Screw compressor, 2a ... Inlet, 2b ... Discharge port, 3 ... Refrigerant circulation channel, 4 ... Condenser, 5 ... Expansion valve, 6 ... Evaporator, 7 ... Refrigerant supply flow Path, 7a: first branch refrigerant supply flow path, 7b: second branch refrigerant supply flow path, 8: throttle means, 9: motor.

Claims (3)

スクリュ圧縮機の吐出口から吸込口に、前記吐出口側から順に、凝縮器、膨張弁、および蒸発器が介装された冷媒循環流路が連通してなる冷凍機の運転方法において、起動時に、前記スクリュ圧縮機を低速回転数で運転し、所定時間経過後に、前記低速回転数より高速の定格回転数で運転することを特徴とする冷凍機の運転方法。From the discharge port of the screw compressor to the suction port, in order from the discharge port side, a condenser, an expansion valve, and a method of operating a refrigerator in which a refrigerant circulation flow path in which an evaporator is interposed communicates, And operating the screw compressor at a low speed, and after a lapse of a predetermined time, operating the screw compressor at a rated speed higher than the low speed. スクリュ圧縮機の吐出口から吸込口に、前記吐出口側から順に、凝縮器、膨張弁、および蒸発器が介装された冷媒循環流路が連通してなる冷凍機の運転方法において、起動時に、前記スクリュ圧縮機を駆動するモータをONにして前記スクリュ圧縮機を所定時間回転させた後に前記モータをOFFにする動作を反復し、その後に前記スクリュ圧縮機を定格回転数で運転することを特徴とする冷凍機の運転方法。From the discharge port of the screw compressor to the suction port, in order from the discharge port side, a condenser, an expansion valve, and a method of operating a refrigerator in which a refrigerant circulation flow path in which an evaporator is interposed communicates, The operation of turning on the motor for driving the screw compressor, turning the screw compressor for a predetermined time, and then turning off the motor is repeated, and then operating the screw compressor at the rated speed. Characteristic method of operating a refrigerator. 前記冷凍機は、前記凝縮器内の液状の冷媒を前記スクリュ圧縮機のロータ室、前記スクリュロータを支持する軸受、および軸封部に供給する冷媒供給流路を前記スクリュ圧縮機に連通させると共に、この冷媒供給流路に絞り手段を介装した冷媒冷却冷凍機であることを特徴とする請求項1または2のうちの何れか一つの項に記載の冷凍機の運転方法。The refrigerator communicates a refrigerant supply passage for supplying a liquid refrigerant in the condenser to a rotor chamber of the screw compressor, a bearing supporting the screw rotor, and a shaft sealing portion to the screw compressor. 3. The method of operating a refrigerator according to claim 1, wherein the refrigerant supply channel is a refrigerant cooling refrigerator having a throttle unit interposed.
JP2002327048A 2002-11-11 2002-11-11 Method for operating refrigerating machine Pending JP2004162549A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002327048A JP2004162549A (en) 2002-11-11 2002-11-11 Method for operating refrigerating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002327048A JP2004162549A (en) 2002-11-11 2002-11-11 Method for operating refrigerating machine

Publications (1)

Publication Number Publication Date
JP2004162549A true JP2004162549A (en) 2004-06-10

Family

ID=32805821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002327048A Pending JP2004162549A (en) 2002-11-11 2002-11-11 Method for operating refrigerating machine

Country Status (1)

Country Link
JP (1) JP2004162549A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102192574A (en) * 2011-05-25 2011-09-21 宁波奥克斯电气有限公司 Cooling mode start-up control method for screw-compression multi-connected central air conditioner
CN102261719A (en) * 2011-05-25 2011-11-30 宁波奥克斯电气有限公司 Control method for starting heating mode of screw-type compressed multi-connected central air conditioner
CN102331123A (en) * 2011-05-30 2012-01-25 宁波奥克斯电气有限公司 Safety control method for lubricating oil of multi-unit air conditioner of screw compressor
CN102401513A (en) * 2011-09-16 2012-04-04 宁波奥克斯电气有限公司 Ice storage and cold release control method of combined-type screw ice storage air-conditioner

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102192574A (en) * 2011-05-25 2011-09-21 宁波奥克斯电气有限公司 Cooling mode start-up control method for screw-compression multi-connected central air conditioner
CN102261719A (en) * 2011-05-25 2011-11-30 宁波奥克斯电气有限公司 Control method for starting heating mode of screw-type compressed multi-connected central air conditioner
CN102192574B (en) * 2011-05-25 2013-03-06 宁波奥克斯电气有限公司 Cooling mode start-up control method for screw-compression multi-connected central air conditioner
CN102261719B (en) * 2011-05-25 2013-06-05 宁波奥克斯电气有限公司 Control method for starting heating mode of screw-type compressed multi-connected central air conditioner
CN102331123A (en) * 2011-05-30 2012-01-25 宁波奥克斯电气有限公司 Safety control method for lubricating oil of multi-unit air conditioner of screw compressor
CN102401513A (en) * 2011-09-16 2012-04-04 宁波奥克斯电气有限公司 Ice storage and cold release control method of combined-type screw ice storage air-conditioner

Similar Documents

Publication Publication Date Title
JP4330369B2 (en) Screw refrigeration equipment
US8769982B2 (en) Injection system and method for refrigeration system compressor
US7647790B2 (en) Injection system and method for refrigeration system compressor
CN1232747C (en) Self-contained regulating valve, and compression type refrigerating machine having the same
JP4981557B2 (en) Turbo compressor and turbo refrigerator
JP5412193B2 (en) Turbo refrigerator
JP5989072B2 (en) Oil-free compressor and control method thereof
JP2004044954A (en) Turbo refrigerating machine comprising compressor with gas bearing and its operating method
JP6258422B2 (en) Compressor and control method thereof
JPH11351168A (en) Screw type refrigerating device
JP2004162549A (en) Method for operating refrigerating machine
JP2003021089A (en) Two-stage compression refrigerating machine, and its operating method
WO2012042698A1 (en) Refrigerating and air conditioning device
WO2018090894A1 (en) Compressor assembly and control method thereof and refrigerating/heating system
JP2009186028A (en) Turbo refrigerator
JP2009186030A (en) Turbo refrigerator
JP2018004220A (en) Refrigerator
JP2004286329A (en) Refrigerant cycle device
JP2004150393A (en) Screw type multistage compressor switchable to multistage compression and single stage compression and refrigerating and cooling system using it
JP4952599B2 (en) Turbo refrigerator
JPH0539777A (en) Compressor provided with transmission
JP2018025166A (en) Air compression system
JP2001201195A (en) Turbo refrigerating machine and method for lubricating compressor for turbo refrigerating machine
JP2005090800A (en) Refrigeration unit
JP5484604B2 (en) Refrigeration air conditioner