JP2004159599A - New microorganism - Google Patents

New microorganism Download PDF

Info

Publication number
JP2004159599A
JP2004159599A JP2002331358A JP2002331358A JP2004159599A JP 2004159599 A JP2004159599 A JP 2004159599A JP 2002331358 A JP2002331358 A JP 2002331358A JP 2002331358 A JP2002331358 A JP 2002331358A JP 2004159599 A JP2004159599 A JP 2004159599A
Authority
JP
Japan
Prior art keywords
sphingomonas
strain
degrading
petroleum
bacterium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002331358A
Other languages
Japanese (ja)
Other versions
JP4065942B2 (en
Inventor
Akihiko Maruyama
明彦 丸山
Takanori Higashihara
孝規 東原
Tomoko Iizuka
知子 飯塚
Chiwaka Misasa
千稚 三朝
Keiko Kitamura
恵子 北村
Michinari Sunamura
倫成 砂村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002331358A priority Critical patent/JP4065942B2/en
Publication of JP2004159599A publication Critical patent/JP2004159599A/en
Application granted granted Critical
Publication of JP4065942B2 publication Critical patent/JP4065942B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a means for effectively decomposing a environmental pollutant, particularly petroleum or a polycyclic aromatic hydrocarbon in the petroleum and making the substance harmless to clean the polluted environment and provide a means for simply and rapidly carrying out monitoring, evaluation, etc., of the polluted environment. <P>SOLUTION: A new microorganism belonging to the genus Sphingomonas is isolated and the environmental pollutant is decomposed and cleaned by using the microorganism. Detection and determination of bacteria having the environmental pollutant-decomposing ability are simply and rapidly carried out and monitoring and evaluation of the polluted environment is carried out by using a probe prepared from 16S rDNA/RNA of the new microorganism. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は環境汚染物質を分解、除去することのできるSphingomonas属に属する新種の細菌に関する。この細菌を利用して多環芳香族炭化水素(PAH)等有害環境汚染物質で汚染された水または土壌の浄化方法に関する。ならびに、本発明はSphingomonas属に属する特定の細菌や有害環境汚染物質分解能を有する細菌の検出、定量方法に関する。さらに、石油等有害物質汚染環境のモニタリング、解析・評価、診断する方法、および有害物質汚染環境の浄化・修復過程を解析・評価する方法に関する。
【0002】
【従来の技術】
近年,石油による海洋の汚染は海洋の生態系や水産生物などに悪影響を及ぼすことなどから世界的な環境問題となっている。
海洋に流出した石油はオイルフェンス,油回収機,油吸着材などによる物理的回収法と油ゲル化剤,乳化分散剤等の油処理剤による化学的処理方法がある(非特許文献1参照)。
物理的処理は海洋生態系に及ぼす影響は少ないと思われるが,化学的処理は油処理剤等の毒性や海洋生物など生態系への影響を十分考慮する必要がある。しかし,このような物理的・化学的な除去・処理を行っても完全ではなく,未回収の流出油は蒸発したり,光や酸素による物理・化学的な変化を受けるが,最終的には海水や海底堆積物中の微生物の生分解性に基づく自然生態系の自浄作用によって分解される(非特許文献2参照)。
近年、このような微生物を利用した環境調和型の生物学的油濁浄化技術(バイオレメディエーション)の開発が注目されている(非特許文献3、4参照)。このバイオレメディエーション技術は自然界で営まれている微生物による生分解プロセスを促進させて汚染物質を分解除去する技術である。
そこで、バイオレメディエーション技術を開発するためには、現場環境における石油等の有害環境汚染物質分解微生物の分布や種類,およびその分解能などを調べ、有害物質汚染環境に対する自然浄化能の見積もりやそのメカニズムを解明する必要がある。さらに、バイオレメディエーション技術を適用するためには、有害物質汚染環境中の微生物相や有害物質分解微生物のモニタリング、解析・評価やバイオレメディーエション技術による有害物質汚染環境の浄化・修復過程を的確に解析・評価する方法が求められている。
例えば、原油は複雑な数千にも及ぶ各種の炭化水素の混合物であり、石油中に存在する炭化水素は化学構造によって、飽和炭化水素と芳香族炭化水素に分けられるが、さらに前者はパラフィン(n−パラフィン、分枝パラフィン)とシクロパラフィン(単環、多環)に、後者は単環と多環芳香族炭化水素に分類されている(非特許文献5参照) 。
また石油は炭化水素組成により,飽和分(SA),芳香族分(AR),レジン分(RE),アスファルテン分(AS)にも分けることができる(非特許文献6参照 )。
微生物によるこれらの炭化水素の分解性はn−アルカン>分枝アルカン>低分子量芳香族炭化水素>シクロアルカンの順に低下する(非特許文献7参照)。
現場環境に流出した石油の微生物分解は最初に易分解性の飽和分や低分子量芳香族炭化水素の分解が起こり,非常に分子量の大きい芳香族炭化水素,RE,ASは分解され難く,その生分解速度はきわめて遅いといわれている(非特許文献8参照)。
また、発明者らの調査でも、日本海重油流出事故で汚染された現場海域海水中の微生物群集による重油の分解性は、重油中のSAは比較的よく分解されるが、難分解性の多環芳香族炭化水素(PAH)等を含むARの分解は少なく、縮合した芳香族環構造で分子量の大きいREや ASはほとんど分解されないことが認められた(非特許文献9 、10参照)。
重油など重質油に含まれるPAHは発ガン性、変異原性を有し、難分解性であることから、これらを短期間で効率的に分解する微生物や安全な環境調和型の生物学的分解・除去技術の確立が求められている。海洋環境から分離された多環芳香族炭化水素(PAH)分解細菌としては、これまでにSphingomonas sp. AJ1(非特許文献11)Cycloclasticus pugetii、非特許文献12参照)、Neptunomonas naphovorans(非特許文献13)、Lutibacterium anuloederans(非特許文献14)およびVibrio cyclotrophicus(非特許文献15参照)などいくつかのは報告がある。しかし、優れたPAH分解活性を有し、実用化できるようなものは得られていない。以上は石油汚染について主に説明したが、このほかにも化学薬品の流出事故あるいは工場排水、廃棄物の投棄に伴う有害物質による環境汚染等に対しても早急な対策を講じなくてはならず、この場合においても、上記したPAH乃至環境ホルモン等を有効に分解する技術の重要性はますます増大しており、そのための有用細菌の探索も盛んに行われている。
そして、これらの環境汚染浄化技術における有用微生物の探索には、該探索を迅速、簡便かつ正確に行えるような探索技術が望まれている。
【非特許文献1】海洋油流出対応,国際タンカー船主汚染防止連盟(Response to Marine Oil Spills, The International Tanker Owners Pollution FederationLtd.1993石油連盟,p.I3−I5, 東京, 1997」
【非特許文献2】「月刊海洋」第30巻10号(1998)第613 − 621頁」
【非特許文献3】「Marine Pollution Bulletin」第26巻(1993)第476−481頁」
【非特許文献4】「Crit. Rev. Microbiol.」第19巻(1993)第217−242頁」
【非特許文献5】「石油と微生物」第 1号(1968)第2−24頁」
【非特許文献6】「石油製品の品質と規格」(1997)第142−153頁」
【非特許文献7】「Microbiol. Rev. 」第54巻(1990)第305−315頁」
【非特許文献8】「Advances in Microbial Ecology (ed. K.C. Marshall), PlenumPress, New York」第12(1992)第287−338頁」
【非特許文献9】「平成10年度環境保全研究成果集、環境庁企画調整局環境研究技術課編」(1999)第48−II, 1−9,頁」
【非特許文献10】第14回日本微生物生態学会大会講演要旨集、P.41、1998
【非特許文献11】「J. Fer. Bioeng.」第82巻(1996),第570−574頁」
【非特許文献12】「Int. J. Syst. Bacteriol.,第45巻(1995)第116−123頁」
【非特許文献13】「Appl. Environ. Microbiol.第65巻(1999)第251−259頁」
【非特許文献14】「Appl. Environ. Microbiol.」第 67巻(2001)第5585−5592頁」
【非特許文献15】「Int. J. Syst. Evol. Microbiol.,第51巻(2001)第61−66頁」
【0003】
【発明が解決しようとする課題】
本発明は、特に、流出石油あるいは廃棄物等に含まれるPAH等の環境汚染物質を分解する能力を有するSphingomonas属に属する新種の細菌、該環境汚染物質で汚染された水または土壌の浄化方法を提供することにある。また、本発明はSphingomonas属に属する上記新種細菌、あるいはPAH等の環境汚染物質分解能を有する有用細菌の検出、定量方法、石油、廃棄物等による有害物質汚染環境のモニタリング、解析・評価、診断する方法、ならびにバイオレメディーエション技術による有害物質汚染環境の浄化・修復過程を解析・評価する方法を提供するものである。
【0004】
【課題を解決するための手段】
本発明者らは、上記従来技術の問題点に鑑み、鋭意研究を行った結果、日本海流出重油汚染沿岸海域の海水からPAH分解能を有するSphingomonas属に属する新種の細菌を見出し、さらに本細菌を特異的に検出、定量できる遺伝子プローブの作製に成功して本発明を完成するに至った。
すなわち、本発明は新規微生物、および新規微生物を用いた石油等有害物質汚染環境の浄化方法、ならびに上記新規微生物、あるいはSphingomonas属に属する有用細菌の検出、定量方法を提供するものである。
本発明の要旨は以下の通りである。
【0005】
(1) Sphingomonas属に属する微生物であって、16S rRNA遺伝子(16S rDNA)の塩基配列が、配列番号1または配列番号2に記載の塩基配列と97%以上の相同性を示す新規な微生物。
(2) Sphingomonas sp. ANI7A菌株またはSphingomonas sp.ANI7P菌株
(3) 多環芳香族炭化水素分解能を有する(1)または(2)に記載の微生物。
(4) 配列番号1または配列番号2の塩基配列を有する16S rDNA。
(5) 配列番号1若しくは配列番号2の塩基配列の一部を有するか、またはこれに対応するリボキシヌクレオチド配列の一部を有し、かつ、塩基長10 〜50bpのRNAまたはDNAプローブ。
(6) (1)〜(3)のいずれかに記載の微生物由来のRNAまたはDNAと特異的にハイブリダイズする(5)に記載のプローブ。
(7) 配列番号3、4または5に記載の塩基配列またはこれに対応するリボキシヌクレオチド配列を有する、(5)または(6)に記載のRNAまたはDNAプローブ。
(8)Sphingomonas属に属する環境汚染物質分解細菌を検出または定量するために用いる、(5)〜(7)のいずれかに記載のRNAまたはDNAプローブ。
(9)Sphingomonas属に属する環境汚染物質分解細菌が石油分解細菌である、(5)〜(7)のいずれかに記載のRNAまたはDNAプローブ。
(10) Sphingomonas sp.ANI7A菌株、またはSphingomonas sp.ANI7P菌株を検出および/または定量するために用いる、(6)または(7)に記載のRNAまたはDNAプローブ。
(11) (5)〜(7)のいずれかに記載のRNAまたはDNAプローブを用いて、Sphingomonas属 に属する細菌を検出および/または定量する方法。
(12) 検出または定量される細菌が、Sphingomonas属に属する環境汚染物質分解菌である請求項11に記載の方法。
(13) Sphingomonas属に属する環境汚染物質分解菌が石油分解菌である(12)に記載の方法。
(14) 検出および/または定量される細菌が(1)〜(3)のいずれかに記載の微生物である(11)に記載の方法。
(15) (5)〜(7)のいずれかに記載のRNAまたはDNAプローブを用いて、Sphingomonas属に属する有用細菌をスクリーニングする方法。
(16) スクリーニングされる細菌がSphingomonas属に属する環境汚染物質分解細菌である(15)に記載の方法。
(17) Sphingomonas属に属する環境汚染物質分解細菌が石油分解細菌である(16)に記載の方法。
(18) スクリーニングされる細菌が(1)〜(3)のいずれかに記載の微生物であ(15)に記載の方法。
(19) 配列番号1または配列番号2の塩基配列との相同性、または(5)〜(7)のいずれかに記載のRNAまたはDNAプローブを用いたDNA/DNAまたはDNA/RNAハイブリダイゼーション、または該DNAプローブをプライマーとして用いてPCRを行うことを特徴とする、(1)〜(3)のいずれかに記載のSphingomonas属細菌を同定する方法。
(20) 同定される細菌がSphingomonas属に属する環境汚染物質分解細菌である(19)に記載の方法。
(21) Sphingomonas属に属する環境汚染物質分解細菌が石油分解細菌である(20)記載の方法。
(22) 環境汚染物質で汚染された環境を(1)〜(3)のいずれかに記載の微生物で処理することを特徴とする、汚染環境の浄化方法。
(23) 環境汚染物質が石油または石油由来のものである(22)に記載の方法。
(24) (11)〜(14)のいずれかに記載の方法を用いて、有害物質汚染環境のモニタリング、解析・評価および診断する方法
(25) (11)〜(14)のいずれかに記載の方法を用いて、有害物質汚染環境の浄化及乃至修復過程を解析し、評価する方法。
【0006】
【発明の実施の形態】
以下本発明を詳細に説明する。
〔微生物〕
本発明の微生物は、日本海流出重油汚染沿岸海域の一つである石川県沿岸の最も汚染された地点の海水試料から単離したことに基づくに基づく。これにより得られた菌株は具体的には、ANI7A 菌株(受託番号FERMP−19095)とANI7P菌株(受託番号FERMP−19096)の2種である。これらの菌株は天然海水、好ましくは無菌的に採取した海水を微生物源として、例えばPAHを唯一の炭素源・エネルギー源としてNSW培地(表2;T. Higashihara, A. Sato and U. Shimizu: An method for the enumeration of marine hydrocarbon degrading bacteria. Bulletin ofJapanese Society of Scientific Fishiereies, 44, 1127−1134, 1978)を用いた集積培養法により分離したものである。詳細な分離法を実施例1に示した。
【0007】
ANI7A 菌株およびANI7P菌株は、いずれもアントラセン(AN)、フェナントレン(PHE)等のPAHを分解することができる。以下これらの菌株の表現形質による分類・同定や16S rDNAの塩基配列に基づく分子系統解析について説明する。
ANI7A菌株の菌学的性質を表1に示した。
【表1】

Figure 2004159599
これらの菌学的性質に基づき、Bergey’s Manual of Systematic Bacteriology, Volume 1(1984) ( Krieg, N. R., and Holt, J. G.: Bergey’s Manual of Systematic Bacteriology Vol. 1. Williams & Wilkins, Maryland , 1984) およびBergey’s Manual of Determinative Bacteriology, Ninth Edition (1994) (Holt, G., Krieg, N.R., Sneath, P.H.A., Staley, J.T., and Williams, S.T. (eds.): Bergey’s Manual of Determinative Bacteriology (9th ed.). Williams and Wilkins, Maryland, 1994)
を参考にして分類・同定を行った結果、ANI7A菌株はSphingmonas属に属する細菌と同定された。
【0008】
次ぎに、ANI7A菌株とANI7P菌株について述べる。
Aタイプコロニー(実施例1参照)から得られた純培養株、ANI7A菌株のコロニー形態(NSW+AN二層培地(表2)、20℃、26日培養)は、コロニー形状:円形(circular)、大きさ:2.0mm、表面:平滑(smooth)、隆起状態:半レンズ状(convex)、周縁:全縁(entire)、色調:light brown(コロニー中心部の色調が縁部より濃い)であった。一方、Pタイプコロニーからの純培養株、ANI7P菌株の上記培養条件下でのコロニー形態は、コロニー形状:円形(circular)、大きさ:1.8 mm、表面:平滑(smooth)、隆起状態:半レンズ状(convex)、周縁:全縁(entire)、色調:light brown(コロニー色調は全体に均質で光沢がある)であった。このようにANI7A菌株とANI7P菌株のコロニー形態は類似しているが、コロニーの色調、光沢が異なり、また培地の種類や培養期間によっては両菌株のコロニーの隆起状態が異なっていた。
【0009】
上記のようにANI7A菌株とANI7P 菌株のコロニー形態は若干違っていた。しかし、両菌株の16S rDNAの塩基配列に基づく分子系統解析を行った結果、両菌株の16S rDNAの塩基配列の相同性は99.7%であつたことから、ANI7A菌株とANI7P 菌株は同一種と推定された。ANI7A菌株およびANI7P 菌株の16SrDNAの塩基配列を配列表の配列番号1と2に示した。また、図1にANI7A菌株およびANI7P 菌株の分子系統樹を示した。
【0010】
なお、表現形質に基づく分類・同定は、本発明者らが開示している「重油分解方法」(特開2001−37466公報(公開日2001.2.13)およびR.M.Smibert and N.R.Kreig: Phenotypic Characterization. Methods for General and Molecular Bacteriology (P.Gerhardt, R.G.E.Murray, W.A.Wood and N.R.Krieg),p.607−654, American Society for Microbiology, Washington,D.C.(1994)に述べている方法に準じて行った。また、16S rDNAの配列決定は本発明者らが開示している「新規低温細菌を検出するためのDNAプローブ」(特開2000−333680公報(公開日2000.12.5)に述べている方法に準じて行った。さらにDNAデーターベースより入手したSphingomona属および代表的な微生物種の塩基配列を並列させてアライメント処理を行い、比較不能なギャップを取り除いた後、NJ法により分子系統解析を実施した。得られた系統樹の各分岐の確度は、100回のブーストラップ解析により算出した(Maruyama, A., D. Honda, H. Yamamoto, K. Kitamura and T. Higashihara : Phylogenetic analysis of psychrophilic bacteria isolated from the Japan Trench, including a description of the deep−sea species Psychrobacter pacificensis sp. nov. International Journal of Systematic and Evolutionary Microbiology. 50, 835−846, 2000)。
【0011】
ANI7A菌株およびANI7P 菌株の分子系統樹の位置は表現形質による分類位置と同様に、Sphingomonasに属することを示した。さらにANI7A菌株と最も分子系統的に近縁なSphingomonas subarctiaと本菌株の16S rDNAの相同性は95.8%であつた。
一方、「細菌の種は系統的にほぼ70%またはそれ以上のDNA−DNA相同性を示す菌株である」と定義されている(国際細菌分類命名委員会特別委員会報告、L. G. Wayne, D. J. Brenner, R. R. Colwell, P. A. D. Grimont, O. Kandler, M. I. Krichevsky, L. H. Moore, W. E. C. Moor, R. G. E. Murray, E. Stackebrandt, M. P. Starr and H. G. Truper: Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. International Systematic Bacteriology, 37, 463−464, 1987)が、Stackerbrandtらは、上記定義におけるDNA−DNA相同性と16SrDNAの相同性との関係について、DNA−DNA相同性と16SrDNAの相同性の比較からDNA−DNA相同性70%以上のものと16SrDNAの相同性97%以上のものは対応するとし、16S rDNAの相同性97%以上のものを同一の種とみなされると述べている(Stackebrandt, E. and Goebel, B. M.: Taxonomic note: a place for DNA−DNA reassociation and 16SrRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol., 44, 846−849, 1994)。
【0012】
以上のことから、ANI7A菌株およびANI7P 菌株はSphingomonas 属の新種として、Sphingomonas 属ANI7A菌株およびANI7P菌株と命名した。
これらの菌株は独立行政法人産業技術総合研究所特許生物寄託センターに、受託番号FERMP−19095(Sphingomonas 属ANI7A菌株)および受託番号FERMP−19096(Sphingomonas 属ANI7P菌株)として寄託されている。
また、上記の16S rDNAの相同性と種の関係からみれば、ANI7A菌株または ANI7P菌株と16SrDNAの相同性において97%以上の菌株であれば、これら菌株と同一種とみなされ、本発明に包含される。
【0013】
〔Sphingmonas属微生物の機能〕
Sphingmonas属はYabuuchiらによつて1990年に提唱された新属で、細胞膜にスフィンゴ糖脂質を有し、キノン系はユビキノンQ10で、黄色のカロチノイド色素(Nostoxanthin)を生成すことが特徴としてあげられている(Yabuuchi, E., Yano,I., Oyaizu, H., Hashimoto, Y., Ezaki, T., and Yamamoto, H.: Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp.nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov. , Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol. Immunol., 34, 99−119, 1990)。
最近、Sphingmonas属細菌は、ビフェニール(BP)等環境ホルモン、クロロフェノール、ヘキサクロロシクロヘキサン等の有機塩素化合物、キシレン、ナフタレン、フェナントレン等の芳香族炭化水素、除草剤等の農薬、ポリエチレングリコール等の合成高分子化合物など非常に広範な種々の環境汚染物質に対する強力な分解能を有することが明らかにされるとともに、さらに新たな環境汚染物質分解能の発見が期待されることなどから世界的に注目されている(Sphingmonas属細菌の最新の知見をまとめた特集号、「The genus Sphingomonas」、Journal of Industrial Microbiology & Biotechnology, 23(No.4/5), 231−445, 1999)。我が国においても、Sphingmonas属細菌は、きわめて強力な有害環境汚染物質の分解能を有し、バイオレメディエーションの切り札として注目されている細菌群であることから、環境浄化にSphingmonas属細菌の能力を利用する研究を進展させるため、この細菌の生態(構造と機能)、分解能(酵素と遺伝子、分子育種)、使用法(汚染源への細菌導入または栄養源供給)、工学的側面(増殖制御、環境制御、複合微生物系制御)等の総合的研究(文部科学省、科学研究費補助金、特定領域研究)の提案に向けての調査研究が行われている(シンポジウム 科学研究費補助金基盤研究(C)(企画調査)「スフィンゴモナス属細菌を用いる環境浄化システム構築基盤−スフィンゴモナス属細菌とバイオレメディーエション」講演要旨集、2001)。また、このシンポジウムを端緒に「環境微生物研究会(スフィンゴモナス研究会)」が設立された。
【0014】
海洋環境から単離されたSphingomonas 属のPAH分解細菌としては、PHE分解細菌(Komukai−Nakamura, S., Sugiura, K., Yamauchi−Inomata, Y., Toki, H., Venkateswaran, K. , Yamamoto, S., Tanaka, H., and Harayama, S.: Construction of bacterial consortia that degrade Arabian light crude oil. J. Fer.Bioeng., 82, 570−574 , 1996、 Berardesco, G., Dyhrman, S., Gallagher, E. and Shiaris, M.P.: Spatial and temporal variation of phenanthrene−degarding bacteria in intertidal sediments. Appl. Environ. Microbiol., 64, 2560−2565, 1998)や2−methyphenathrene分解細菌が知られている(Gilewicz, M., Nimatuzahroh, Nadalig, T., Budzinski, H., Doumenq, P., Michotey, V., and Bertrand, J. C.: Isolation and characterization of a marine bacterium capable of utilizing 2−metylpheanathrene. Appl. Microbiol. Biotechnol., 48, 528−533 1997)。また、海洋環境から得られたSphingomonas 属細菌の中にはPAH以外にトルエン、キシレン等芳香族炭化水素など各種の炭化水素を分解する細菌が報告されている(R. Cazicchiol, F. Fegatella, M. Ostrowski, M. Eguchi, J. Gottschal: Sphingomonads from marine environments, Journal ofIndustrial Microbiology & Biotechnology, 23, 268−272, 1999)。さらに、Sphingomonas aromaticiborans F199菌株はトルエン、o, m, p−キシレン、p−クレゾール、ナフタレン、ビフェニール(BP)、ジベンゾチオフェン、フルオレン、サリチル酸、安息香酸などを分解し、一種一菌株で多様な有害物質分解能を有している(J.K. Fredrickson, F. J. Brockman, D. J. Workman, S. W. Li and T. O. Stevens: Isolation and characterization of a subsurface bacterium capable of growth on toluene, naphthalene, and other aromatic compounds, Appl. Environ. Microbiol., 57, 796−803, 1991; J.K. Fredrickson, D. L. Balkwill, G. R. Drake, M. F. Romine, D. B. Ringelberg and D. C. White:Aromatic−degrading Sphingomonas isolates from the deep subsurface, Appl. Environ. Microbiol., 61, 1917−1922, 1995; D. L. Balkwill, G. R. Drake, R. H. Reeves, J.K. Fredrickson, D. C. White, D. C. Ringelberg, D. P. Chandler, M. F. Romine, D. W. Kennedy and C. M. Spadoni, Taxonomic study of aromatic−degrading bacteria from deep−terrestrial−subsurface sediments and description of Sphingomonas aromaticvorans sp. nov., Sphingomonas subterranea sp. nov. and Sphingomonas stygia sp. nov., Int. J. Syst. Bacteriol., 47, 191−201, 1997)。
【0015】
本発明のANI7A菌株およびANI7P菌株は、日本海重油流出事故で汚染された沿岸海域の海水試料から分離された微生物で、いずれもアントラセン(AN)やフェナントレン(PHE)の分解能を有していることから、現場油濁海域の浄化に働いているものと推察された。また、ANI7A菌株およびANI7P菌株の近縁種Sphingomonassubarctiaはポリクロロフェノール分解細菌であることが報告されている(Nohynek, L. J., Nurmiaho−Lassila, E. L., Suhonen, E. L., Busse, H. J., Mohammadi, M., Hantula, J., Rainey, F. and Salkinoja−Salonen, M.S: Description of chlorophenol−degrading Pseudomonas sp. strains KF1, KF3, and NKF1 as new species of the genus Sphingomonas, Sphingomonas subarctica sp. nov. Int. J. Syst. Bacteriol., 46, 1042−1055, 1996)。
【0016】
上記のことから、本発明のSphingomonas属に属する新種の微生物は、PAHを含む石油や有害物質の分解能を有し、これらにより汚染された環境の浄化に利用できるきわめて有用な微生物である。また、Sphingomonas属細菌は上述のように非常に広範な環境汚染物質に対する強力な分解能を有することから、本発明のSphingomonas属の新種の微生物もPAH 分解能以外に環境ホルモン、有機塩素化合物、農薬、合成高分子化合物などの有害環境汚染物質分解能を有するものということができ、極めて有用な微生物であり、有害物質で汚染された環境浄化に利用することができる。
【0017】
〔他の微生物〕
次ぎに、油濁環境や有害物質汚染環境の浄化に本微生物を利用する場合は、本発明の微生物を単独で使用してもよく、また本発明の微生物と例えば脂肪族炭化水素分解細菌Alcanivorax属細菌や公知の炭化水素分解微生物、また有害環境汚染物質分解能を有する微生物と混合して環境汚染物質分解微生物コンソーシアとして利用することもできる。さらに、石油等有害汚染物質の分解効率を促進するため、本発明の微生物を含む分解微生物コンソーシアに、有害汚染物質の中間分解物や代謝産物を分解する非有害汚染物質分解微生物を加えた複合微生物系を構築し、利用することもできる。
【0018】
〔培地〕
本発明の微生物や本発明の微生物を含む環境汚染物質分解微生物コンソーシアの培養に用いる培地は、これらの微生物が良好に増殖し、かつPAH分解能や環境汚染物質分解能が発現できる培地であれば、いかなる組成の培地でもよい。炭素源としては、PAHを唯一の炭素源・エネルギー源として用いることができるが、PAHを含む原油、灯油、軽油、重油等の石油製品、船舶や工場からの流出油なども利用することができる。さらに、炭水化物、ピルビン酸のような有機酸、廃糖蜜なども用いることができる。これらはPAHや石油類と混合して用いると効果的な場合もある。また、疎水性のPAHや石油類を微生物によって分解され易くするため、これらにTween 80のよう界面活性剤を添加し、さらに超音波発生機にて乳化・分散させる場合もある。PAHを微量なエタノールやアセトンに溶解して添加することもできる。窒素源としては、微生物に利用される有機・無機化合物であればよい。有機窒素源としてはペプトン、肉エキス、コンステイプリカー、脱脂大豆、カゼンインなどが、無機窒素源としてはアンモニウム塩、硝酸塩、尿素などが利用できる。無機塩類としては、各種のリン酸塩、塩化ナトリウム、マグネシウム、鉄、マンガン、カルシウム、亜鉛、モリブデンなどを添加してもよい。また、増殖因子として、ビタミン類、アミノ酸類があり、肉エキス、ペプトン、酵母エキス、コンステイプリカーなど前記栄養因子を含有する天然有機栄養物を添加してもよい。
なお、これらの微生物を効率よく大量に培養するときは、必ずしもPAH等環境汚染物質を含む培地で培養する必要はなく、Marine Broth (Difco) やNutrientBroth (Difco) のような有機栄養培地でもよい。
【0019】
〔培養方法〕
培養は好気的条件、例えば振とう培養法、通気撹拌培養法が好適であるが、
適宜液体静置培養を組み合わせてもよいし、また液体静置培養でもよい。培地のpHは5−9、好ましくは6−8であればよい。培養温度は15−37℃、好ましくは20−30℃であればよい。
【0020】
〔本発明の微生物を用いた環境汚染物質の分解手段〕
本発明の微生物および本発明の微生物を含有する石油等環境汚染物質分解微生物コンソーシアを用いた浄化方法としては、PAHを含む石油等の環境汚染物質に汚染された海洋、湖沼、河川、廃液などに、これらの微生物の培養液、生菌体、凍結乾燥菌体を散布すればよい。この場合、有機または無機の窒素、リンなどの栄養源とこれらの微生物を混合した栄養・微生物製剤として、また本発明者らが開示したアルギン酸を用いた栄養源含有固定化担体(特開2001−37466、公開日:2001.12.13)、ポリアクリルアミドゲル、ポリウレタンフォームなど公知の微生物固定化担体を用いて、これらの微生物を固定化した各種の微生物製剤を利用することができる。この場合栄養源とこれらの微生物を同時に固定化した方が好ましい。
【0021】
〔環境汚染物質分解微生物の検出、定量、スクリーニング、同定及び環境評価方法〕
次ぎに、核酸プローブやそれを用いた石油等有害環境汚染物質分解微生物の検出・定量方法、スクリーニング方法、同定方法、およびこの検出・定量法を用いた有害汚染物質汚染のモニタリング、解析・評価方法などについて説明する。
先に述べた汚染物質分解微生物を用いた環境調和型の生物学的環境浄化技術、すなわちバイオレメディエーション技術には,一般に海等の汚染環境に欠乏している窒素(N),リン(P)などの栄養製剤を散布し,現場に生息している土着分解微生物の活性を高める方法(バイオスティミュレーション,Biostimulation)と分解微生物製剤等を散布する方法がある(バイオオーギュメンテーション,Bioaugmentation)(R. M. Atlas and R. Bartha: Hydrocarbon Biodegradation and Oil Spill Bioremediation. Advances in Microbial Ecology (ed. K.C. Marshall), PlenumPress, New York, 12, 287−338,1992、K. Lee et al.: Bioaugmentation and biostimulation: a paradox between laboratory and field results. In Proceedings of the 1997 International Oil Spill Conference, p 697−705, AmericanPeteroleum Institute,Washington.D.C., 1997 )。この環境浄化技術を確立するためには、栄養源や微生物を散布した場合、現場環境における石油等有害物質分解微生物を定性的、定量的に把握し、汚染浄化に関与する微生物群集の挙動や機能を解明する必要がある。これまでに、石油で汚染された沿岸海域や航路海域に石油分解微生物が最も多く分布していることが報告されている(Atlas, R. M.: Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbial. Rev., 45, 180−209, 1981)。
例えば、一般に非汚染海域に分布する炭化水素分解微生物の割合は全微生物数の1%以下であるが、油濁海域ではその比率がしばしば10%以上なるといわれている(R. M. Atlas: Petroleum biodegradation and oil spill bioremediation, Marine Pollution Bulltetin, 31, 178−182, 1995、R. M. Atlas and R. Bartha: Hydrocarbon Biodegradation and Oil Spill Bioremediation. In: Advances in Microbiolbial Ecology, Ed. K. C. Marshall, PlenumPress, New York, 12, 287−338, 1992)。 一般に微生物群集全体に占める分解微生物の割合は石油等有害物質汚染の程度を反映し、その指標になるといわれている(Atlas, R. M.: Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbial. Rev., 45, 180−209, 1981)。
【0022】
また、木材処理施設から排出されるクレオソート(約85%の多環芳香族炭化水素 [PAHs] を含有する)で汚染された港湾の堆積物中のPAH分解菌数が調査されている(A. D. Geiselbrecht et al: Enumeration and Phylogenetic Analysis of Polycyclic Aromatic Hydrocarbon−Degrading Mairne Bacteria from Puget Sound Sediment, Appl. Environ. Microbiol., 62, 3344−3349, 1996)。それによると、MPN培養計数法により計数された、PAH分解菌数は、汚染サイトで104〜107 MPN/g (乾燥重量)、非汚染サイトで103〜104 MPN/g (乾燥重量)であった。一方、堆積物中の全菌数は109 /g (乾燥重量)程度で、汚染サイトと非汚染サイト間でほとんど差がみられなかったという。すなわち、クレオソート汚染サイトでは、PAH分解菌が非汚染サイトの10−1000倍多いというだけでなく、全微生物群集に占める割合も1%程度にまで増大していた。このように、環境が汚染されたことを反映して微生物群集に占める分解菌群の割合が増大していることが見出されており、分解菌の比率は汚染環境のよい指標になると考えられる。
【0023】
しかし、従来の石油やPAH等の有害物質分解微生物の計数法は、上記報告のように平板培養法やMPN(最確数)法を用いた培養法によるものである。この培養法は、いずれも多大な労力と時間を要する。また、寒天平板培地を用いる計数法では, 炭化水素無添加の対照培地において,試料中の細菌が寒天中の不純物を利用して増殖し, コロニーを形成する。微量の増殖因子として酵母エキス(0.01%)を添加した寒天平板培地を用いた計数では、炭化水素培地と炭化水素無添加培地の両培地において微小なコロニーが生成し,その数やコロニーの大きさで炭化水素分解細菌と非分解細菌の違いを明らかにすることができなかったといわれている(T. Higashihara, A. Sato and U. Shimidu: An MPN method for the enumeration of marine hydrocarbon degrading bacteria, Bull. Japan. Soc. Sci. Fish., 44, 1127−1134, 1978)。以上のことから,炭化水素無添加の対照培地においても,寒天中の微量な有機物を利用してコロニーを形成する細菌が存在するため,寒天平板培地で特定の炭化水素分解細菌を選択的かつ正確に計数することは困難である。
加えて特定分解微生物を検出するには、寒天平板法にて目的微生物を分離し、分類・同定(属、種レベル)を行う必要があり、さらに長時間を要し多数の分離微生物を分類・同定することは困難である。さらに、自然界に生息する微生物の内、これら従来の分離・培養法で検出できる微生物の数は極めて少ない。すなわち、蛍光DNA染色剤で染色し顕微鏡下で計数する直接顕微鏡計数法(たとえば、J. E. Hobbie, R.J. Daley,and S. Jasper: Appl. Environ. Microbiol. 33:1225−1228, 1977やK. G. Porter and Y. S. Feig: Limnol. Oceanogr. 25: 943−948,1980)で得られた全菌数と比較して、分離・培養可能な微生物の割合は1%以下でしかないと考えられる(R. I. Amann, W. Ludwig and K−H. Schleifer: Phylogenetic Identification and In Situ Detection of Individual Microbial Cell without Cultivation, Microbial. Rev., 59, 143−169, 1995)。したがって、従来の培養法では現場環境中に生息する微生物の1%程度を対象とした特定分解微生物や微生物相の調査しかできず、環境微生物群集中の分解微生物が十分に反映されていないという大きな欠点があった。
【0024】
近年 、分子生物学的手法に基づく分子微生物生態学が発展し 、従来のように分離・培養法に依存せず 、分子・細胞レベルで 、環境中の微生物群集構造や多様性の解析が可能になってきている(I. M. Head, J.R. Saunders and R. W. Pickup: Microbial evolution, diversity,and ecology: a decade of ribosomal RNA analysis of uncultivated microorganisms, Microb. Ecol., 35, 1−21, 1998. 渡辺一哉, 二又裕之:環境中で働く微生物, 化学と生物, 38,230−236, 2000、丸山明彦:海洋微生物の分子・細胞レベルでの解析,海洋微生物,月刊海洋,号外No.23, 162−170, 2000、
浦川秀敏,大和田紘一:核酸を用いた培養に依存しない微生物群集解析手法,海洋微生物,月刊海洋,号外No.23, 176−182, 2000)。この分子生物学的手法による微生物群集解析手法は 、石油等の有害物質汚染環境やバイオレメディエーション技術による環境修復過程の分解微生物群の挙動や微生物群集構造の変遷を把握するために必要不可欠であり、最近それらの技術が開発されつつある。
最近、全微生物や環境汚染物質分解微生物等の特定微生物を対象として、それらに特異的なDNAプローブを用い、従来の分離・培養法に依存しない分子遺伝学的な検出および定量化が試みられている。 例えば、分離・培養法によらず細胞レベルで分解微生物等の特定微生物を検出する場合には、蛍光in situハイブリダイゼーション法(FISH法:fluorescence in situ hybridization)が用いられている(R. I. Amann, W. Ludwig and K−H. Schleifer: Phylogenetic Identification and In Situ Detection of Individual Microbial Cell without Cultivation, Microbial. Rev., 59, 143−169, 1995)。すなわち、DNAプローブを用いて、FISHを行うことにより 、微生物群集中の特定の分解微生物細胞のみを特異的に検出・計数することができる。直接顕微鏡計数法で求めた全菌数と比較することにより 、全微生物群集中の 特定微生物の定量的比率を算出することができる。さらに、水環境試料を対象とし、細胞レベルで全群集に占める分解微生物等の特定微生物の割合を解析する場合には、FISH−DC法が有効である(A. Maruyamaand M. Sunamura: Simultaneous direct counting of total and specific microbial cells in seawater, using a deep−sea microbe as biomarker. Appliedand Environmental Microbiology, 66: 2211−2215, 2000)。また、DNAプローブを用いた分子レベルでの特定分解微生物の定量的解析手法としては 、核酸ハイブリダイゼーション法がある(D. A. Stahl, B. Flesher, H. R. Mansfield and L. Montgomery : Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Appl. Environ. Microbiol., 54, 1079−1084, 1988)。この方法は環境試料や微生物試料から核酸を抽出し 、核酸試料をナイロン膜フィルター上に固定し 、次ぎに放射性同位体(RI)等で標識したDNAプローブを加えて 、ハイブリダイゼーションを行い 、膜上に固定さている核酸と相補的に結合した標識プローブの放射能強度等を測定し 、プローブと特異的に結合した核酸濃度から特定微生物の定量化をはかる方法である。
【0025】
最近 、丸山らはRIを用いない蛍光ドットブロットハイブリダイゼーション法による相対分子定量法を開発している(A.Maruyama, K, Kitamura, H. Ishiwata, M. Matsuo, T. Higashihara, and R. Kurane: Molecular specification and quantification of predominant microbes in oil contaminated seawater. 9thInternational Symposium on Microbial Ecology(Amsterdam), Abstract, p.375, 2001、丸山明彦:分離培養困難な環境微生物へのアプローチ,バイオサイエンスとインダストリー, 60, 31−34, 2002)。
以上のようなことから、本発明においては、本発明の上記新規微生物を特異的に検出・計数することが可能なDNAプローブを新たに作製している。以下DNAプローブを作製する工程について説明する。
【0026】
〔プローブ〕
ANI7A菌株または/およびANI7P 菌株の各16S rDNA(ANI7A菌株;配列番号1、ANI7P 菌株;配列番号2)の塩基配列情報に基づいて、種々の用途に適したRNAおよびDNAプローブを設計することができる。プローブの塩基配列および長さは検出、定量、スクリーニング、あるいは同定の対象とするSphingomonas 属微生物の範囲に応じて適宜選択すればよい。例えば、本発明の上記新種の微生物のみをスクリーニングしたい場合には、該微生物の16S rDNAの特異的部分の塩基配列によりプローブを設計すればよく、さらに近縁種をも含めてスクリーニング範囲を広げたいときには、近縁種の16S rDNAと共通な塩基配列部分を含むよう例えば塩基配列の長さを短縮する等プローブを設計する、また、塩基配列部分の選択あるいはその長さを調節することによりさらに、プローブの菌株特異性を低下させれば、さらに広い範囲の有用細菌をスクリーニングすることができる。
本発明のプローブは 例えばFISH法(fluorescence in situ hybridization)により、試料(例えば、石油等有害物質で汚染された海、河川、湖沼、排水・廃液などの環境試料水)中、あるいは多数の微生物群の中から、Sphingomonas属に属する、本発明の上記新種微生物、その近縁種、あるいは該近縁種の石油分解細菌を検出および/または定量したり、また、スクリーニングするためには、例えば、配列番号1の塩基配列の塩基番号 565−615の領域(Escherichia coliの16S rDNAの塩基配列における5’末端からの位置(ナンバーリングシステム)では、630−680の領域)などから選択される領域に対応する塩基長10−50bp、好ましくは塩基長15−25bpのプローブを設計するとよい。一例として以下のプローブを挙げることができる。
(1)5’−CGCCTCTCCAAGATTCTAGCGACCT−3’(SPG645*, 25mer)(配列番号3)
3’−GCGGAGAGGTTCTAAGATCGCTGGA −5’
(2)5’−CCAAGATTCTAGCGACC−3’(SPG643*, 17mer)(配列番号4)
3’−GGTTCTAAGATCGCTGG −5’
(3)5’−TAGCGACCTAGTTTCAAAGG −3’(SPG634*, 20mer)(配列番号5)
3’−ATCGCTGGATCAAAGTTTCC −5’
(なお、*(数字)はEscherichia coliの16S rDNA塩基配列における5’末端からの位置(ナンバーリングシステム)を示す(Noller H. F. and C. R. Woese, 1981. Science, 212:403−411)。
プローブは、公知の方法、例えば、ホスホルアミド法またはトリエステル法により合成することができる。あるいは、DNA自動合成機により合成してもよい。
【0027】
また、プローブは、アイソトープ(32P、35Sなど)、蛍光色素(ビオチン/アビジン、ジゴキシゲニン/抗ジゴキシゲニン−ローダミン、
Fluorescein−isothiocyanate (FITC)、LuciferYellow CH、Rhodamine 123、Acridine orange、Pyronin Y、Ethidium bromide、Propidium iodide、Ethidium homodimer、BOBO−1、POPO−1、TOTO−1、YOYO−1、Carboxyfluorescein diacetate (CFDA)、Fluorescein diacetate (FDA)、Carboxyfluorescein diacetate−acetoxymethylester (CFDA−AM)、5−cyano−2,30ditolyl tetrazolium chloride (CTC)、Tetramethylrhodamine isothiocyanate(TRITC)、Sulforhodamine 101 acid chloride (Texas Red)、Cy3、Cy5、Cy7、2−hydroxy−3−naphtoic acid−2’−phenylanilidephosphate (HNPP)など)、化学発光などで標識するとよい。
【0028】
〔Sphingomonas属の有用細菌のスクリーニング及び検出、定量〕
本発明のRNAまたはDNAプローブを用い、種々のハイブリダイゼーション法(サザンブロット法、ノーザンブロット法、コロニーハイブリダイゼーション、ドットハイブリダイゼーション、in situハイブリダイゼーション(例えば、FISH法)などにより、Sphingomonas属に属する、本発明の新種微生物、その近縁種、あるいは該近縁種の石油分解細菌種の石油分解細菌を検出及び/または定量したり、スクリーニングすることができる。
本発明のDNAプローブを用いて、石油や環境汚染物質で汚染された現場の水や海水から石油等汚染物質分解微生物を検出・定量する方法の一例について以下に説明する。有害物質汚染現場から水や海水試料を採取し、この試料中に存在する微生物をフィルター(孔径0.2μm)に固定し、これを蛍光色素等で標識した配列番号3の塩基配列を有するDNAプローブとハイブリダイズさせ、プローブを洗い落とした後、蛍光顕微鏡で観察して、DNAプローブとハイブリダイズし、標識した蛍光を呈している特定の分解微生物を選択的に検出または計数を行う。
上記したように、環境が汚染されれば、分解菌群の割合が増大してくるのでこれにより、環境汚染の指標とすることが可能となる。
【0029】
また、本発明のDNAプローブを用い、コロニーハイブリダイゼーション手法、ブロットハイブリダイゼーション手法、フローサイトメトリー法などにより、多数の微生物群の中からSphingomonas属の本発明の新種の微生物およびその近縁種、およびSphingomonas属の石油分解細菌、とくにSphingomonas属の本発明の新種の微生物およびその近縁種の石油分解細菌をスクリーニングすることができる。
【0030】
〔Sphingomonas属菌の同定〕
さらに、配列番号1または2の塩基配列情報や配列番号3、4または5を用いて、Sphingomonas属の本発明の新種の微生物およびその近縁種、およびSphingomonas属の本発明の新種の微生物およびその近縁種の石油等有害物質分解細菌を同定することができる。例えば、配列番号1または配列番号2の塩基配列との相同性、または請求項5〜7いずれかに記載のRNAまたはDNAプローブを用いたDNA/DNAまたはDNA/RNAハイブリダイゼーションにより同種の菌であることが同定できる。さらに、上記プローブの塩基配列(DNA断片)をプライマーとして用いて、PCRを行うことによって菌種の同定を行うこともできる。すなわち、同定の対象となる菌体を溶菌して、上記プローブの塩基配列をもつDNA断片をプライマーとして添加した後、PCR増幅する。そのPCR産物を電気泳動等により16S rDNAの増幅が確認されれば、対象とした菌には、用いたDNA断片に相補的な遺伝子部分を有していることになる。すなわち、同種の菌であることが特定できる。
【0031】
〔有害物質汚染環境のモニタリング、解析・評価〕
石油等の有害物質汚染環境の指標となる特定の分解微生物の挙動、およびそれが全微生物群集に占める割合(優占度)を、簡単、迅速にモニタリングすることが可能になれば、汚染の程度、および汚染環境の修復、回復の程度などを、その汚染環境の診断が高精度かつ早期に可能になる。 例えば、環境中に石油分解菌やPCB分解菌がある時期に優占度が上昇していれば、その環境は石油やPCBで汚染されている可能性が高いと判断できるし、その微生物群集全体として石油やPCB分解能が高まっていると判定できる。さらに、その優占度の変化を長期間にモニタリングし、その変遷の周期性や季節性を把握しておけば、その変化が突発的なものかどうか、その負荷が船舶事故や工場排水の流入など人為的なものかどうかを推定できる。 本発明のDNAプローブを用いて、油濁環境中の全微生物群集中のPAH分解微生物の優占度を調べることにより、環境中の炭化水素成分、PAHの比率、濃度および消長など汚染の度合を把握でき、汚染物質の自然浄化過程やバイオ環境修復過程の解析・評価が可能になる。
【0032】
【実施例】以下本発明を実施例によって具体的に説明する。
【実施例1】
1)PAH分解微生物の分離源試料
日本海重油流出事故で石川県沿岸域で最も汚染された地点、Stn.19(珠洲西海海岸、長橋)で1998年6月11日に採取された海水試料に無機栄養塩を加え系(SW+N+P)(表2−A)に0.5%C重油を添加して、20℃で65日培養し、分解試験を行った。
この65日の分解試験培養液中の分解細菌数のMPN計数培養(培地:表2−C)で、C重油で良好な増殖を示した希釈段階のもっとも高い試験管の培養液を、0.5%C重油を含む(SW+N+P)培地に接種し、20℃にて培養期間12−17日で3回集積培養を繰り返した後、さらにC重油を加えたNSW培地(表2−B)を用いて、前記同様に、培養期間9−17日で4回集積培養を繰り返した培養液を下記AN分解細菌の集積培養の種菌として用いた。
【表2】
Figure 2004159599
2) PAH分解細菌の集積培養
前記C重油集積培養液0.1mlを種菌として、0.1% (w/v) ANを添加したNSW培地(表2−B参照)10mlを含む大型試験管に接種し、20℃で8日間振とう培養によりAN分解細菌の集積培養を行った。
3) PAH分解細菌の分離に用いた平板培地と培養法
AN 分解細菌およびPHE分解細菌の分離は、0.1%(w/v)ANをNSW寒天培地に添加した(NSW+AN)平板培地(表2−D)、2%寒天NSW下層培地にANまたはPHEのエタノール溶液を添加した1%アガロースNSW上層培地を被せた二層平板培地(表2:NSW+AN二層培地、NSW+PHE二層培地)およびMarine Agar 2216 (Difco製) (MA)平板培地を用いて、20℃で平板培養により行った。なお、平板培地に形成されたコロニー形態は実体顕微鏡で観察した。
また、使用したNSW+AN二層平板培地は、以下の2%寒天NSW下層培地(1)に(シャーレ、直径9cm)、アントラセン(AN)を加えた1%アガロースNSW上層培地(2)5ml(約50℃保温)をすばやく添加して、下層培地表面全体に上層培地を均一に広げて調製したものである。
(1). 2%寒天NSW下層培地
表2NSW培地に2%濃度の寒天を添加した培地15−20mlを直径9cmのシャーレに加えて平板培地を調製する。
(2). AN添加1%アガロースNSW上層培地
1%アガロースを添加したNSW培地5mlを含む試験管をオートクレーブ滅菌後、約50℃に保温し、その試験管にろ過滅菌した0.1%ANエタノール(99.5%、脱水エタノール)溶液0.2mlを添加し、すばやく撹拌して均一に分散させる。
なお、本二層平板培地の調製法は下記文献に記載されている方法に準じて行った。
Bogardt, A. H. and Hemmingsen, B. B.: Enumeration of phenanthrene−degrading bacteria by an overlayer technique and its use in evaluation of petroleum−contaminated sites. Appl. Environ. Microbiol., 58, 2579−2582(1992).
NSW培地:文献参照(T. Higashihara, A. Sato and U. Shimizu: An method forthe enumeration of marine hydrocarbon degrading bacteria, Bulletin of Japanese Society of Scientific Fishiereies, 44, 1127−1134, 1978)
【0033】
4)PAH分解細菌の分離
前記2)項のAN分解細菌の集積培養液を(NSW+AN)平板培地に塗抹し、20℃、8日間培養した。この平板培養培地に形成されたコロニーを釣菌し、さらにその分離菌株を (NSW+AN)平板培地とMA平板培地を用いて、平板分離培養を2回繰り返し、16菌株を分離した。なお、平板培養は20℃、16日間行った。
さらに、これらの分離菌株を、0.1%ANを添加したNSW培地5mlを加えたキャップ付ねじ口試験管(直径18mm)にて40日振とう培養を行った結果、ANの部分分解物と推定されるpale purplish pink系の色素を生成し、AN分解性が示唆されるANI7菌株を見出した。なお、本菌株はNSW+AN平板培養培地からの分離菌株である。
【0034】
5) ANI7菌株の純粋分離
上記ANI7菌株を0.1%ANまたは0.1%PHE を添加したNSW培地を用いて、約1ヶ月− 1.5ヶ月間、振とう培養後、この培養液をMA平板培地に塗抹し、培養した結果、いずれの培養液においてもYellow系の色調の濃いコロニー(Aタイプ)と色調の薄いコロニー(P タイプ)の2種類のコロニーが混在していた。そこで、本菌株の純粋分離を行った。純粋分離は、MA平板培地、NSW+AN平板培地およびNSW+AN二層培地を用いた平板培養と0.1%ANまたは0.1%PHE を添加したNSW培地を用いた液体培養を数回繰り返すことにより行った。なお、AタイプはAN添加NSW培地、P タイプはPHE添加NSW培地を用いた液体培養系から、それぞれの純培養株としてANI7A菌株(受託番号FERM P−19095)とANI7P菌株((受託番号FERM P−19096)の分離に成功した。なお、分離菌株の純粋性試験には上記の平板培地以外に、NSW+PHE二層培地も用いた。
また、純粋分離したANI7A菌株とANI7P菌株は、いずれもAN添加NSW培地を用いた液体培養でAN の部分酸化物由来と推定されるPale pink−Pale purplish pink系の色素を、またPHE添加NSW培地ではDull yellow−pale yellow orange系の色素を生成した。さらに、両菌株のPAH分解性を調べた結果、いずれもANやPHEを分解することが確認された(実施例2参照)。また、ANI7A菌株については、ビフェニール(BP)を添加したNSW培地を用いた液体培養でBPの部分酸化物と推定されるPale yellow green−Pale yellow系の色素を生成した。
【0035】
【実施例2】
ANI7A菌株およびANI7P菌株のPAH分解試験には、炭素源として0.1%(w/v) ANまたは0.1%(w/v) PHEを添加したNSW培地(表2−B)を用いた。このANまたはPHEを添加したNSW培地5 mlをキャップ付ネジ口試験管(直径18mm)に、または前記NSW培地10mlをシリコセン付L字型試験管(直径18mm)に加え、20℃で振とう培養(45 rpm)を行った。
培養液中のANおよびPHEの定量は培養液と等量のジクロロメタンで2回抽出後、25ml定容量とした。この抽出液の一定量を下記条件のガスクロマトグラフィー(GC)により分析した。なお、内部標準物質としてはn−ヘキサデカンを用いた。
GCの分析条件(本体:島津GC−17A)
1. カラム
液相: TC−70(GLサイエンス製キャピラリーカラム); 長さ:30mx0.25mm;
液相の膜厚:0.25μm
2. キャリヤガス(N2)
流速:1ml/min
3. 測定条件
試料注入口温度:250 ℃
イニシャル温度:120 ℃
昇温速度:10 ℃/min (260 ℃まで);260 ℃で8min保持
検出器: FID
炭化水素の分解率は同一条件で振とう培養した菌無接種の対照培地中の残存炭化水素量を基準に求めた。なお、分解率は同一培養条件の試験管3本または4本の各分解率の平均値で示した。
【0036】
シリコセン付L字型試験管(直径18mm)にて20℃で60日振とう培養を行った場合、ANI7A菌株のANおよびPHEの分解率は8%と21%であった。また、キャップ付ネジ口試験管(直径18mm)を用いて、20℃、34日振とう培養を行った場合、ANI7A菌株のPHEの分解率は 22%であった。さらに、後者の培養条件下におけるANI7P菌株のPHE分解率は19%であり、ANI7A菌株とほぼ同程度であった。また、両菌株からなる微生物コンソーシアのPHE分解率は、後者の培養条件で23%で、各単一菌株の分解率と大差はなく、両菌株を組み合わせたコンソーシアによるPHE分解の促進効果はみられなかった。ANI7A菌株とANI7P菌株はコロニー色調は異なるが、分子系統解析からSphingomonas 属の同一種とみなされたことから、PHE分解能にも顕著な差はみられなかったものと推察された。
また、ANI7A菌株は、0.1%(w/v) BPを添加したNSW培地を用いたシリコセン付L字型試験管による前者の培養条件で、培養1日目からBPの部分酸化物と推定されるPale yellow green −Pale yellowの色素を生成した。、ANI7P菌株についてはこのBP分解試験を行わなかったが、上記したようにAN17A菌株とAN17P菌株とは、同じ細菌種で、ともにPHEを分解することから、AN17P菌株もBP分解能を有すると考えられる。
【0037】
【実施例3】
Sphingomonas sp.ANI7A菌株検出用DNAプローブの調製
石川県流出油汚染沿岸域より採取した試料から、集積培養を経て純粋分離に成功したPAH分解細菌Sphingomonas sp. ANI7A菌株(FERM P−19095)の16S rDNA塩基配列情報(配列番号1)の中から、Stahl and Amann (Development and Application of Nucleic Acid Probes. In: Nucleic Acid Techniques in Bacterial Systematics. Ed.: E. Stackebrandt and M. Goodfellow, John Wiley and Sons, Chichester, pp. 205−248, 1991)により示された高次構造による障害が見られないと考えられる領域から、この菌種に特異的な配列を選抜し、該配列を有するオリゴヌクレオチドを合成し、その5‘末端をTRITCや Cy 5等の蛍光色素により標識化し、最終的に配列番号3示した配列を有する比放射性標識DNAプローブ(SPG645)、配列番号4に示す比放射性標識DNAプローブ(SPG643)及び配列番号5に示す比放射性標識DNAプローブ(SPG634)を作製した。
【0038】
【実施例4】
実施例3記載のDNAプローブを用いたSphingomonas属微生物の検出、計数法
実施例3の上記各DNAプローブの使用にあたっては、Sphingomonas sp. ANI7A菌株を標的微生物、Sphingomonas subterranea IFO16086(標準菌株)などを対象微生物とし、Maruyama and Sunamura(Simultaneous direct counting of total and specific microbial cells in seawater, using a deep−sea microbe asbiomarker. Applied and Environmental Microbiology, 66: 2211−2215, 2000)に記載した装置及び手法を用い、FISH法にて実際にその有効性を確認した。供試菌株の培養、固定及びハイブリダイゼーションの方法については、特開2000−333680に準じた。ただしこの際のハイブリダイゼーションは、50% ホルムアミド存在下で42℃で行い、洗浄処理は42℃で行った。 試料の蛍光顕微鏡観察によるプローブの有効性を表3に示す。
【表3】
Figure 2004159599
【0039】
今回デザインしたプローブSPG645、 SPG643, およびSPG634の場合、UV励起では各細胞中 DNAにDAPIが普遍的に結合した結果として、DAPI由来の青色蛍光が ANI7A菌および対照菌株として供した2種類Sphingomonas subterranea (IFO16086) 、Psychrobacter pacificensis NIBH P2K18)とも観察することができた。しかし、同視野をG励起で観察すると、ANI7A菌株のみがプローブSPG645、SPG643、およびSPG634 と相補的な配列を持つため、プローブの5’末端をラベルしたTRITC由来の赤色蛍光を発した。
一方、Bacteriaドメインに特異的なプローブEUB338の場合は、B励起での観察においても、ANI 7Aおよび2種類の対照菌株とも、それぞれEUB338の5’末端をラベルしたFITC由来の緑色蛍光を発した。
以上のことから、今回、油濁環境由来の微生物16S rDNA塩基配列からデザインした3つのプローブは、ANI7A菌株またはその近縁種を特異的に検出する上で、その高次構造に起因する結合上の妨害も見られず、実際に大変有効であることが示された。
【0040】
【発明の効果】
本発明は、環境汚染物質、特に石油、廃棄物あるいはこれらに含まれるPAH等有害環境汚染物質の分解能を有するSphingomonas属に属する新規微生物を提供するものであり、本発明の新規微生物を利用して、上記環境汚染物質で汚染された海洋、湖沼、河川、廃液などを効率よく浄化することができる。また、本発明によれば、上記新規微生物の16S rDNA/RNA から調製したプローブにより、Sphingomonas属に属する上記環境汚染物質分解能を有する細菌の検出・定量を簡便迅速に行うことが可能となり、この細菌の検出・定量方法により、世界的な環境問題になっているPAH等有害物質汚染環境のモニタリング、解析・評価、診断、ならびにバイオレメディーエション技術によるPAH等有害物質汚染環境の浄化・修復過程を解析・評価することができるきわめて有益な技術を提供できた。
【0041】
【配列表】
Figure 2004159599
Figure 2004159599
Figure 2004159599
Figure 2004159599

【図面の簡単な説明】
【図1】Sphingomonas sp.AN17A株、及び同AN17P株の各16SrDNAの分子系統解析に基づき作成された分子系統樹である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a new bacterium belonging to the genus Sphingomonas, which is capable of decomposing and removing environmental pollutants. The present invention relates to a method for purifying water or soil contaminated with harmful environmental pollutants such as polycyclic aromatic hydrocarbons (PAH) using the bacteria. In addition, the present invention relates to a method for detecting and quantifying a specific bacterium belonging to the genus Sphingomonas and a bacterium having a capability of degrading harmful environmental pollutants. Furthermore, the present invention relates to a method for monitoring, analyzing, evaluating, and diagnosing environments contaminated with harmful substances such as petroleum, and a method for analyzing and evaluating purification and restoration processes of environments contaminated with harmful substances.
[0002]
[Prior art]
In recent years, the pollution of the ocean by petroleum has become a global environmental problem because it has an adverse effect on marine ecosystems and marine products.
Oil spilled into the ocean can be physically recovered using an oil fence, an oil recovery machine, an oil adsorbent, or the like, or chemically processed using an oil processing agent such as an oil gelling agent or an emulsifying dispersant (see Non-Patent Document 1). .
Physical treatment seems to have little effect on marine ecosystems, but chemical treatment requires careful consideration of the toxicity of dispersants and other ecosystems such as marine life. However, such physical and chemical removal and treatment are not complete, and unrecovered oil spills evaporate and undergo physical and chemical changes due to light and oxygen. It is degraded by the self-cleaning action of natural ecosystems based on the biodegradability of microorganisms in seawater and marine sediments (see Non-Patent Document 2).
In recent years, development of an environmentally harmful biological oil spill purification technology (bioremediation) using such microorganisms has attracted attention (see Non-Patent Documents 3 and 4). This bioremediation technology is a technology for decomposing and removing contaminants by accelerating a biodegradation process by microorganisms operating in nature.
Therefore, in order to develop bioremediation technology, the distribution and type of microorganisms that decompose harmful environmental pollutants such as petroleum in the on-site environment, their resolution, etc. are investigated, and the estimation of the natural purification ability for harmful material polluted environments and its mechanism are investigated. It needs to be clarified. Furthermore, in order to apply bioremediation technology, it is necessary to monitor, analyze and evaluate microflora and harmful substance-degrading microorganisms in toxic substance-contaminated environments, and to properly purify and remediate toxic substance-contaminated environments using bioremediation technology. A method for analysis and evaluation is required.
For example, crude oil is a complex mixture of thousands of different types of hydrocarbons, and the hydrocarbons present in petroleum can be divided into saturated hydrocarbons and aromatic hydrocarbons according to their chemical structures. N-paraffins and branched paraffins are classified into cycloparaffins (monocyclic and polycyclic), and the latter are classified into monocyclic and polycyclic aromatic hydrocarbons (see Non-Patent Document 5).
Petroleum can also be classified into saturated components (SA), aromatic components (AR), resin components (RE), and asphaltenes (AS) depending on the hydrocarbon composition (see Non-Patent Document 6).
Degradability of these hydrocarbons by microorganisms decreases in the order of n-alkane> branched alkane> low molecular weight aromatic hydrocarbon> cycloalkane (see Non-Patent Document 7).
Microbial degradation of petroleum spills to the site environment first degrades readily degradable saturated components and low-molecular-weight aromatic hydrocarbons, and very high-molecular-weight aromatic hydrocarbons, RE and AS are difficult to decompose. It is said that the decomposition rate is extremely slow (see Non-Patent Document 8).
In addition, according to the investigations by the inventors, the degradability of heavy oil by microbial communities in seawater at the site contaminated by the oil spill accident in the Sea of Japan indicates that SA in heavy oil is relatively well degraded, It was recognized that AR containing a ring-aromatic hydrocarbon (PAH) and the like was little decomposed, and RE and AS having a condensed aromatic ring structure and high molecular weight were hardly decomposed (see Non-Patent Documents 9 and 10).
PAHs contained in heavy oils such as heavy oil have carcinogenicity, mutagenicity, and are hardly decomposable, so microorganisms that degrade them efficiently in a short period of time and safe environmentally friendly biological Establishment of decomposition / removal technology is required. As a polycyclic aromatic hydrocarbon (PAH) -degrading bacterium isolated from the marine environment, Sphingomonas sp. AJ1 (Non-Patent Document 11) Cycloplasticus pugetii, see Non-Patent Document 12), Neptunomonas naphovorans (Non-Patent Document 13), Lutibacterium anuloederans (Non-Patent Document 14), and some non-patent documents such as Vibrio Cyclotic 15 There is. However, none of them have excellent PAH decomposition activity and can be put to practical use. Although the above has mainly explained petroleum pollution, urgent measures must also be taken to deal with environmental spills caused by spills of chemicals, factory effluents, and waste dumping. Also in this case, the importance of the technology for effectively decomposing the above-mentioned PAHs or environmental hormones is increasing more and more, and the search for useful bacteria for this purpose is also being actively conducted.
In search of useful microorganisms in these environmental pollution purification technologies, a search technology capable of performing the search quickly, simply, and accurately is desired.
[Non-Patent Document 1] Response to Marine Oil Spills, The International Tanker Owners Pollution Federation Ltd. 1993 Oil Federation, p.I3-I5, Tokyo, 1997.
[Non-Patent Document 2] “Monthly Ocean”, Vol. 30, No. 10, 1998 (pp. 613-621)
[Non-Patent Document 3] "Marine Pollution Bulletin", Vol. 26 (1993), pp. 476-481.
[Non-Patent Document 4] "Crit. Rev. Microbiol." Vol. 19 (1993) pp. 217-242.
[Non-Patent Document 5] "Petroleum and microorganisms" No. 1 (1968) pp. 2-24 "
[Non-Patent Document 6] "Quality and Standards of Petroleum Products" (1997) pp. 142-153 "
[Non-Patent Document 7] "Microbiol. Rev." 54 (1990) 305-315.
[Non-Patent Document 8] "Advances in Microbial Ecology (ed. KC Marshall), PlenumPress, New York", 12th (1992), pages 287-338.
[Non-Patent Document 9] “1998 Environmental Conservation Research Results Collection, Environmental Research and Technology Division, Planning and Coordination Bureau, Environment Agency” (1999) 48-II, 1-9, pp.
[Non-Patent Document 10] Proceedings of the 14th Annual Meeting of the Japanese Society for Microbial Ecology, 41, 1998
[Non-Patent Document 11] "J. Fer. Bioeng." Vol. 82 (1996), pp. 570-574.
[Non-Patent Document 12] "Int. J. Syst. Bacteriol., Vol. 45 (1995), pp. 116-123"
[Non-Patent Document 13] "Appl. Environ. Microbiol. 65 (1999) pp. 251-259"
[Non-Patent Document 14] "Appl. Environ. Microbiol." 67 (2001) pp. 5585-5592.
[Non-Patent Document 15] "Int. J. Syst. Evol. Microbiol., Vol. 51 (2001), pp. 61-66"
[0003]
[Problems to be solved by the invention]
The present invention particularly relates to a new bacterium belonging to the genus Sphingomonas, which has the ability to decompose environmental pollutants such as PAH contained in spilled oil or waste, and a method for purifying water or soil contaminated with the environmental pollutants. To provide. Further, the present invention provides a method for detecting and quantifying the above-mentioned new bacterium belonging to the genus Sphingomonas, or a useful bacterium having the ability to decompose environmental pollutants such as PAH, monitoring, analyzing, evaluating, and diagnosing an environment contaminated with harmful substances such as petroleum and waste. It is intended to provide a method and a method for analyzing and evaluating a process of purifying and remediating an environment contaminated with harmful substances by bioremediation technology.
[0004]
[Means for Solving the Problems]
The present inventors have conducted intensive studies in view of the above-mentioned problems of the conventional technology, and as a result, have found a new species of bacteria belonging to the genus Sphingomonas having PAH resolution from seawater in the coastal sea area contaminated with heavy oil spilled from the Sea of Japan, and further identified the present bacteria. The present invention was completed by successfully producing a gene probe that can be specifically detected and quantified.
That is, the present invention provides a novel microorganism, a method for purifying an environment contaminated with harmful substances such as petroleum using the novel microorganism, and a method for detecting and quantifying the novel microorganism or a useful bacterium belonging to the genus Sphingomonas.
The gist of the present invention is as follows.
[0005]
(1) A novel microorganism belonging to the genus Sphingomonas, wherein the base sequence of the 16S rRNA gene (16S rDNA) shows 97% or more homology with the base sequence of SEQ ID NO: 1 or SEQ ID NO: 2.
(2) Sphingomonas sp. ANI7A strain or Sphingomonas sp. ANI7P strain
(3) The microorganism according to (1) or (2), which has a polycyclic aromatic hydrocarbon resolution.
(4) 16S rDNA having the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 2.
(5) An RNA or DNA probe having a part of the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 2 or a part of a riboxynucleotide sequence corresponding thereto and having a base length of 10 to 50 bp.
(6) The probe according to (5), which specifically hybridizes with the microorganism-derived RNA or DNA according to any one of (1) to (3).
(7) The RNA or DNA probe according to (5) or (6), having the base sequence of SEQ ID NO: 3, 4, or 5, or the corresponding riboxynucleotide sequence.
(8) The RNA or DNA probe according to any one of (5) to (7), which is used for detecting or quantifying an environmental pollutant-degrading bacterium belonging to the genus Sphingomonas.
(9) The RNA or DNA probe according to any one of (5) to (7), wherein the environmental pollutant-degrading bacterium belonging to the genus Sphingomonas is a petroleum-degrading bacterium.
(10) Sphingomonas sp. ANI7A strain, or Sphingomonas sp. The RNA or DNA probe according to (6) or (7), which is used for detecting and / or quantifying the ANI7P strain.
(11) A method for detecting and / or quantifying a bacterium belonging to the genus Sphingomonas using the RNA or DNA probe according to any of (5) to (7).
(12) The method according to claim 11, wherein the bacterium to be detected or quantified is an environmental pollutant-degrading bacterium belonging to the genus Sphingomonas.
(13) The method according to (12), wherein the environmental pollutant-degrading bacterium belonging to the genus Sphingomonas is a petroleum-degrading bacterium.
(14) The method according to (11), wherein the bacterium to be detected and / or quantified is the microorganism according to any of (1) to (3).
(15) A method for screening a useful bacterium belonging to the genus Sphingomonas using the RNA or DNA probe according to any of (5) to (7).
(16) The method according to (15), wherein the bacterium to be screened is an environmental pollutant-degrading bacterium belonging to the genus Sphingomonas.
(17) The method according to (16), wherein the environmental pollutant-degrading bacterium belonging to the genus Sphingomonas is a petroleum-degrading bacterium.
(18) The method according to (15), wherein the bacterium to be screened is the microorganism according to any one of (1) to (3).
(19) Homology with the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 2, or DNA / DNA or DNA / RNA hybridization using the RNA or DNA probe according to any of (5) to (7), or The method for identifying a bacterium belonging to the genus Sphingomonas according to any one of (1) to (3), wherein PCR is performed using the DNA probe as a primer.
(20) The method according to (19), wherein the identified bacteria are environmental pollutant-degrading bacteria belonging to the genus Sphingomonas.
(21) The method according to (20), wherein the environmental pollutant-degrading bacterium belonging to the genus Sphingomonas is a petroleum-degrading bacterium.
(22) A method for purifying a polluted environment, comprising treating the environment contaminated with an environmental pollutant with the microorganism according to any one of (1) to (3).
(23) The method according to (22), wherein the environmental pollutant is petroleum or petroleum-derived.
(24) A method for monitoring, analyzing, evaluating and diagnosing a toxic substance-contaminated environment using the method according to any one of (11) to (14).
(25) A method for analyzing and evaluating a process of purifying and / or restoring a toxic substance-contaminated environment using the method according to any one of (11) to (14).
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
(Microorganisms)
The microorganism of the present invention is based on being isolated from a seawater sample at the most contaminated site on the coast of Ishikawa Prefecture, which is one of the coastal waters contaminated with heavy oil spilled from the Sea of Japan. The strains thus obtained are specifically two strains: ANI7A strain (Accession number FERMP-19095) and ANI7P strain (Accession number FERMP-19096). These strains use natural seawater, preferably seawater collected aseptically, as a microbial source, for example, PAW as the sole carbon and energy source in NSW medium (Table 2; T. Higashihara, A. Sato and U. Shimizu: An). Bulletin of Japan Society of Scientific of Scientific Fisheries, which was obtained by the method for the enumeration of Marine Hydrocarbon Degrading Bacteria. A detailed separation method is shown in Example 1.
[0007]
Both the ANI7A strain and the ANI7P strain can degrade PAHs such as anthracene (AN) and phenanthrene (PHE). Hereinafter, classification and identification of these strains by phenotypes and molecular phylogenetic analysis based on the base sequence of 16S rDNA will be described.
Table 1 shows the bacteriological properties of the ANI7A strain.
[Table 1]
Figure 2004159599
Based on these mycological properties, Bergey's Manual of Systematic Bacteriology, Volume 1 (1984) (Krieg, NR, and Holt, J.G .: Gasoline Biochemistry. & Wilkins, Maryland, 1984) and Bergey's Manual of Determinative Bacteriology, Ninth Edition (1994) (Holt, G., Kryeg, N.R., S.T.A., S.T.R. and Williams, ST (eds.): Bergey's Manual of Deter minimal Bacteriology (9th ed.) Williams and Wilkins, Maryland, 1994).
As a result, the ANI7A strain was identified as a bacterium belonging to the genus Sphingmonas.
[0008]
Next, the ANI7A strain and the ANI7P strain will be described.
A pure culture obtained from an A-type colony (see Example 1), the colony morphology of the ANI7A strain (NSW + AN two-layer medium (Table 2), cultured at 20 ° C. for 26 days), were colony shape: circular, large Length: 2.0 mm, surface: smooth, raised state: semi-lens (convex), peripheral edge: whole edge (entire), color tone: light brown (color tone at the center of the colony was darker than the edge) . On the other hand, the colony morphology of the pure culture strain and the ANI7P strain from the P-type colony under the above culture conditions was as follows: colony shape: circular, size: 1.8 mm, surface: smooth, raised state: Semi-lens-like (convex), margin: entire, hue: light brown (colony hue is homogeneous and shiny throughout). Thus, although the colony morphology of the ANI7A strain and the ANI7P strain were similar, the color tone and luster of the colonies were different, and depending on the type of culture medium and the culturing period, the prominence of the colonies of both strains was different.
[0009]
As described above, the colony morphology of the ANI7A strain and the ANI7P strain was slightly different. However, as a result of molecular phylogenetic analysis based on the base sequence of 16S rDNA of both strains, the homology of the base sequence of 16S rDNA of both strains was 99.7%. Therefore, the ANI7A strain and the ANI7P strain were of the same species. It was estimated. The nucleotide sequences of the 16S rDNA of the ANI7A strain and the ANI7P strain are shown in SEQ ID NOs: 1 and 2 in the sequence listing. FIG. 1 shows the molecular phylogenetic tree of the ANI7A strain and the ANI7P strain.
[0010]
The classification / identification based on the phenotype is performed by the “heavy oil decomposition method” disclosed by the present inventors (Japanese Patent Application Laid-Open No. 2001-37466 (publication date: 2001.1.213) and RM Smibert and N.M. R. Kreig: Phenotypic Characterization.Methods for General and Molecular Bacteriology (P. Gerhardt, R.G.E.M.R.E., M.O.R.i.e., R.O.E.G.R.i.g. The sequencing was performed according to the method described in Washington, DC (1994), and the 16S rDNA was sequenced using the method described in "Detecting novel psychrotrophic bacteria" disclosed by the present inventors. DNA probe for DNA "(Japanese Patent Application Laid-Open No. 2000-333680 (published on 2001.2.5)). Further, the base sequences of the genus Sphingomona and representative microorganisms obtained from a DNA database Were aligned in parallel to remove incomparable gaps, and molecular phylogenetic analysis was performed by the NJ method.The accuracy of each branch of the obtained phylogenetic tree was calculated by 100 times bootstrap analysis ( Maruyama, A., D. Honda, H. Yamamoto, K. Kitamura and T. Higashihara: Phylogenetic analysis of psychrophilic bacteria isolated phenolic isamately isolated professional italy isolated professional chemistry. luding a description of the deep-sea species Psychrobacter pacificensis sp. nov. International Journal of Systematic and Evolutionary Microbiology. 50, 835-846, 2000).
[0011]
The positions of the molecular phylogenetic trees of the ANI7A strain and the ANI7P strain were shown to belong to Sphingomonas, as were the classification positions by phenotype. Furthermore, the homology between Sphingomonas subarctia, which is most closely related to the ANI7A strain in molecular phylogeny, and the 16S rDNA of this strain was 95.8%.
On the other hand, it is defined as "a bacterial species is a strain that systematically exhibits approximately 70% or more DNA-DNA homology" (Report of the Special Committee of the International Commission on Nomenclature for Bacterial Classification, LG Wayne). , DJ J. Brenner, RR Colwell, PA Grimmont, O. Kandler, MI Krichevsky, L.H. Moore, W.E.C. Moor, R.G.E. Murray, E. Stackebrandt, MP Starr and H. G. Trooper: Report of the ad hoc committee on reconciliation of stakeholder agreements. c Bacteriology, 37, 463-464, 1987), Stackerbrandt et al. described the relationship between DNA-DNA homology and 16S rDNA homology in the above definition by comparing DNA-DNA homology and 16S rDNA homology. Those having a DNA homology of 70% or more and those having a homology of 16S rDNA of 97% or more correspond to each other, and those having a homology of 16S rDNA of 97% or more are regarded as the same species (Stackebrandt, E. and Goebel, B.M .: Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definitions. in bacteriology. Int. J. Syst. Bacteriol., 44, 846-849, 1994).
[0012]
From the above, the ANI7A strain and the ANI7P strain were named as Sphingomonas genus ANI7A and ANI7P strains as new species of the genus Sphingomonas.
These strains have been deposited at the National Institute of Advanced Industrial Science and Technology, Patent Organism Depositary under the accession number FERMP-19095 (Sphingomonas sp. ANI7A strain) and the accession number FERMP-19096 (Sphingomonas sp. ANI7P strain).
In view of the relationship between the 16S rDNA homology and the species, if the ANI7A strain or the ANI7P strain has 97% or more homology with the 16S rDNA strain, these strains are considered to be the same species as these strains and included in the present invention. Is done.
[0013]
[Function of Sphingmonas microorganism]
The genus Sphingmonas is a new genus proposed by Yabuuchi et al. In 1990. It has glycosphingolipids in the cell membrane, the quinone type is ubiquinone Q10, and it is characterized by producing a yellow carotenoid pigment (Nostoxanthin). (Yabuchi, E., Yano, I., Oyaizu, H., Hashimoto, Y., Ezaki, T., and Yamamoto, H .: Proposal of s. Pingomospamubospaimopsia. sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhae iva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol. Immunol., 34, 99-119, 1990).
Recently, bacteria of the genus Sphingmonas include environmental hormones such as biphenyl (BP), organic chlorine compounds such as chlorophenol and hexachlorocyclohexane, aromatic hydrocarbons such as xylene, naphthalene, and phenanthrene, pesticides such as herbicides, and synthetic glycols such as polyethylene glycol. It has been shown that it has a strong resolution for a very wide variety of environmental pollutants such as molecular compounds, and is expected to find new resolution of environmental pollutants. Special issue, "The genus Sphingomonas", which summarizes the latest knowledge of Sphingmonas bacteria, Journal of Industrial Microbiology & Biotechnology, 23 (No. 4/5), 231-445. 1999). In Japan as well, sphingmonas bacteria have an extremely strong ability to degrade harmful environmental pollutants and are a group of bacteria that have attracted attention as a trump card for bioremediation. Therefore, research using the ability of sphingmonas bacteria for environmental purification Ecology (structure and function), resolution (enzymes and genes, molecular breeding), usage (introduction of bacteria or supply of nutrients to pollutants), engineering aspects (growth control, environmental control, complex Research on proposals for comprehensive research such as microbial control (Ministry of Education, Culture, Sports, Science and Technology, Grants-in-Aid for Scientific Research, specific area research) is being conducted (Symposium Scientific Research Grants-in-Aid for Scientific Research (C) ( Planning survey) "Environmental purification system construction platform using sphingomonas bacteria-sphingomonas bacteria and bioremediation Summary of Lectures, 2001). The symposium led to the establishment of the Environmental Microorganisms Research Group (Sphingomonas Research Group).
[0014]
Examples of the PAH-degrading bacteria of the genus Sphingomonas isolated from the marine environment include PHE-degrading bacteria (Komukai-Nakamura, S., Sugiura, K., Yamauchi-Inomata, Y., Toki, H., Venkaswar, Y.Kawashima, Venkaswar. J., S., Tanaka, H., and Harayama, S .: Construction of Bacterial Consortia that degrad Arabian light crude oil, J. Ferd., Bior. , Gallagher, E. and Shiaris, MP: Spatial and tem. The bacterial bacterium is known to have the following: bacterial variation of phenanthrene-degarding bacteria in interpartal seeds. Appl. Environ. Microbiol., 64, 2560-2565, 1998, and 2-methyatheniaz. Budzinski, H., Doumenq, P., Michote, V., and Bertrand, J.C .: Isolation and Characterization of a Marine Bacterium Pharmaceuticals. microbiol. Biotechnol., 48, 528-533 1997). In addition, among the bacteria belonging to the genus Sphingomonas obtained from the marine environment, bacteria decomposing various hydrocarbons such as aromatic hydrocarbons such as toluene and xylene in addition to PAH have been reported (R. Cazicchiol, F. Fegatala, M. Ostrowski, M. Eguchi, J. Gottschal: Sphingomonas from marine environmentals, Journal of Industrial Microbiology & Biotechnology, 72, 72-72, Biotechnology & Biotechnology, 72-68. Furthermore, Sphingomonas aromaticiborans F199 strain decomposes toluene, o, m, p-xylene, p-cresol, naphthalene, biphenyl (BP), dibenzothiophene, fluorene, salicylic acid, benzoic acid, etc., and is a single strain of various harmful substances. It has a resolution (JK Fredrickson, FJ Brockman, DJ Workman, SW Liand TO Stevens: Isolation and characterization of a gastrophysical sacrifice sabsorption professiona surafacturabacturaçafurasafurafuraçafurasafurafurafurafurafushifurasuka) Naphthalene, and other aromatic compounds, Appl. n. Microbiol., 57, 796-803, 1991; JK Fredrickson, DL Balkwill, GR Drake, MF Romine, DB Ringelberg and D.C.R. -Degrading Sphingomonas isolates from the deep subsurface, Appl. Environ. Microbiol., 61, 1917-1922, 1995; D.L.K.R.D.R.K.R.D.K.R.D.R.K.R.D. C. White, D. C. Ringelberg, D. P. Chandler, MF Romane, D. W. Ke nedy and C. M. Spadoni, Taxonomic study of aromatic-degrading bacteria from deep-terrestrial-subsurface sediments and description of Sphingomonas aromaticvorans sp. nov., Sphingomonas subterranea sp. nov. and Sphingomonas stygia sp. nov., Int. J. Syst. Bacteriol., 47, 191-201, 1997).
[0015]
The ANI7A strain and the ANI7P strain of the present invention are microorganisms isolated from a seawater sample in a coastal sea area contaminated by a spill of the Japan Sea oil spill, and both have the resolution of anthracene (AN) and phenanthrene (PHE). Therefore, it was inferred that they were working on the purification of oil spilled waters on site. It has also been reported that the ANI7A strain and the closely related species of the ANI7P strain, Sphingomonassubarctia, are polychlorophenol-degrading bacteria (Nohynek, LJ, Nurniaho-Lassila, E.L., Suhonen, EL. Busse, HJ, Mohammadi, M., Hantula, J., Rainey, F. and Salkinoja-Salonen, MS: Description of epson chlorop-n-Fond. genus Sphingomonas, Sphingomonas subarticas p. nov. Int. J. Syst. Bacteriol., 46, 1042-1055, 1996).
[0016]
From the above, the new microorganism belonging to the genus Sphingomonas of the present invention has the resolution of petroleum and harmful substances including PAH, and is a very useful microorganism that can be used for purification of the environment contaminated by these. In addition, since the Sphingomonas bacterium has a strong ability to decompose an extremely wide range of environmental pollutants as described above, the microorganisms of the sphingomonas genus of the present invention also have environmental hormones, organochlorine compounds, pesticides, synthetics, in addition to the PAH resolution. It can be said that it has the ability to degrade harmful environmental pollutants such as polymer compounds, and is an extremely useful microorganism, which can be used for environmental purification contaminated with harmful substances.
[0017]
[Other microorganisms]
Next, when the microorganism of the present invention is used for purification of an oily environment or an environment contaminated with harmful substances, the microorganism of the present invention may be used alone, or the microorganism of the present invention and, for example, the genus Alcanivorax of the aliphatic hydrocarbon-degrading bacterium may be used. It can also be used as an environmental pollutant-degrading microorganism consortia by mixing with bacteria, known hydrocarbon-degrading microorganisms, and microorganisms having the ability to degrade harmful environmental pollutants. Furthermore, in order to promote the efficiency of decomposing petroleum and other harmful pollutants, a composite microorganism obtained by adding a non-harmful pollutant-degrading microorganism that decomposes intermediate degradation products and metabolites of harmful pollutants to a degrading microbe consortium containing the microorganism of the present invention. A system can be constructed and used.
[0018]
〔Culture medium〕
The medium used for culturing the microorganism of the present invention or the environmental pollutant-degrading microbial consortia containing the microorganism of the present invention may be any medium as long as these microorganisms can be satisfactorily grown and can express PAH resolution or environmental pollutant resolution. A medium having a composition may be used. As a carbon source, PAH can be used as the only carbon source and energy source, but petroleum products including PAH, such as crude oil, kerosene, light oil, and heavy oil, and oil spills from ships and factories can also be used. . Further, carbohydrates, organic acids such as pyruvic acid, molasses and the like can also be used. These may be effective when used in combination with PAH or petroleum. In order to easily decompose hydrophobic PAHs and petroleums by microorganisms, a surfactant such as Tween 80 may be added to these, and then they may be emulsified and dispersed by an ultrasonic generator. PAH can be dissolved in a small amount of ethanol or acetone and added. The nitrogen source may be any organic / inorganic compound used for microorganisms. Examples of the organic nitrogen source include peptone, meat extract, constable liquor, defatted soybean, and kazenin, and examples of the inorganic nitrogen source include ammonium salts, nitrates, and urea. As the inorganic salts, various phosphates, sodium chloride, magnesium, iron, manganese, calcium, zinc, molybdenum and the like may be added. In addition, as growth factors, there are vitamins and amino acids, and natural organic nutrients containing the above nutritional factors such as meat extract, peptone, yeast extract, and constell liquor may be added.
When these microorganisms are efficiently cultured in large quantities, it is not always necessary to culture them in a medium containing environmental contaminants such as PAH, and an organic nutrient medium such as Marine Broth (Difco) or Nutrient Broth (Difco) may be used.
[0019]
(Culture method)
The culture is preferably performed under aerobic conditions, for example, a shaking culture method or an aeration stirring culture method.
Liquid static culture may be combined as appropriate, or liquid static culture may be used. The pH of the medium may be 5-9, preferably 6-8. The culture temperature may be 15-37 ° C, preferably 20-30 ° C.
[0020]
(Means for decomposing environmental pollutants using the microorganism of the present invention)
As a purification method using the microorganism of the present invention and a microbial consortia for decomposing environmental pollutants such as petroleum containing the microorganism of the present invention, there are methods for purifying oceans, lakes, marshes, rivers, waste liquids, etc., which are contaminated with environmental pollutants such as petroleum including PAH. A culture solution, viable cells, and freeze-dried cells of these microorganisms may be sprayed. In this case, a nutrient / microbial preparation obtained by mixing an organic or inorganic nutrient such as nitrogen or phosphorus with these microorganisms, or a nutrient-containing immobilized carrier using alginic acid disclosed by the present inventors (JP-A-2001-2001) 37466, published date: 2001.12.13), various microbial preparations in which these microorganisms are immobilized using known microbial immobilization carriers such as polyacrylamide gels and polyurethane foams can be used. In this case, it is preferable to simultaneously immobilize the nutrient source and these microorganisms.
[0021]
[Detection, quantification, screening, identification and environmental evaluation methods of environmental pollutant-degrading microorganisms]
Next, nucleic acid probes, methods for detecting and quantifying microorganisms degrading harmful environmental pollutants such as petroleum using them, screening methods, identification methods, and monitoring, analysis and evaluation methods for harmful pollutant contamination using these detection and quantification methods Will be described.
The aforementioned environmentally harmonious biological environment purification technology using pollutant-decomposing microorganisms, ie, bioremediation technology, includes nitrogen (N), phosphorus (P), etc., which are generally lacking in polluted environments such as the sea. (Biostimulation, Biostimulation) and a method of spraying a biodegradable microbial preparation or the like (Bioaugmentation, R) M. Atlas and R. Bartha: Hydrocarbon Biodegradation and Oil Spill Bioremediation. Advances in Microbiological Economy (ed. K. C. Marshall Pall). ess, New York, 12, 287-338,1992, K Lee et al .: Bioaugmentation and biostimulation:.. a paradox between laboratory and field results In Proceedings of the 1997 International Oil Spill Conference, p 697-705, AmericanPeteroleum Institute, Washington, DC, 1997). In order to establish this environmental purification technology, when nutrient sources and microorganisms are sprayed, qualitatively and quantitatively ascertain the microorganisms that decompose harmful substances such as petroleum in the on-site environment, and analyze the behavior and functions of the microbial communities involved in the purification. Need to be clarified. It has been reported that petroleum-degrading microorganisms are most frequently distributed in coastal waters and seaway waters contaminated with petroleum (Atlas, RM: Microbial degradation of petroleum hydrocarbons: an environmental perspective.). Rev., 45, 180-209, 1981).
For example, the ratio of hydrocarbon-degrading microorganisms generally distributed in non-polluted seas is less than 1% of the total number of microorganisms, but it is said that the ratio is often 10% or more in oily waters (RM Atlas: Petroleum). biodegradation and oil spill bioremediation, Marine Pollution Bulltetin, 31, 178-182, 1995, R M. Atlas and R. Bartha:.. Hydrocarbon Biodegradation and Oil Spill Bioremediation In:. Advances in Microbiolbial Ecology, Ed K. C. Marshall, PlenumPress, New York, 12, 87-338, 1992). In general, it is said that the ratio of degrading microorganisms in the entire microbial community reflects the degree of contamination of harmful substances such as petroleum and serves as an index (Atlas, RM: Microbial degradation of petroleum hydrocarbons: an environmental perspective. , 45, 180-209, 1981).
[0022]
The number of PAH-degrading bacteria in harbor sediments contaminated with creosote (containing about 85% polycyclic aromatic hydrocarbons [PAHs]) discharged from wood processing facilities has been investigated (A D. Geiselbrecht et al, Enumeration and Phylogenetic Analysis of Polycyclic Aromatic Hydrocarbon-Degrading Maine Bacteria from Pounds. According to this, the number of PAH-degrading bacteria counted by the MPN culture counting method was 104 to 107 MPN / g (dry weight) at the contaminated site and 103 to 104 MPN / g (dry weight) at the non-contaminated site. . On the other hand, the total number of bacteria in the sediment was about 109 / g (dry weight), and there was little difference between the contaminated site and the non-contaminated site. That is, at the creosote-contaminated site, not only the number of PAH-degrading bacteria than that of the non-contaminated site was 10 to 1000 times higher than that of the non-contaminated site, but the ratio of the PAH-degrading bacterium to the total microbial community increased to about 1%. Thus, it has been found that the ratio of degrading bacteria in the microbial community is increasing, reflecting that the environment has been polluted, and the ratio of degrading bacteria is considered to be a good indicator of the polluted environment. .
[0023]
However, the conventional method of counting microorganisms decomposing harmful substances such as petroleum and PAH is based on a culture method using a plate culture method or an MPN (most probable number) method as described above. All of these culture methods require a great deal of labor and time. In addition, in the counting method using an agar plate medium, bacteria in a sample grow on the control medium containing no hydrocarbon by utilizing impurities in the agar to form colonies. In counting using an agar plate medium supplemented with yeast extract (0.01%) as a trace amount of growth factors, minute colonies were formed in both the hydrocarbon medium and the medium without hydrocarbon, and the number and the number of colonies were small. It is said that it was not possible to clarify the difference between hydrocarbon-degrading bacteria and non-degrading bacteria in terms of size (T. Higashihara, A. Sato and U. Shimidu: An MPN method for the enumeration of marine hydracrobatic hydracrodiabatica). Bull. Japan. Soc. Sci. Fish., 44, 1127-1134, 1978). Based on the above, even in the control medium containing no hydrocarbon, there are bacteria that form colonies using a trace amount of organic matter in the agar. Therefore, specific hydrocarbon-degrading bacteria can be selectively and accurately determined on the agar plate medium. Is difficult to count.
In addition, in order to detect specific degrading microorganisms, it is necessary to separate the target microorganisms by the agar plate method and perform classification and identification (genus, species level). It is difficult to identify. Furthermore, among microorganisms that live in nature, the number of microorganisms that can be detected by these conventional separation and culture methods is extremely small. That is, a direct microscope counting method of staining with a fluorescent DNA stain and counting under a microscope (for example, JE Hobbie, RJ Daley, and S. Jasper: Appl. Environ. Microbiol. 33: 1225-1228, 1977 and KG Porter and YS Feig: Limnol. Oceanogr. 25: 943-948, 1980), the ratio of microorganisms that can be separated and cultured is 1% or less. (RI Amann, W. Ludwig and KH. Schleifer: Phylogenetic Identification and In Situ Detection of Individual Microbial). out Cultivation, Microbial. Rev., 59, 143-169, 1995). Therefore, the conventional cultivation method can only investigate about 1% of the microorganisms inhabiting the on-site environment for specific decomposed microorganisms and microflora, and the degraded microorganisms concentrated on environmental microorganisms are not sufficiently reflected. There were drawbacks.
[0024]
In recent years, the development of molecular microbial ecology based on molecular biological techniques has enabled the analysis of microbial community structure and diversity in the environment at the molecular and cellular levels without relying on isolation and culture methods as in the past. (IM Head, JR Saunders and RW Pickup: Microbial evolution, diversity, and economization: a large amount of general anatomical RNA analysis. 21, 1998. Kazuya Watanabe, Hiroyuki Futama: Microorganisms in the Environment, Chemistry and Biology, 38, 230-236, 2000, Akihiko Maruyama: Analysis of Marine Microorganisms at the Molecular and Cellular Levels, Marine Microorganisms, Monthly Ocean Extra edition No.23, 162-170, 2000,
Hidetoshi Urakawa, Koichi Owada: Culture-independent microbial community analysis using nucleic acids, marine microorganisms, Monthly Ocean, Extra. 23, 176-182, 2000). The microbial community analysis method using this molecular biological technique is indispensable for understanding the behavior of degraded microbial communities and changes in the microbial community structure during the environment remediation process using toxic substances such as petroleum and bioremediation technology. Recently, these technologies are being developed.
Recently, molecular genetic detection and quantification that does not depend on conventional separation and culture methods has been attempted for specific microorganisms such as whole microorganisms and environmental pollutant-degrading microorganisms using specific DNA probes. I have. For example, in the case of detecting a specific microorganism such as a degrading microorganism at a cell level regardless of the separation / culture method, a fluorescence in situ hybridization (FISH method) is used (R.I. Amann, W. Ludwig and KH Schleifer: Phylogenetic Identification and In Situ Detection of Individual, Microbial Cellular, Multicultural Inc., 14th ed. That is, by performing FISH using a DNA probe, it is possible to specifically detect and count only specific degraded microbial cells concentrated in a microbial community. By comparing with the total number of bacteria obtained by the direct microscope counting method, it is possible to calculate the quantitative ratio of the specific microorganism in the total concentration of all the microorganisms. Furthermore, when analyzing the ratio of specific microorganisms such as degrading microorganisms in the entire community at the cell level for water environment samples, the FISH-DC method is effective (A. Maruyamaand M. Sunamura: Simultaneous direct counting). of total and specific microbiological cells in seawater, using a deep-sea microbeas as a biomarker. Applied and Environmental Microbiology 21; As a quantitative analysis technique of specific degrading microorganisms at a molecular level using a DNA probe, there is a nucleic acid hybridization method (DA Stahl, B. Flesher, HR Mansfield and L. Montgomery: Use). Appl. Environ. Microbiol., 54, 1079-1084, of phylogenetically based hybridization probes for studies of ruminal microbiology. In this method, nucleic acid is extracted from an environmental sample or a microorganism sample, the nucleic acid sample is immobilized on a nylon membrane filter, and then a DNA probe labeled with a radioisotope (RI) or the like is added, and hybridization is performed. This is a method for measuring the radioactivity of a labeled probe complementary to a nucleic acid immobilized on a probe, and quantifying a specific microorganism from the concentration of the nucleic acid specifically bound to the probe.
[0025]
Recently, Maruyama et al. Have developed a relative molecular quantification method using a fluorescent dot blot hybridization method without using RI (A. Maruyama, K, Kitamura, H. Ishiwata, M. Matsuuo, T. Higashihara, and R. Kurane). : Molecular specification and quantification of predominant microbes in oil contaminated seawater, 9th International Symposium, Microbial Ecosystem, Microbiology and Biotechnology, 9th International Symposium on Microbiology. , 60, 31-34, 2002).
From the above, in the present invention, a DNA probe capable of specifically detecting and counting the above novel microorganism of the present invention is newly produced. Hereinafter, the step of preparing a DNA probe will be described.
[0026]
〔probe〕
RNA and DNA probes suitable for various uses can be designed based on the base sequence information of each 16S rDNA of the ANI7A strain and / or the ANI7P strain (ANI7A strain; SEQ ID NO: 1, ANI7P strain; SEQ ID NO: 2). . The nucleotide sequence and length of the probe may be appropriately selected according to the range of microorganisms of the genus Sphingomonas to be detected, quantified, screened, or identified. For example, when it is desired to screen only the above-mentioned novel microorganism of the present invention, a probe may be designed based on the nucleotide sequence of a specific portion of the 16S rDNA of the microorganism, and the screening range is to be expanded to include closely related species. Sometimes, by designing a probe such as shortening the length of the base sequence to include a base sequence portion common to 16S rDNA of a related species, and further by selecting the base sequence portion or adjusting the length thereof, If the strain specificity of the probe is reduced, a wider range of useful bacteria can be screened.
The probe of the present invention can be used, for example, by a FISH method (fluorescence in situ hybridization) in a sample (for example, an environmental sample water such as sea, river, lake, marsh, wastewater or wastewater contaminated with toxic substances such as petroleum), or a large number of microorganisms. For detecting and / or quantifying the novel microorganism of the present invention, a closely related species thereof, or a petroleum-degrading bacterium of the closely related species belonging to the genus Sphingomonas, or screening, for example, the sequence It corresponds to the region selected from the region of base number 565-615 of the base sequence of No. 1 (the position from the 5 ′ end in the base sequence of 16S rDNA of Escherichia coli (region of 630-680 in the numbering system)). Base length of 10-50 bp, preferably base length 5-25bp of the probe may be designed. As an example, the following probes can be mentioned.
(1) 5'-CGCCTCTCCCAAGATTCTAGCGACCT-3 '(SPG645 *, 25mer) (SEQ ID NO: 3)
3'-GCGGAGAGGGTCTTAAGATCGCTGGA-5 '
(2) 5'-CCAAGATTCTAGCGACC-3 '(SPG643 *, 17mer) (SEQ ID NO: 4)
3′-GGTTCTAAGATCGCTGG-5 ′
(3) 5'-TAGCGACCTAGTTTCAAGG-3 '(SPG634 *, 20mer) (SEQ ID NO: 5)
3'-ATCGCTGGATCAAAGTTTCC-5 '
(Note that * (number) indicates the position (numbering system) from the 5 ′ end in the 16S rDNA base sequence of Escherichia coli (Noler HF and CR Woese, 1981. Science, 212: 403-). 411).
The probe can be synthesized by a known method, for example, a phosphoramide method or a triester method. Or you may synthesize | combine by a DNA automatic synthesizer.
[0027]
Probes include isotopes (32P, 35S, etc.), fluorescent dyes (biotin / avidin, digoxigenin / anti-digoxigenin-rhodamine,
Fluorescein-isothiocyanate (FITC), LuciferYellow CH, Rhodamine 123, Acridine orange, Pyronin Y, Ethidium bromide, Propidium iodide, Ethidium homodimer, BOBO-1, POPO-1, TOTO-1, YOYO-1, Carboxyfluorescein diacetate (CFDA), Fluorescein diacetate (FDA), Carboxyfluorescein diacetate-acetoxymethylester (CFDA-AM), 5-cyano-2,30 ditolyltetrazolium chloride (CTC), Tet amethylrhodamine isothiocyanate (TRITC), Sulforhodamine 101 acid chloride (Texas Red), Cy3, Cy5, etc. Cy7,2-hydroxy-3-naphtoic acid-2'-phenylanilidephosphate (HNPP)), may be labeled with a chemiluminescent.
[0028]
[Screening, detection and quantification of useful bacteria of the genus Sphingomonas]
Using the RNA or DNA probe of the present invention, various hybridization methods (Southern blotting, Northern blotting, colony hybridization, dot hybridization, in situ hybridization (for example, FISH method), etc.) belong to the genus Sphingomonas. The novel microorganism of the present invention, its closely related species, or petroleum-degrading bacteria of the closely related petroleum-degrading bacteria species can be detected and / or quantified or screened.
An example of a method for detecting and quantifying microorganisms that degrade pollutants such as petroleum from on-site water or seawater contaminated with petroleum or environmental pollutants using the DNA probe of the present invention will be described below. A DNA probe having a base sequence of SEQ ID NO: 3 obtained by collecting a water or seawater sample from a harmful substance contamination site, fixing microorganisms present in the sample on a filter (pore size 0.2 μm), and labeling this with a fluorescent dye or the like. After washing off the probe, the probe is observed with a fluorescence microscope to hybridize with the DNA probe and selectively detect or count specific degraded microorganisms exhibiting labeled fluorescence.
As described above, if the environment is polluted, the ratio of the decomposing bacteria group increases, so that it can be used as an index of environmental pollution.
[0029]
In addition, using the DNA probe of the present invention, a colony hybridization technique, a blot hybridization technique, a flow cytometry method, etc., from a large number of microorganisms, a new microorganism of the present invention of the genus Sphingomonas and its closely related species, and It is possible to screen for a petroleum-degrading bacterium of the genus Sphingomonas, particularly a new microorganism of the present invention belonging to the genus Sphingomonas and a petroleum-degrading bacterium related thereto.
[0030]
[Identification of Sphingomonas sp.]
Furthermore, using the nucleotide sequence information of SEQ ID NO: 1 or 2 or SEQ ID NO: 3, 4 or 5, a new microorganism of the present invention belonging to the genus Sphingomonas and its related species, and a new microorganism of the present invention belonging to the genus Sphingomonas and its It is possible to identify closely related bacteria that degrade toxic substances such as petroleum. For example, they are homologous bacteria by homology with the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 2, or by DNA / DNA or DNA / RNA hybridization using the RNA or DNA probe according to any one of claims 5 to 7. Can be identified. Furthermore, bacterial species can also be identified by performing PCR using the nucleotide sequence (DNA fragment) of the probe as a primer. That is, the cells to be identified are lysed, and a DNA fragment having the nucleotide sequence of the probe is added as a primer, followed by PCR amplification. If the amplification of 16S rDNA is confirmed by electrophoresis or the like of the PCR product, the target bacterium has a gene portion complementary to the DNA fragment used. That is, it can be specified that they are the same kind of bacteria.
[0031]
[Monitoring, analysis, and evaluation of pollutant environments]
If it becomes possible to easily and quickly monitor the behavior of specific degrading microorganisms, which are indicators of the environment contaminated with petroleum and other harmful substances, and their proportion in the total microbial community (predominance), the degree of contamination will be improved. The diagnosis of the polluted environment, such as the degree of restoration and recovery of the polluted environment, can be performed with high accuracy and at an early stage. For example, if the prevalence of petroleum-degrading bacteria and PCB-degrading bacteria increases in the environment, it can be judged that the environment is highly likely to be contaminated with petroleum or PCB, and that the microbial community as a whole It can be determined that the resolution of petroleum and PCB has increased. Furthermore, if the change in dominance is monitored over a long period of time and the periodicity and seasonality of the change are grasped, whether the change is sudden or not, the load is a ship accident or the inflow of factory drainage. It can be estimated whether it is artificial or not. By examining the dominance of PAH-degrading microorganisms in the concentration of all microorganisms in an oily environment using the DNA probe of the present invention, it is possible to determine the degree of contamination such as the hydrocarbon component, PAH ratio, concentration, and fate in the environment. It is possible to analyze and evaluate the natural purification process of pollutants and the bio-environmental restoration process.
[0032]
The present invention will be described below in detail with reference to examples.
Embodiment 1
1) Source sample of PAH-degrading microorganism
The most polluted point on the coastal area of Ishikawa Prefecture in the Japan Sea heavy oil spill, Stn. At 19 (Suzu West Coast, Nagahashi), mineral nutrients were added to a seawater sample collected on June 11, 1998, and 0.5% C heavy oil was added to the system (SW + N + P) (Table 2-A), and The cells were cultured at 65 ° C. for 65 days to perform a decomposition test.
In the 65-day MPN counting culture of the number of degrading bacteria in the culture for culture of degradation test (medium: Table 2-C), the culture of the test tube with the highest dilution stage, which showed good growth in heavy oil C, was added to 0.1 ml. After inoculating the medium containing 5% C heavy oil (SW + N + P) and repeating the enrichment culture three times at 20 ° C. for a culture period of 12 to 17 days, the NSW medium further containing C heavy oil (Table 2-B) was used. In the same manner as described above, a culture solution obtained by repeating the enrichment culture four times in a culture period of 9 to 17 days was used as a seed for the enrichment culture of the following AN-degrading bacteria.
[Table 2]
Figure 2004159599
2) Enrichment culture of PAH-degrading bacteria
Using 0.1 ml of the C-heavy oil-enriched culture as a seed bacterium, inoculate a large test tube containing 10 ml of NSW medium (see Table 2-B) supplemented with 0.1% (w / v) AN, and then incubate at 20 ° C. for 8 days. An enrichment culture of AN-degrading bacteria was performed by shaking culture.
3) Plate medium used for isolation of PAH-degrading bacteria and culture method
Separation of AN-degrading bacteria and PHE-degrading bacteria was carried out by adding 0.1% (w / v) AN to NSW agar medium (NSW + AN) plate medium (Table 2-D), and adding AN or PHE to 2% agar NSW underlayer medium. Using a two-layer plate medium (Table 2: NSW + AN two-layer medium, NSW + PHE two-layer medium) and a Marine Agar 2216 (manufactured by Difco) (MA) plate medium covered with a 1% agarose NSW upper medium supplemented with an ethanol solution of The plating was performed at 20 ° C. In addition, the morphology of the colony formed on the plate medium was observed with a stereoscopic microscope.
The NSW + AN two-layer plate medium used was the following 2% agar NSW lower layer medium (1) (dish, 9 cm in diameter) and 1 ml of agarose NSW upper layer medium (2) 5 ml (about 50%) supplemented with anthracene (AN). (Preserved at ℃) was quickly added to uniformly spread the upper medium over the entire surface of the lower medium.
(1). 2% agar NSW lower layer medium
Table 2 A plate medium is prepared by adding 15-20 ml of a medium obtained by adding 2% concentration of agar to an NSW medium to a petri dish having a diameter of 9 cm.
(2). 1% agarose NSW upper layer medium with AN
A test tube containing 5 ml of NSW medium supplemented with 1% agarose was sterilized in an autoclave, kept at about 50 ° C., and sterilized in a 0.1% AN ethanol (99.5%, dehydrated ethanol) solution sterilized by filtration in the test tube. Add 2 ml and stir quickly to disperse evenly.
The method for preparing the present two-layer plate medium was performed according to the method described in the following literature.
Bogardt, A .; H. and Hemmingsen, B .; B. : Enumeration of phenanthrene-degrading bacteria by an overlayer technology and and its uses in evaluation of petroleum-contained sites. Appl. Environ. Microbiol. , 58, 2579-2582 (1992).
NSW medium: See literature (T. Higashihara, A. Sato and U. Shimizu: An method for the enumeration of Marine Hydrocarbon degrading bacterium, Contracting Jatar proofing bacteria, Bureau of Petrochemicals, Bureau of Biotechnology, Australia).
[0033]
4) Isolation of PAH-degrading bacteria
The enriched culture solution of the AN-degrading bacterium of the item 2) was spread on a (NSW + AN) plate medium, and cultured at 20 ° C. for 8 days. The colonies formed in the plate culture medium were picked, and the isolated strains were subjected to plate separation culture twice using (NSW + AN) plate medium and MA plate medium to isolate 16 strains. The plate culture was performed at 20 ° C. for 16 days.
Furthermore, these isolated strains were shake-cultured for 40 days in a screw-cap test tube (18 mm in diameter) to which 5 ml of NSW medium supplemented with 0.1% AN was added. An ANI7 strain which produced a presumed pale purplish pink dye and was suggested to have AN degradability was found. This strain is a strain isolated from the NSW + AN plate culture medium.
[0034]
5) Pure isolation of ANI7 strain
The above ANI7 strain was shake-cultured for about 1 to 1.5 months using an NSW medium supplemented with 0.1% AN or 0.1% PHE, and the culture was spread on an MA plate medium. As a result of the culturing, two types of colonies, a yellow-colored colony (A type) and a pale-colored colony (P type), were mixed in any of the culture solutions. Therefore, pure isolation of the present strain was performed. The pure separation is performed by repeating several times the plate culture using the MA plate medium, the NSW + AN plate medium, and the NSW + AN bilayer medium and the liquid culture using the NSW medium supplemented with 0.1% AN or 0.1% PHE. Was. In addition, A type ANI7A strain (Accession No. FERM P-19095) and ANI7P strain ((Accession No. FERM P) were used as pure cultures from a liquid culture system using AN-supplemented NSW medium and PHE-supplemented NSW medium. In addition, in addition to the above-mentioned plate medium, a NSW + PHE two-layer medium was also used for the purity test of the isolated strain.
In addition, the purely isolated ANI7A strain and ANI7P strain are both a pale pink-Pale purplish pink dye which is presumed to be derived from a partial oxide of AN in liquid culture using an NSW medium supplemented with AN, and a NSW medium supplemented with PHE. Produced a Yellow-Pale Yellow Orange dye. Furthermore, as a result of examining the PAH degradability of both strains, it was confirmed that both strains decomposed AN and PHE (see Example 2). In addition, for the ANI7A strain, a pale yellow green-Pale yellow dye, which is estimated to be a partial oxide of BP, was produced by liquid culture using an NSW medium supplemented with biphenyl (BP).
[0035]
Embodiment 2
For the PAH degradation test of the ANI7A strain and the ANI7P strain, an NSW medium (Table 2-B) supplemented with 0.1% (w / v) AN or 0.1% (w / v) PHE as a carbon source was used. . Add 5 ml of this NSW medium supplemented with AN or PHE to a screw-cap test tube with a cap (diameter: 18 mm), or add 10 ml of the NSW medium to an L-shaped test tube with a silicocene (diameter: 18 mm), and culture at 20 ° C. with shaking. (45 rpm).
The quantitative determination of AN and PHE in the culture solution was performed by extracting twice with the same amount of dichloromethane as the culture solution, and then adjusting the volume to 25 ml. A certain amount of this extract was analyzed by gas chromatography (GC) under the following conditions. In addition, n-hexadecane was used as an internal standard substance.
GC analysis conditions (Main body: Shimadzu GC-17A)
1. column
Liquid phase: TC-70 (capillary column manufactured by GL Science); Length: 30 mx 0.25 mm;
Liquid phase thickness: 0.25 μm
2. Carrier gas (N2)
Flow rate: 1 ml / min
3. Measurement condition
Sample inlet temperature: 250 ° C
Initial temperature: 120 ° C
Heating rate: 10 ° C / min (up to 260 ° C); Hold at 260 ° C for 8 minutes
Detector: FID
The hydrocarbon degradation rate was determined based on the amount of residual hydrocarbons in a control medium without inoculation of the bacteria cultured under shaking under the same conditions. In addition, the decomposition rate was shown by the average value of the respective decomposition rates of three or four test tubes under the same culture conditions.
[0036]
When shaking culture was performed at 20 ° C. for 60 days in an L-shaped test tube (18 mm in diameter) with silicocene, the degradation rates of AN and PHE of the ANI7A strain were 8% and 21%. When shaking culture was performed at 20 ° C. for 34 days using a screw-cap test tube (18 mm in diameter) with a cap, the degradation rate of PHE of the ANI7A strain was 22%. Furthermore, the PHE degradation rate of the ANI7P strain under the latter culture conditions was 19%, which was almost the same as that of the ANI7A strain. The PHE degradation rate of the microbial consortia composed of both strains was 23% under the latter culture condition, and there was no significant difference from the degradation rate of each single strain, and the effect of promoting the PHE degradation by the consortia combining both strains was observed. Did not. Although the ANI7A strain and the ANI7P strain differ in the color of the colony, they were considered to be the same species of the genus Sphingomonas from molecular phylogenetic analysis, and it was inferred that there was no significant difference in PHE resolution.
The ANI7A strain was estimated to be a partial oxide of BP from day 1 of culture under the former culture conditions in an L-shaped test tube with silicocene using NSW medium supplemented with 0.1% (w / v) BP. A pale yellow green-Pale yellow dye was produced. , ANI7P strain was not subjected to this BP degradation test. However, as described above, the AN17A strain and the AN17P strain are both of the same bacterial species and degrade PHE. Therefore, it is considered that the AN17P strain also has BP degradability. .
[0037]
Embodiment 3
Sphingomonas sp. Preparation of DNA probe for detecting ANI7A strain
A PAH-degrading bacterium, Sphingomonas sp., Which was successfully isolated purely through enrichment culture from a sample collected from a coastal area contaminated with oil spills from Ishikawa Prefecture. From the 16S rDNA nucleotide sequence information (SEQ ID NO: 1) of the ANI7A strain (FERM P-19095), Stahl and Amann (Development and Application of Nucleic Acids Acid Probes. In: Nucleic Acid Essentials. and M. Goodfellow, John Wiley and Sons, Chichester, pp. 205-248, 1991), and select a sequence specific to this bacterial species from a region in which no disorder due to higher-order structures is considered to be observed. And synthesizing an oligonucleotide having the sequence, and adding a 5′-terminal fluorescent dye such as TRITC or Cy5. Specific radioactively labeled DNA probe (SPG645) having the sequence shown in SEQ ID NO: 3 and finally specific radioactively labeled DNA probe (SPG643) shown in SEQ ID NO: 4 and SPG634 (SPG634) ) Was prepared.
[0038]
Embodiment 4
Detection and counting method of Sphingomonas microorganism using the DNA probe described in Example 3
In using each of the above DNA probes of Example 3, Sphingomonas sp. . ANI7A strains the target microorganisms, Sphingomonas subterranea IFO16086 (standard strain) as the target microorganisms such as, Maruyama and Sunamura (Simultaneous direct counting of total and specific microbial cells in seawater, using a deep-sea microbe asbiomarker Applied and Environmental Microbiology, 66: 2211-2215, 2000), and its effectiveness was actually confirmed by the FISH method. The method of culturing, fixing, and hybridizing the test strain was based on JP-A-2000-333680. However, the hybridization at this time was performed at 42 ° C. in the presence of 50% formamide, and the washing treatment was performed at 42 ° C. Table 3 shows the effectiveness of the probe by observing the sample with a fluorescence microscope.
[Table 3]
Figure 2004159599
[0039]
In the case of the probes SPG645, SPG643, and SPG634 designed this time, as a result of DAPI being universally bound to DNA in each cell by UV excitation, blue fluorescence derived from DAPI showed two types of Sphingomonas subterranea (ANI7A and control strains) that served as control strains. IFO16086) and Psychobacter pacificensis NIBH P2K18). However, when the same visual field was observed with G excitation, only the ANI7A strain had a sequence complementary to the probes SPG645, SPG643, and SPG634, and thus emitted red fluorescence derived from TRITC that labeled the 5 ′ end of the probe.
On the other hand, in the case of the probe EUB338 specific to the Bacteria domain, the ANI 7A and the two kinds of control strains emitted green fluorescence derived from FITC labeled with the 5 'end of EUB338, respectively, even when observed under B excitation.
From the above, the three probes designed from the 16S rDNA base sequence of the microorganism derived from the oil spill environment were used to specifically detect the ANI7A strain or its closely related species, and to determine the binding due to its higher-order structure. No interference was seen, indicating that it was actually very effective.
[0040]
【The invention's effect】
The present invention provides a novel microorganism belonging to the genus Sphingomonas, which has the resolution of environmental pollutants, particularly petroleum, waste, or harmful environmental pollutants such as PAH contained therein, and utilizes the novel microorganism of the present invention. It is possible to efficiently purify oceans, lakes, marshes, rivers, waste liquids and the like contaminated with the environmental pollutants. Further, according to the present invention, a probe prepared from the 16S rDNA / RNA of the novel microorganism makes it possible to easily and quickly detect and quantify a bacterium belonging to the genus Sphingomonas having the ability to degrade environmental pollutants. Monitoring and analysis / evaluation / diagnosis of PAHs and other harmful substances, which have become a global environmental issue, through the detection and quantification methods of the environment, and the purification and restoration process of PAHs and other harmful substances using bioremediation technology. A very useful technology that can be analyzed and evaluated was provided.
[0041]
[Sequence list]
Figure 2004159599
Figure 2004159599
Figure 2004159599
Figure 2004159599

[Brief description of the drawings]
FIG. 1. Sphingomonas sp. It is a molecular phylogenetic tree created based on the molecular phylogenetic analysis of each 16S rDNA of the AN17A strain and the AN17P strain.

Claims (25)

Sphingomonas属に属する微生物であって、16S rRNA遺伝子(16S rDNA)の塩基配列が、配列番号1または配列番号2に記載の塩基配列と97%以上の相同性を示す新規な微生物。A novel microorganism belonging to the genus Sphingomonas, wherein the base sequence of the 16S rRNA gene (16S rDNA) shows 97% or more homology with the base sequence described in SEQ ID NO: 1 or SEQ ID NO: 2. Sphingomonas sp. ANI7A菌株またはSphingomonas sp.ANI7P菌株Sphingomonas sp. ANI7A strain or Sphingomonas sp. ANI7P strain 多環芳香族炭化水素分解能を有する請求項1または2に記載の微生物。3. The microorganism according to claim 1, which has a polycyclic aromatic hydrocarbon resolution. 配列番号1または配列番号2の塩基配列を有する16S rDNA。16S rDNA having the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 2. 配列番号1若しくは配列番号2の塩基配列の一部を有するか、またはこれに対応するリボキシヌクレオチド配列の一部を有し、かつ、塩基長10〜50bpのRNAまたはDNAプローブ。An RNA or DNA probe having a part of the base sequence of SEQ ID NO: 1 or SEQ ID NO: 2 or a part of a corresponding riboxynucleotide sequence and having a base length of 10 to 50 bp. 請求項1〜3のいずれかに記載の微生物由来のRNAまたはDNAと特異的にハイブリダイズする請求項5に記載のプローブ。The probe according to claim 5, which specifically hybridizes with the microorganism-derived RNA or DNA according to any one of claims 1 to 3. 配列番号3、4または5に記載の塩基配列またはこれに対応するリボキシヌクレオチド配列を有する、請求項5または6に記載のRNAまたはDNAプローブ。7. The RNA or DNA probe according to claim 5, which has the nucleotide sequence of SEQ ID NO: 3, 4, or 5, or a riboxynucleotide sequence corresponding thereto. Sphingomonas属に属する環境汚染物質分解細菌を検出または定量するために用いる、請求項5〜7のいずれかに記載のRNAまたはDNAプローブ。The RNA or DNA probe according to any one of claims 5 to 7, which is used for detecting or quantifying an environmental pollutant-degrading bacterium belonging to the genus Sphingomonas. Sphingomonas属に属する環境汚染物質分解細菌が石油分解細菌である、請求項5〜7のいずれかに記載のRNAまたはDNAプローブ。The RNA or DNA probe according to any one of claims 5 to 7, wherein the environmental pollutant-degrading bacterium belonging to the genus Sphingomonas is a petroleum-degrading bacterium. Sphingomonas sp.ANI7A菌株、またはSphingomonas sp.ANI7P菌株を検出および/または定量するために用いる、請求項6または7に記載のRNAまたはDNAプローブ。Sphingomonas sp. ANI7A strain, or Sphingomonas sp. The RNA or DNA probe according to claim 6 or 7, which is used for detecting and / or quantifying the ANI7P strain. 請求項5〜7のいずれかに記載のRNAまたはDNAプローブを用いて、Sphingomonas属 に属する細菌を検出および/または定量する方法。A method for detecting and / or quantifying bacteria belonging to the genus Sphingomonas using the RNA or DNA probe according to any one of claims 5 to 7. 検出または定量される細菌が、Sphingomonas属に属する環境汚染物質分解菌である請求項11に記載の方法。The method according to claim 11, wherein the bacterium detected or quantified is an environmental pollutant-degrading bacterium belonging to the genus Sphingomonas. Sphingomonas属に属する環境汚染物質分解菌が石油分解菌である請求項12に記載の方法。The method according to claim 12, wherein the environmental pollutant-degrading bacterium belonging to the genus Sphingomonas is a petroleum-degrading bacterium. 検出および/または定量される細菌が請求項1〜3のいずれかに記載の微生物である請求項11記載の方法。The method according to claim 11, wherein the bacterium to be detected and / or quantified is the microorganism according to any one of claims 1 to 3. 請求項5〜7のいずれかに記載のRNAまたはDNAプローブを用いて、Sphingomonas属に属する有用細菌をスクリーニングする方法。A method for screening a useful bacterium belonging to the genus Sphingomonas using the RNA or DNA probe according to any one of claims 5 to 7. スクリーニングされる細菌がSphingomonas属に属する環境汚染物質分解細菌である請求項15記載の方法。The method according to claim 15, wherein the bacterium to be screened is an environmental pollutant-degrading bacterium belonging to the genus Sphingomonas. Sphingomonas属に属する環境汚染物質分解細菌が石油分解細菌である請求項16に記載の方法。The method according to claim 16, wherein the environmental pollutant-degrading bacterium belonging to the genus Sphingomonas is a petroleum-degrading bacterium. スクリーニングされる細菌が請求項1〜3のいずれかに記載の微生物である請求項15に記載の方法。The method according to claim 15, wherein the bacterium to be screened is the microorganism according to any one of claims 1 to 3. 配列番号1または配列番号2の塩基配列との相同性、または請求項5〜7のいずれかに記載のRNAまたはDNAプローブを用いたDNA/DNAまたはDNA/RNAハイブリダイゼーション、または該DNAプローブをプライマーとして用いてPCRを行うことを特徴とする、請求項1〜3のいずれかに記載のSphingomonas属細菌を同定する方法。DNA / DNA or DNA / RNA hybridization using the RNA or DNA probe according to any one of claims 5 to 7, or a primer using the DNA probe as a homology to the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 2. The method for identifying a bacterium belonging to the genus Sphingomonas according to any one of claims 1 to 3, wherein PCR is performed using the bacterium. 同定される細菌がSphingomonas属に属する環境汚染物質分解細菌である請求項19に記載の方法。The method according to claim 19, wherein the bacterium to be identified is an environmental pollutant-degrading bacterium belonging to the genus Sphingomonas. Sphingomonas属に属する環境汚染物質分解細菌が石油分解細菌である請求項20に記載の方法。The method according to claim 20, wherein the environmental pollutant-degrading bacterium belonging to the genus Sphingomonas is a petroleum-degrading bacterium. 環境汚染物質で汚染された環境を請求項1〜3のいずれかに記載の微生物で処理することを特徴とする、汚染環境の浄化方法。A method for purifying a polluted environment, comprising treating an environment contaminated with an environmental pollutant with the microorganism according to claim 1. 環境汚染物質が石油または石油由来のものである請求項22に記載の方法。23. The method according to claim 22, wherein the environmental pollutant is petroleum or petroleum-derived. 請求項11〜14のいずれかに記載の方法を用いて、有害物質汚染環境のモニタリング、解析・評価および診断する方法A method for monitoring, analyzing, evaluating and diagnosing a toxic substance-contaminated environment using the method according to any one of claims 11 to 14. 請求項11〜14のいずれかに記載の方法を用いて、有害物質汚染環境の浄化及乃至修復過程を解析し、評価する方法。A method for analyzing and evaluating a process of purifying and / or restoring a toxic substance-contaminated environment using the method according to any one of claims 11 to 14.
JP2002331358A 2002-11-14 2002-11-14 New microorganism Expired - Lifetime JP4065942B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002331358A JP4065942B2 (en) 2002-11-14 2002-11-14 New microorganism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002331358A JP4065942B2 (en) 2002-11-14 2002-11-14 New microorganism

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007234791A Division JP4766341B2 (en) 2007-09-10 2007-09-10 New microorganism

Publications (2)

Publication Number Publication Date
JP2004159599A true JP2004159599A (en) 2004-06-10
JP4065942B2 JP4065942B2 (en) 2008-03-26

Family

ID=32808770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002331358A Expired - Lifetime JP4065942B2 (en) 2002-11-14 2002-11-14 New microorganism

Country Status (1)

Country Link
JP (1) JP4065942B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004306026A (en) * 2003-03-27 2004-11-04 Toray Ind Inc Method and apparatus for treating liquid containing soluble organic matter
JP2006230255A (en) * 2005-02-23 2006-09-07 National Institute Of Advanced Industrial & Technology New microorganism
JP2007007569A (en) * 2005-06-30 2007-01-18 Ebara Corp Apparatus for treating estrogen
CN102071917A (en) * 2010-12-30 2011-05-25 中国石油天然气股份有限公司 Microbial multi-cycle huff and puff oil production method
JP2012075409A (en) * 2010-10-04 2012-04-19 Microbio Corp Colony detection method, colony detection system and colony detection program
JP2013545596A (en) * 2010-10-27 2013-12-26 ペキン ユニバーシティ Processing system and method for processing waste
JP2016220586A (en) * 2015-05-28 2016-12-28 株式会社竹中工務店 Production method of urease-forming microorganism and soil improving method
CN107306532A (en) * 2017-06-13 2017-11-03 南京农业大学 A kind of method for removing USEPA PAHs in plant simultaneously using compound PAHs degradation bacterias
CN111999409A (en) * 2020-08-28 2020-11-27 中国科学院烟台海岸带研究所 Fingerprint identification method for heavy fuel oil and crude oil of ship

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004306026A (en) * 2003-03-27 2004-11-04 Toray Ind Inc Method and apparatus for treating liquid containing soluble organic matter
JP2006230255A (en) * 2005-02-23 2006-09-07 National Institute Of Advanced Industrial & Technology New microorganism
JP4633496B2 (en) * 2005-02-23 2011-02-16 独立行政法人産業技術総合研究所 New microorganism
JP2007007569A (en) * 2005-06-30 2007-01-18 Ebara Corp Apparatus for treating estrogen
JP2012075409A (en) * 2010-10-04 2012-04-19 Microbio Corp Colony detection method, colony detection system and colony detection program
JP2013545596A (en) * 2010-10-27 2013-12-26 ペキン ユニバーシティ Processing system and method for processing waste
US9278876B2 (en) 2010-10-27 2016-03-08 Peking University Treatment of waste product
CN102071917A (en) * 2010-12-30 2011-05-25 中国石油天然气股份有限公司 Microbial multi-cycle huff and puff oil production method
JP2016220586A (en) * 2015-05-28 2016-12-28 株式会社竹中工務店 Production method of urease-forming microorganism and soil improving method
CN107306532A (en) * 2017-06-13 2017-11-03 南京农业大学 A kind of method for removing USEPA PAHs in plant simultaneously using compound PAHs degradation bacterias
CN107306532B (en) * 2017-06-13 2021-09-07 南京农业大学 Method for simultaneously removing USEPA PAHs in plant body by using composite PAHs degrading bacteria
CN111999409A (en) * 2020-08-28 2020-11-27 中国科学院烟台海岸带研究所 Fingerprint identification method for heavy fuel oil and crude oil of ship

Also Published As

Publication number Publication date
JP4065942B2 (en) 2008-03-26

Similar Documents

Publication Publication Date Title
JP4633496B2 (en) New microorganism
Spini et al. Molecular and microbiological insights on the enrichment procedures for the isolation of petroleum degrading bacteria and fungi
Maruyama et al. Dynamics of microbial populations and strong selection for Cycloclasticus pugetii following the Nakhodka oil spill
Watanabe Microorganisms relevant to bioremediation
Okoh et al. Wastewater treatment plants as a source of microbial pathogens in receiving watersheds
Hassanshahian et al. Bioremediation (bioaugmentation/biostimulation) trials of oil polluted seawater: a mesocosm simulation study
Golyshin et al. Genome sequence completed of Alcanivorax borkumensis, a hydrocarbon-degrading bacterium that plays a global role in oil removal from marine systems
Onwurah et al. Crude oil spills in the environment, effects and some innovative clean-up biotechnologies
Hassanshahian et al. Using Real-Time PCR to assess changes in the crude oil degrading microbial community in contaminated seawater mesocosms
Cappello et al. Bioremediation of oil polluted marine sediments: A bio-engineering treatment
WO2020009097A1 (en) Method of decontaminating environment contaminated by petroleum-related substance and material to be used
Barbato et al. Hydrocarbon pollutants shape bacterial community assembly of harbor sediments
Pi et al. Bioremediation of the oil spill polluted marine intertidal zone and its toxicity effect on microalgae
Abou Khalil et al. Crude oil biodegradation in upper and supratidal seashores
Hassanshahian et al. Comparison the effects of bioaugmentation versus biostimulation on marine microbial community by PCR–DGGE: A mesocosm scale
JP4065942B2 (en) New microorganism
JP4766341B2 (en) New microorganism
Mazioti et al. Comparison of different cultures and culturing conditions for the biological deterioration of organic load from real saline bilge wastewater: microbial diversity insights and ecotoxicity assessment
Amenu Wastewater treatment plants as a source of microbial pathogens in receiving watersheds
Matturro et al. In situ detection of alkB2 gene involved in Alcanivorax borkumensis SK2T hydrocarbon biodegradation
WO2001014587A1 (en) METHOD OF DETECTING AND QUANTITATING MICROORGANISM HAVING SPECIFIC FUNTION AND ITS GENE FROM NATURAL ENVIRONMENT, NOVEL 16SrRNA GENE DATA AND PROBES
JP4323740B2 (en) Molecular genetic analysis and evaluation methods for contaminated environments and environmental samples
US20020150887A1 (en) Methods and nucleic acid probes for molecular genetic analysis of polluted environments and environmental samples
JP3922944B2 (en) Prediction method for petroleum cracking capacity of environmental samples
Zrafi-Nouira et al. Crude oil metagenomics for better bioremediation of contaminated environments

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071211

R150 Certificate of patent or registration of utility model

Ref document number: 4065942

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term