JP2004161754A - Hexadeca-azanaphthalocyanine compound and its polymer - Google Patents

Hexadeca-azanaphthalocyanine compound and its polymer Download PDF

Info

Publication number
JP2004161754A
JP2004161754A JP2003360049A JP2003360049A JP2004161754A JP 2004161754 A JP2004161754 A JP 2004161754A JP 2003360049 A JP2003360049 A JP 2003360049A JP 2003360049 A JP2003360049 A JP 2003360049A JP 2004161754 A JP2004161754 A JP 2004161754A
Authority
JP
Japan
Prior art keywords
metal
formula
compound
dimensional polymer
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003360049A
Other languages
Japanese (ja)
Inventor
Junko Shigehara
淳孝 重原
Mitsuhiro Yanagida
光広 柳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Soda Co Ltd
Original Assignee
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co Ltd filed Critical Nippon Soda Co Ltd
Priority to JP2003360049A priority Critical patent/JP2004161754A/en
Publication of JP2004161754A publication Critical patent/JP2004161754A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a new hexadeca-azanaphthalocyanine compound useful as an optical recording material, an electron transport layer material for EL, a battery material, an oxidation-reduction catalyst, an agrochemical intermediate and the like and polymers of the same. <P>SOLUTION: The hexadeca-azanaphthalocyanine compound is expressed by formula [I] (wherein M expresses hydrogen (2H), a metal, a metal oxide, a metal hydroxide, an acyl metal, an alkoxy metal, a siloxy metal or a metal halide). The polymers are a one-dimensional polymer prepared by bonding the hexadeca-azaphthalocyanine compound expressed by formula [I] to arrange M on one axis through atomic groups and a two-dimensional polymer prepared by mutually bonding terminal cyano groups. <P>COPYRIGHT: (C)2004,JPO

Description

本発明は、光学記録材料、EL用電子輸送層材料、電池材料、農医薬中間体等として有用な新規なヘキサデカアザナフタロシアニン化合物に関する。   The present invention relates to a novel hexadecazanaphthalocyanine compound useful as an optical recording material, an electron transport layer material for EL, a battery material, an agricultural and pharmaceutical intermediate, and the like.

従来から、光学記録材料としては、有機溶剤に対する溶解性が高いこと、特定波長に吸収があること等の条件を満たし、実用的な使用に耐え得るように光、酸素に耐性を有すること、それらの閾値が高いこと、熱伝導率が低いこと等が要求され、レーザープリンターにおいては、電荷輸送材料との組合せにおいて高い電荷注入効果を得るための適当なイオン化ポテンシャルを持つこと、高感度の潜像を得るために暗減衰が小さいこと、レーザー光や、酸素に耐性を有すること等の条件を満たすことが必要である。かかる条件を満たす光学記録材料、EL用電子輸送層材料、電池材料等の材料として、ナフタロシアニン化合物誘導体が知られている(例えば、特許文献1参照。)
特開平3−232886号公報
Conventionally, as an optical recording material, satisfying conditions such as high solubility in an organic solvent, absorption at a specific wavelength, etc., and having resistance to light and oxygen to withstand practical use, It is required to have a high threshold value, a low thermal conductivity, etc., and in a laser printer, have an appropriate ionization potential to obtain a high charge injection effect in combination with a charge transport material, and a high sensitivity latent image. It is necessary to satisfy conditions such as low dark decay, resistance to laser light and oxygen, etc. A naphthalocyanine compound derivative is known as a material such as an optical recording material, an electron transport layer material for EL, and a battery material satisfying such conditions (for example, see Patent Document 1).
JP-A-3-232886

本発明の課題は、光学記録材料、EL用電子輸送層材料、電池材料、酸化還元触媒、農医薬中間体等として従来知られている材料より更に有用な材料素材となり得る新規な化合物を提供することにある。   An object of the present invention is to provide a novel compound that can be a more useful material than conventionally known materials such as an optical recording material, an electron transport layer material for EL, a battery material, a redox catalyst, an agrochemical intermediate, and the like. It is in.

本発明者らは、特定のナフタロシアニン化合物誘導体において末端にシアノ基を有する化合物が光学記録材料、EL用電子輸送層材料、電池材料、酸化還元触媒、農医薬中間体等として極めて有用であること、更にこれらの特定のナフタロシアニン化合物誘導体において末端にシアノ基を有する化合物を原子団を介してMが一軸上に配置するように結合した一次元重合体や、末端のシアノ基が相互に結合して形成されるニ次元重合体は、電子受容性が高く、光学記録材料、EL用電子輸送層材料、電池材料、酸化還元触媒、農医薬中間体等として有用であることを見い出し、本発明を完成するに至った。   The present inventors have found that a compound having a cyano group at a terminal in a specific naphthalocyanine compound derivative is extremely useful as an optical recording material, an electron transport layer material for EL, a battery material, a redox catalyst, an agricultural and pharmaceutical intermediate, and the like. Further, in these specific naphthalocyanine compound derivatives, a one-dimensional polymer in which a compound having a terminal cyano group is bonded via an atomic group so that M is arranged uniaxially, or a terminal cyano group is bonded to each other. The two-dimensional polymer formed by this method has high electron-accepting properties and is useful as an optical recording material, an electron transport layer material for EL, a battery material, a redox catalyst, an agro-pharmaceutical intermediate, and the like. It was completed.

すなわち本発明は、式[I]   That is, the present invention provides a compound of the formula [I]

Figure 2004161754
[式中、Mは水素(2H)、金属、金属酸化物、金属水酸化物、アシル金属、アルコキシ金属、シロキシ金属又は金属ハロゲン化物を示す。]で表されるヘキサデカアザナフタロシアニン化合物に関する。
Figure 2004161754
[Wherein, M represents hydrogen (2H), metal, metal oxide, metal hydroxide, acyl metal, alkoxy metal, siloxy metal, or metal halide. And a hexadecazanaphthalocyanine compound represented by the formula:

また、本発明は、式[I]   Also, the present invention provides a compound of the formula [I]

Figure 2004161754
[式中、Mは、金属、金属酸化物、金属水酸金属、アシル金属、アルコキシ金属、シロキシ金属又は金属ハロゲン化物を示す。]で表されるヘキサデカアザナフタロシアニン化合物が、原子団を介してMが一軸上に配置するように結合した式[II]
Figure 2004161754
[In the formula, M represents a metal, metal oxide, metal hydroxide metal, acyl metal, alkoxy metal, siloxy metal, or metal halide. [II] in which a hexadecaazanaphthalocyanine compound represented by the formula [II] is bonded via an atomic group so that M is arranged uniaxially.

Figure 2004161754
[式中、Mは式[I]におけるMと同じものを示し、Lは原子団を示す。]で表されるヘキサデカアザナフタロシアニン化合物の一次元重合体(請求項2)に関し、好ましくは、原子団Lが、p−ジイソシアノベンゼンであることを特徴とする請求項2記載のヘキサデカアザナフタロシアニン化合物の一次元重合体(請求項3)や、オリゴマーであることを特徴とする請求項2又は3記載のヘキサデカアザナフタロシアニン化合物の一次元重合体(請求項4)に関する。
Figure 2004161754
[Wherein, M represents the same as M in formula [I], and L represents an atomic group. The one-dimensional polymer of hexadecaazanaphthalocyanine compound represented by the formula (Claim 2), wherein preferably, the atomic group L is p-diisocyanobenzene. The present invention relates to a one-dimensional polymer of an azanaphthalocyanine compound (claim 3) or a one-dimensional polymer of a hexadecaazanaphthalocyanine compound according to claim 2 or 3, which is an oligomer.

また、本発明は、式[I〕   Further, the present invention provides a compound of the formula [I]

Figure 2004161754
[式中、Mは水素(2H)、金属、金属酸化物、金属水酸化物、アシル金属、アルコキシ金属、シロキシ金属又は金属ハロゲン化物を示す。]で表されるヘキサデカアザナフタロシアニン化合物の末端のシアノ基が相互に結合した式[III]
Figure 2004161754
[Wherein, M represents hydrogen (2H), metal, metal oxide, metal hydroxide, acyl metal, alkoxy metal, siloxy metal, or metal halide. [III] in which terminal cyano groups of a hexadecazanaphthalocyanine compound represented by the formula

Figure 2004161754
[式中、Mは式[I]におけるMと同じものを示す。]で表されるヘキサデカアザナフタロシアニン化合物の二次元重合体(請求項5)に関し、好ましくは、オリゴマーであることを特徴とする請求項5記載のヘキサデカアザナフタロシアニン化合物の二次元重合体(請求項6)に関する。
Figure 2004161754
[Wherein, M represents the same as M in the formula [I]. The two-dimensional polymer of a hexadecaazanaphthalocyanine compound represented by the formula (Claim 5), which is preferably an oligomer. Regarding item 6).

本発明のヘキサデカアザナフタロシアニン化合物や、その重合体は溶媒溶解性があり、近紫外線に吸収の極大があり、n型OPC(organic photoconductor:有機光半導体 )材料、電子写真感光体、光学記録材料、EL用電子輸送層材料、鮮度維持剤、酸化還元触媒、電池材料、農医薬中間体等に有用である。   The hexadecazana phthalocyanine compound of the present invention and the polymer thereof have solvent solubility, have a maximum absorption in near ultraviolet rays, and have n-type OPC (organic photoconductor) materials, electrophotographic photoreceptors, and optical recording materials. It is useful as an electron transport layer material for EL, a freshness maintaining agent, a redox catalyst, a battery material, an agricultural and pharmaceutical intermediate, and the like.

本発明のヘキサデカアザナフタロシアニン化合物は、式[I]で表されるヘキサデカアザナフタロシアニン化合物(MHDANcOCと略記する。)であり、式[I]において、Mは水素(2H)、金属、金属酸化物、金属水酸化物、アシル金属、アルコキシ金属、シロキシ金属又は金属ハロゲン化物を示し、かかるMとしては、具体的には、−HとH−、Mg、AlCl、SiCl2、Si(OH)2、Si(COCH32、Si(OCH32、Si(OSi(CH332、Ca、TiO、VO、Cr、Mn、Ru、Co、Ni、Cu、Zn、Ga、Ge、ZrO、Nb、Mo、Fe、Pd、InCl、InBr、Sn、SnCl2、SnBr2、SnI2、Ta、Pb、Bi、ランタニド等を挙げることができる。 The hexadecazanaphthalocyanine compound of the present invention is a hexadecazanaphthalocyanine compound represented by the formula [I] (abbreviated as MHWANcOC). In the formula [I], M represents hydrogen (2H), a metal or a metal oxide. A metal, a metal hydroxide, an acyl metal, an alkoxy metal, a siloxy metal or a metal halide, and such M is specifically -H and H-, Mg, AlCl, SiCl 2 , Si (OH) 2 , Si (COCH 3 ) 2 , Si (OCH 3 ) 2 , Si (OSi (CH 3 ) 3 ) 2 , Ca, TiO, VO, Cr, Mn, Ru, Co, Ni, Cu, Zn, Ga, Ge, Examples include ZrO, Nb, Mo, Fe, Pd, InCl, InBr, Sn, SnCl 2 , SnBr 2 , SnI 2 , Ta, Pb, Bi, and lanthanides.

式[I]で表されるヘキサデカアザナフタロシアニン化合物は、式[IV]   The hexadecazanaphthalocyanine compound represented by the formula [I] is represented by the formula [IV]

Figure 2004161754
で表される2,3,6,7−テトラシアノ−1,4,5,8−テトラアザナフタレン(TCNAと略記する。)と金属、金属酸化物、金属水酸化物、アシル金属、金属錯塩、シロキシ金属、金属ハロゲン化物等あるいは何も用いず(M:水素(2H))に、トリクロルベンゼン、ジクロルベンゼン、クロルナフタレン、スルフォラン等の高沸点不活性溶媒中で数時間から数10時間、100〜250℃に加熱することにより製造される。アシル金属、金属錯塩としては、好ましくは金属アセテート、金属ホルメート、金属アセチルアセテート等である。
Figure 2004161754
2,3,6,7-tetracyano-1,4,5,8-tetraazanaphthalene (abbreviated as TCNA) and a metal, metal oxide, metal hydroxide, acyl metal, metal complex, Siloxy metal, metal halide or the like or nothing (M: hydrogen (2H)) in a high boiling point inert solvent such as trichlorobenzene, dichlorobenzene, chloronaphthalene or sulfolane for several hours to several tens of hours. Manufactured by heating to ~ 250 ° C. The acyl metal and metal complex salt are preferably metal acetate, metal formate, metal acetyl acetate and the like.

本発明のヘキサデカアザナフタロシアニン化合物の一次元重合体は、式[I]で表される本発明のヘキサデカアザナフタロシアニン化合物が、原子団を介してMが一軸上に配置するように結合した式[II]で表されるヘキサデカアザナフタロシアニン化合物の一次元重合体であり、式[I]中、Mは金属、金属酸化物、金属水酸金属、アシル金属、アルコキシ金属、シロキシ金属又は金属ハロゲン化物を示し、式[II]中、Mは式[I]におけるMと同じものを示す。かかるMとしては、具体的には、Mg、AlCl、SiCl2、Si(OH)2、Si(COCH32、Si(OCH32、Si(OSi(CH332、Ca、TiO、VO、Cr、Mn、Ru、Co、Ni、Cu、Zn、Ga、Ge、ZrO、Nb、Mo、Fe、Pd、InCl、InBr、Sn、SnCl2、SnBr2、SnI2、Ta、Pb、Bi、ランタニド等を挙げることができる。ヘキサデカアザナフタロシアニン化合物のMを相互に結合する原子団Lとしては、例えば、p−ジイソシアノベンゼンを例示することができる。本発明のヘキサデカアザナフタロシアニン化合物の一次元重合体として、例えば、Mがコバルト、鉄であり、重合度6〜9のオリゴマー等は、90℃のジメチルフォルムアミド(DMF)等の溶媒に僅かに溶解し、重合度10より大きい重合体は90℃のジメチルフォルムアミド(DMF)等の溶媒に不溶である。かかる一次元重合体はシアノ基が多数存在し、電子受容性が高くEL電池等の材料として有用である。 The one-dimensional polymer of the hexadecaazanaphthalocyanine compound of the present invention has a formula wherein a hexadecaazanaphthalocyanine compound of the present invention represented by the formula [I] is bonded via an atomic group such that M is arranged on one axis. It is a one-dimensional polymer of a hexadecazanaphthalocyanine compound represented by [II], and in the formula [I], M is a metal, metal oxide, metal hydroxide metal, acyl metal, alkoxy metal, siloxy metal or metal halogen. In the formula [II], M is the same as M in the formula [I]. As such M, specifically, Mg, AlCl, SiCl 2 , Si (OH) 2 , Si (COCH 3 ) 2 , Si (OCH 3 ) 2 , Si (OSi (CH 3 ) 3 ) 2 , Ca, TiO, VO, Cr, Mn, Ru, Co, Ni, Cu, Zn, Ga, Ge, ZrO, Nb, Mo, Fe, Pd, InCl, InBr, Sn, SnCl 2, SnBr 2, SnI 2, Ta, Pb , Bi, lanthanides and the like. Examples of the atomic group L that bonds M of the hexadecazanaphthalocyanine compound to each other include p-diisocyanobenzene. As the one-dimensional polymer of the hexadecazanaphthalocyanine compound of the present invention, for example, oligomers having M of cobalt and iron and a degree of polymerization of 6 to 9 are slightly dissolved in a solvent such as dimethylformamide (DMF) at 90 ° C. Polymers that dissolve and have a degree of polymerization greater than 10 are insoluble in solvents such as dimethylformamide (DMF) at 90 ° C. Such a one-dimensional polymer has a large number of cyano groups, has a high electron-accepting property, and is useful as a material for EL batteries and the like.

本発明のヘキサデカアザナフタロシアニン化合物の一次元重合体の製造方法としては、式[I]で表されるヘキサデカアザナフタロシアニン化合物と、これらと相互に結合する原子団となる化合物、例えば、p−ジイソシアノベンゼンとを、ジクロルベンゼン、トリクロルベンゼン、クロルナフタレン等の高沸点不活性溶媒中で数時間から数10時間、100〜250℃に加熱する方法等を挙げることができる。   As a method for producing a one-dimensional polymer of a hexadecazanaphthalocyanine compound of the present invention, a hexadecazanaphthalocyanine compound represented by the formula [I] and a compound which becomes an atomic group mutually bonded to these compounds, for example, p- A method in which diisocyanobenzene is heated to 100 to 250 ° C. for several hours to several tens of hours in a high boiling point inert solvent such as dichlorobenzene, trichlorobenzene, and chloronaphthalene can be used.

本発明のヘキサデカアザナフタロシアニン化合物の二次元重合体は、上記式[I]で表されるヘキサデカアザナフタロシアニン化合物の末端のシアノ基が相互に結合した式[III]で表されるヘキサデカアザナフタロシアニン化合物の二次元重合体であり、式[III]中、Mは上記式[I]におけるMが示すものと同義のものを示す。本発明のヘキサデカアザナフタロシアニン化合物の二次元重合体として、具体的に一例を挙げると、式[I]で表されるヘキサデカアザナフタロシアニン化合物の重合度4の下記式[IIIa]   The two-dimensional polymer of the hexadecaazana phthalocyanine compound of the present invention is a hexadecazana phthalocyanine compound represented by the formula [III] in which terminal cyano groups of the hexadecaazana phthalocyanine compound represented by the above formula [I] are mutually bonded. It is a two-dimensional polymer of a phthalocyanine compound. In the formula [III], M has the same meaning as that represented by M in the above formula [I]. Specific examples of the two-dimensional polymer of the hexadecaazanaphthalocyanine compound of the present invention include the following formula [IIIa] having a degree of polymerization of 4 of the hexadecazanaphthalocyanine compound represented by the formula [I].

Figure 2004161754
に示すオリゴマーや、式[I]で表されるヘキサデカアザナフタロアニン化合物の重合度7の下記式[IIIb]
Figure 2004161754
Or a hexadecaazanaphthaloanine compound represented by the following formula [IIIb] having a degree of polymerization of 7:

Figure 2004161754
に示すオリゴマー等である。
Figure 2004161754
And the like.

かかる式[IIIa]や、式[IIIb]で表される本発明のヘキサデカアザナフタロシアニン化合物の二次元重合体において、Mが銅、ニッケルの場合、150℃のヘキサメチルホスホリックトリアミド(HMPT)等の溶媒に僅かに溶解し、重合度がこれより大きい重合体は150℃のヘキサメチルホスホリックトリアミド(HMPT)等の溶媒に不溶である。また、かかる二次元重合体は電子受容性が高くEL電池等の材料として有用である。   In the two-dimensional polymer of the hexadecaazanaphthalocyanine compound of the present invention represented by the formula [IIIa] or [IIIb], when M is copper or nickel, hexamethylphosphoric triamide (HMPT) at 150 ° C. And a polymer having a higher degree of polymerization is insoluble in a solvent such as hexamethylphosphoric triamide (HMPT) at 150 ° C. Further, such a two-dimensional polymer has a high electron-accepting property and is useful as a material for an EL battery or the like.

本発明のヘキサデカアザナフタロシアニン化合物の二次元重合体の製造方法としては、ヘキサデカアザナフタロシアニン化合物をアセトン、テトラヒドロフラン(THF)、N,N−ジメチルホルムアミド(DMF)等の溶媒に溶解し、この溶解液を反応管内壁に塗布し、薄膜を形成し、例えば、1mmHg以下の減圧下で250〜500℃等で、数時間〜10数時間加熱する方法等を挙げることができる。
本発明の化合物はMASSスペクトル、IR、元素分析等により決定した。
As a method for producing a two-dimensional polymer of a hexadecazanaphthalocyanine compound of the present invention, a hexadecazanaphthalocyanine compound is dissolved in a solvent such as acetone, tetrahydrofuran (THF), N, N-dimethylformamide (DMF), and the solution is dissolved. The liquid may be applied to the inner wall of the reaction tube to form a thin film, for example, heated at 250 to 500 ° C. for several hours to several tens of hours under reduced pressure of 1 mmHg or less.
The compound of the present invention was determined by MASS spectrum, IR, elemental analysis and the like.

以下、実施例により本発明をより具体的に説明するが、本発明の技術的範囲はこれらの例示に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples, but the technical scope of the present invention is not limited to these examples.

M=Co体(CoHDANcOC)の調製 Preparation of M = Co form (CoHDANcOC)

Figure 2004161754
Figure 2004161754

乾燥管付き還流器、温度計、アルゴンガス導入管、機械撹拌装置を備えた100mlの4つ口フラスコに、精密蒸留を行った10mlのスルフォラン、500mg(2.2mmol)のTCNAと100mg(0.56mmol)の酢酸コバルト無水和物を入れ、160℃にてかき混ぜながら24時間反応させた。放冷後、200mlのクロロホルムにかき混ぜながら反応溶液を滴下し、目的成分を沈殿させた。沈殿物をろ集してクロロホルムで洗浄し、金属光沢のある黒色粉末292mgを得(収率55%)、次に示す分析結果より目的のCoHDANcOCであることがわかった。これはアセトン、テトラヒドロフラン(THF)、N,N−ジメチルホルムアミド(DMF)などの極性溶媒に可溶であり紫色を呈した。   In a 100 ml four-necked flask equipped with a reflux condenser with a drying tube, a thermometer, an argon gas inlet tube, and a mechanical stirrer, 10 ml of sulfolane subjected to precision distillation, 500 mg (2.2 mmol) of TCNA and 100 mg (0. (56 mmol) of cobalt acetate anhydrate was added thereto and reacted at 160 ° C. for 24 hours while stirring. After cooling, the reaction solution was added dropwise while stirring with 200 ml of chloroform to precipitate the target component. The precipitate was collected by filtration and washed with chloroform to obtain 292 mg of a black powder with a metallic luster (55% yield). From the following analysis results, it was found that the target was CoHDANcOC. It was soluble in polar solvents such as acetone, tetrahydrofuran (THF) and N, N-dimethylformamide (DMF) and exhibited a purple color.

元素分析(計算値):C 48.75%(48.64%)、N 45.27%(45.39%)
TOF-Mass スペクトル親ピーク(Z/e)=988および989(分子量計算値=987.65)、DMF中の可視吸収スペクトル極大波長=552nm,737nm(DMF中)。
Elemental analysis (calculated): C 48.75% (48.64%), N 45.27% (45.39%)
TOF-Mass spectrum parent peaks (Z / e) = 988 and 989 (calculated molecular weight = 987.65), maximum wavelength of visible absorption spectrum in DMF = 552 nm, 737 nm (in DMF).

M=水素(2H)体(H2HDANcOC)の調製 Preparation of M = hydrogen (2H) form (H 2 HDANcOC)

Figure 2004161754
Figure 2004161754

乾燥管付き還流器、温度計、アルゴンガス導入管、機械撹拌装置を備えた100mlの4つ口フラスコに、精密蒸留を行った10mlのスルフォラン、500mg(2.2mmol)のTCNAを入れ、160℃にてかき混ぜながら48時間反応させた。放冷後、200mlのクロロホルムにかき混ぜながら反応溶液を滴下し、目的成分を沈殿させた。沈殿物をろ集してクロロホルム洗浄し、金属光沢のある黒色粉末120mgを得(収率23%)、次に示す分析結果より目的のHHDANcOCであることがわかった。 In a 100 ml four-necked flask equipped with a reflux condenser equipped with a drying tube, a thermometer, an argon gas inlet tube, and a mechanical stirrer, 10 ml of finely distilled sulfolane and 500 mg (2.2 mmol) of TCNA were placed, and the mixture was heated at 160 ° C. The reaction was carried out for 48 hours while stirring. After cooling, the reaction solution was added dropwise while stirring with 200 ml of chloroform to precipitate the target component. The precipitate was collected by filtration and washed with chloroform to obtain 120 mg of a black powder having a metallic luster (yield: 23%). From the analysis results shown below, it was found that the target was H 2 HDANcOC.

元素分析(計算値):C 51.73%(51.62%)、N 48.22%(48.17%)、TOF-Massスペクトル親ピーク(Z/e)=931および932(分子量計算値=930.74)、DMF中の可視吸収スペクトル極大波長=545,575,618,702,nm(DMF中)。   Elemental analysis (calculated): C 51.73% (51.62%), N 48.22% (48.17%), TOF-Mass spectral parent peak (Z / e) = 931 and 932 (calculated molecular weight = 930.74), visible in DMF Absorption spectrum maximum wavelength = 545,575,618,702, nm (in DMF).

実施例1で得たCoHDANcOCのサイクリックボルタモグラフ(以下CVと記す)を表1に示す条件で測定した。   The cyclic voltammogram (hereinafter referred to as CV) of CoHDANcOC obtained in Example 1 was measured under the conditions shown in Table 1.

Figure 2004161754
Figure 2004161754

結果を図1に示す。尚、図1中の目盛りはAg/AgCl参照電極に対する値である。 結果から、CoHDANcOCは電池材料として有用であることがわかった。   The results are shown in Figure 1. The scale in FIG. 1 is a value for the Ag / AgCl reference electrode. From the results, it was found that CoHDANcOC was useful as a battery material.

実施例1で得たCoHDANcOCの酸化・還元電位を測定した。結果を表2に示す。
20℃において EVS.NHE=EVS. Ag/AgCl+226mV
The oxidation / reduction potential of CoHDANcOC obtained in Example 1 was measured. Table 2 shows the results.
In 20 ℃ E VS.NHE = E VS. Ag / AgCl + 226mV

Figure 2004161754
Figure 2004161754

結果から、CoHDANcOCは酸化還元反応触媒として有用であることがわかった。   From the results, it was found that CoHDANcOC was useful as a redox reaction catalyst.

CoHDANcOC一次元重合体の調製
塩化カルシウム乾燥管を取り付けた還流管、温度計、アルゴンガス導入管、機械攪拌装置を備えた100mlの4つ口フラスコに、精密蒸留を行った5mlのジクロロベンゼン、100mg(0.10mmol)のCoHDANcOC、130mg(1.0mmol)のp−ジイソシアノベンゼン(dib)を入れ、115℃にて48時間反応させた。放冷後、反応溶液を濾過し濾物をクロロホルム、アセトン、冷ジメチルフォルムアミド(DMF)で洗浄し黒色の目的物90mg(収率80%)を得た。目的物は一般に不溶・不融であるが、90℃の熱DMFにわずかに(目的物全体の0.5%以下)溶解した。その可溶部についてTOF−Massスペクトル分析を行い、n=6〜9の計算値に相当する下記のピークからオリゴマーを確認した。不溶物はn≧10を主成分とする目的物であることがわかった。
Preparation of CoHDANcOC one-dimensional polymer In a 100 ml four-necked flask equipped with a reflux tube equipped with a calcium chloride drying tube, a thermometer, an argon gas inlet tube, and a mechanical stirrer, 5 ml of precision distilled dichlorobenzene, 100 mg (0.10 mmol) of CoHDANcOC and 130 mg (1.0 mmol) of p-diisocyanobenzene (dib) were added and reacted at 115 ° C. for 48 hours. After cooling, the reaction solution was filtered, and the residue was washed with chloroform, acetone, and cold dimethylformamide (DMF) to obtain 90 mg (yield: 80%) of the target compound in black. The target substance is generally insoluble or infusible, but slightly dissolved (less than 0.5% of the entire target substance) in hot DMF at 90 ° C. The soluble part was subjected to TOF-Mass spectrum analysis, and oligomers were identified from the following peaks corresponding to the calculated values of n = 6 to 9. The insoluble matter was found to be a target substance having n ≧ 10 as a main component.

M/Z=6824,6825(n=6:分子量計算値=6822.377)
=7940,7941(n=7:分子量計算値=7938.085)
=9055,9056(n=8:分子量計算値=9053.793)
=10171,10172(n=9:分子量計算値=10169.500)
M / Z = 6824,6825 (n = 6: calculated molecular weight = 6822.377)
= 7940,7941 (n = 7: calculated molecular weight = 7938.085)
= 9055,9056 (n = 8: calculated molecular weight = 9053.793)
= 10171,10172 (n = 9: calculated molecular weight = 10169.500)

また、熱DMF中での紫外可視スペクトルの極大吸収波長は、モノマーのCoHDANcOCが552nmであるのに対し、目的物可溶部は546nmにシフトしており、一次元ポリマーの存在を確認した。赤外吸収スペクトルでは、2233cm−1のシアノ基伸縮振動に加えて2117cm−1のイソシアニド伸縮振動が認められ、目的物構造が支持された。 The maximum absorption wavelength of the ultraviolet-visible spectrum in hot DMF was 552 nm for CoHDANcOC of the monomer, while the soluble portion of the target substance was shifted to 546 nm, confirming the presence of a one-dimensional polymer. The infrared absorption spectrum, isocyanide stretching vibration 2117cm -1 was observed in addition to the cyano group stretching vibration 2233cm -1, the desired product structure is supported.

元素分析:C51.82%, H0.379%, N42.55%; C/N1.218
10量体([CoHDANcOC(dib)]10)としての計算値:C51.937%,H0.393%,
N42.448%,Co5.222%,C/N1.224
n量体([CoHDANcOC(dib)]n n→∞)としての計算値:C 51.672%, H0.361%,
N42.684%,Co5.282%,C/N 1.211
Elemental analysis: C51.82%, H0.379%, N42.55%; C / N1.218
Calculated value as a 10-mer ([CoHDANcOC (dib)] 10 ): C51.937%, H0.393%,
N42.448%, Co5.222%, C / N1.224
Calculated value as n-mer ([CoHDANcOC (dib)] n n → ∞): C 51.672%, H0.361%,
N42.684%, Co5.282%, C / N 1.211

FeHDANcOC一次元重合体の調製
100mg(0.10mmol)のFeHDANcOCを用いた他は実施例5と同様に反応を行い、黒色の目的物79mg(収率70%)を得た。目的物は一般に不溶・不融であるが、90℃の熱DMFにわずかに(目的物全体の0.5%以下)溶解した。その可溶部についてTOF−Massスペクトル分析を行い、n=6〜9の計算値に相当する下記のピークからオリゴマーを確認した。不溶物はn≧10を主成分とする目的物であることが分かった。
Preparation of FeHDANcOC one-dimensional polymer The reaction was carried out in the same manner as in Example 5 except that 100 mg (0.10 mmol) of FeHDANcOC was used, to obtain 79 mg (yield 70%) of a black target product. The target substance is generally insoluble / infusible, but slightly dissolved (less than 0.5% of the entire target substance) in hot DMF at 90 ° C. The soluble part was subjected to TOF-Mass spectrum analysis, and oligomers were identified from the following peaks corresponding to the calculated values of n = 6 to 9. The insoluble matter was found to be a target having n ≧ 10 as a main component.

M/Z=6805,6806(n=6:分子量計算値=6803.848)
=7918,7919(n=7:分子量計算値=7916.467)
=9031,9032(n=8:分子量計算値=9029.087)
=10143,10144(n=9:分子量計算値=10141.707)
M / Z = 6805,6806 (n = 6: calculated molecular weight = 6803.848)
= 7918, 7919 (n = 7: calculated molecular weight = 7916.467)
= 9031, 9032 (n = 8: calculated molecular weight = 9029.087)
= 10143, 10144 (n = 9: calculated molecular weight = 10141.707)

また、熱DMF中での紫外可視スペクトルの極大吸収波長は、モノマーのFeHDANcOCが552nmであるのに対し、目的物可溶部は546nmにシフトしており、一次元ポリマーの存在を確認した。赤外吸収スペクトルでは、2233cm−1のシアノ基伸縮振動に加えて2117 cm−1イソシアニド伸縮振動が認められ、目的物構造が支持された。 Further, the maximum absorption wavelength of the ultraviolet-visible spectrum in hot DMF was 552 nm for the monomer FeHDANcOC, while the soluble portion of the target substance was shifted to 546 nm, confirming the presence of the one-dimensional polymer. The infrared absorption spectrum, 2117 cm -1 isocyanide stretching vibration in addition to the cyano group stretching vibration 2233cm -1 was observed, the desired product structure is supported.

元素分析:C 51.94%,H 0.384%,N42.77%, C/N 1.214
10量体([FeHDANcOC(dib)]10)としての計算値:C52.080%,H0.394%,
N42.564%,Fe 4.962%,C/N1.224
n量体([FeHDANcOC(dib)]n n→∞)としての計算値:C51.816%,H0.362% ,
N2.803%,Fe42.803%, C/N 1.211
Elemental analysis: C 51.94%, H 0.384%, N42.77%, C / N 1.214
Calculated value as a 10-mer ([FeHDANcOC (dib)] 10 ): C52.080%, H0.394%,
N42.564%, Fe 4.962%, C / N1.224
Calculated value as n-mer ([FeHDANcOC (dib)] n n → ∞): C51.816%, H0.362%,
N2.803%, Fe42.803%, C / N 1.211

CoHDZNcOC一次元重合体を用いたリチウム二次電池の評価
電池の評価には2016コイン型電池を用い、正極には実施例5で得られたCoHDANcOC(dib)一次元重合体50wt/wt%に導電助剤としてアセチレンブラック30wt/wt%を入れポリフッ化ビニリデン20wt/wt%にて結着したものを100μm厚の薄膜として用いた。また負極に厚さ130μmの金属リチウム箔、電解液に0.2MLiPF/ジメトキシエタン溶液を用い、空孔率40%、厚さ25μmのポリプロピレン製不織布のセパレータにしみ込ませて組み込んだ。充電は4.5Vを上限電圧とした定電流充電形式にて行い、放電は(1)ポリマーの3〜5電子分に相当する容量の定容量終止定電流放電と、(2)1.0Vを下限電圧(カットオフ電圧)とした定電位終止定電流放電の二通りで行った。結果を表3に示す。
Evaluation of Lithium Secondary Battery Using CoHDZNcOC One-Dimensional Polymer A 2016 coin-type battery was used for battery evaluation, and a conductive material was used for the positive electrode to be 50 wt / wt% of CoHDANcOC (dib) one-dimensional polymer obtained in Example 5. A thin film having a thickness of 100 μm was prepared by adding 30 wt / wt% of acetylene black as an auxiliary agent and binding with 20 wt / wt% of polyvinylidene fluoride. The negative electrode was made of a metallic lithium foil having a thickness of 130 μm, and a 0.2 M LiPF 6 / dimethoxyethane solution was used as an electrolytic solution, soaked into a polypropylene nonwoven fabric separator having a porosity of 40% and a thickness of 25 μm. Charging is performed in a constant current charging mode with an upper limit voltage of 4.5 V, and discharging is performed by (1) constant capacity termination constant current discharging of a capacity corresponding to 3 to 5 electrons of the polymer, and (2) 1.0 V. The test was performed in two ways: constant potential termination and constant current discharge at the lower limit voltage (cutoff voltage). Table 3 shows the results.

Figure 2004161754
Figure 2004161754

結果から、CoHDANcOC(dib)一次元重合体はエネルギー密度、出力電圧が高く、サイクル寿命も長く、電池材料として有用であることがわかった。   From the results, it was found that the CoHDANcOC (dib) one-dimensional polymer has a high energy density, a high output voltage, a long cycle life, and is useful as a battery material.

FeHDANcOC一次元重合体を用いたリチウム二次電池の評価
正極成分にCoHDANcOC(dib)重合体の代わりに実施例6で得られたFeHDANcOC(dib)重合体50wt/wt%を用いた他は実施例7と同様に充放電試験を行った。結果を表4に示す。
Evaluation of lithium secondary battery using one-dimensional FeHDANcOC polymer Except for using 50 wt / wt% of FeHDANcOC (dib) polymer obtained in Example 6 in place of CoHDANcOC (dib) polymer for the positive electrode component, A charge / discharge test was conducted in the same manner as in No. 7. Table 4 shows the results.

Figure 2004161754
Figure 2004161754

結果から、FeHDANcOC(dib)一次元重合体はエネルギー密度、出力電圧が高く、サイクル寿命も長く、電池材料として有用であることがわかった。   From the results, it was found that the FeHDANcOC (dib) one-dimensional polymer has a high energy density, a high output voltage, a long cycle life, and is useful as a battery material.

CuHDANcOC二次元重合体の調製(300℃)
精密蒸留を行ったアセトンに200mg(0.20mmol)のCuHDANcOCを溶解させ、耐熱性ガラス製反応管の内壁に塗布して薄膜を作成した。反応管を1mmHg以下の減圧下で300℃に加熱し、12時間反応させた。放冷後、アセトン、DMFにより洗浄し、目的の黒色粉末150mg(収率75%)を得た。目的物は一般に不溶・不融であるが、150℃のヘキサメチルホスホリックトリアミド(HMPT)にわずかに溶解した。その可溶部についてTOF−Massスペクトル分析を行い、n=4やn=7の計算値に相当する下記のピークからオリゴマーを確認した。
Preparation of CuHDANcOC two-dimensional polymer (300 ° C)
200 mg (0.20 mmol) of CuHDANcOC was dissolved in acetone subjected to precision distillation, and applied to the inner wall of a heat-resistant glass reaction tube to form a thin film. The reaction tube was heated to 300 ° C. under a reduced pressure of 1 mmHg or less, and reacted for 12 hours. After cooling, the mixture was washed with acetone and DMF to obtain 150 mg (yield: 75%) of the target black powder. The target substance was generally insoluble / insoluble, but slightly dissolved in hexamethylphosphoric triamide (HMPT) at 150 ° C. The soluble portion was subjected to TOF-Mass spectrum analysis, and oligomers were confirmed from the following peaks corresponding to the calculated values of n = 4 and n = 7.

M/Z=3970,3971(n=4:分子量計算値=3968.759)
=6947,6948(n=7:分子量計算値=6945.328)
元素分析: C 48.37%, H 0.0%, N 45.11%, C/N 1.072
計算値: C 48.421%, H 0.0%, N 45.174%, Cu 6.405%, C/N 1.072
M / Z = 3970,3971 (n = 4: calculated molecular weight = 3968.759)
= 6947,6948 (n = 7: calculated molecular weight = 6945.328)
Elemental analysis: C 48.37%, H 0.0%, N 45.11%, C / N 1.072
Calculated values: C 48.421%, H 0.0%, N 45.174%, Cu 6.405%, C / N 1.072

また、HMPT中での紫外可視スペクトルの極大吸収波長は、モノマーのCuHDANcOCが574nmであるのに対し、目的物可溶部は587nmに長波長シフトしたことから、二次元オリゴマーの存在を確認した。赤外吸収スペクトルでは、2230cm−1のシアノ基の大部分が残存しており、オリゴマーとなってもアクセプター性が損なわれていないことがわかった。 In addition, the maximum absorption wavelength of the ultraviolet-visible spectrum in HMPT was such that the target soluble portion was shifted to a long wavelength of 587 nm, while the CuHDANcOC of the monomer was 574 nm, and thus the presence of the two-dimensional oligomer was confirmed. In the infrared absorption spectrum, most of the cyano group at 2230 cm −1 remained, and it was found that the acceptor property was not impaired even when the oligomer was obtained.

CuHDANcOC二次元重合体の調製(350℃、400℃)
加熱温度を300℃の代わりに350℃、400℃とした他は実施例9と同様にして反応を行い、目的の黒色粉末を180mg(収率90%)(350℃)、190mg(収率95%)(400℃)を得た。目的物は不溶・不融であり、150℃のHMPTで抽出される部分はなく、また赤外吸収スペクトルでは二次元重合体に特有の不明瞭な特徴のないスペクトルを示した。
Preparation of CuHDANcOC two-dimensional polymer (350 ° C, 400 ° C)
The reaction was carried out in the same manner as in Example 9 except that the heating temperature was changed to 350 ° C. and 400 ° C. instead of 300 ° C., and 180 mg (yield 90%) (350 ° C.) and 190 mg (yield 95 %) (400 ° C.). The target product was insoluble and infusible, there was no portion extracted by HMPT at 150 ° C., and the infrared absorption spectrum showed a spectrum without an unclear characteristic characteristic of a two-dimensional polymer.

元素分析(350℃): C 48.33, H 0.0, N 45.12%, C/N 1.071
元素分析(400℃): C 48.30, H 0.0, N 45.22%, C/N 1.068
計算値: C 48.421, H 0.0, N 45.174, Cu 6.405%, C/N 1.072
Elemental analysis (350 ° C): C 48.33, H 0.0, N 45.12%, C / N 1.071
Elemental analysis (400 ° C): C 48.30, H 0.0, N 45.22%, C / N 1.068
Calculated value: C 48.421, H 0.0, N 45.174, Cu 6.405%, C / N 1.072

二次元ポリマー化は反応温度が350℃、400℃と高温になる程速く進行することがわかった。   It has been found that the two-dimensional polymerization proceeds more rapidly as the reaction temperature increases to 350 ° C. and 400 ° C.

NiHDANcOC二次元重合体の調製(300℃)
NiCuHDANcOC200mgを用いた他は実施例9と同様にして目的の黒色粉末160mg(収率80%)を得た。目的物は一般に不溶・不融であるが、150℃のHMPTにわずかに溶解した。その可溶部についてTOF−Massスペクトル分析を行い、n=4やn=7の計算値に相当する下記のピークからオリゴマーを確認した。
Preparation of NiHDANcOC two-dimensional polymer (300 ° C)
Except that 200 mg of NiCuHDANcOC was used, 160 mg (yield: 80%) of the target black powder was obtained in the same manner as in Example 9. The target substance was generally insoluble / infusible, but slightly dissolved in 150 ° C. HMPT. The soluble portion was subjected to TOF-Mass spectrum analysis, and oligomers were confirmed from the following peaks corresponding to the calculated values of n = 4 and n = 7.

M/Z=3951,3952(n=4:分子量計算値=3949.348,)
=6913,6914(n=7:分子量計算値=6911.359)
元素分析: C 48.72, H 0.0, N 45.44%, C/N 1.072
計算値:C48.659%, H0.0%, N 45.396, Ni 5.945%, C/N 1.072
M / Z = 3951,3952 (n = 4: calculated molecular weight = 3949.348,)
= 6913,6914 (n = 7: calculated molecular weight = 6911.359)
Elemental analysis: C 48.72, H 0.0, N 45.44%, C / N 1.072
Calculated values: C48.659%, H0.0%, N 45.396, Ni 5.945%, C / N 1.072

また、HMPT中での紫外可視スペクトルの極大吸収波長は、モノマーのNiHDANcOCが572nmであるのに対し、目的物可溶部は588nmに長波長シフトしたことから、二次元オリゴマーの存在を確認した。赤外吸収スペクトルでは、2230cm−1のシアノ基の大部分が残存しており、オリゴマーとなってもアクセプター性が損なわれていないことがわかった。 The maximum absorption wavelength of the ultraviolet-visible spectrum in HMPT was 572 nm for NiHDANcOC of the monomer, while the soluble portion of the target product was shifted to 588 nm by long wavelength, confirming the presence of the two-dimensional oligomer. In the infrared absorption spectrum, most of the cyano group at 2230 cm −1 remained, and it was found that the acceptor property was not impaired even when the oligomer was obtained.

CuHDZNcOC二次元重合体を用いたリチウム二次電池の評価
正極成分に実施例9、10で得られたCuHDZNcOCオリゴマーを用いた他は、実施例7と同様にして電池を作成した。充電は4.6Vを上限電圧とした定電流充電形式にて行い、放電は(1)ポリマーの3〜5電子分に相当する容量の定容量終止定電流放電、(2)1.0Vを下限電圧(カットオフ電圧)とした定電位終止定電流放電の二通りで行った。結果を表5に示す。
Evaluation of lithium secondary battery using CuHDZNcOC two-dimensional polymer A battery was prepared in the same manner as in Example 7, except that the CuHDZNcOC oligomer obtained in Examples 9 and 10 was used as a positive electrode component. Charging is performed in a constant current charging mode with an upper limit voltage of 4.6 V. Discharging is (1) constant capacity termination constant current discharging of a capacity corresponding to 3 to 5 electrons of the polymer, and (2) 1.0 V as a lower limit. The voltage (cutoff voltage) was used as a constant potential termination constant current discharge. Table 5 shows the results.

Figure 2004161754
Figure 2004161754

結果から、(2)の放電条件において、オリゴマー作成温度による相違が明瞭に認められ、300℃で調製したシアノ基の残存量(=アクセプター性)が最も大きいオリゴマーが良好な結果を与えた。   From the results, under the discharge conditions of (2), a difference depending on the oligomer formation temperature was clearly recognized, and the oligomer having the largest remaining cyano group (= acceptor property) prepared at 300 ° C. gave a good result.

NiHDANcOC二次元重合体を用いたリチウム二次電池の評価
正極成分にCuHDANcOC重合体の代わりに実施例11で得られたNiHDANcOC重合体50wt/wt%を用いた他は実施例12と同様に充放電試験を行った。結果を表6に示す。
Evaluation of lithium secondary battery using NiHDANcOC two-dimensional polymer Charge and discharge in the same manner as in Example 12 except that 50 wt / wt% of NiHDANcOC polymer obtained in Example 11 was used instead of CuHDANcOC polymer for the positive electrode component The test was performed. Table 6 shows the results.

Figure 2004161754
Figure 2004161754

結果から、NiHDANcOC二次元重合体は電池容量、エネルギー密度、出力電圧が高く、サイクル寿命も長く、電池材料として有用であることがわかった。   From the results, it was found that the NiHDANcOC two-dimensional polymer has high battery capacity, energy density, and output voltage, has a long cycle life, and is useful as a battery material.

実施例で測定したCVを示す図である。It is a figure showing CV measured in the example.

Claims (6)

式[I〕
Figure 2004161754
[式中、Mは水素(2H)、金属、金属酸化物、金属水酸化物、アシル金属、アルコキシ金属、シロキシ金属又は金属ハロゲン化物を示す。]で表されるヘキサデカアザナフタロシアニン化合物。
Formula [I]
Figure 2004161754
[Wherein, M represents hydrogen (2H), metal, metal oxide, metal hydroxide, acyl metal, alkoxy metal, siloxy metal, or metal halide. ] The hexadecaazana phthalocyanine compound represented by these.
式[I]
Figure 2004161754
[式中、Mは、金属、金属酸化物、金属水酸金属、アシル金属、アルコキシ金属、シロキシ金属又は金属ハロゲン化物を示す。]で表されるヘキサデカアザナフタロシアニン化合物が、原子団を介してMが一軸上に配置するように結合した式[II]
Figure 2004161754
[式中、Mは式[I]におけるMと同じものを示し、Lは原子団を示す。]で表されるヘキサデカアザナフタロシアニン化合物の一次元重合体。
Formula [I]
Figure 2004161754
[In the formula, M represents a metal, a metal oxide, a metal hydroxide metal, an acyl metal, an alkoxy metal, a siloxy metal, or a metal halide. [II] in which a hexadecaazanaphthalocyanine compound represented by the formula [II] is bonded via an atomic group so that M is arranged uniaxially.
Figure 2004161754
[Wherein, M represents the same as M in the formula [I], and L represents an atomic group. The one-dimensional polymer of a hexadecaazana phthalocyanine compound represented by the following formula:
原子団Lが、p−ジイソシアノベンゼンであることを特徴とする請求項2記載のヘキサデカアザナフタロシアニン化合物の一次元重合体。 The one-dimensional polymer of a hexadecazanaphthalocyanine compound according to claim 2, wherein the atomic group L is p-diisocyanobenzene. オリゴマーであることを特徴とする請求項2又は3記載のヘキサデカアザナフタロシアニン化合物の一次元重合体。 The one-dimensional polymer of the hexadecaazanaphthalocyanine compound according to claim 2, which is an oligomer. 式[I]
Figure 2004161754
[式中、Mは水素(2H)、金属、金属酸化物、金属水酸化物、アシル金属、アルコキシ金属、シロキシ金属又は金属ハロゲン化物を示す。]で表されるヘキサデカアザナフタロシアニン化合物の末端のシアノ基が相互に結合した式[III]
Figure 2004161754
[式中、Mは式[I]におけるMと同じものを示す。]で表されるヘキサデカアザナフタロシアニン化合物の二次元重合体。
Formula [I]
Figure 2004161754
[Wherein, M represents hydrogen (2H), metal, metal oxide, metal hydroxide, acyl metal, alkoxy metal, siloxy metal, or metal halide. [III] in which terminal cyano groups of a hexadecazanaphthalocyanine compound represented by the formula
Figure 2004161754
[Wherein, M represents the same as M in the formula [I]. And a two-dimensional polymer of a hexadecazana phthalocyanine compound represented by the formula:
オリゴマーであることを特徴とする請求項5記載のヘキサデカアザナフタロシアニン化合物の二次元重合体。
The two-dimensional polymer of the hexadecaazanaphthalocyanine compound according to claim 5, which is an oligomer.
JP2003360049A 2002-10-22 2003-10-20 Hexadeca-azanaphthalocyanine compound and its polymer Pending JP2004161754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003360049A JP2004161754A (en) 2002-10-22 2003-10-20 Hexadeca-azanaphthalocyanine compound and its polymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002306781 2002-10-22
JP2003360049A JP2004161754A (en) 2002-10-22 2003-10-20 Hexadeca-azanaphthalocyanine compound and its polymer

Publications (1)

Publication Number Publication Date
JP2004161754A true JP2004161754A (en) 2004-06-10

Family

ID=32828042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003360049A Pending JP2004161754A (en) 2002-10-22 2003-10-20 Hexadeca-azanaphthalocyanine compound and its polymer

Country Status (1)

Country Link
JP (1) JP2004161754A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007142216A1 (en) * 2006-06-05 2007-12-13 Idemitsu Kosan Co., Ltd. Organic electroluminescent device and material for organic electroluminescent device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007142216A1 (en) * 2006-06-05 2007-12-13 Idemitsu Kosan Co., Ltd. Organic electroluminescent device and material for organic electroluminescent device
JP5213705B2 (en) * 2006-06-05 2013-06-19 出光興産株式会社 ORGANIC ELECTROLUMINESCENT ELEMENT AND MATERIAL FOR ORGANIC ELECTROLUMINESCENT ELEMENT

Similar Documents

Publication Publication Date Title
DE19614249A1 (en) Polysilanes, their manufacturing processes and starting materials therefor
EP1391952A2 (en) Salts of pentacyclic or tetrapentaline derived anions, and their uses as ionic conductive materials
WO2012078005A2 (en) Compounds having hole conducting property, co-adsorbent body comprising same, and dye-sensitized solar cell comprising the co-adsorbent body
JP2022021347A (en) Organic compound, and organic photoelectric conversion element
JP2021521304A (en) Squaric acid-based polymers, their manufacturing methods and their use
Altun et al. Coumarin-substituted manganese phthalocyanines: synthesis, characterization, photovoltaic behaviour, spectral and electrochemical properties
KR20140005958A (en) Phthalocyanine dyes, method of making them, and their use in dye sensitized solar cells
JP2011060669A (en) Photoelectric conversion element, method of manufacturing the same, and metal phthalocyanine complex dye
Zhang et al. Poly (3-dodedyl-2, 5-thienylenevinylene) s from the Stille coupling and the Horner–Emmons reaction
JP2004161754A (en) Hexadeca-azanaphthalocyanine compound and its polymer
JP4543486B2 (en) Thiophene derivatives and polymers thereof
JP2005112758A (en) Hexadecaazanaphthalocyanine compound and its polymer
JP7162847B2 (en) Polymer compound and its production method, organic semiconductor material containing the same, and organic solar cell containing the same
JP6056605B2 (en) Organic dye and photosensitive element
KR101290406B1 (en) Compounds with hole conducting property, their use as co-adsorbent materials, and dye-sensitized solar cell comprising the same
WO2004037825A1 (en) Hexadecaazanaphthalo cyanine compound and polymer thereof
JP2012072228A (en) Acrylic acid-based compound, and dye-sensitized solar cell using the compound
JP3552002B2 (en) Metal complex polymer
KR101499476B1 (en) Porphyrin Derivatives, Organic Dye Sensitizers Containing The Same for Highly Efficient Dye-sensitized Solar Cells And Dye-sensitized Solar Cells Containing The Same
DE60017728T2 (en) ORGANIC SEMICONDUCTORS FROM STATISTICAL COPOLYMERS
KR102123902B1 (en) Benzothiadiazole compound and perovskite solar cell comprising the same
JPH0931350A (en) Octakis(2-substd. ethenyl)phthalocyanine derivative and its production
KR101544040B1 (en) Dye for dye-sensitized solar cell and a dye sensitized solar cell using the same
KR101865611B1 (en) Dyes for High Efficient Dye-Sensitized Solar Cells, Preparation Method Thereof and Solar Cells comprising the same
DE4039519C2 (en)

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040303

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20040614