JP3552002B2 - Metal complex polymer - Google Patents

Metal complex polymer Download PDF

Info

Publication number
JP3552002B2
JP3552002B2 JP23668596A JP23668596A JP3552002B2 JP 3552002 B2 JP3552002 B2 JP 3552002B2 JP 23668596 A JP23668596 A JP 23668596A JP 23668596 A JP23668596 A JP 23668596A JP 3552002 B2 JP3552002 B2 JP 3552002B2
Authority
JP
Japan
Prior art keywords
polymer
metal complex
complex polymer
integer
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23668596A
Other languages
Japanese (ja)
Other versions
JPH1081754A (en
Inventor
満夫 吉良
智司 戸倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP23668596A priority Critical patent/JP3552002B2/en
Publication of JPH1081754A publication Critical patent/JPH1081754A/en
Application granted granted Critical
Publication of JP3552002B2 publication Critical patent/JP3552002B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Silicon Polymers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、新規な金属錯体ポリマーに関し、より詳しくは光導電性材料として使用される金属錯体ポリマーに関する。
【0002】
【従来の技術】
従来、光導電性材料としては、下記式
【0003】
【化2】

Figure 0003552002
(式中、pは数十〜数万の整数を表す)で表されるようなπ共役高分子系の材料や、下記式
【0004】
【化3】
Figure 0003552002
(式中、Eは、Si、Ge、またはSnを表し、qは数百〜数万の整数を表す)で表されるσ共役高分子系の材料が提案されている。
【0005】
【発明が解決しようとする課題】
上記π共役高分子系の材料は、可視光により光導電性を示すが、効率が低いため、通常はフラーレンなどの電子受容性の化合物を添加して使用せざるを得ない。また、π共役高分子系の材料は有機溶媒に対する溶解性が悪いため、製膜法が限られているという問題があった。
一方、σ共役高分子系の材料は、ホール移動度は大きいが、可視領域に吸収がなく、紫外光にしか光導電性を示さないという問題があった。また、光に対する耐久性が低いため、実用性に乏しかった。
従って、本発明は可視光にも光導電性を示し、製膜性に優れ、且つ耐光性の高い光導電性材料を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は、
【0007】
【化4】
Figure 0003552002
【0008】
(式中、Eは、Si、Ge、またはSnを表し、
Mは、遷移金属原子を表し、
Lは、配位子を表し、
Rは有機基を表し、
mは0〜3の整数を表し、
nは1〜4の整数を表し、
xは1〜6の整数を表し、
yは10〜100の整数を表し、
zは10以上の整数であって、y:zが0.1:0.9〜0.5:0.5の範囲である金属錯体ポリマーに関する。
【0009】
【発明の実施の形態】
Mで表される遷移金属原子の例としては、Ru、Os、Pt、Rh、Cr、W、Mo、Fe、Cu等が挙げられる。但し、合成の簡便さ、熱及び光耐久性、並びに耐酸化性などの観点から、Ruが好ましい。
Lで表される配位子の例としては、ビピリジン、ホスフィン、フェナントレンカルボニル等が挙げられる。
Rで表される有機基の例としては、未置換または置換された脂肪族アルキル基、未置換または置換された脂環式基、未置換または置換された芳香族基が挙げられる。未置換または置換された脂肪族アルキル基は、例えば、炭素原子数1〜10個、好ましくは1〜6個の低級アルキル基、特に好ましくは3〜4個の炭素原子を有するアルキル基ものである。その例として、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル、n−ヘキシルが挙げられる。芳香族基は、好ましくは6〜12個、特に6個の炭素原子を有するものである。その例として、フェニル基、ナフチル、トルイル、ペンタフルオロフェニルが挙げられる。
【0010】
mは遷移金属イオンのイオン価であり、遷移金属の種類に応じて0〜3の整数を表す。
nは遷移金属イオンに配位する配位子の数であり、遷移金属のイオン価と配位子の種類に応じて1〜4の整数である。
xは1〜6、好ましくは2〜6、特に2〜4の整数を表す。
yは10〜100の整数を表す。
zは10以上の整数であって、y:zの比に応じて変化する。また、y:zの比は、0.1:0.9〜0.5:0.5の範囲であり、好ましくは0.3:0.7〜0.4:0.6の範囲である。x及びy:zの比によりポリマー中に含まれる遷移金属イオンの割合が変化する。
本発明の金属錯体ポリマーの数平均分子量(Mn)は、約1,000 〜100,000 の範囲であり、各種溶媒に対する溶解性という観点から、好ましくは1〜2万の範囲である。
本発明の金属錯体ポリマーの重量平均分子量(Mw)は、約1,000 〜100,000 の範囲であり、溶解性、製膜性という観点から、好ましくは1〜2万である。
【0011】
金属錯体ポリマーの製法
本発明の金属錯体ポリマーは、下記の方法により合成され得る。
(A) 出発物質の製造
下記の反応式に従い、出発物質(II)を製造する。
【0012】
【化5】
Figure 0003552002
(式中、Xはハロゲン原子を表し、E,R,及びxは上記式(I)で定義した意味を表す)
(B) 出発物質(II)を用い、触媒の存在下、脱ハロゲン化カップリング反応を行うことにより、下記式で表されるポリマーを製造する。
【0013】
【化6】
Figure 0003552002
(式中、E,R,及びxは上記式(I)で定義した意味を表し、wは10〜100の整数を表す)
【0014】
触媒としては、ニッケル、パラジウムを使用し得る。
溶媒としては、THF、DMF等を使用し得る。
反応温度は、通常50〜100℃の範囲であり、溶媒としてTHFを用いる場合60〜66℃の範囲、特に66℃であり、溶媒としてDMFを用いる場合70〜90℃の範囲、特に80℃である。
反応時間は、通常2〜6時間、好ましくは2〜3時間時間である。
(C) (B)で得られたポリマーを、適当な溶媒中、還流下で遷移金属錯体と反応させることにより、式(I)の金属錯体ポリマーが得られる。
【0015】
【化7】
Figure 0003552002
(式中、E,M,L,R,m,n,w,x,y,zは、上記で定義した意味を表す)
溶媒としては、1,2−ジクロロエタン、塩化メチレン、エタノール、トルエン等を使用し得る。
反応温度は、通常20〜110℃、好ましくは70〜110℃の範囲である。
反応時間は、通常1〜24時間、好ましくは5〜10時間の範囲である。
【0016】
この反応において、反応に用いる遷移金属錯体を変えることにより、異なる遷移金属が配位された金属錯体ポリマーを得ることができ、これにより、可視光領域、近赤外領域の波長にも対応させることが可能になる。例えばルテニウム、白金を配位させた場合には、400 〜500 nm付近、オスミウムを配位させた場合には500 〜700nm 付近の波長の光に対応し得る光導電性材料を得ることができる。また、各種レーザー (半導体レーザー等) に対応し得る光導電性材料を得ることもできる。
種々の遷移金属を配位した金属錯体ポリマーの合成例を下記の反応式にまとめて示す。
【0017】
【化8】
Figure 0003552002
【0018】
本発明の金属錯体ポリマーは、有機溶媒に対する溶解性に優れており、キャスティング、スピンコーティング、ディッピング等の方法により容易に製膜し得る。従って、光導電素子、フォトダイオード、フォトトランジスタ、太陽電池、電子写真用感光材料等の光電変換素子等として、幅広く利用され得る。
【0019】
【実施例】
以下、本発明を実施例に基づいてさらに説明する。
製造実施例:ポリ(テトラプロピルジシラニレン−2,2’−ビピリジン−5,5’−ジイル)のルテニウム錯体の製造
A) 1,2− ビス (2− ブロモ −5− ピリジル テトラプロピルジシランの合成
【0020】
【化9】
Figure 0003552002
【0021】
2,5−ジブロモピリジン (12.1g)と1.7mol/lのn−ブチルリチウム溶液(30ml)を、ジエチルエーテル(150ml) 中、−78℃で反応させて、2−ブロモ−5− リチオピリジンを得た。これに、ジエチルエーテル10mlに溶解させた1,2−ジクロロ−1,1,2,2− テトラプロピルジシラン(7.24g) を加え、−78℃で反応させて、1,2−ビス (2−ブロモ−5− ピリジル) テトラプロピルジシラン(7.59g) を得た (収率58%)。B) ポリ(テトラプロピルジシラニレン−2,2’−ビピリジン−5,5’−ジイル)の合成
【0022】
【化10】
Figure 0003552002
【0023】
Ni(PPhBr(0.87g, 1.17mmol), 亜鉛粉末(1.50g, 22.9mmol) 及びEtNI (1.53g, 5.95mmol) を二首フラスコに入れた。アルゴン下、5 mlの乾燥THF を、シリンジを介してゴム製セプタム(隔壁)を通して添加した。得られた混合物を室温で10分間攪拌した後、THF (10ml)中のA)で得られた1,2−ビス(2− ブロモ−5− ピリジル) テトラプロピルジシラン (6.40g, 11.8 mmol) の溶液をシリンジを介して添加した。得られた反応混合物を、還流下で2時間加熱し、その後濾過した。濾液をアンモニア水溶液に注いだ。有機層を抽出し、溶媒を留去した後、反応混合物を再沈殿により、純粋な標記ポリマー2.92 g (収率65%)が得られた。GPC によるMw=11000, Mn=7000, ポリスチレン標準。
該ポリマーは、一般的な溶媒、例えばジクロロメタン、クロロホルム、ベンゼン、及びTHF に非常に良く溶けた。
【0024】
該ポリマーのNMRの結果を下記に示す。
H NMR (CDCl): δ0.94−1.02 (m, 20H), 1.30−1.40(m,8H), 7.73−7.76(m,2H), 8.27−8.32(m,2H), 8.53−8.65(m,2H); 13 C NMR (CDCl): δ14.4 (m), 18.1(m), 18.7, 123.3(m), 132.9(m), 142.5(m), 154.2(m), 155.9(m); 29Si NMR : (CDCl) δ−20.0
C)ポリ(テトラプロピルジシラニレン−2,2’−ビピリジン−5,5’−ジイル)のルテニウム錯体の製造
【0025】
【化11】
Figure 0003552002
B)で製造されたポリ(テトラプロピルジシラニレン−2,2’−ビピリジン−5,5’−ジイル) 1gと、次式:
【0026】
【化12】
Figure 0003552002
で表されるビス(ビピリジン)ルテニウム錯体1gを10mlの1,2−ジクロロエタンに溶解し、終夜加熱環流した。未反応物をシリカゲルカラムクロマトグラフィーで除去し、標記のルテニウム錯体ポリマー (1.26g)を得た(収率63%)。
【0027】
NMRの結果を下記に示す。
H NMR (CDCl): δ0.80−1.43 (m, 28H), 7.30−8.68 (m,11.6H); 13 C NMR (CDCl):δ14.3 (m), 18.1(m), 120.1(m), 124.1(m), 128.1(m), 138.0(m), 143.1(m), 151.3(m), 153.8(m), 156.2(m); 29Si NMR (CDCl): δ−19.9(m), −19.4 (m) 。
NMRの結果より、y:zの比が0.35:0.65であることが明らかである。
【0028】
試験例1:
製造実施例のB)で製造されたポリ(テトラプロピルジシラニレン−2,2’−ビピリジン−5,5’−ジイル) (ポリマー1)と、C)で製造されたルテニウム錯体ポリマー(ポリマー2)の吸収スペクトル (ジクロロメタン中)を調べた。結果を図1に示す。図中、ポリマー1のスペクトルを1で示し、ポリマー2のスペクトルを2で示した。ポリマー1及びポリマー2のいずれも、ビピリジンのπ−π遷移帯の吸収が300nm 付近に認められた。また、ポリマー2の460nm 付近の広い吸収は、金属から配位子への電荷移動に由来する。
【0029】
試験例2:
製造実施例1で得られた本発明の金属錯体ポリマーの耐光性を調べるために、空気中、キセノンランプで400nm以上の波長の光を24時間照射したところ、吸収スペクトルに変化は認められなかった。これより、本発明の金属錯体ポリマーが光により分解されておらず、高い耐光性を有することが明らかである。
試験例3:
製造実施例で製造されたルテニウム錯体ポリマーの光導電性を、図2に示すサンドイッチ型セルにより下記の方法により測定した。
上記で得られたルテニウム錯体ポリマーを1,2−ジクロロエタンに溶解し、透明電極としてITO膜3をコートした石英ガラス基板4上にスピンコートしてルテニウム錯体ポリマーの薄膜5を形成した。さらに、その上に上部電極6としてアルミニウムを蒸着して素子を作製した。作製した素子に直流電源を接続して、光導電性を調べた。光を照射しない場合、ルテニウム錯体ポリマーは絶縁体であった。この素子にルテニウム錯体ポリマーの吸収のある460nm付近の光を透明電極側から照射したところ、光電流が観測された。
タングステンランプを分光し、光電流強度の波長依存性を測定した。このスペクトルと、ルテニウム錯体ポリマーの吸収スペクトルとを図3のグラフに示した。このグラフより、光電流強度のスペクトルがルテニウム錯体ポリマーの吸収スペクトルと同様の形状を持ち、光電流強度が波長依存性であることが明らかである。
【0030】
【発明の効果】
本発明の金属錯体ポリマーは、可視領域、近赤外領域にも対応できる。また、有機溶媒に対する溶解性に優れており、容易に製膜され得る。さらに、本発明の金属錯体ポリマーは耐光性にも優れている。従って、光導電性材料としての性能及び適用性に優れている。
【図面の簡単な説明】
【図1】製造実施例で製造されたポリ(テトラプロピルジシラニレン−2,2’−ビピリジン−5,5’−ジイル) とルテニウム錯体ポリマーの吸収スペクトルを示すグラフ。
【図2】製造実施例で製造された金属錯体ポリマーの試験方法を示す説明図。
【図3】製造実施例で製造されたルテニウム錯体ポリマーの吸収スペクトルと光電流波長依存性スペクトルを示すグラフ。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a novel metal complex polymer, and more particularly, to a metal complex polymer used as a photoconductive material.
[0002]
[Prior art]
Conventionally, a photoconductive material has the following formula:
Embedded image
Figure 0003552002
(Where p represents an integer of tens to tens of thousands), a π-conjugated polymer-based material represented by the following formula:
Embedded image
Figure 0003552002
(Where E represents Si, Ge, or Sn, and q represents an integer of several hundreds to tens of thousands), and a σ-conjugated polymer-based material represented by the following formula has been proposed.
[0005]
[Problems to be solved by the invention]
The above-mentioned π-conjugated polymer-based material exhibits photoconductivity by visible light, but has low efficiency, so that usually an electron-accepting compound such as fullerene must be added and used. In addition, since the π-conjugated polymer material has poor solubility in an organic solvent, there is a problem that the film forming method is limited.
On the other hand, the σ-conjugated polymer-based material has a problem that although it has a large hole mobility, it has no absorption in the visible region and exhibits photoconductivity only to ultraviolet light. In addition, the durability against light was low, so that it was not practical.
Accordingly, an object of the present invention is to provide a photoconductive material which exhibits photoconductivity even with visible light, has excellent film-forming properties, and has high light resistance.
[0006]
[Means for Solving the Problems]
The present invention
[0007]
Embedded image
Figure 0003552002
[0008]
(Wherein E represents Si, Ge, or Sn;
M represents a transition metal atom,
L represents a ligand,
R represents an organic group,
m represents an integer of 0 to 3,
n represents an integer of 1 to 4,
x represents an integer of 1 to 6,
y represents an integer of 10 to 100,
z is an integer of 10 or more, and relates to a metal complex polymer in which y: z is in the range of 0.1: 0.9 to 0.5: 0.5.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Examples of the transition metal atom represented by M include Ru, Os, Pt, Rh, Cr, W, Mo, Fe, Cu and the like. However, Ru is preferable from the viewpoints of simplicity of synthesis, heat and light durability, and oxidation resistance.
Examples of the ligand represented by L include bipyridine, phosphine, phenanthrenecarbonyl and the like.
Examples of the organic group represented by R include an unsubstituted or substituted aliphatic alkyl group, an unsubstituted or substituted alicyclic group, and an unsubstituted or substituted aromatic group. The unsubstituted or substituted aliphatic alkyl group is, for example, a lower alkyl group having 1 to 10, preferably 1 to 6 carbon atoms, particularly preferably an alkyl group having 3 to 4 carbon atoms. . Examples include methyl, ethyl, n-propyl, i-propyl, n-butyl and n-hexyl. Aromatic radicals are preferably those having 6 to 12, especially 6 carbon atoms. Examples include phenyl, naphthyl, toluyl, pentafluorophenyl.
[0010]
m is the valence of the transition metal ion, and represents an integer of 0 to 3 depending on the type of the transition metal.
n is the number of ligands coordinated to the transition metal ion, and is an integer of 1 to 4 depending on the valency of the transition metal and the type of ligand.
x represents an integer of 1 to 6, preferably 2 to 6, particularly 2 to 4.
y represents an integer of 10 to 100.
z is an integer of 10 or more and changes according to the ratio of y: z. The ratio of y: z is in the range of 0.1: 0.9 to 0.5: 0.5, preferably in the range of 0.3: 0.7 to 0.4: 0.6. . The ratio of transition metal ions contained in the polymer changes depending on the ratio of x and y: z.
The number average molecular weight (Mn) of the metal complex polymer of the present invention is in the range of about 1,000 to 100,000, and preferably in the range of 10,000 to 20,000 from the viewpoint of solubility in various solvents.
The weight average molecular weight (Mw) of the metal complex polymer of the present invention is in the range of about 1,000 to 100,000, and preferably from 10,000 to 20,000 from the viewpoint of solubility and film-forming properties.
[0011]
Method for producing metal complex polymer The metal complex polymer of the present invention can be synthesized by the following method.
(A) Production of Starting Material The starting material (II) is produced according to the following reaction formula.
[0012]
Embedded image
Figure 0003552002
(In the formula, X represents a halogen atom, and E, R, and x represent the meaning defined in the above formula (I).)
(B) A polymer represented by the following formula is produced by performing a dehalogenation coupling reaction in the presence of a catalyst using the starting material (II).
[0013]
Embedded image
Figure 0003552002
(In the formula, E, R, and x represent the meaning defined in the above formula (I), and w represents an integer of 10 to 100.)
[0014]
Nickel or palladium can be used as the catalyst.
THF, DMF and the like can be used as the solvent.
The reaction temperature is usually in the range of 50 to 100 ° C, when THF is used as the solvent, it is in the range of 60 to 66 ° C, particularly 66 ° C, and when DMF is used as the solvent, it is in the range of 70 to 90 ° C, particularly 80 ° C. is there.
The reaction time is usually 2 to 6 hours, preferably 2 to 3 hours.
(C) The polymer obtained in (B) is reacted with a transition metal complex in a suitable solvent under reflux to obtain a metal complex polymer of the formula (I).
[0015]
Embedded image
Figure 0003552002
(Where E, M, L, R, m, n, w, x, y, z represent the meanings defined above)
As the solvent, 1,2-dichloroethane, methylene chloride, ethanol, toluene and the like can be used.
The reaction temperature is usually in the range of 20 to 110 ° C, preferably 70 to 110 ° C.
The reaction time ranges usually from 1 to 24 hours, preferably from 5 to 10 hours.
[0016]
In this reaction, by changing the transition metal complex used in the reaction, it is possible to obtain a metal complex polymer in which a different transition metal is coordinated, thereby making it possible to cope with wavelengths in the visible light region and the near infrared region. Becomes possible. For example, when ruthenium or platinum is coordinated, a photoconductive material capable of coping with light having a wavelength of about 400 to 500 nm, and when osmium is coordinated, light having a wavelength of about 500 to 700 nm can be obtained. In addition, a photoconductive material that can be used with various lasers (such as a semiconductor laser) can be obtained.
Synthesis examples of metal complex polymers coordinated with various transition metals are shown in the following reaction formula.
[0017]
Embedded image
Figure 0003552002
[0018]
The metal complex polymer of the present invention has excellent solubility in an organic solvent, and can be easily formed by a method such as casting, spin coating, and dipping. Therefore, it can be widely used as a photoelectric conversion element such as a photoconductive element, a photodiode, a phototransistor, a solar cell, and a photosensitive material for electrophotography.
[0019]
【Example】
Hereinafter, the present invention will be further described based on examples.
Production Example: Production of ruthenium complex of poly (tetrapropyldisilanilen-2,2'-bipyridine-5,5'-diyl)
A) Synthesis of 1,2- bis (2 -bromo -5- pyridyl ) tetrapropyldisilane
Embedded image
Figure 0003552002
[0021]
2,5-Dibromopyridine (12.1 g) and a 1.7 mol / l n-butyllithium solution (30 ml) were reacted in diethyl ether (150 ml) at -78 ° C to give 2-bromo-5-lithiopyridine. Got. To this, 1,2-dichloro-1,1,2,2-tetrapropyldisilane (7.24 g) dissolved in 10 ml of diethyl ether was added, and reacted at -78 ° C. to obtain 1,2-bis (2 -Bromo-5-pyridyl) tetrapropyldisilane (7.59 g) was obtained (yield 58%). B) Synthesis of poly (tetrapropyldisilanilen-2,2′-bipyridine-5,5′-diyl)
Embedded image
Figure 0003552002
[0023]
Ni (PPh 3 ) 2 Br (0.87 g, 1.17 mmol), zinc powder (1.50 g, 22.9 mmol) and Et 4 NI (1.53 g, 5.95 mmol) were placed in a two-necked flask. Under argon, 5 ml of dry THF was added through a rubber septum (septum) via syringe. After stirring the resulting mixture at room temperature for 10 minutes, 1,2-bis (2-bromo-5-pyridyl) tetrapropyldisilane (6.40 g, 11.8) obtained with A) in THF (10 ml). mmol) was added via syringe. The resulting reaction mixture was heated under reflux for 2 hours and then filtered. The filtrate was poured into aqueous ammonia. After the organic layer was extracted and the solvent was distilled off, the reaction mixture was reprecipitated to obtain 2.92 g (yield: 65%) of the pure title polymer. Mw = 11000, Mn = 7000 by GPC, polystyrene standard.
The polymer was very soluble in common solvents such as dichloromethane, chloroform, benzene, and THF.
[0024]
The result of NMR of the polymer is shown below.
1 H NMR (CDCl 3): δ0.94-1.02 (m, 20H), 1.30-1.40 (m, 8H), 7.73-7.76 (m, 2H), 8.27 −8.32 (m, 2H), 8.53-8.65 (m, 2H); 13 C NMR (CDCl 3 ): δ 14.4 (m), 18.1 (m), 18.7, 123 0.3 (m), 132.9 (m), 142.5 (m), 154.2 (m), 155.9 (m); 29 Si NMR: (CDCl 3 ) δ-20.0
C) Preparation of ruthenium complex of poly (tetrapropyldisilanilen-2,2′-bipyridine-5,5′-diyl)
Embedded image
Figure 0003552002
1 g of the poly (tetrapropyldisilanilen-2,2′-bipyridine-5,5′-diyl) produced in B) and the following formula:
[0026]
Embedded image
Figure 0003552002
1 g of a bis (bipyridine) ruthenium complex represented by the formula was dissolved in 10 ml of 1,2-dichloroethane, and the mixture was heated under reflux overnight. Unreacted substances were removed by silica gel column chromatography to obtain the title ruthenium complex polymer (1.26 g) (yield 63%).
[0027]
The results of NMR are shown below.
1 H NMR (CD 2 Cl 2 ): δ 0.80-1.43 (m, 28H), 7.30-8.68 (m, 11.6 H); 13 C NMR (CD 2 Cl 2 ): δ 14. 3 (m), 18.1 (m), 120.1 (m), 124.1 (m), 128.1 (m), 138.0 (m), 143.1 (m), 151.3 (M), 153.8 (m), 156.2 (m); 29 Si NMR (CD 2 Cl 2 ): δ-19.9 (m), −19.4 (m).
From the result of NMR, it is clear that the ratio of y: z is 0.35: 0.65.
[0028]
Test example 1:
Poly (tetrapropyldisilanilen-2,2'-bipyridine-5,5'-diyl) (Polymer 1) prepared in Preparation Example B) and ruthenium complex polymer (Polymer 2) prepared in C) ) Was examined (in dichloromethane). The results are shown in FIG. In the figure, the spectrum of polymer 1 is indicated by 1 and the spectrum of polymer 2 is indicated by 2. In both Polymer 1 and Polymer 2, absorption in the π-π * transition band of bipyridine was observed at around 300 nm. Further, the broad absorption around 460 nm of the polymer 2 is derived from the charge transfer from the metal to the ligand.
[0029]
Test example 2:
In order to examine the light resistance of the metal complex polymer of the present invention obtained in Production Example 1, irradiation with light having a wavelength of 400 nm or more in air using a xenon lamp for 24 hours in air showed no change in the absorption spectrum. . This clearly shows that the metal complex polymer of the present invention is not decomposed by light and has high light resistance.
Test Example 3:
The photoconductivity of the ruthenium complex polymer produced in the production example was measured by the following method using a sandwich type cell shown in FIG.
The ruthenium complex polymer obtained above was dissolved in 1,2-dichloroethane, and spin-coated on a quartz glass substrate 4 coated with an ITO film 3 as a transparent electrode to form a ruthenium complex polymer thin film 5. Further, aluminum was vapor-deposited thereon as an upper electrode 6 to produce an element. A DC power supply was connected to the fabricated device, and the photoconductivity was examined. When not illuminated, the ruthenium complex polymer was an insulator. When this device was irradiated with light near 460 nm, which was absorbed by the ruthenium complex polymer, from the transparent electrode side, a photocurrent was observed.
Tungsten lamps were separated to measure the wavelength dependence of photocurrent intensity. This spectrum and the absorption spectrum of the ruthenium complex polymer are shown in the graph of FIG. From this graph, it is clear that the photocurrent intensity spectrum has the same shape as the absorption spectrum of the ruthenium complex polymer, and that the photocurrent intensity is wavelength-dependent.
[0030]
【The invention's effect】
The metal complex polymer of the present invention can correspond to the visible region and the near infrared region. Further, it has excellent solubility in organic solvents and can be easily formed into a film. Further, the metal complex polymer of the present invention has excellent light resistance. Therefore, it is excellent in performance and applicability as a photoconductive material.
[Brief description of the drawings]
FIG. 1 is a graph showing absorption spectra of poly (tetrapropyldisilanilen-2,2′-bipyridine-5,5′-diyl) and a ruthenium complex polymer produced in Production Examples.
FIG. 2 is an explanatory diagram showing a test method for a metal complex polymer produced in a production example.
FIG. 3 is a graph showing an absorption spectrum and a photocurrent wavelength dependence spectrum of a ruthenium complex polymer produced in Production Examples.

Claims (5)

下記式(I)で表される金属錯体ポリマー。
Figure 0003552002
(式中、Eは、Si、Ge、またはSnを表し、
Mは、遷移金属原子を表し、
Lは、配位子を表し、
Rは有機基を表し、
mは0〜3の整数を表し、
nは1〜4の整数を表し、
xは1〜6の整数を表し、
yは10〜100の整数を表し、
zは10以上の整数であって、y:zが0.1:0.9〜0.5:0.5の範囲である。)
A metal complex polymer represented by the following formula (I):
Figure 0003552002
(Wherein E represents Si, Ge, or Sn;
M represents a transition metal atom,
L represents a ligand,
R represents an organic group,
m represents an integer of 0 to 3,
n represents an integer of 1 to 4,
x represents an integer of 1 to 6,
y represents an integer of 10 to 100,
z is an integer of 10 or more, and y: z is in the range of 0.1: 0.9 to 0.5: 0.5. )
式(I)中、EがSiである請求項1記載の金属錯体ポリマー。The metal complex polymer according to claim 1, wherein in the formula (I), E is Si. 式(I)中、MがRuである請求項1または2記載の金属錯体ポリマー。The metal complex polymer according to claim 1, wherein M is Ru in the formula (I). 式(I)中、Lが2,2’− ビピリジンである請求項1〜3のいずれか1項に記載の金属錯体ポリマー。The metal complex polymer according to any one of claims 1 to 3, wherein in the formula (I), L is 2,2'-bipyridine. 式(I)中、Rが低級アルキル基である請求項1〜4のいずれか1項に記載の金属錯体ポリマー。The metal complex polymer according to any one of claims 1 to 4, wherein, in the formula (I), R is a lower alkyl group.
JP23668596A 1996-09-06 1996-09-06 Metal complex polymer Expired - Fee Related JP3552002B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23668596A JP3552002B2 (en) 1996-09-06 1996-09-06 Metal complex polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23668596A JP3552002B2 (en) 1996-09-06 1996-09-06 Metal complex polymer

Publications (2)

Publication Number Publication Date
JPH1081754A JPH1081754A (en) 1998-03-31
JP3552002B2 true JP3552002B2 (en) 2004-08-11

Family

ID=17004265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23668596A Expired - Fee Related JP3552002B2 (en) 1996-09-06 1996-09-06 Metal complex polymer

Country Status (1)

Country Link
JP (1) JP3552002B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4512217B2 (en) * 1999-08-20 2010-07-28 富士フイルム株式会社 Arylsilane compound, light emitting device material, and light emitting device using the same
JP2003060181A (en) * 2001-08-16 2003-02-28 Konica Corp X-ray image detector
WO2008081762A1 (en) * 2006-12-28 2008-07-10 National Institute For Materials Science Bis(terpyridine) compound metal assembled body, hybrid polymer, method for producing the same and use of the same
WO2009025160A1 (en) * 2007-08-20 2009-02-26 Sumitomo Chemical Company, Limited Transition metal complex and process for producing conjugated aromatic compound with the transition metal complex
JP2010185882A (en) * 2010-05-20 2010-08-26 Konica Minolta Holdings Inc Portable radiation image detector
JP6979239B2 (en) * 2018-08-21 2021-12-08 国立研究開発法人物質・材料研究機構 Polymers, compositions, electrochromic devices, dimming devices, and display devices

Also Published As

Publication number Publication date
JPH1081754A (en) 1998-03-31

Similar Documents

Publication Publication Date Title
JP5584127B2 (en) Dyes containing anchor groups in the molecular structure
CN102388085A (en) P-conjugated low-band-gap copolymers containing benzotriazole units
KR102571879B1 (en) Sensitizing dye, sensitizing dye composition for photoelectric conversion, photoelectric conversion device using the same, and dye-sensitized solar cell
Liu et al. A new class of conjugated polyacetylenes having perylene bisimide units and pendant fullerene or porphyrin groups
Ng et al. Synthesis and photoconducting properties of poly (p‐phenylenevinylene) containing a bis (terpyridine) ruthenium (II) complex
JP3552002B2 (en) Metal complex polymer
EP2685552A1 (en) Organic dye material and dye-sensitized solar cell using same
Chan et al. Synthesis and photosensitizing properties of conjugated polymers that contain chlorotricarbonyl bis (phenylimino) acenaphthene rhenium (I) complexes
Chandrasekharam et al. Synthesis and photovoltaic properties of D–A–D type small molecules containing diketopyrrolopyrrole (DPP) acceptor central unit with different donor terminal units
Fuse et al. Synthesis of EDOT-containing organic dyes via one-pot, four-component Suzuki–Miyaura coupling and the evaluation of their photovoltaic properties
Wyatt et al. Synthesis and study of optically active polydendrimers
CN114644611B (en) Naphthalene condensed ring-based electron-deficient monomer, polymer and application thereof
CN113321788B (en) Four D-A' -pi-A type polymerization bipyridine metal complex dye sensitizers and preparation method and application thereof
CN113321789B (en) Four polymeric metal complex dye sensitizers containing pyrrole derivatives, and preparation method and application thereof
Tanaka et al. Synthesis of disilanylene polymers with donor–acceptor-type π-conjugated units and applications to dye-sensitized solar cells
CN112225883B (en) Four kinds of D-A' - (pi-A) 2 Metal complex of polymeric pyridine derivative and preparation method and application thereof
TW201141960A (en) Organic and inorganic photosensitizer dyes
CN113321670B (en) Four kinds of D-A' - (pi-A) 2 Polymeric alkylated pyridine derivative metal complex and preparation method and application thereof
CN113354666B (en) Four kinds of D-A' - (pi-A) 2 Metal complex of polymeric salicylaldehyde Schiff base derivative, preparation method and application thereof
Renfige et al. Electrochemical synthesis of donor-acceptor triazine based polymers with halochromic and electrochromic properties
JP6041857B2 (en) The active layer of a photovoltaic cell and the use of a cobalt complex to prepare the corresponding photovoltaic cell
Morisaki et al. Synthesis and characterization of organometallic conjugated polymers containing tricarbonyl (arene) chromium unit and platinum
CN112912073B (en) Solar cell dyes for copper redox-based dye sensitized solar cells and combinations thereof
JP3830677B2 (en) Optically active polythiophene derivative and method for producing the same
JP4419395B2 (en) Semiconductor for photoelectric conversion material, photoelectric conversion element and solar cell

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040330

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040420

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees