JP3922944B2 - Prediction method for petroleum cracking capacity of environmental samples - Google Patents

Prediction method for petroleum cracking capacity of environmental samples Download PDF

Info

Publication number
JP3922944B2
JP3922944B2 JP2002068815A JP2002068815A JP3922944B2 JP 3922944 B2 JP3922944 B2 JP 3922944B2 JP 2002068815 A JP2002068815 A JP 2002068815A JP 2002068815 A JP2002068815 A JP 2002068815A JP 3922944 B2 JP3922944 B2 JP 3922944B2
Authority
JP
Japan
Prior art keywords
petroleum
microorganisms
sample
soil
degrading
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002068815A
Other languages
Japanese (ja)
Other versions
JP2003265197A (en
Inventor
一晃 珠坪
真起子 輕部
晶子 宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2002068815A priority Critical patent/JP3922944B2/en
Publication of JP2003265197A publication Critical patent/JP2003265197A/en
Application granted granted Critical
Publication of JP3922944B2 publication Critical patent/JP3922944B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Processing Of Solid Wastes (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、石油類に汚染された土壌、河川水、地下水などの微生物浄化(バイオレメディエーション)において、汚染環境試料の有する石油分解能力の予測法に関する。
【0002】
【従来の技術】
石油類による環境汚染は、船舶事故等による原油あるいは燃料油の流出による広域の海洋汚染が良く知られているが、陸上においてもパイプラインの破損や貯蔵タンクからの漏洩、汚染廃水の排出等により土壊、河川水、地下水などが汚染された例が数多く報告されている。諸外国では石油汚染が土壌・地下水汚染の大きな原因となっており、アメリカでは有機化合物による土壌・地下水汚染の約80%が石油由来のものであることが報告されている(日本地盤環境浄化推進協議会監修:土壌・地下水汚染の実態とその対策、オーム社出版、p.28、2000)。
【0003】
近年、種々の有害物質による土壌、河川水、地下水などの環境汚染を浄化する技術が開発されてきた。微生物による浄化法では分解できる物質の種類や濃度が限定されるものの、常温・常圧の穏やかな条件下で、対象汚染物質を無害な化合物にまで分解できるため、他の物理化学的な浄化法と比較して低コストで環境に優しい浄化方法として注目されている。
【0004】
微生物による浄化法としては浄化対象の環境中に存在している土着の微生物群を利用する方法(バイオスティミュレーション)が用いられるが、土着の微生物群のなかに汚染物質分解菌が存在しない場合は、分解菌を添加する方法(バイオオーグメンテーション)が用いられる。微生物による浄化法を適用する際には、対象とする汚染環境中から土壌や水などの試料を採取し、土着の微生物を利用するバイオスティミュレーションを前提とした分解実験(トリータビリティ試験)を行う。すなわち、採取した環境試料に適正量の栄養塩類や必要に応じて炭素源を添加し、実際の施工時に近い環境条件で培養し、土着微生物群による汚染物質の分解性を確認するものであるが、石油系の物質は、難分解性物質であるため、そのトリータビリティ試験に5から6週間以上あるいは数ヶ月を要していた。
【0005】
さらに、石油類はその構成成分が多岐にわたり(Wang, Z., M. Fingas, and L. Ken: J. Chromatogr. Sci., 32, 367, 1994)、その組成は汚染サイトによって大きく異なることが特徴である。つまり、調査対象の試料に含まれる石油成分や濃度が一定でないため、石油分解細菌が利用可能な石油成分が十分含まれない場合があり、例え浄化対象の試料中に石油構成成分を資化できる石油分解微生物が存在する場合でも、試料の土着微生物の石油分解能が低いと誤認する場合があった。また、環境試料が石油系炭化水素以外の易微生物分解性有機物を多く含む場合もある。このような場合、試験対象の環境サンプルに微生物の増殖に必要な、窒素源、リン源を加えて培養を行っても、必ずしも石油汚染の浄化に有用な微生物を増殖させられないため、最適な施工法の選択が困難であった。さらに、試料中に有用な土着分解微生物が存在しない場合には、その分解能の判定に長期間を要することは言うまでもない。
【0006】
近年、分子生物学的な解析手法の発達により、環境試料中の遺伝子を調べることにより、短時間で環境試料中の微生物群集構造を把握する方法が開発されてきた(Amann, R.I., Ludwig, W., and Schleifer, K.H.(1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation ,Microbiol Rev. 59: 143-169)。しかしながら、前述のように石油構成成分が多岐に渡っているため、石油分解微生物群集においては個々の石油構成成分に対応する分解微生物の割合が小さいうえに多種類にわたる可能性が高く、その検出能の限界ゆえ、遺伝子解析によっても必ずしも検出できるとは限らないという問題があった(Kasai、Y., Kishira, H., Syutsubo, K., and Harayama, S., Molecular detection of marine bacterial populations on beaches contaminated by the Nakhodka tanker oil-spill accident.. Environ Microbiol vol.3 (4), 246〜255、2001)。また、様々な有機物を多く含む土壌などの環境試料の場合、土着の細菌数は108/gから1010/g程度と非常に多いため(Bitton, G. and Gerba, C.P.: Groundwater Pollution Microbiology, John Wiley & Sons, New York, p.23, 1984)、石油分解に関与しない土着の細菌数が少ない試料と比較して、石油分解微生物由来の遺伝子の検出は更に困難である。
【0007】
石油汚染試料(土壌)に窒素、リンを加えた培養体を作成し、その試料中に存在する微生物群集の遺伝子を解析することで、石油分解に関与する微生物を同定しようとする試みも行なわれている(高畑陽、大場美保、鈴木朝香、帆秋利洋、DGGE法による石油汚染土壌中の菌相解析、日本水環境学会年会講演集、1999、p412)。しかしながら、既存技術では、試料(土壌)に予め含まれる石油成分を石油分解微生物の炭素源として用いるために、試料によっては、含まれる石油の構成成分と濃度が異なり、必ずしも石油分解微生物の増殖を促進するために十分な質と量の石油系炭化水素を供給できるとは限らなかった。その結果、環境試料に含まれる易分解性の有機物を資化する細菌が優占的に増殖してしまい、石油分解微生物由来の遺伝子の存在量が、相対的に分子生物学的な手法による検出限界以下程度までしか維持できず、試料中の石油分解微生物の存在を確認することが難しかった。また、前述したように石油の構成成分は多岐に渡っており、成分によって分解できる微生物群が異なる。既存技術では、試料によって石油汚染の状況、換言すれば石油系炭化水素の組成や濃度が大きく異なるため、微生物群集構造解析の結果、同定された微生物が、どの石油構成成分を資化するのかを判定することが困難であった。
【0008】
さらに、石油系炭化水素は、殆どが非水溶性の物質で構成されているため、石油分解微生物の増殖促進のためには、試料中に存在する石油分解微生物と石油の接触効率を高めることが必要である。既存技術では、土壌に少量の水分(5%(w/w))を加え、1日に1回程度の手動による攪拌を行うのみであり、試料(土壌)内に存在する石油と分解微生物との接触が不十分であり、石油分解微生物の増殖促進効果が著しく低かった。
【0009】
【発明が解決しようとする課題】
石油によって汚染された土壌、河川水、地下水等の環境試料中に存在する石油分解微生物の増殖を高度に促進させ、得られた石油分解集積培養体に存在する石油分解微生物由来の遺伝子を解析、検出することで、石油汚染が起こった際の環境試料土着の微生物による石油汚染浄化能を短期間で予測することが出来る。
本発明の目的は、環境試料中に存在する微生物を起源とした高度石油分解集積培養体を迅速に作成し、石油分解微生物由来の遺伝子を解析、検出することで、環境試料の石油分解能力の予測の手段を提供することにある。
【0010】
【課題を解決するための手段】
本発明者らは、上記の課題を解決するために鋭意研究を行った結果、環境試料中の石油分解微生物を迅速に培養促進可能な培養条件、および試料の石油分解能と集積培養体に存在する石油分解微生物由来の遺伝子との関連を明らかにし、本発明を完成させた。
即ち、本発明は、下記の手段によって上記課題を解決した。
(1)環境試料の土壌試料に減菌水を試料重量の1〜100倍量添加し、微生物が資化し易い石油系炭化水素を濃度が50〜5000g/Lになるように添加するとともに、微生物群集の形成を促進する物質として窒素源を濃度1〜200mg−N/L、及びリン源を濃度0.2〜50mg−P/Lになるように添加して、攪拌強度を30〜300rpmに保持して攪拌培養を行い、環境試料中に存在する石油系炭化水素の分解に応じた微生物群集を形成させ、該環境試料に形成された微生物群集内の石油分解微生物由来の遺伝子を検出することを特徴とする環境試料の石油分解能力予測法。
【0011】
【発明の実施の形態】
本発明の環境試料の石油分解能力予測法は、環境試料に窒素源、リン源あるいは石油系炭化水素を添加して石油分解集積培養体を作成し、その試料中石油分解微生物由来の遺伝子を検出することを特徴とするものである。以下に本発明の実施の形態について詳しく述べる。
【0012】
環境試料中で石油系炭化水素汚染に応じて形成される微生物群集を得るためには、当該環境試料が、予め石油類で汚染された不飽和土壌の場合のように、単に水を添加して培養するだけでよい場合もあるが、一般的には微生物の増殖を促進させるために水のほかに窒素源、リン源、を添加して好気条件下で培養する。また、石油汚染されていない或いは石油汚染濃度の低い試料や、石油系炭化水素以外の有機物を多量に含む試料については、石油系の炭化水素の添加も行うことが望ましい。
【0013】
石油分解微生物の増殖促進のために、調査対象試料が不飽和土壌などの含水率が低いサンプルである場合、適切量の水分を添加することが望ましい。水分は、少なくとも試料が飽和状態になるように添加し、添加量としては、試料の重量の0.5〜1000倍量を添加するのが好ましく、試料重量の1〜100倍量を添加するのが更に好ましい。当該環境試料が河川水、地下水等のように水分が十分にある場合は、あえて水を添加する必要はない。添加する水は、試料の遺伝子解析に影響を及ぼさない様に滅菌水を用いることが望ましい。
また、酸素供給不足の防止、土着微生物と石油系炭化水素の接触効率の向上、換言すれば石油分解微生物の増殖促進のために、振とう培養、旋回培養あるいはこれに准ずる方法で攪拌培養を行なうことが好ましい。攪拌の強度としては、30〜300rpmとするのが好ましく、100〜200rpmとするのが更に好ましい。
培養期間としては、3から30日間、好ましくは7から14日間とし、また、培養の温度としては、10℃から40℃が好ましく、15℃から35℃に設定するのが更に好ましい。
また、試料のpHが中性域でない場合、振とう培養を行う際にpHを中性域に調節することが望ましい。
【0014】
添加する窒素源としては、無機性の窒素化合物、例えば塩化アンモニウム、硫酸アンモニウム、リン酸アンモニウム、硝酸アンモニウム、硫酸第一鉄アンモニウムなどを使用することが望ましいが、その他の無機アンモニウム化合物を利用しても良い。また、イソブチルアルデヒド縮合尿素、ホルムアルデヒド加工尿素などを含有する農業用の肥料を用いても良い。堆肥、ペプトン、酵母エキス、コーンスティープリカー、肉エキス等の有機性の窒素源を使用することも出来るが、それらに含まれる有機物を炭素源として利用する微生物が増殖することが考えられるため、実際の使用に当たっては無機性の窒素源を用いることが望ましい。窒素源の添加量は、汚染物質である石油系炭化水素の炭素源濃度に依存するが、その濃度が0.1〜1000mg−N/Lになるように添加するのが好ましく、1〜200mg−N/Lになるように添加するのが更に好ましい。
【0015】
添加するリン源としては、無機性のリン化合物、例えばリン酸カリウム、リン酸マグネシウム、リン酸アンモニウム、リン酸カルシウム、リン酸ナトリウムなど使用することが望ましいが、その他の無機リン酸化合物を利用しても良い。また、リン酸二石灰、リン酸苦土(リン酸マグネシア)などを含有する農業用の肥料を用いても良い。堆肥、ペプトン、酵母エキス、コーンスティープリカー、肉エキス等の有機性のリン源を使用することも出来るが、実際の使用に当たっては無機性のリン源を用いることが望ましい。リン源の添加量は、その濃度が0.1〜1000mg−P/Lになるように添加するのが好ましく、0.2〜50mg−P/Lになるように添加するのが更に好ましい。
【0016】
添加する石油系炭化水素としては、石油の主成分であるアルカンや多環芳香族炭化水素を用いることが好ましい。アルカンや多環芳香族炭化水素を単独で添加しても良いし、複数の化合物を同時に添加しても良い。また、複数のアルカンや多環芳香族炭化水素を多く含む原油、重油、あるいは脂肪族炭化水素を中心とした軽質分を加熱除去した原油(weathered crude oil、以下w.oilと示す)、更に原油を薄層クロマトなどにより分画した飽和画分、芳香族画分なども用いることができる。また複数のアルカン類を多く含むガソリン、軽油、灯油を添加しても良い。
【0017】
しかしながら、アルカン、多環芳香族炭化水素などの複合物である原油、w.oilなどを環境試料に添加した場合、易分解性のアルカンを分解する微生物の増殖が極めて速く、結果的に多環芳香族炭化水素分解菌の増殖が抑制される場合がある(珠坪一晃、瀧寛則、原山重明、流出油の微生物分解に及ぼす無機栄養塩濃度の影響、日本水環境学会年会講演集、2000、p.533)。この場合、多環芳香族炭化水素のみを炭素源として添加する培養系を別途作成することが望ましい。これらの石油系炭化水素の添加量は、その濃度が10〜10,000mg/Lになるように添加するのが好ましく、50〜5,000mg/Lになるように添加するのが更に好ましい。
【0018】
アルカンとしては直鎖の炭素数10から36までのノルマルアルカンを使用することが好ましいが、他の炭素数のアルカンや、側鎖を持ったブランチドアルカン類、環状のシクロアルカン類なども使用することが出来る。多環芳香族炭化水素としては、ナフタレン、フルオレン、フェナントレン、アントラセン、ジベンゾチオフェン、ピレン、ベンツピレン等の2環から5環までの石油に比較的多く含まれる化合物を用いることが好ましく、またこれらの化合物の異性体を使用しても良い。
【0019】
上記の方法で培養を行った集積培養体より遺伝子を抽出し、遺伝子に基づいた微生物群集構造解析を行い、その中に含まれる石油分解微生物由来の遺伝子を同定、検出することにより、環境試料中に存在する士着の微生物による石油汚染浄化能を予測することが出来る。
環境試料および培養試料からの遺伝子の抽出法としては定法(Marmur, J. (1961) A Procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol. 3:208〜218.)を用いることができるが、それ以外の方法を用いても良い。
【0020】
環境試料中の微生物群集構造解析を行って石油分解細菌の存在を検出するためには、まず大凡の微生物の遺伝子を増幅可能なユニバーサルプライマーを用いたPCR反応(polymerase chain reaction、中山広樹、細胞工学別冊バイオ実験イラストレイテッド3、秀潤社、1996)を行い、試料より抽出した微生物の遺伝子(例えば16S rDNA遺伝子など)を増幅させる。増幅された様々な微生物由来の遺伝子の混合物を、変成剤濃度勾配ゲル電気泳動法(Denaturing gradient gel electrophoresis: DGGE法、Muyzer G., S. Hottentrager, A. Teske, and C. Wawer Denaturing gradient gel electrophoresis of PCR-amplified 16S rDNA-A new molecular approach to analyze the genetic diversity of mixed microbial communities Molecular Microbial Ecology Manual 3.4.4.:1〜23, 1996)あるいは、クローニング法(中山広樹、細胞工学別冊バイオ実験イラストレイテッド4、秀潤社、1996)によって分離する。分離された遺伝子の配列をDNA sequencerにより決定し、GenBank (Benson DA. Karsch-Mizrachi I, Lipman DJ, Ostell J. Rapp BA, Wheeler DL., GenBank, Nucleic Acids Res 2000 Jan 1, 28(1) 15〜8)などのデータベースに登録されている遺伝子情報と比較することにより、石油分解微生物の存在を同定、検出できる。
【0021】
また、石油分解能を持つことが知られている微生物の特異的遺伝子配列を基に特異性の高いPCRプライマーを設計し、PCR産物が得られるか否かによって、石油分解微生物の存在を検出することも出来る。定量的なPCR法としては、競合的PCR法(中山広樹、細胞工学別冊バイオ実験イラストレイテッド3、秀潤社、1996)、カイネティックスを利用する方法(中山広樹、細胞工学別冊バイオ実験イラストレイテッド3、秀潤社、1996)、リアルタイムPCR法(Taq Man PCR、ライトサイクラー等、磯野一宏、臨床病理、45、p218、1997)等を用いることが出来るが、これ以外の手法を用いても良い。特異性の高いPCRプライマーを設計するために使うことができる遺伝子として、リボソーマルDNA(rDNA)やジャイレースβサブユニットをコードするDNA(gyrB DNA)、アルカンや多環芳香族炭化水素あるいはそれらの分解中間代謝産物の分解酵素に関する機能遺伝子などをあげることが出来る。石油分解酵素に関する機能遺伝子としては、アルカンモノオキシゲナーゼ(alkA,alkB)、ナフタレンジオキシゲナーゼ(nahA)、カテコール2,3ジオキシゲナーゼ(nahA)などを例示することが出来るが、これ以外のアルカン、多環芳香族炭化水素、あるいはそれらの物質の分解代謝産物の分解に関与する遺伝子を検出対象としても良い。
【0022】
更に石油分解微生物に関する遺伝子の検出は、ハイブリダイゼーション法によっても行うことが出来る。すなわち石油分解微生物由来の特異的遺伝子に特異性の高いDNAプローブを設計し、このDNAを放射性同位元素、蛍光色素等で標識した後、環境試料より抽出した遺伝子あるいは、環境試料中の微生物細胞に存在する遺伝子とのハイブリダイゼーション(雑種形成)を行うことにより、目的の遺伝子あるいは細胞を検出する方法である(Amann, R. I., Binder, B.J., Olson, R.J., Chisholm, S.W., Devereux, R., and Stahl, D.A., Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial population. Appl Environ Microbiol 56:1919〜1925, 1990, Amann, R.I., In situ identification of microorganisms by whole cell hybridization with rRNA-targeted nucleic acid probes. In Molecular Microbial Ecology Manual, Kluwer academic publishers, 3.3.6: 1-15, 1995)。特異性の高いDNAプローブを設計するために使うことができる遺伝子として、リボソーマルDNA(rDNA)やジャイレースβサブユニットをコードするDNA(gyrB DNA)、アルカンや多環芳香族炭化水素あるいはそれらの分解中間代謝産物の分解酵素に関する機能遺伝子などを挙げることが出来る。
【0023】
また、T−RFLP法(Terminal Restriction Fragment Patterns, Kitts CL., Terminal restriction fragment patterns : a tool for comparing microbial communities and assessing community dynamics. Curr Issues Intest Microbiol 2001 Mar; 2(1).17-25)によっても、石油分解微生物に関する遺伝子の検出が可能である。この方法では、まずフォワードあるいはリバースのどちらかのプライマーに蛍光色素を標識し、それらを用いたPCR反応(Polymerase chain reaction、中山広樹、細胞工学別冊バイオ実験イラストレイテッド3、秀潤社、1996)を行って、試料より抽出した微生物の遺伝子(例えば16S rDNA遺伝子など)を増幅させる。その後、PCRによって増幅された様々な微生物由来の遺伝子の混合物を、特異的な遺伝子配列を切断する制限酵素で処理する。この処理によって、片側に蛍光色素が付加された状態の様々な長さの遺伝子断片(terminal restriction fragment)が出来る。この制限酵素処理されたPCR増幅産物をDNA seqencer などで電気泳動し、蛍光色素が付加されたPCR産物の長さをパターン化することで、特異的な配列を持つ石油分解細菌由来の遺伝子を検出できる。
【0024】
【実施例】
本発明の実施例を以下に示すが、本発明の実施の形態は、これに限定されることはない。
【0025】
〔実施例1〕 石油汚染土壌の石油分解能力の診断
環境試料を起源とする微生物群集による石油分解集積培養体を作成し、石油分解微生物由来の遺伝子の同定、検出により、環境試料の石油分解能力の予測が可能かを調査するために、2種の履歴の異なる石油汚染土壌(I、II)を用いた石油分解集積培養体を作成し、各土壌の石油分解能の調査と土壌中の微生物群集構造の解析を行った。
【0026】
石油分解集積培養体の作成には、減菌処理した容量50mLのガラス製遠沈管を用い、遠沈管内には2gの各試験土壌を投入した。試験土壌の石油濃度は、約0.1〜1.5mg/g、含水率は15〜19%であり、石油、水分共に石油微生物の増殖には不十分なレベルであった。そこで、土着の石油分解細菌の増殖を促すために、10mLの滅菌水とn−アルカンを豊富に含む原油(予め熱処理して揮発成分を除去した原油、以下「w.oil」という)、あるいは多環芳香族炭化水素のC0−フェナントレン(以下、フェナントレンとする)を10mg(5mg/g)上記のガラス製遠沈管に加えた。更に、窒素源として塩化アンモニウム(35mg−N/L)、リン源としてリン酸水素二ナトリウム(10mg−P/L)を添加し、28℃温度条件下で1週間振とう培養(130rpm)を行った。
【0027】
また、対照系として炭素源(W.oil、フェナントレン)の添加を行わない系列も設けた。試験対象の各土壌、また分解実験終了時の集積培養土壌サンプルより遺伝子を抽出し、細菌の16S rDNA遺伝子を標的にしたPCR法による遺伝子増幅、増幅した遺伝子混合物のDGGE法(変性剤濃度勾配ゲル電気泳動法)による分離とパターン化、分離した微生物遺伝子(DNAバンド)の遺伝子配列の決定を行い、微生物群集内に存在する微生物群を同定した。また、石油分解集積培養実験における石油分解の様相を調査するために、培養実験終了時に培養液中から有機溶媒を用いた石油成分の抽出を行いGC−MS(ガスクロマトグラフ質量分析計)による分析を行った。
【0028】
図1には、各培養条件下で得られた集積培養体の微生物群集の構造をPCR法およびDGGE法により解析した結果を示した。レーン1から4はI土壌およびその集積培養体より得られたDNAを鋳型としたPCR増幅産物の泳動結果を、レーン5から8はII土壌およびその集積培養体のPCR増幅産物の泳動結果を示している。それぞれレーン1、5は供試土壌、レーン2,6は石油系炭化水素を添加しない対照系、レーン3,7はw.oil添加集積培養体、レーン4,8はフェナントレン添加集積培養体より得られたPCR増幅産物の泳動結果である。また、レーン9,10は、土壌I、IIより単離した石油分解細菌より得られたPCR増幅産物(以下、単に試料の名前で表示する)の泳動結果である。DGGE法では、試料中の微生物群の存在をDNAバンドとして示すことが出来る。これより、I、II土壌それぞれで得られた強いシグナルのバンド(存在率の多い微生物)に共通性は見られず、土壌によって異なる微生物が存在していることが分かった。一方、同一の土壌サンプルで、添加する炭素源などの培養条件が異なる場合においては、幾つかの強いシグナルのバンド(微生物群)の一致がみられた(バンドA、B、D)。これらのバンドの遺伝子配列を決定したところ、大部分が石油分解に直接関与しないと思われる細菌(バンドA、E)、あるいは石油汚染土壌中への存在が報告されており、石油系炭化水素分解能は不明であるが、その分解中間代謝物を資化すると推定される細菌群(バンドB、C、D)に近縁なものであった。
【0029】
土壌自体(レーン1、5)あるいは土壌に水と窒素源、リン源を加えて培養を行った対照系(レーン2、6)で検出された主なバンド(微生物)の遺伝子配列を決定したが、石油分解微生物の存在は確認できなかった。これは、試験土壌の石油汚染濃度が低いため、石油を資化する微生物の増殖が促進されなかったためと考えられる。それに対して、土壌にw.oilあるいはフェナントレンを添加した系列(レーン3,6)では、石油分解菌の遺伝子が検出できた(バンドF,G)。
また、図1には各培養条件下での培養液を、ヘキサデカン(C16−アルカン)あるいはフェナントレンを単一基質とした選択培地を用いて単離した石油分解細菌(単離菌No.1、No.2)の泳動パターンも示した(レーン9、10)。これらの石油分解能を持つ細菌に対応するバンドが、I土壌にw.oilを炭素源として添加した集積培養系(レーン3、バンドF)、II土壌にフェナントレンを添加した系(レーン8、バンドG)においても確認された。これらのバンドの遺伝子配列を決定したところ、単離株No.1はロドコッカス(Rhodococcus sp.)、単離株No.2はブルクホルデリア(Burkholderia sp.)に非常に近縁なものであり、それぞれがアルカン(alkanes:飽和画分)と多環芳香族炭化水素(Polycyclic Aromatic Hydrocarbons、以下PAHsとする)の分解に関与する菌であるということがわかった。
【0030】
図2には、w.oilを炭素源に用いた集積培養系におけるアルカン(C10〜C36)およびPAHsの分解の結果を示した。I土壌ではII土壌に比べてアルカンの分解が良好であり、培養後1週間目には約90%が分解された。一方、PAHsの分解に関してはII土壌の方が優れており、ナフタレン、フェナントレン、フルオレンはほぼ完全に、ジベンゾチオフェンについても80%程度が分解された。
以上の結果より、I土壌にw.oilを加えて集積培養を行なった系(レーン3)からはアルカン分解能を持つ細菌由来の遺伝子(バンドF)が検出され、かつ土壌のアルカン分解能が高いこと、II土壌にフェナントレンを加えて集積培養を行なった系(レーン8)からはPAHs分解菌由来の遺伝子が検出され、かつ土壌のPAHs分解能が高いことが分かった。即ち、この様な高度石油分解集積培養体を作成し、培養体中の微生物群集の遺伝子の解析、石油分解細菌由来の遺伝子の検出を行うことにより環境試料の石油分解能を予測することが可能であることが示された。
【0031】
【発明の効果】
本発明の方法を用いて、高度に石油分解微生物の増殖がなされた石油分解集積培養体を作成し、環境試料を起源とする石油分解微生物由来の遺伝子の存在を知ることで、短期間で環境試料の持つ石油分解能力を予測する手段を提供することができる。また、石油分解細菌由来の遺伝子情報(遺伝子配列データ)を得ることで、試料中で活躍する石油分解細菌の系統学的な分類や、その細菌の持つ石油分解酵素に関する知見を得ることができ、どのような成分の石油系炭化水素を、どのような物質まで分解できるかを知ることができる。
即ち、本発明により石油汚染環境試料土着の微生物による石油汚染成分毎の浄化能を予測することが出来、将来的には、バイオレメディエーション施工の際、浄化対象となる環境試料の汚染種や存在微生物種に応じた、最適な浄化法を提案していくことが可能になる。
【図面の簡単な説明】
【図1】PCR−DGGE法による供試土壌及び石油分解集積培養体の解析結果を示す。
【図2】w.oilを炭素源に用いた集積培養系におけるアルカン及び多環芳香族炭化水素化合物の分解結果を示すグラフである。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for predicting the ability of decomposing petroleum in polluted environmental samples in the purification of microorganisms (bioremediation) of soil, river water, groundwater and the like contaminated with petroleum.
[0002]
[Prior art]
Environmental pollution caused by petroleum is well known for wide-area marine pollution caused by spills of crude oil or fuel oil due to ship accidents, etc., but also on land due to pipeline breakage, leakage from storage tanks, discharge of contaminated wastewater, etc. There have been many reports of soil destruction, river water, and groundwater contamination. Oil pollution is a major cause of soil and groundwater contamination in other countries, and it is reported that about 80% of soil and groundwater contamination by organic compounds originates from oil in the US Supervised by the Council: Actual conditions and countermeasures for soil and groundwater contamination, published by Ohmsha, p.28, 2000).
[0003]
In recent years, techniques for purifying environmental pollution such as soil, river water, and groundwater caused by various harmful substances have been developed. Although the type and concentration of substances that can be decomposed are limited by the purification method using microorganisms, the target pollutants can be decomposed into harmless compounds under mild conditions at normal temperature and pressure, so other physicochemical purification methods It is attracting attention as a low-cost and environmentally friendly purification method.
[0004]
As a purification method using microorganisms, a method using indigenous microorganisms (biostimulation) existing in the environment to be purified is used, but there is no pollutant-degrading bacteria in the indigenous microorganism group. A method of adding degrading bacteria (bioaugmentation) is used. When applying the purification method using microorganisms, samples such as soil and water are collected from the target contaminated environment, and a decomposition experiment (treatability test) based on biostimulation using indigenous microorganisms is performed. Do. In other words, an appropriate amount of nutrients and, if necessary, a carbon source are added to the collected environmental sample and cultured under environmental conditions close to the actual construction, and the degradability of pollutants by indigenous microorganisms is confirmed. Since petroleum-based substances are hardly decomposable substances, the treatability test took 5 to 6 weeks or more or several months.
[0005]
In addition, petroleum has a wide variety of constituents (Wang, Z., M. Fingas, and L. Ken: J. Chromatogr. Sci., 32, 367, 1994), and its composition varies greatly depending on the contaminated site. It is a feature. In other words, because the petroleum components and concentrations contained in the sample to be investigated are not constant, there may be cases where the petroleum components that can be used by petroleum-degrading bacteria are not sufficiently contained, and the petroleum components can be assimilated in the sample to be purified. Even in the presence of petroleum degrading microorganisms, there were cases where the indigenous microorganisms of the sample were mistaken for low petroleum resolution. In addition, the environmental sample may contain a large amount of easily microbially degradable organic substances other than petroleum hydrocarbons. In such a case, even if the nitrogen source and phosphorus source necessary for the growth of microorganisms are added to the environmental sample to be tested and cultured, microorganisms useful for purification of petroleum contamination cannot always be grown. It was difficult to select the construction method. Furthermore, it goes without saying that when there are no indigenous degrading microorganisms in the sample, it takes a long time to determine the resolution.
[0006]
In recent years, due to the development of molecular biological analysis methods, methods have been developed to grasp the microbial community structure in environmental samples in a short time by examining genes in environmental samples (Amann, RI, Ludwig, W , and Schleifer, KH (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation, Microbiol Rev. 59: 143-169). However, as mentioned above, there are a wide variety of petroleum components, so in the petroleum-degrading microbial community, the proportion of degrading microorganisms corresponding to individual petroleum components is small, and there is a high possibility that it will cover many types. However, it was not always possible to detect even by genetic analysis (Kasai, Y., Kishira, H., Syutsubo, K., and Harayama, S., Molecular detection of marine bacterial populations on beaches contaminated by the Nakhodka tanker oil-spill accident .. Environ Microbiol vol.3 (4), 246-255, 2001). In the case of environmental samples such as soil containing a large amount of various organic substances, the number of indigenous bacteria is 10 8 / G to 10 Ten / G or so (Bitton, G. and Gerba, CP: Groundwater Pollution Microbiology, John Wiley & Sons, New York, p.23, 1984) In comparison, it is more difficult to detect genes derived from petroleum degrading microorganisms.
[0007]
Attempts have been made to identify microorganisms involved in petroleum degradation by creating a culture in which nitrogen and phosphorus are added to an oil-contaminated sample (soil) and analyzing the genes of the microbial communities present in the sample. (Takahata Yo, Ohba Miho, Suzuki Asaka, Houki Toshihiro, Microbial analysis in petroleum-contaminated soil by DGGE method, Annual Meeting of Japan Society on Water Environment, 1999, p412). However, in the existing technology, the petroleum component contained in the sample (soil) in advance is used as the carbon source of the petroleum decomposing microorganism. It was not always possible to supply petroleum-based hydrocarbons of sufficient quality and quantity to promote. As a result, bacteria that assimilate readily degradable organic substances contained in environmental samples proliferate preferentially, and the abundance of genes derived from petroleum-degrading microorganisms can be detected by relatively molecular biological techniques. It could only be maintained below the limit and it was difficult to confirm the presence of petroleum degrading microorganisms in the sample. In addition, as described above, the constituent components of petroleum are diverse, and the group of microorganisms that can be decomposed differs depending on the components. In the existing technology, the situation of petroleum pollution, in other words, the composition and concentration of petroleum hydrocarbons vary greatly depending on the sample. Therefore, as a result of the microbial community structure analysis, which petroleum constituents are identified by the identified microorganisms will be utilized. It was difficult to judge.
[0008]
In addition, since petroleum hydrocarbons are mostly composed of water-insoluble substances, in order to promote the growth of petroleum-decomposing microorganisms, the contact efficiency between petroleum-decomposing microorganisms and petroleum existing in the sample can be increased. is necessary. In existing technology, a small amount of water (5% (w / w)) is added to the soil, and only manual agitation is performed once a day. Oil and decomposing microorganisms present in the sample (soil) Insufficient contact with the oil, the effect of promoting the growth of petroleum-degrading microorganisms was remarkably low.
[0009]
[Problems to be solved by the invention]
Highly promotes the growth of petroleum-degrading microorganisms present in environmental samples such as soil, river water, and groundwater contaminated by petroleum, and analyzes genes derived from petroleum-degrading microorganisms present in the resulting oil-degrading integrated culture. By detecting it, it is possible to predict in a short time the ability to purify oil pollution by microorganisms indigenous to environmental samples when oil pollution occurs.
The purpose of the present invention is to quickly create a highly petroleum-degrading and enriched culture that originates from microorganisms present in environmental samples, analyze and detect genes derived from petroleum-degrading microorganisms, and improve the ability of petroleum samples to decompose oil. It is to provide a means of prediction.
[0010]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that culture conditions that can rapidly accelerate the cultivation of petroleum-degrading microorganisms in environmental samples, and the oil resolution of samples and the accumulated cultures exist. The relationship with genes derived from petroleum degrading microorganisms was clarified and the present invention was completed.
That is, this invention solved the said subject by the following means.
(1) Environmental samples Add 1 to 100 times the sample weight of sterilized water to the soil sample, Petroleum hydrocarbons that are likely to be assimilated by microorganisms Is added to a concentration of 50 to 5000 g / L, a nitrogen source is used as a substance that promotes the formation of microbial communities, a concentration of 1 to 200 mg-N / L, and a phosphorus source is a concentration of 0.2 to 50 mg-P / P L so that the stirring intensity is maintained at 30 to 300 rpm and stirring culture is performed. An environmental sample oil characterized by forming a microbial community corresponding to the decomposition of petroleum hydrocarbons present in the environmental sample and detecting a gene derived from the petroleum decomposing microorganism in the microbial community formed in the environmental sample. Decomposition capability prediction method.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
According to the method for predicting petroleum decomposing ability of an environmental sample of the present invention, a nitrogen source, phosphorus source or petroleum hydrocarbon is added to the environmental sample to produce an oil decomposing integrated culture, and a gene derived from petroleum decomposing microorganisms is detected in the sample. It is characterized by this. Hereinafter, embodiments of the present invention will be described in detail.
[0012]
To obtain a microbial community formed in response to petroleum hydrocarbon contamination in an environmental sample, simply add water as in the case of unsaturated soil previously contaminated with petroleum. In some cases, it may be sufficient to cultivate, but in general, in order to promote the growth of microorganisms, in addition to water, a nitrogen source and a phosphorus source are added and cultured under aerobic conditions. In addition, it is desirable to add petroleum-based hydrocarbons to samples that are not contaminated with petroleum or have a low concentration of petroleum contamination and samples that contain a large amount of organic substances other than petroleum-based hydrocarbons.
[0013]
In order to promote the growth of petroleum-degrading microorganisms, it is desirable to add an appropriate amount of water when the sample to be investigated is a sample having a low water content such as unsaturated soil. Water is added so that at least the sample is saturated, and it is preferable to add 0.5 to 1000 times the weight of the sample, and add 1 to 100 times the weight of the sample. Is more preferable. If the environmental sample has sufficient water, such as river water or groundwater, there is no need to add water. As the water to be added, it is desirable to use sterilized water so as not to affect the genetic analysis of the sample.
In addition, in order to prevent insufficient oxygen supply and improve the contact efficiency between indigenous microorganisms and petroleum hydrocarbons, in other words, to promote the growth of petroleum-degrading microorganisms, stirring culture, swirling culture, or a method similar to this is used. It is preferable to do so. The strength of stirring is preferably 30 to 300 rpm, and more preferably 100 to 200 rpm.
The culture period is 3 to 30 days, preferably 7 to 14 days. The culture temperature is preferably 10 ° C. to 40 ° C., more preferably 15 ° C. to 35 ° C.
Further, when the pH of the sample is not in the neutral range, it is desirable to adjust the pH to the neutral range when performing the shaking culture.
[0014]
As the nitrogen source to be added, it is desirable to use inorganic nitrogen compounds such as ammonium chloride, ammonium sulfate, ammonium phosphate, ammonium nitrate, ferrous ammonium sulfate, etc., but other inorganic ammonium compounds may be used. . Moreover, you may use the fertilizer for agriculture containing isobutyraldehyde condensed urea, formaldehyde processed urea, etc. Organic nitrogen sources such as compost, peptone, yeast extract, corn steep liquor, meat extract can be used, but it is thought that microorganisms that use organic substances contained in them as a carbon source will grow. It is desirable to use an inorganic nitrogen source. The amount of nitrogen source added depends on the carbon source concentration of the petroleum hydrocarbon as a pollutant, but is preferably added so that the concentration is 0.1 to 1000 mg-N / L, preferably 1 to 200 mg- More preferably, N / L is added.
[0015]
As a phosphorus source to be added, it is desirable to use inorganic phosphorus compounds such as potassium phosphate, magnesium phosphate, ammonium phosphate, calcium phosphate, sodium phosphate, etc., but other inorganic phosphate compounds may be used. good. Moreover, you may use the fertilizer for agriculture containing a dilime phosphate, phosphoric acid bitter soil (phosphate magnesia), etc. Organic phosphorus sources such as compost, peptone, yeast extract, corn steep liquor and meat extract can be used, but it is desirable to use an inorganic phosphorus source in actual use. The addition amount of the phosphorus source is preferably added so that the concentration thereof is 0.1 to 1000 mg-P / L, and more preferably 0.2 to 50 mg-P / L.
[0016]
As the petroleum-based hydrocarbon to be added, it is preferable to use alkane or polycyclic aromatic hydrocarbon which is the main component of petroleum. Alkanes and polycyclic aromatic hydrocarbons may be added alone, or a plurality of compounds may be added simultaneously. In addition, crude oil, heavy oil containing a large amount of a plurality of alkanes and polycyclic aromatic hydrocarbons, crude oil obtained by heating and removing light components, mainly aliphatic hydrocarbons (weathered crude oil, hereinafter referred to as w.oil), and further crude oil Saturated fractions, aromatic fractions, etc. obtained by fractionation of the product by thin layer chromatography or the like can also be used. Moreover, you may add gasoline, light oil, and kerosene containing many alkanes.
[0017]
However, crude oil which is a complex of alkane, polycyclic aromatic hydrocarbon, etc., w. When oil or the like is added to an environmental sample, the growth of microorganisms that degrade easily degradable alkanes is extremely fast, and as a result, the growth of polycyclic aromatic hydrocarbon-degrading bacteria may be suppressed ( Hironori Tsuji, Shigeaki Harayama, Influence of inorganic nutrient concentration on microbial degradation of spilled oil, Annual Meeting of Japan Society on Water Environment, 2000, p.533). In this case, it is desirable to separately create a culture system in which only polycyclic aromatic hydrocarbons are added as a carbon source. The amount of these petroleum hydrocarbons added is preferably 10 to 10,000 mg / L, more preferably 50 to 5,000 mg / L.
[0018]
As the alkane, it is preferable to use a normal alkane having 10 to 36 carbon atoms, but alkanes having other carbon numbers, branched alkanes having side chains, cyclic cycloalkanes, and the like are also used. I can do it. As the polycyclic aromatic hydrocarbon, it is preferable to use a compound that is relatively contained in petroleum from 2 to 5 rings such as naphthalene, fluorene, phenanthrene, anthracene, dibenzothiophene, pyrene, and benzpyrene. May be used.
[0019]
By extracting genes from the enrichment cultures cultured by the above method, analyzing the microbial community structure based on the genes, and identifying and detecting genes derived from petroleum-degrading microorganisms in the environmental samples, It is possible to predict the ability to clean up oil pollution by the resident microorganisms present in Japan.
The conventional method (Marmur, J. (1961) A Procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol. 3: 208-218.) Should be used as a method for extracting genes from environmental samples and cultured samples. Yes, but other methods may be used.
[0020]
In order to detect the presence of petroleum-degrading bacteria by analyzing the structure of microbial communities in environmental samples, first a PCR reaction using a universal primer that can amplify the genes of most microorganisms (polymerase chain reaction, Hiroki Nakayama, Cell Engineering) A separate volume Bio Experiment Illustrated 3, Shujunsha, 1996) is performed to amplify a microbial gene (eg, 16S rDNA gene) extracted from the sample. Denaturing gradient gel electrophoresis (DGGE, Muyzer G., S. Hottentrager, A. Teske, and C. Wawer Denaturing gradient gel electrophoresis) of PCR-amplified 16S rDNA-A new molecular approach to analyze the genetic diversity of mixed microbial communities Molecular Microbial Ecology Manual 3.4.4.:1-23, 1996) Ted 4, Shujunsha, 1996). The sequence of the isolated gene was determined by DNA sequencer, and GenBank (Benson DA. Karsch-Mizrachi I, Lipman DJ, Ostell J. Rapp BA, Wheeler DL., GenBank, Nucleic Acids Res 2000 Jan 1, 28 (1) 15 The presence of petroleum degrading microorganisms can be identified and detected by comparing with genetic information registered in databases such as ~ 8).
[0021]
Design highly specific PCR primers based on the specific gene sequences of microorganisms known to have petroleum degradability and detect the presence of petroleum-degrading microorganisms based on whether PCR products are obtained. You can also. Quantitative PCR methods include competitive PCR methods (Hiroki Nakayama, Cell Engineering Separate Bio Experiment Illustrated 3, Shujunsha, 1996), methods using kinetics (Hiroki Nakayama, Cell Engineering Separate Volume Bio Experiment Illustration) (Rated 3, Shujunsha, 1996), real-time PCR (Taq Man PCR, light cycler, Kazuhiro Kanno, clinical pathology, 45, p218, 1997) can be used, but other methods are used. May be. Examples of genes that can be used to design highly specific PCR primers include ribosomal DNA (rDNA), DNA encoding gyrase β subunit (gyrB DNA), alkanes and polycyclic aromatic hydrocarbons, or their degradation. Examples include functional genes related to degrading enzymes of intermediate metabolites. Examples of functional genes related to petroleum degrading enzymes include alkane monooxygenase (alkA, alkB), naphthalene dioxygenase (nahA), catechol 2,3 dioxygenase (nahA), and other alkanes and polycycles. A gene involved in degradation of aromatic hydrocarbons or degradation metabolites of those substances may be detected.
[0022]
Furthermore, detection of genes relating to petroleum degrading microorganisms can also be performed by a hybridization method. That is, after designing a DNA probe that is highly specific for a specific gene derived from petroleum-degrading microorganisms and labeling this DNA with a radioisotope, a fluorescent dye, etc., the gene is extracted from the environmental sample or the microbial cell in the environmental sample. It is a method to detect the target gene or cell by hybridization (hybrid formation) with the existing gene (Amann, RI, Binder, BJ, Olson, RJ, Chisholm, SW, Devereux, R., and Stahl, DA, Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial population.Appl Environ Microbiol 56: 1919-1925, 1990, Amann, RI, In situ identification of microorganisms by whole cell hybridization with rRNA-targeted nucleic acid acid probes. In Molecular Microbial Ecology Manual, Kluwer academic publishers, 3.3.6: 1-15, 1995). Examples of genes that can be used to design highly specific DNA probes include ribosomal DNA (rDNA), DNA encoding gyrase β subunit (gyrB DNA), alkanes and polycyclic aromatic hydrocarbons, or their degradation. Examples include functional genes related to degrading enzymes of intermediate metabolites.
[0023]
Also according to the T-RFLP method (Terminal Restriction Fragment Patterns, Kitts CL., Terminal restriction fragment patterns: a tool for comparing microbial communities and assessing community dynamics. Curr Issues Intest Microbiol 2001 Mar; 2 (1) .17-25). Detection of genes related to petroleum degrading microorganisms is possible. In this method, first, a fluorescent dye is labeled on either the forward or reverse primer, and PCR reaction using them (Polymerase chain reaction, Hiroki Nakayama, Cell Engineering Separate Volume Bio-Experimental Illustrated 3, Shujunsha, 1996) To amplify a microbial gene (eg, 16S rDNA gene) extracted from the sample. Thereafter, a mixture of genes derived from various microorganisms amplified by PCR is treated with a restriction enzyme that cleaves a specific gene sequence. By this treatment, gene restriction fragments (terminal restriction fragments) of various lengths with a fluorescent dye added on one side can be formed. This restriction amplification-treated PCR amplification product is electrophoresed with a DNA seqencer, etc., and the length of the PCR product to which a fluorescent dye is added is patterned to detect genes derived from petroleum-degrading bacteria with specific sequences. it can.
[0024]
【Example】
Examples of the present invention are shown below, but the embodiments of the present invention are not limited thereto.
[0025]
[Example 1] Diagnosis of petroleum decomposing ability of oil-contaminated soil
In order to investigate whether it is possible to predict petroleum decomposing ability of environmental samples by preparing petroleum degrading accumulation cultures by microbial communities originating from environmental samples and identifying and detecting genes derived from petroleum degrading microorganisms Petroleum-decomposing and accumulating cultures using petroleum-contaminated soils (I, II) with different histories were prepared, the oil resolution of each soil was investigated, and the microbial community structure in the soil was analyzed.
[0026]
For the production of the petroleum degrading integrated culture, a sterilized glass centrifuge tube with a capacity of 50 mL was used, and 2 g of each test soil was introduced into the centrifuge tube. The test soil had a petroleum concentration of about 0.1 to 1.5 mg / g and a water content of 15 to 19%, both of which were insufficient for the growth of petroleum microorganisms. Therefore, in order to promote the growth of indigenous petroleum-degrading bacteria, crude oil rich in 10 mL of sterilized water and n-alkane (crude oil that has been previously heat treated to remove volatile components, hereinafter referred to as “w.oil”), or many C of ring aromatic hydrocarbon 0 -10 mg (5 mg / g) of phenanthrene (hereinafter referred to as phenanthrene) was added to the above glass centrifuge tube. Furthermore, ammonium chloride (35 mg-N / L) was added as a nitrogen source, and disodium hydrogen phosphate (10 mg-P / L) was added as a phosphorus source, followed by shaking culture (130 rpm) at 28 ° C. for 1 week. It was.
[0027]
Moreover, the series which does not add a carbon source (W.oil, phenanthrene) was also provided as a control system. Genes are extracted from each soil to be tested and from the accumulated culture soil sample at the end of the degradation experiment, and gene amplification by PCR method targeting 16S rDNA gene of bacteria, DGGE method (denaturing agent concentration gradient gel of amplified gene mixture) Separation and patterning by electrophoretic method), determination of the gene sequence of the separated microbial gene (DNA band), and identification of microbial groups present in the microbial community. In addition, in order to investigate the aspects of petroleum decomposition in petroleum decomposition accumulation culture experiments, extraction of petroleum components using an organic solvent from the culture solution was performed at the end of the culture experiment, and analysis by GC-MS (gas chromatograph mass spectrometer) was performed. went.
[0028]
FIG. 1 shows the results of analyzing the structure of the microbial community of the enriched culture obtained under each culture condition by the PCR method and the DGGE method. Lanes 1 to 4 show the results of electrophoresis of PCR amplification products using DNA obtained from soil I and its enriched culture as templates, and lanes 5 to 8 show results of electrophoresis of PCR amplification products of soil II and its enriched cultures. ing. Lanes 1 and 5 are test soils, lanes 2 and 6 are control systems to which no petroleum hydrocarbon is added, and lanes 3 and 7 are w. Oil-enriched cultures, lanes 4 and 8 are the results of electrophoresis of PCR amplification products obtained from the phenanthrene-added cultures. Lanes 9 and 10 are results of electrophoresis of PCR amplification products (hereinafter simply referred to as sample names) obtained from petroleum degrading bacteria isolated from soils I and II. In the DGGE method, the presence of microbial groups in a sample can be shown as a DNA band. From this, it was found that the strong signal bands (microorganisms having a high abundance) obtained in each of the I and II soils showed no commonality, and different microorganisms existed depending on the soil. On the other hand, when the culture conditions such as the carbon source to be added were different in the same soil sample, some strong signal bands (microorganism group) coincided (bands A, B, D). When the gene sequences of these bands were determined, most of them were reported to exist in bacteria (bands A and E) that do not seem to be directly involved in petroleum degradation, or in petroleum-contaminated soil. Although it is unknown, it was closely related to the bacterial group (bands B, C, D) presumed to assimilate its degradation intermediate metabolites.
[0029]
The gene sequences of major bands (microorganisms) detected in the soil itself (lanes 1 and 5) or in the control system (lanes 2 and 6) in which water, nitrogen source, and phosphorus source were added to the soil were determined. The presence of petroleum-degrading microorganisms could not be confirmed. This is probably because the growth of microorganisms that assimilate petroleum was not promoted because the oil contamination concentration of the test soil was low. In contrast, w. In the series to which oil or phenanthrene was added (lanes 3 and 6), the genes of petroleum degrading bacteria could be detected (bands F and G).
Further, FIG. 1 shows the culture solution under each culture condition as hexadecane (C 16 (Alkane) or a migration pattern of petroleum-degrading bacteria (isolated bacteria No. 1 and No. 2) isolated using a selective medium containing phenanthrene as a single substrate was also shown (lanes 9 and 10). Bands corresponding to these oil-degrading bacteria are found in the I soil w. It was also confirmed in the enrichment culture system (lane 3, band F) in which oil was added as a carbon source, and in the system (lane 8, band G) in which phenanthrene was added to II soil. When the gene sequences of these bands were determined, the isolate No. No. 1 is Rhodococcus sp., Isolated strain no. 2 are very close to Burkholderia sp., Each of which decomposes alkanes (saturated fraction) and polycyclic aromatic hydrocarbons (hereinafter referred to as PAHs). It was found that it was a fungus involved.
[0030]
In FIG. Alkanes (C) in an enrichment culture system using oil as a carbon source Ten ~ C 36 ) And PAHs degradation results. Alkane decomposition was better in soil I than in soil II, and about 90% was degraded in the first week after culturing. On the other hand, with regard to the decomposition of PAHs, II soil was superior, naphthalene, phenanthrene, and fluorene were almost completely decomposed, and about 80% of dibenzothiophene was also decomposed.
From the above results, it was found that I. A gene derived from bacteria (band F) with alkane resolution was detected from the system (lane 3) in which oil was added and cultivated, and the alkane resolution of the soil was high, and II phenanthrene was added to the soil and enriched. From the system (lane 8), the genes derived from PAHs-degrading bacteria were detected, and it was found that the soil has high PAHs resolution. In other words, it is possible to predict the petroleum resolution of environmental samples by preparing such highly petroleum degrading and accumulating cultures, analyzing the genes of microbial communities in the cultures, and detecting genes derived from petroleum degrading bacteria. It was shown that there is.
[0031]
【The invention's effect】
By using the method of the present invention to create an oil-degrading accumulation culture in which petroleum-decomposing microorganisms are highly grown and knowing the existence of genes derived from oil-degrading microorganisms originating from environmental samples, It is possible to provide a means for predicting the oil cracking capacity of the sample. In addition, by obtaining genetic information (gene sequence data) derived from petroleum-degrading bacteria, we can obtain systematic classification of petroleum-degrading bacteria active in the sample and knowledge about petroleum-degrading enzymes possessed by the bacteria, It is possible to know what kind of component the petroleum hydrocarbon can be decomposed into.
That is, according to the present invention, it is possible to predict the purification capacity of each petroleum-contaminated component by microorganisms indigenous to an oil-contaminated environmental sample. It is possible to propose an optimal purification method according to the species.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 shows the results of analysis of a test soil and an oil-degrading accumulation culture by PCR-DGGE method.
FIG. 2 w. It is a graph which shows the decomposition | disassembly result of alkane and a polycyclic aromatic hydrocarbon compound in the enrichment culture system which used oil as a carbon source.

Claims (1)

環境試料の土壌試料に減菌水を試料重量の1〜100倍量添加し、微生物が資化し易い石油系炭化水素を濃度が50〜5000g/Lになるように添加するとともに、微生物群集の形成を促進する物質として窒素源を濃度1〜200mg−N/L、及びリン源を濃度0.2〜50mg−P/Lになるように添加して、攪拌強度を30〜300rpmに保持して攪拌培養を行い、環境試料中に存在する石油系炭化水素の分解に応じた微生物群集を形成させ、該環境試料に形成された微生物群集内の石油分解微生物由来の遺伝子を検出することを特徴とする環境試料の石油分解能力予測法。 Add 1 to 100 times the sample weight of sterilized water to the soil sample of the environmental sample , add petroleum hydrocarbons that are easily assimilated by microorganisms to a concentration of 50 to 5000 g / L, and form microbial communities Nitrogen source is added as a substance to promote the concentration of 1 to 200 mg-N / L, and phosphorus source is added to a concentration of 0.2 to 50 mg-P / L, and stirring intensity is maintained at 30 to 300 rpm and stirring is performed. Culturing, forming a microbial community according to the decomposition of petroleum hydrocarbons present in the environmental sample, and detecting genes derived from petroleum degrading microorganisms in the microbial community formed in the environmental sample A method for predicting the oil cracking capacity of environmental samples
JP2002068815A 2002-03-13 2002-03-13 Prediction method for petroleum cracking capacity of environmental samples Expired - Fee Related JP3922944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002068815A JP3922944B2 (en) 2002-03-13 2002-03-13 Prediction method for petroleum cracking capacity of environmental samples

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002068815A JP3922944B2 (en) 2002-03-13 2002-03-13 Prediction method for petroleum cracking capacity of environmental samples

Publications (2)

Publication Number Publication Date
JP2003265197A JP2003265197A (en) 2003-09-24
JP3922944B2 true JP3922944B2 (en) 2007-05-30

Family

ID=29199825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002068815A Expired - Fee Related JP3922944B2 (en) 2002-03-13 2002-03-13 Prediction method for petroleum cracking capacity of environmental samples

Country Status (1)

Country Link
JP (1) JP3922944B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005245344A (en) * 2004-03-05 2005-09-15 Kokusai Kogyo Co Ltd Method for forecasting natural attenuation capacity of polluting material
JP4664716B2 (en) * 2004-09-30 2011-04-06 株式会社Kri Pollutant purification method
JP5186169B2 (en) * 2007-10-05 2013-04-17 オルガノ株式会社 Purification method of soil and groundwater in aquifer
JP4876086B2 (en) * 2008-02-21 2012-02-15 新日鉄エンジニアリング株式会社 Bioremediation method

Also Published As

Publication number Publication date
JP2003265197A (en) 2003-09-24

Similar Documents

Publication Publication Date Title
Watanabe Microorganisms relevant to bioremediation
Khodaei et al. BTEX biodegradation in contaminated groundwater using a novel strain (Pseudomonas sp. BTEX-30)
Hess et al. In situ analysis of denitrifying toluene-and m-xylene-degrading bacteria in a diesel fuel-contaminated laboratory aquifer column
Rooney-Varga et al. Microbial communities associated with anaerobic benzene degradation in a petroleum-contaminated aquifer
Vázquez et al. Bacterial community dynamics during bioremediation of diesel oil-contaminated Antarctic soil
Rodríguez-Blanco et al. Effects of temperature and fertilization on total vs. active bacterial communities exposed to crude and diesel oil pollution in NW Mediterranean Sea
JP4633496B2 (en) New microorganism
Mertoglu et al. Evaluation of in situ ammonia removal in an aerated landfill bioreactor
Chikere Culture-independent analysis of bacterial community composition during bioremediation of crude oil-polluted soil
US20040161767A1 (en) Detection and quantification of aromatic oxygenase genes by real-time PCR
Liu et al. Impacts of n-alkane concentration on soil bacterial community structure and alkane monooxygenase genes abundance during bioremediation processes
Raju et al. Petroleum degradation: promising biotechnological tools for bioremediation
Mu et al. Anaerobic degradation of high-concentration polycyclic aromatic hydrocarbons (PAHs) in seawater sediments
Nakagawa et al. Successive changes in community structure of an ethylbenzene-degrading sulfate-reducing consortium
Hocinat et al. Aerobic degradation of BTEX compounds by Streptomyces species isolated from activated sludge and agricultural soils
JP3922944B2 (en) Prediction method for petroleum cracking capacity of environmental samples
JP4065942B2 (en) New microorganism
JP2020504998A (en) Bacterial strains and consortia containing it for degrading MTBE, TBA and / or HCHO
Gałązka et al. The molecular-based methods used for studying bacterial diversity in soils contaminated with PAHs (The Review)
Surridge Denaturing gradient gel electrophoresis characterisation of microbial communities in polycyclic aromatic hydrocarbon and polychlorinated biphenyl contaminated soil
JP4766341B2 (en) New microorganism
Al-Hisnawi et al. Hydrocarbon degradation test among the microbial community in oil-contaminated soil of power generators in Kerbala city, Iraq
Kansour et al. Bioremediation of two oil-contaminated Kuwaiti hyper-saline soils by cross bioaugmentation and the role of indigenous halophilic/halotolerant hydrocarbonoclastic bacteria
El-Sayed et al. Dynamics of PAH-Degrading Bacteria and Corresponding Marker Genes in Different Petroleum Hydrocarbon-Contaminated Soils in Almadina Almunawarah, KSA
Chunwafor et al. The genomics of hydrocarbon-utilizing bacteria

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040122

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060828

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061228

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees