JP2004159686A - Pyrotherapeutic instrument - Google Patents

Pyrotherapeutic instrument Download PDF

Info

Publication number
JP2004159686A
JP2004159686A JP2002325816A JP2002325816A JP2004159686A JP 2004159686 A JP2004159686 A JP 2004159686A JP 2002325816 A JP2002325816 A JP 2002325816A JP 2002325816 A JP2002325816 A JP 2002325816A JP 2004159686 A JP2004159686 A JP 2004159686A
Authority
JP
Japan
Prior art keywords
heat
power
heating
unit
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002325816A
Other languages
Japanese (ja)
Inventor
Keisuke Miura
圭介 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2002325816A priority Critical patent/JP2004159686A/en
Priority to US10/701,927 priority patent/US7108694B2/en
Publication of JP2004159686A publication Critical patent/JP2004159686A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Surgical Instruments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem desired in a pyrotherapeutic instrument for detecting the deterioration of the joint state of the pyrogenic element of a coagulation/dissection forceps and a metal blade to rapidly report the same to an operator. <P>SOLUTION: The pyrotherapeutic instrument is equipped with an output power control means 36 for producing heat generating power to supply the same to the pyrogenic element 21 for generating heat used for treating living tissue, a heat transfer plate 22 which is joined to the pyrogenic element 21 to transfer heat to the living tissue and a joined state discriminating means 32 for discriminating the joint states of the pyrogenic element 21 and the heat transfer plate 22 on the basis of the detection result of the heat generating power applied to the pyrogenic element 21 from the output power control means 36. The restriction of the supply of the heat generating power from the output power control means 36 and the notification of the discrimination result are performed on the basis of the discrimination result of the joint state discriminating means 32. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、生体組織の処置部位に熱を与えて切開、凝固、及び止血等の処置を行う発熱処置装置に関する。
【0002】
【従来の技術】
一般的に、外科手術、あるいは内科手術において、生体組織の処置部位を切開、凝固、及び止血等の処置に発熱処置装置が用いられている。
【0003】
この発熱処置装置は、生体組織の処置部位を加熱処置するための発熱素子を内蔵した凝固切開鉗子を有し、この発熱素子で発生した熱により生体組織の切開、凝固、及び止血等の処置を行っている。
【0004】
この発熱処置装置に用いる凝固切開鉗子は、切開に好適な形状に形成された薄いセラミック材の切開用の縁部に沿って、発熱素子であるヒーターセグメントが設けられ、そのヒーターセグメントを複数に電気的に分離して、生体組織を同一温度で加熱処置するようになっている(例えば、特許文献1参照)。
【0005】
このような凝固切開鉗子は、ヒーターセグメントで発生した熱は、生体組織に直接接する金属刃を介して伝達されるようになっており、ヒーターセグメントの発熱を効率良く金属刃に伝導するために、ヒーターセグメントと金属刃とは半田によって接合することが知られている。
【0006】
【特許文献1】
特公昭53−9031号公報。
【0007】
【発明が解決しようとする課題】
従来の発熱処置装置に用いる凝固切開鉗子の発熱素子と金属刃は、熱伝導効率を考慮して半田接合されている。
【0008】
この凝固切開鉗子による加熱処置を繰り返し実施すると、発熱素子と金属刃との接合半田も加熱されるために、発熱素子と金属刃の接合劣化が生じて発熱素子の発熱が金属刃に充分伝導されず、生体組織を処置するために設定されている処置温度よりも低くなる。このような接合劣化による加熱処置温度の低下に気づかずに加熱処置を継続させると凝固切開処置効率の低下が生じてしまう。
【0009】
本発明は、これらの事情に鑑みてなされたもので、処置部である凝固切開鉗子の発熱素子と金属刃との接合状態の劣化が検出可能で、その接合劣化が検出されると術者に速やかに告知できる発熱処置装置を提供することを目的としている。
【0010】
【課題を解決するための手段】
本発明の発熱処置装置は、生体組織を処置するための熱を発生可能な発熱手段と、前記発熱手段を発熱駆動するための発熱電力を供給制御する出力電力制御手段と、前記発熱手段に接合され、前記出力電力制御手段から供給される前記発熱電力によって前記発熱手段で発生される熱を前記生体組織に伝達可能な処置手段と、前記出力電力制御手段から前記発熱手段に供給される前記発熱電力を検出する印加電力検出手段と、前記印加電力検出手段の検出結果に基づいて、前記発熱手段と前記処置手段との接合状態を判別する接合状態判別手段と、前記接合状態判別手段の判別結果に基づき、前記出力電力制御手段からの発熱電力の供給、または、判別結果の告知の少なくとも一方を駆動制御する制御手段と、を具備することを特徴としている。
【0011】
本発明の発熱処置装置の前記接合状態判別手段は、前記印加電力検出手段で検出した印加電力値を予め設定された電力閾値と、所定時間以上比較して、接合状態判別を行うことを特徴としている。
【0012】
また、本発明の発熱処置装置の前記接合状態判別手段は、前記出力供給手段からの発熱電力の出力開始から所定時間経過後に、前記印加電力検出手段で検出した印加電力値を予め設定された電力閾値と比較して、接合状態判別することを特徴としている。
【0013】
本発明の発熱処置装置は、凝固切開鉗子の発熱処置部に設けられている発熱素子と加熱処置する切開刃である伝熱板との熱接合状態を確実に検出でき、その熱接合状態が良好でない場合は、発熱電力の供給停止と接合不具合を告知することが可能となった。
【0014】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態について詳細に説明する。本発明に係る発熱処置装置の一実施形態を図1乃至図9を用いて説明する。
【0015】
図1は本発明に係る発熱処置装置の一実施形態の全体構成を示すブロック図、図2は本発明に係る発熱処置装置の一実施形態の装置本体の外観構成を示し、図2(a)は前面パネル側から見た前面斜視図、図2(b)は背面パネル側から見た背面図、図3は本発明に係る発熱処置装置の一実施形態の凝固切開鉗子の構成を示す平面図、図4は図3に示した凝固切開鉗子の発熱処置部の構成を示し、図4(a)は発熱処置部の断面図、図4(b)は発熱処置部の上面から見た透視図、図5は本発明に係る発熱処置装置の一実施形態の凝固切開鉗子の処置部の構成を示し、図5(a)は図1及び図3に示した凝固切開鉗子の発熱処置部を紙面に対して垂直に切断した断面図、図5(b)は図1及び図3に示した凝固切開鉗子を紙面に対して水平に切断した断面図、図6は本発明に係る発熱処置装置の一実施形態の装置本体の内部構成を示すブロック図、図7は本発明に係る発熱処置装置の一実施形態において、凝固切開鉗子の発熱処置部の正常接合時の発熱素子印加電力を説明する説明図、図8は本発明に係る発熱処置装置の一実施形態において、凝固切開鉗子の発熱処置部の不正常接合時の発熱素子印加電力を説明する説明図、図9は本発明に係る発熱処置装置の一実施形態の凝固切開鉗子の発熱処置部の接合状態判定処理動作を説明するフローチャートである。
【0016】
最初に、本発明に係る発熱処置装置の概略構成について図1を用いて説明する。発熱処置装置1は、凝固切開鉗子2と、この凝固切開鉗子2に発熱電力を供給制御する装置本体3とからなっている。
【0017】
前記凝固切開鉗子2は、図3を併用して説明すると、基端側に術者が把持操作するハンドル部20と、先端側にハンドル部20の操作により生体組織を把持して加熱処置する発熱処置部7と弾性受部8からなる処置部9が設けられている。
【0018】
発熱処置部7には、発熱素子21が設けられ、この発熱素子21には、ハンドル部20に内装されている接続ケーブル4のリード線23が接続されている。
【0019】
前記接続ケーブル4の端部には、接続コネクタ5を設けられて、前記装置本体3に接続されて、前記装置本体3から前記発熱処置部7の発熱素子21に発熱電力が供給印加されるようになっている。
【0020】
前記装置本体3は、図2を併用して説明すると、前面パネル3aには、前記凝固切開鉗子2の接続コネクタ5が接続されるコネクタ受け11、装置本体3の駆動電源をオン/オフする電源スイッチ12、前記凝固切開鉗子2の発熱処置部7の発熱温度レベルを設定する出力設定スイッチ13(温度レベルアップスイッチ13aと温度レベルダウンスイッチ13bからなる)、この出力設定スイッチ13で設定した発熱温度レベルを表示する設定出力表示部15、凝固切開処置時に凝固切開鉗子2への通電中を表示する出力表示部16、及び発熱処理装置1に異常がある場合の異常表示部17(凝固切開鉗子2の異常点灯表示17aと、装置本体3の内部手段の異常点灯表示17b、及び異常警告音発生用ブザー17cからなる)などが設けられている。
【0021】
また、装置本体3の背面パネル3bには、装置本体3の駆動用電源を供給するための電源ケーブルの電源プラグが接続される電源ソケット19と、装置本体3から凝固切開鉗子2への発熱電力の供給出力のオン/オフ指示入力を術者が足で操作するフットスイッチ6が接続されるフットスイッチコネクタ18が設けられている。このフットスイッチ6は、凝固切開鉗子2を最大温度レベルで発熱させるように指示入力する最高レベルスイッチ6aと、前記出力設定スイッチ13で設定した発熱温度レベルで発熱させるように指示入力する設定レベルスイッチ6bとを有している。
【0022】
なお、この装置本体3には、発熱処置部7に設けられる発熱素子21が最大4つ内蔵した凝固切開鉗子2が接続可能となっており、装置本体3から複数の発熱素子21それぞれに発熱電力の供給出力制御と、熱伝達部材との接合状態判定が可能となっている。
【0023】
次に、前記凝固切開鉗子2の処置部9の詳細構成について、図4と図5を用いて説明する。
【0024】
前記凝固切開鉗子2の発熱処置部7は、複数の発熱素子21、例えば、3つの発熱素子21a〜21cが発熱処置部本体7aに内蔵され、この発熱素子21a〜21cの発熱を伝達して生体組織を加熱処置する金属刃である伝熱板22が前記弾性受部8側に設けられている。
【0025】
この発熱素子21a〜21cは、例えばセラミック基板上に形成された薄板抵抗体で形成されており、発熱素子21a〜21cそれぞれには、前記接続ケーブル4のリード線23a〜23cが接続されている。
【0026】
前記伝熱板22の一方の面に前記発熱素子21a〜21cが、後述する熱伝導率の良好な伝達部材を介して接合されており、前記伝熱板22の他方の面は、前記弾性受部8側に露出している。
【0027】
つまり、前記発熱素子21a〜21cと、前記伝熱板22は熱的に接合されて、この発熱素子21a〜21cで発生した熱は、前記伝熱板22に伝達されるようになっている。
【0028】
一方、前記弾性受部8は、前記発熱処置部7の伝熱板22と対向面側に露出面を有する弾性体24が弾性受部本体8aに設置され、その露出面には、滑り止め加工24aが施されている。
【0029】
このような凝固切開鉗子2のハンドル部20を開閉操作して、前記処置部9の発熱処置部7と弾性受部8との間に生体組織の処置部位を把持させ、その把持した生体組織に発熱素子21で発生させた熱を伝熱板22で伝熱して加熱凝固切開させるようになっている。
【0030】
次に、前記装置本体3の内部構成について図6を用いて説明する。前記凝固切開鉗子2の発熱処置部7には、前述したように、複数の発熱素子21と伝熱板22とを熱的に結合させるために、発熱素子21と伝熱板22とは半田等の熱伝達部材25で接合されている。
【0031】
前記装置本体3には、前記フットスイッチコネクタ18に接続されたフットスイッチ6による操作指示スイッチ情報が入力されるフットスイッチ入力部38、前記出力設定スイッチ13からなる操作部37、前記フットスイッチ入力部38と操作部37からの操作入力で発熱素子21の発熱温度レベルを設定する発熱設定手段31、前記フットスイッチ入力部38の発熱操作指示入力と発熱設定手段31からの発熱温度レベルの基で後述する各種手段を駆動制御するマイクロプロセッサ(以下、単にCPUと称する)33、このCPU33の制御の基で前記接続コネクタ5を介して、前記凝固切開鉗子2の発熱素子21を発熱駆動させるための発熱電力を生成出力する出力電力制御手段36、前記発熱素子21に供給印加される発熱電力を検出する印加電力検出手段34、前記CPU33で駆動制御される前記温度レベルの設定出力表示部15と、凝固切開鉗子2への通電出力表示部16、及び異常表示部17からなる表示部39、並びに異常警告音発生用のブザー17cから構成されている。
【0032】
なお、前記CPU33には、前記印加電力検出手段34で検出した発熱素子21に供給印加した発熱電力の電圧値と電流値から発熱素子21の抵抗値を算出し、その算出抵抗値から記発熱素子21の発熱温度を検出する抵抗値検出手段35と、前記印加電力検出手段34で検出した発熱素子21に供給印加されている発熱電力から発熱素子21と伝熱板22との間の熱接合状態を判別する接合状態判別手段32と、及びその他の各種駆動制御手段が内蔵されている。
【0033】
さらに、装置本体3には、図示していないが装置本体を駆動させたり、前記出力電力制御手段36から発熱素子21に供給出力する発熱電力を生成する電源が設けられている。
【0034】
このような構成の発熱処置装置1は、操作部37から発熱温度レベルが入力されると、発熱設定手段31からCPU33にその発熱温度レベル情報が伝送され、CPU33は表示部39を駆動させて、その発熱温度レベルの表示を行う。
【0035】
この発熱温度レベルが設定された状態で、フットスイッチ6の設定レベルスイッチ6bがオン操作されると、CPU33は、前記出力電力制御手段36を駆動して、前記発熱素子21を前記発熱温度レベルで発熱駆動させる発熱電力を供給出力させる。
【0036】
この出力電力制御手段36から発熱素子21に供給印加された発熱電力は、前記印加電力検出手段34で検出し、その検出した印加発熱電力の電圧値と電流値から前記抵抗値検出手段35で発熱素子21の抵抗値を演算する。
【0037】
この発熱素子21の抵抗値は、発熱温度変化と連動するために、前記抵抗値検出手段35で演算された発熱素子21の抵抗値から発熱素子21の発熱温度に換算し、前記出力電力制御手段36から発熱素子21に供給出力される発熱電力の制御を行う。
【0038】
また、前記印加電力検出手段34で検出した印加発熱電力から前記接合状態判別手段32で前記発熱素子21と伝熱板22の熱接合状態を判定し、もし仮に熱接合状態が良好でない場合は、CPU33は、表示部39やブザー17cを駆動させて、異常表示と警告告知を行うようになっている。
【0039】
この発熱素子21と伝熱板22の熱接合の判定について図7と図8を用いて説明する。
【0040】
図7と図8は、発熱素子21に発熱電力を印加した場合、時間経過と素子印加電力の関係を示しており、前記発熱素子21と伝熱板22との熱接合が良好の場合は、図7に示すように、発熱素子21が設定抵抗値、つまり設定発熱温度になるように発熱電力が供給される。
【0041】
この時、前記凝固切開鉗子2の処置部9に生体組織を挟持させずに組織の凝固・切開を行わない状態(以下、空出力時と称する)において、出力電力制御手段36から見ると、凝固切開鉗子2の発熱素子21自体が負荷となり、且つ、伝熱板22を凝固・切開処置準備のために所望の発熱温度に加熱するさせる必要があり、その準備加熱のための最低限必要な印加電力が供給出力される。なお、図中のW1は、空出力時の最低出力電力の閾値である。
【0042】
一方、前記凝固切開鉗子2の処置部9に生体組織を挟持させて、加熱処置させる場合には、図7の組織凝固・切開時に示すように、生体組織を加熱処理するための設定温度を発熱させるための電力が印加される。
【0043】
次に、発熱素子21と伝熱板22との熱接合が良好でなく、伝達部材25である半田付け不良が生じた場合は、図8に示すように、発熱素子21への負荷が正常接合時より小さくなる。これは、発熱素子21が所望の温度になるための印加電力が少なくなる。さらに、空出力時には、正常接合時の最低限印加電力である閾値W1よりも低い値となる。
【0044】
つまり、発熱素子21と伝熱板22との接合状態が正常である時の最低限印加電力W1よりも印加電力が低くなった場合、接合状態に不良が生じていると判断出来る。
【0045】
このように発熱素子21と伝熱板22の接合状態は、発熱素子21に供給印加する電力により判定可能であることを利用して、発熱素子21と伝熱板22との接合状態判定動作について図9を用いて説明する。
【0046】
CPU33はステップS11で、出力電力制御手段36を駆動制御して、発熱素子21に対して、所定の発熱温度レベルの発熱電力を供給出力開始させる。この発熱電力の供給出力開始後、CPU33は出力経過時間を計測し、ステップS12でその出力経過時間が所定時間、例えば、1秒(sec)経過待機する。
【0047】
このステップS12の所定時間経過待機状態で、所定時間経過したと判定されると、CPU33はステップS13で、印加電力検出手段34で検出した発熱素子21への供給印加電圧電流値から印加電力値を算出する。
【0048】
次に、CPU33はステップS14で、接合状態判別手段32を前記印加電力検出手段34が検出した発熱素子21への印加電力により発熱素子21と伝熱板22との接合状態判別駆動させ、ステップS15で、その発熱素子21の印加電力が最低限印加電力の閾値W1を下回るか判定し、発熱素子21への印加電力が閾値W1よりも上回っている場合は、前記ステップS13に戻り、継続して発熱素子21への印加電力の算出と、その印加電力の大きさ判定を行う。
【0049】
このステップS15で、前記発熱素子21への印加電力が閾値W1を下回っていると判定されると、CPU33はステップS16で、出力電力制御手段36から発熱素子21に供給出力している発熱電力の出力停止させる。
【0050】
次にCPU33はステップS17で、表示部39及びブザー17cを駆動して、発熱素子21と伝熱板22との熱接合不良の表示告知を行う。
【0051】
なお、ステップS12の所定時間経過待機は、図7と図8に示すように、発熱電力の供給出力開始直後の印加電力は、短時間の間最大印加電力を示し、その後に安定印加電力となるため、安定状態で熱接合状態を判定させるためである。
【0052】
以上説明したように、生体組織の加熱処置を行っている間、発熱素子21に供給印加されている発熱電力を基に、発熱素子21と伝熱板22とを熱接合させている伝達部材25の状態を常時監視判定でき、熱接合が劣化して接合が良好でなくなると、速やかに術者に表示告知すると共に、発熱素子21に供給印加している発熱電力の停止が可能となる。
【0053】
次に、本発明に係る発熱処置装置の他の実施形態を図10を用いて説明する。
なお、この他の実施形態の発熱処置装置の構成は、前述した発熱処置装置の一実施形態と同じで、発熱素子21と伝熱板22とを熱接合している伝達部材25の状態判定の動作処理が異なる。
【0054】
フットスイッチ6により加熱処置駆動入力が行われると、CPU33はステップS21で、出力電力制御手段36を駆動制御して、操作部37から入力された発熱設定手段31に設定された所定発熱温度レベルの発熱電力を発熱素子21へと供給出力させる。
【0055】
次に、CPU33はステップS22で、印加電力検出手段34で発熱素子21に供給印加されている電圧電流値を検出し、その検出した電圧電流値から印加電力を算出させる。
【0056】
このステップS22で算出した印加電力を基に、CPU33はステップS23で、接合状態判別手段32を熱接合状態判別駆動させ、ステップS24で、発熱素子21の印加電力が最低限印加電力の閾値W1を下回るか判定され、印加電力が閾値W1を上回ると判定されると、前記ステップS22に戻り、継続して発熱素子21への印加電力の検出監視を行う。
【0057】
前記ステップS24で印加電力が閾値W13を下回ると判定されると、CPU33はステップS25で、発熱素子21への供給電力が、所定時間以上、例えば1秒以上、最低限印加電力の閾値W1よりも小さい状態であったかどうか判断する。ここで、「1秒以上続いた場合」とするのは、出力開始から最大の印加電力になるまでの間、供給電力が最低限印加電力の閾値W1よりも小さい時間帯があり、この部分の時間は測定から除外するためである。
【0058】
最低限印加電力の閾値W1よりも小さい状態が所定時間1秒を経過していない場合は、ステップS22へと戻り、繰り返し印加電力検出を行い、最低限印加電力の閾値W1よりも小さい状態が1秒以上経過していると判定されると、発熱素子21と伝熱板22との間の伝達部材25の熱接合状態は不良とあると判定され、CPU33はステップS26で出力電力制御手段36の駆動を停止させて、発熱素子21への発熱電力の供給出力停止させ、ステップS27で表示部39とブザー17cを駆動させて、術者に伝達部材25の熱接合不良状態を表示告知する。
【0059】
つまり、記発熱素子21への印加電力が最低限印加電力の閾値W1よりも小さい状態が所定時間(例えば1秒)継続すると熱結合状態が不良であると判断されるようになってる。
【0060】
これにより、生体組織の加熱処置の間、凝固切開鉗子2の発熱処置部7の熱接合状態を常時監視でき、熱接合の劣化を検出し、術者に速やかに表示告知すると共に、加熱処置の停止が可能となった。
【0061】
[付記]
以上詳述した本発明の実施形態によれば、以下のごとき構成を得ることができる。
【0062】
(付記1)
生体組織を処置するための熱を発生可能な発熱手段と、
前記発熱手段を発熱駆動するための発熱電力を供給制御する出力電力制御手段と、
前記発熱手段に接合され、前記出力電力制御手段から供給される前記発熱電力によって前記発熱手段で発生される熱を前記生体組織に伝達可能な処置手段と、前記出力電力制御手段から前記発熱手段に供給される前記発熱電力を検出する印加電力検出手段と、
前記印加電力検出手段の検出結果に基づいて、前記発熱手段と前記処置手段との接合状態を判別する接合状態判別手段と、
前記接合状態判別手段の判別結果に基づき、前記出力電力制御手段からの発熱電力の供給、または、判別結果の告知のいずれか一方を駆動制御する制御手段と、
を具備することを特徴とした発熱処置装置。
【0063】
(付記2)
前記接合状態判別手段は、前記印加電力検出手段で検出した印加電力値を予め設定された電力閾値と、所定時間以上比較して、接合状態判別を行うことを特徴とした請求項1に記載の発熱処置装置。
【0064】
(付記3)
前記接合状態判別手段は、前記出力供給手段からの発熱電力の出力開始から所定時間経過後に、前記印加電力検出手段で検出した印加電力値を予め設定された電力閾値と比較して、接合状態判別することを特徴とした請求項1に記載の発熱処置装置。
【0065】
【発明の効果】
本発明の発熱処置装置は、生体組織の加熱処置操作前や処置操作中に凝固切開鉗子の発熱処置部の熱接合状態を常時監視でき、熱接合状態が良好でなくなると術者に速やかに表示告知すると共に、加熱処置を停止させ、熱接合不良による加熱温度低下による生体組織の処置を回避できる効果を有している。
【図面の簡単な説明】
【図1】本発明に係る発熱処置装置の一実施形態の全体構成を示すブロック図。
【図2】本発明に係る発熱処置装置の一実施形態の装置本体の外観構成を示し、図2(a)は前面パネル側から見た前面斜視図、図2(b)は背面パネル側から見た背面図。
【図3】本発明に係る発熱処置装置の一実施形態の凝固切開鉗子の構成を示す平面図。
【図4】図3に示した凝固切開鉗子の発熱処置部の構成を示し、図4(a)は発熱処置部の断面図、図4(b)は発熱処置部の上面から見た透視図。
【図5】本発明に係る発熱処置装置の一実施形態の凝固切開鉗子の処置部の構成を示し、図5(a)は図1及び図3に示した凝固切開鉗子の発熱処置部を紙面に対して垂直に切断した断面図、図5(b)は図1及び図3に示した凝固切開鉗子を紙面に対して水平に切断した断面図。
【図6】本発明に係る発熱処置装置の一実施形態の装置本体の内部構成を示すブロック図。
【図7】本発明に係る発熱処置装置の一実施形態において、凝固切開鉗子の発熱処置部の正常接合時の発熱素子印加電力を説明する説明図。
【図8】本発明に係る発熱処置装置の一実施形態において、凝固切開鉗子の発熱処置部の不正常接合時の発熱素子印加電力を説明する説明図。
【図9】本発明に係る発熱処置装置の一実施形態の凝固切開鉗子の発熱処置部の接合状態判定処理動作を説明するフローチャート。
【図10】本発明に係る発熱処置装置の他の実施形態の凝固切開鉗子の発熱処置部の接合状態判定処理動作を説明するフローチャート。
【符号の説明】
1…発熱処置装置
2…凝固切開鉗子
3…装置本体
7…発熱処置部
8…弾性受部
9…処置部
21…発熱素子
22…伝熱板
25…伝達部材
31…発熱設定手段
32…接合状態判別手段
33…マイクロプロセッサ(CPU)
34…印加電力検出手段
35…抵抗値検出手段
36…出力制御手段
37…操作部
38…フットスイッチ入力部
39…表示部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an exothermic treatment apparatus that performs treatment such as incision, coagulation, and hemostasis by applying heat to a treatment site in a living tissue.
[0002]
[Prior art]
2. Description of the Related Art In general, in a surgical operation or a medical operation, an exothermic treatment device is used for treatments such as incision, coagulation, and hemostasis of a treatment site in a living tissue.
[0003]
This heat treatment device has a coagulation incision forceps having a built-in heating element for heating a treatment site of a living tissue, and performs treatments such as incision, coagulation, and hemostasis of the living tissue by heat generated by the heating element. Is going.
[0004]
The coagulation incision forceps used in this heat treatment device has a heater segment as a heating element provided along an incision edge of a thin ceramic material formed in a shape suitable for incision, and the heater segment is electrically connected to a plurality of segments. Then, the living tissue is heated at the same temperature (for example, see Patent Document 1).
[0005]
In such coagulated incision forceps, the heat generated in the heater segment is transmitted through a metal blade directly in contact with the living tissue, and in order to efficiently conduct the heat generated by the heater segment to the metal blade, It is known that a heater segment and a metal blade are joined by solder.
[0006]
[Patent Document 1]
JP-B-53-9031.
[0007]
[Problems to be solved by the invention]
The heating element and the metal blade of the coagulated incision forceps used in the conventional heat treatment apparatus are soldered in consideration of heat conduction efficiency.
[0008]
When the heating treatment with the coagulation incision forceps is repeatedly performed, the solder between the heating element and the metal blade is also heated, so that the bonding between the heating element and the metal blade is deteriorated, and the heat generated by the heating element is sufficiently transmitted to the metal blade. Instead, the temperature becomes lower than the treatment temperature set for treating the living tissue. If the heat treatment is continued without noticing the decrease in the temperature of the heat treatment due to the deterioration of the bonding, the efficiency of the coagulation / incision treatment is reduced.
[0009]
The present invention has been made in view of these circumstances, and it is possible to detect the deterioration of the joining state between the heating element of the coagulated incision forceps, which is the treatment section, and the metal blade, and to the operator when the joining deterioration is detected. It is an object of the present invention to provide a heat treatment device that can promptly notify the user.
[0010]
[Means for Solving the Problems]
The heat treatment apparatus according to the present invention includes a heat generating means capable of generating heat for treating a living tissue, an output power control means for controlling the supply of heat power for driving the heat generating means to generate heat, and a junction with the heat generating means. A treatment unit capable of transmitting the heat generated by the heating unit to the living tissue by the heating power supplied from the output power control unit; and the heating unit supplied to the heating unit from the output power control unit. Applied power detecting means for detecting electric power, bonding state determining means for determining a bonding state between the heat generating means and the treatment means based on a detection result of the applied power detecting means, and determination results of the bonding state determining means And control means for driving and controlling at least one of the supply of heat power from the output power control means and the notification of the determination result based on the output power control means.
[0011]
The joining state determining means of the heat treatment apparatus of the present invention is characterized in that the applied power value detected by the applied power detecting means is compared with a preset power threshold value for a predetermined time or more to perform a joining state determination. I have.
[0012]
Further, the bonding state determining means of the heat treatment apparatus of the present invention may be configured such that after a predetermined time has elapsed from the start of the output of the heating power from the output supply means, the applied power value detected by the applied power detection means is set to a predetermined power. It is characterized in that the joining state is determined by comparing with a threshold value.
[0013]
The heat treatment device of the present invention can reliably detect the thermal joining state between the heat generating element provided in the heat treating section of the coagulating incision forceps and the heat transfer plate that is the incision blade for performing the heat treatment, and the thermal joining state is good. If not, it is possible to notify the supply stop of the heat generation power and the joining failure.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. One embodiment of the heat treatment apparatus according to the present invention will be described with reference to FIGS.
[0015]
FIG. 1 is a block diagram showing an overall configuration of an embodiment of a heat treatment apparatus according to the present invention. FIG. 2 shows an external configuration of an apparatus main body of the embodiment of the heat treatment apparatus according to the present invention. Is a front perspective view from the front panel side, FIG. 2 (b) is a rear view from the rear panel side, and FIG. 3 is a plan view showing a configuration of a coagulation incision forceps of one embodiment of the heat treatment apparatus according to the present invention. 4 shows the configuration of the heat treatment section of the coagulation / incision forceps shown in FIG. 3, wherein FIG. 4 (a) is a cross-sectional view of the heat treatment section, and FIG. 4 (b) is a perspective view of the heat treatment section as viewed from above. FIG. 5 shows the configuration of the treatment section of the coagulation / incision forceps of one embodiment of the heat treatment apparatus according to the present invention. FIG. 5 (a) shows the heat treatment section of the coagulation / incision forceps shown in FIGS. 5 (b) is a cross-sectional view taken perpendicularly to FIG. 5 (b). The coagulated incision forceps shown in FIG. 1 and FIG. FIG. 6 is a block diagram showing the internal configuration of the apparatus main body of one embodiment of the heat treatment apparatus according to the present invention. FIG. 7 is a block diagram of the heat treatment apparatus according to the embodiment of the present invention. FIG. 8 is an explanatory view for explaining the heating element applied power at the time of normal joining of the heating treatment section, and FIG. 8 is a view showing one embodiment of the heating treatment apparatus according to the present invention; FIG. 9 is an explanatory diagram for explaining electric power, and FIG. 9 is a flowchart for explaining a joint state determination processing operation of the heat treatment section of the coagulation / incision forceps of one embodiment of the heat treatment apparatus according to the present invention.
[0016]
First, a schematic configuration of the heat treatment apparatus according to the present invention will be described with reference to FIG. The heat treatment device 1 includes a coagulation / cutting forceps 2 and a device main body 3 that controls the supply of heat generation power to the coagulation / cutting forceps 2.
[0017]
The coagulation / incision forceps 2 will be described with reference to FIG. 3. The handle portion 20 is grasped and operated by an operator on the proximal end side, and the heat is generated by grasping the living tissue by operating the handle portion 20 on the distal side. A treatment section 9 including a treatment section 7 and an elastic receiving section 8 is provided.
[0018]
The heating element 7 is provided with a heating element 21, and the heating element 21 is connected to a lead wire 23 of a connection cable 4 provided inside the handle section 20.
[0019]
A connection connector 5 is provided at an end of the connection cable 4 and is connected to the apparatus main body 3 so that heat is supplied from the apparatus main body 3 to the heating element 21 of the heat treatment section 7. It has become.
[0020]
The device main body 3 will be described with reference to FIG. 2. The front panel 3a has a connector receiver 11 to which the connector 5 of the coagulation / incision forceps 2 is connected, and a power supply for turning on / off a drive power supply of the device main body 3. A switch 12, an output setting switch 13 (comprising a temperature level up switch 13a and a temperature level down switch 13b) for setting a heat generation temperature level of the heat treatment section 7 of the coagulation incision forceps 2, and a heat generation temperature set by the output setting switch 13 A setting output display section 15 for displaying the level, an output display section 16 for displaying that the coagulation incision forceps 2 are being energized during the coagulation and incision treatment, and an abnormality display section 17 (coagulation and incision forceps 2) when there is an abnormality in the heat treatment device 1 , An abnormal lighting display 17b of an internal means of the apparatus main body 3, and an abnormal alarm sound generating buzzer 17c). To have.
[0021]
A power supply socket 19 to which a power plug of a power cable for supplying power for driving the apparatus main body 3 is connected is provided on a rear panel 3 b of the apparatus main body 3, and a heat generated from the apparatus main body 3 to the coagulating incision forceps 2. A foot switch connector 18 is provided to which the foot switch 6 for the operator to operate the supply output on / off instruction input with his / her foot is connected. The foot switch 6 includes a maximum level switch 6a for instructing the coagulation / cutting forceps 2 to generate heat at the maximum temperature level, and a setting level switch for instructing to generate heat at the heat generation temperature level set by the output setting switch 13. 6b.
[0022]
The apparatus main body 3 can be connected to the coagulation / incision forceps 2 having a maximum of four built-in heating elements 21 provided in the heat treatment section 7. And the determination of the bonding state with the heat transfer member.
[0023]
Next, a detailed configuration of the treatment section 9 of the coagulation / cutting forceps 2 will be described with reference to FIGS. 4 and 5.
[0024]
The heat treatment section 7 of the coagulation / incision forceps 2 includes a plurality of heat elements 21, for example, three heat elements 21 a to 21 c built in a heat treatment section main body 7 a, and transmits heat generated by the heat elements 21 a to 21 c to a living body. A heat transfer plate 22 which is a metal blade for heating the tissue is provided on the elastic receiving portion 8 side.
[0025]
The heating elements 21a to 21c are formed of, for example, thin-plate resistors formed on a ceramic substrate, and lead wires 23a to 23c of the connection cable 4 are connected to the heating elements 21a to 21c, respectively.
[0026]
The heat generating elements 21a to 21c are joined to one surface of the heat transfer plate 22 via a transfer member having good thermal conductivity, which will be described later, and the other surface of the heat transfer plate 22 is It is exposed on the part 8 side.
[0027]
That is, the heat generating elements 21a to 21c and the heat transfer plate 22 are thermally joined, and the heat generated in the heat generating elements 21a to 21c is transmitted to the heat transfer plate 22.
[0028]
On the other hand, in the elastic receiving portion 8, an elastic body 24 having an exposed surface on the side opposite to the heat transfer plate 22 of the heat treatment portion 7 is installed on the elastic receiving portion main body 8a. 24a is provided.
[0029]
The handle portion 20 of the coagulating incision forceps 2 is opened and closed to grip a treatment site of a living tissue between the heat-generating treatment portion 7 and the elastic receiving portion 8 of the treatment portion 9. The heat generated by the heat generating element 21 is transferred by the heat transfer plate 22 to perform heat coagulation cutting.
[0030]
Next, an internal configuration of the apparatus main body 3 will be described with reference to FIG. As described above, in order to thermally couple the plurality of heating elements 21 and the heat transfer plate 22, the heating element 21 and the heat transfer plate 22 are connected to the heat-treating section 7 of the coagulated incision forceps 2 by soldering or the like. Are joined by the heat transfer member 25.
[0031]
The device main body 3 includes a foot switch input unit 38 to which operation instruction switch information from the foot switch 6 connected to the foot switch connector 18 is input, an operation unit 37 including the output setting switch 13, and the foot switch input unit. Heat generation setting means 31 for setting the heat generation temperature level of the heat generating element 21 by the operation input from the operation unit 37 and the operation input from the heat switch input section 38 and the heat generation temperature level from the heat generation setting means 31 A microprocessor (hereinafter, simply referred to as a CPU) 33 for driving and controlling various means for generating heat for driving the heat generating element 21 of the coagulating incision forceps 2 through the connection connector 5 under the control of the CPU 33. An output power control means 36 for generating and outputting power detects the heat generated and supplied to the heating element 21. An applied power detecting means 34, a setting output display section 15 for the temperature level, which is driven and controlled by the CPU 33, a display section 39 comprising an energization output display section 16 for the coagulation / incision forceps 2 and an abnormality display section 17, and an abnormality It comprises a buzzer 17c for generating a warning sound.
[0032]
The CPU 33 calculates the resistance value of the heating element 21 from the voltage value and the current value of the heating power supplied and applied to the heating element 21 detected by the applied power detection means 34, and calculates the resistance value of the heating element from the calculated resistance value. A resistance value detecting means 35 for detecting the heat generation temperature of the heating element 21 and a heat bonding state between the heating element 21 and the heat transfer plate 22 based on the heating power supplied to the heating element 21 detected by the applied power detection means 34. And a variety of other drive control means.
[0033]
Further, the apparatus main body 3 is provided with a power source (not shown) that drives the apparatus main body and generates heat generated by the output power control means 36 to be supplied to the heating element 21.
[0034]
In the heat treatment apparatus 1 having such a configuration, when a heat generation temperature level is input from the operation unit 37, the heat generation temperature level information is transmitted from the heat generation setting unit 31 to the CPU 33, and the CPU 33 drives the display unit 39, The heat generation temperature level is displayed.
[0035]
When the set level switch 6b of the foot switch 6 is turned on in a state where the heat generation temperature level is set, the CPU 33 drives the output power control means 36 to turn the heat generation element 21 at the heat generation temperature level. The heating power for driving the heating is supplied and output.
[0036]
The heating power supplied to the heating element 21 from the output power control means 36 is detected by the applied power detection means 34 and generated by the resistance value detection means 35 from the detected voltage and current values of the applied heating power. The resistance value of the element 21 is calculated.
[0037]
The resistance value of the heating element 21 is converted into the heating temperature of the heating element 21 from the resistance value of the heating element 21 calculated by the resistance value detecting means 35 so as to be linked with the change of the heating temperature. The heating power supplied and output from the heating element 21 to the heating element 21 is controlled.
[0038]
Further, from the applied heat power detected by the applied power detection means 34, the bonding state determination means 32 determines the thermal bonding state of the heating element 21 and the heat transfer plate 22, and if the thermal bonding state is not good, The CPU 33 drives the display unit 39 and the buzzer 17c to display an abnormality and to issue a warning.
[0039]
The determination of the thermal joining between the heating element 21 and the heat transfer plate 22 will be described with reference to FIGS.
[0040]
7 and 8 show the relationship between the passage of time and the power applied to the heating element 21 when the heating power is applied to the heating element 21. When the heat bonding between the heating element 21 and the heat transfer plate 22 is good, As shown in FIG. 7, the heating power is supplied such that the heating element 21 has a set resistance value, that is, a set heating temperature.
[0041]
At this time, in a state where the tissue is not coagulated and dissected without holding the living tissue in the treatment section 9 of the coagulation and incision forceps 2 (hereinafter referred to as idle output), the coagulation and incision is The heating element 21 of the incision forceps 2 itself becomes a load, and it is necessary to heat the heat transfer plate 22 to a desired heating temperature in preparation for coagulation / incision treatment. Power is supplied and output. W1 in the drawing is a threshold value of the minimum output power at the time of idle output.
[0042]
On the other hand, when a living tissue is sandwiched by the treatment section 9 of the coagulation / incision forceps 2 and heat treatment is performed, as shown at the time of tissue coagulation and incision in FIG. Is applied.
[0043]
Next, in a case where the heat bonding between the heat generating element 21 and the heat transfer plate 22 is not good and the soldering failure as the transmitting member 25 occurs, as shown in FIG. It becomes smaller than time. This reduces the applied power for the heating element 21 to reach a desired temperature. Further, at the time of idle output, the value is lower than the threshold value W1, which is the minimum applied power at the time of normal joining.
[0044]
In other words, when the applied power is lower than the minimum applied power W1 when the bonding state between the heating element 21 and the heat transfer plate 22 is normal, it can be determined that the bonding state is defective.
[0045]
By utilizing the fact that the bonding state between the heating element 21 and the heat transfer plate 22 can be determined by the power applied to the heating element 21 in this manner, the operation for determining the bonding state between the heating element 21 and the heat transfer plate 22 is described. This will be described with reference to FIG.
[0046]
In step S11, the CPU 33 controls the driving of the output power control means 36 to cause the heating element 21 to start supplying and outputting heating power at a predetermined heating temperature level. After the start of the supply output of the heating power, the CPU 33 measures the output elapsed time, and waits for a predetermined time, for example, one second (sec), in step S12.
[0047]
If it is determined that the predetermined time has elapsed in the predetermined time elapse standby state in step S12, the CPU 33 determines in step S13 the applied power value from the applied voltage / current value supplied to the heating element 21 detected by the applied power detection means 34. calculate.
[0048]
Next, in step S14, the CPU 33 drives the bonding state determining means 32 to determine the bonding state between the heating element 21 and the heat transfer plate 22 by the applied power to the heating element 21 detected by the applied power detecting means 34, and in step S15. Then, it is determined whether the applied power to the heating element 21 is lower than the minimum threshold value W1 of the applied power. If the applied power to the heating element 21 is higher than the threshold value W1, the process returns to step S13 and continues. Calculation of the applied power to the heating element 21 and determination of the magnitude of the applied power are performed.
[0049]
If it is determined in step S15 that the power applied to the heating element 21 is lower than the threshold value W1, the CPU 33 determines in step S16 the output power of the heating power supplied to the heating element 21 from the output power control unit 36. Stop output.
[0050]
Next, in step S17, the CPU 33 drives the display unit 39 and the buzzer 17c to notify the display of the thermal bonding failure between the heating element 21 and the heat transfer plate 22.
[0051]
7 and 8, the applied power immediately after the start of the supply and output of the heating power indicates the maximum applied power for a short time, and thereafter becomes the stable applied power. Therefore, it is to determine the thermal bonding state in a stable state.
[0052]
As described above, the transmission member 25 that thermally joins the heating element 21 and the heat transfer plate 22 based on the heating power supplied to the heating element 21 during the heating treatment of the living tissue. Can be constantly monitored and determined, and when the thermal bonding is deteriorated and the bonding is not good, the operator is promptly notified of the display and the generated power supplied to the heating element 21 can be stopped.
[0053]
Next, another embodiment of the heat treatment apparatus according to the present invention will be described with reference to FIG.
Note that the configuration of the heat treatment device of the other embodiment is the same as that of the above-described embodiment of the heat treatment device, and is used to determine the state of the transmission member 25 that thermally joins the heating element 21 and the heat transfer plate 22. The operation process is different.
[0054]
When the heat treatment drive input is performed by the foot switch 6, the CPU 33 controls the drive of the output power control means 36 in step S21 to set the predetermined heat generation temperature level set in the heat generation setting means 31 inputted from the operation unit 37. The heating power is supplied to the heating element 21 and output.
[0055]
Next, in step S22, the CPU 33 detects the voltage / current value supplied and applied to the heating element 21 by the applied power detecting means 34, and calculates the applied power from the detected voltage / current value.
[0056]
Based on the applied power calculated in step S22, in step S23, the CPU 33 drives the bonding state determination unit 32 to perform the thermal bonding state determination. In step S24, the applied power of the heating element 21 is set to the minimum applied power threshold W1. If it is determined that it is lower than the threshold value, and if it is determined that the applied power exceeds the threshold value W1, the process returns to step S22, and the detection and monitoring of the applied power to the heating element 21 is continuously performed.
[0057]
If it is determined in step S24 that the applied power is lower than the threshold value W13, the CPU 33 determines in step S25 that the power supplied to the heating element 21 is longer than a predetermined time, for example, one second or longer, and is lower than the minimum applied power threshold W1. Determine if it was small. Here, “when it lasts for 1 second or more” means that there is a time zone in which the supplied power is smaller than the threshold value W1 of the minimum applied power from the start of the output to the maximum applied power. The time is to exclude from the measurement.
[0058]
If the state smaller than the minimum applied power threshold W1 has not passed the predetermined time 1 second, the process returns to step S22, where the applied power is repeatedly detected, and the state smaller than the minimum applied power threshold W1 is 1 If it is determined that more than one second has elapsed, it is determined that the thermal bonding state of the transfer member 25 between the heating element 21 and the heat transfer plate 22 is defective, and the CPU 33 determines in step S26 that the output power control means 36 The driving is stopped to stop the supply and output of the heating power to the heating element 21, and the display unit 39 and the buzzer 17 c are driven in step S <b> 27 to notify the operator of the state of the poor thermal bonding of the transmission member 25.
[0059]
That is, if the state in which the power applied to the heating element 21 is smaller than the minimum threshold value W1 of the applied power continues for a predetermined time (for example, 1 second), it is determined that the thermal coupling state is defective.
[0060]
Thereby, during the heating treatment of the living tissue, the thermal bonding state of the heat treatment section 7 of the coagulating incision forceps 2 can be constantly monitored, the deterioration of the thermal bonding is detected, the operator is promptly notified of the display, and the heating treatment is performed. Stopping is now possible.
[0061]
[Appendix]
According to the embodiment of the present invention described in detail above, the following configuration can be obtained.
[0062]
(Appendix 1)
Heating means capable of generating heat for treating living tissue;
Output power control means for controlling the supply of heat power for driving the heat generation means to generate heat,
A treatment unit joined to the heating unit and capable of transmitting heat generated by the heating unit to the living tissue by the heating power supplied from the output power control unit; and from the output power control unit to the heating unit. Applied power detection means for detecting the supplied heat power,
Based on a detection result of the applied power detection unit, a bonding state determination unit that determines a bonding state between the heating unit and the treatment unit,
Based on the determination result of the joining state determination means, control of driving the supply of heat generation power from the output power control means, or notification of the determination result,
A heat treatment apparatus characterized by comprising:
[0063]
(Appendix 2)
The said joining state discriminating means compares the applied power value detected by the said applied power detecting means with the power threshold value set beforehand for a predetermined time or more, and performs joining state discrimination. Fever treatment device.
[0064]
(Appendix 3)
The joining state determination unit compares the applied power value detected by the applied power detection unit with a preset power threshold after a predetermined time has elapsed from the start of the output of the heat generation power from the output supply unit, and determines the joining state. The heat treatment apparatus according to claim 1, wherein the heat treatment is performed.
[0065]
【The invention's effect】
The heat treatment apparatus of the present invention can constantly monitor the heat bonding state of the heat treatment section of the coagulation / incision forceps before or during the heat treatment operation of the living tissue, and promptly display to the operator when the heat connection state is not good. This has the effect of notifying and stopping the heating treatment, thereby avoiding treatment of the living tissue due to a decrease in the heating temperature due to poor thermal bonding.
[Brief description of the drawings]
FIG. 1 is a block diagram showing the overall configuration of an embodiment of a heat treatment apparatus according to the present invention.
2A and 2B show an external configuration of an apparatus main body of an embodiment of a heat treatment apparatus according to the present invention, wherein FIG. 2A is a front perspective view as viewed from a front panel side, and FIG. Rear view seen.
FIG. 3 is a plan view showing a configuration of a coagulation / incision forceps of one embodiment of the heat treatment apparatus according to the present invention.
4A and 4B show a configuration of a heat treatment unit of the coagulation / incision forceps shown in FIG. 3; FIG. 4A is a cross-sectional view of the heat treatment unit; FIG. .
5 shows a configuration of a treatment section of the coagulation / cutting forceps of one embodiment of the heat treatment apparatus according to the present invention, and FIG. 5 (a) shows a heat treatment section of the coagulation / cutting forceps shown in FIGS. FIG. 5B is a cross-sectional view of the coagulated incision forceps shown in FIGS. 1 and 3 cut horizontally with respect to the paper surface.
FIG. 6 is a block diagram showing an internal configuration of an apparatus main body of one embodiment of the heat treatment apparatus according to the present invention.
FIG. 7 is an explanatory diagram illustrating the power applied to the heating element during normal joining of the heating treatment section of the coagulation / incision forceps in the embodiment of the heating treatment apparatus according to the present invention.
FIG. 8 is an explanatory diagram illustrating the power applied to the heating element when the heating treatment section of the coagulation / incision forceps is abnormally joined in the embodiment of the heating treatment apparatus according to the present invention.
FIG. 9 is a flowchart illustrating a joint state determination processing operation of a heat treatment section of the coagulation / cutting forceps of the heat treatment apparatus according to an embodiment of the present invention.
FIG. 10 is a flowchart illustrating a joint state determination processing operation of a heat treatment section of a coagulation / incision forceps according to another embodiment of the heat treatment apparatus according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Heat treatment device 2 ... Coagulation forceps 3 ... Device main body 7 ... Heat treatment unit 8 ... Elastic receiving unit 9 ... Treatment unit 21 ... Heat generating element 22 ... Heat transfer plate 25 ... Transmission member 31 ... Heat generation setting means 32 ... Joined state Determination means 33: microprocessor (CPU)
34 ... applied power detection means 35 ... resistance value detection means 36 ... output control means 37 ... operation unit 38 ... foot switch input unit 39 ... display unit

Claims (3)

生体組織を処置するための熱を発生可能な発熱手段と、
前記発熱手段を発熱駆動するための発熱電力を供給制御する出力電力制御手段と、
前記発熱手段に接合され、前記出力電力制御手段から供給される前記発熱電力によって前記発熱手段で発生される熱を前記生体組織に伝達可能な処置手段と、前記出力電力制御手段から前記発熱手段に供給される前記発熱電力を検出する印加電力検出手段と、
前記印加電力検出手段の検出結果に基づいて、前記発熱手段と前記処置手段との接合状態を判別する接合状態判別手段と、
前記接合状態判別手段の判別結果に基づき、前記出力電力制御手段からの発熱電力の供給、または、判別結果の告知の少なくとも一方を駆動制御する制御手段と、
を具備することを特徴とした発熱処置装置。
Heating means capable of generating heat for treating living tissue;
Output power control means for controlling the supply of heat power for driving the heat generation means to generate heat,
A treatment unit joined to the heating unit and capable of transmitting heat generated by the heating unit to the living tissue by the heating power supplied from the output power control unit; and from the output power control unit to the heating unit. Applied power detection means for detecting the supplied heat power,
Based on a detection result of the applied power detection unit, a bonding state determination unit that determines a bonding state between the heating unit and the treatment unit,
Control means for controlling the driving of at least one of the supply of the heating power from the output power control means, or the notification of the determination result, based on the determination result of the joining state determination means,
A heat treatment apparatus characterized by comprising:
前記接合状態判別手段は、前記印加電力検出手段で検出した印加電力値を予め設定された電力閾値と、所定時間以上比較して、接合状態判別を行うことを特徴とした請求項1に記載の発熱処置装置。The said joining state discriminating means compares the applied power value detected by the said applied power detecting means with the power threshold value set beforehand for a predetermined time or more, and performs joining state discrimination. Fever treatment device. 前記接合状態判別手段は、前記出力供給手段からの発熱電力の出力開始から所定時間経過後に、前記印加電力検出手段で検出した印加電力値を予め設定された電力閾値と比較して、接合状態判別することを特徴とした請求項1に記載の発熱処置装置。The joining state determination unit compares the applied power value detected by the applied power detection unit with a preset power threshold after a predetermined time has elapsed from the start of the output of the heating power from the output supply unit, and determines the joining state. The heat treatment apparatus according to claim 1, wherein the heat treatment is performed.
JP2002325816A 2002-11-08 2002-11-08 Pyrotherapeutic instrument Withdrawn JP2004159686A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002325816A JP2004159686A (en) 2002-11-08 2002-11-08 Pyrotherapeutic instrument
US10/701,927 US7108694B2 (en) 2002-11-08 2003-11-05 Heat-emitting treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002325816A JP2004159686A (en) 2002-11-08 2002-11-08 Pyrotherapeutic instrument

Publications (1)

Publication Number Publication Date
JP2004159686A true JP2004159686A (en) 2004-06-10

Family

ID=32804923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002325816A Withdrawn JP2004159686A (en) 2002-11-08 2002-11-08 Pyrotherapeutic instrument

Country Status (1)

Country Link
JP (1) JP2004159686A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008521541A (en) * 2004-12-02 2008-06-26 ギブン イメージング リミテッド In vivo electrical stimulation devices, systems, and methods
WO2013088892A1 (en) * 2011-12-12 2013-06-20 オリンパスメディカルシステムズ株式会社 Treatment system and method for controlling treatment system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008521541A (en) * 2004-12-02 2008-06-26 ギブン イメージング リミテッド In vivo electrical stimulation devices, systems, and methods
WO2013088892A1 (en) * 2011-12-12 2013-06-20 オリンパスメディカルシステムズ株式会社 Treatment system and method for controlling treatment system
JPWO2013088892A1 (en) * 2011-12-12 2015-04-27 オリンパスメディカルシステムズ株式会社 Treatment system and method of operating a treatment system
US9414882B2 (en) 2011-12-12 2016-08-16 Olympus Corporation Treatment system and actuation method for treatment system

Similar Documents

Publication Publication Date Title
US7108694B2 (en) Heat-emitting treatment device
US10194972B2 (en) Managing tissue treatment
JP3822433B2 (en) TREATMENT TOOL, TREATMENT TOOL CONTROL DEVICE AND MEDICAL TREATMENT SYSTEM
KR102537276B1 (en) Electrosurgical system
JP4624697B2 (en) Surgical instrument
JP4656755B2 (en) Electrosurgical equipment
WO2006068243A1 (en) Heat generating treatment apparatus
JP4472625B2 (en) Fever treatment device
JP4734012B2 (en) Fever treatment device
JP4455402B2 (en) Ultrasonic treatment device
JP2004159686A (en) Pyrotherapeutic instrument
WO2018073915A1 (en) Energy treatment system
JP2002238916A (en) Exothermic treatment apparatus
US10034703B2 (en) Control device for energy treatment tool, and energy treatment system
JP2003235865A (en) Thermal type treatment implement and treatment system using the same
US20220378494A1 (en) Methods for open dissection using sealing instrument
US20240238039A1 (en) Surgical instruments, systems, and methods incorporating ultrasonic and electrosurgical functionality
JP2004159685A (en) Pyrotherapeutic instrument
US20210000530A1 (en) Cordless surgical device and control method
US20220378490A1 (en) System and method for cutting tissue using electrosurgical tissue sealing instrument
JP2005160733A (en) Treating instrument for surgery
JP2001112771A (en) Hemostatic device
CN117715600A (en) Energy treatment system
JP6454361B2 (en) Medical treatment device
WO2022234389A1 (en) Surgical instruments, systems, and methods incorporating ultrasonic and electrosurgical functionality

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110