JP2004158222A - Multilayer layer built battery - Google Patents

Multilayer layer built battery Download PDF

Info

Publication number
JP2004158222A
JP2004158222A JP2002320435A JP2002320435A JP2004158222A JP 2004158222 A JP2004158222 A JP 2004158222A JP 2002320435 A JP2002320435 A JP 2002320435A JP 2002320435 A JP2002320435 A JP 2002320435A JP 2004158222 A JP2004158222 A JP 2004158222A
Authority
JP
Japan
Prior art keywords
layer
current collector
negative electrode
positive electrode
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002320435A
Other languages
Japanese (ja)
Inventor
Mamoru Baba
場 守 馬
Kazu Tomoyose
寄 壱 友
Naoaki Kumagai
谷 直 昭 熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002320435A priority Critical patent/JP2004158222A/en
Publication of JP2004158222A publication Critical patent/JP2004158222A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lamination structure in which the manufacturing process is simplified without requiring a photoresist process in the multilayer layer built battery. <P>SOLUTION: This is the multilayer layer built battery in which a thin film solid lithium ion battery made of five layers of positive and negative active material layers, a solid electrolyte layer interposed in between by these, and current collector layers immediately above and below the active material layers is made as one battery cell, and this battery cell is laminated on a substrate by overlapping plural steps. When each layer of the battery cell is laminated and these layers are laminated in plural steps, the width of the periphery part of the laminating film of each layer is made wider in the order of the active material layer, the current collector layer, and the solid electrolyte layer, and the active material layer is laminated by the current collector layer and the solid electrolyte layer at the periphery, and further, the current collector layer is laminated by the solid electrolyte layer at the periphery, and the battery cells are insulated from each other. Thus, the photoresist process is not required. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、薄膜固体リチウムイオン二次電池を一つのセルとして、その電池セルを複数段重ねる方形状多層積層構造の多層積層電池に関する。
【0002】
【従来の技術】
従来、リチウムイオン二次電池の正極材料としては、リチウムイオンの吸蔵・放出が可能なLiCoO、LiNiO、LiMn2、、LiMnO、LiFePO4、LiM1xM2yOz(M1、M2は還移金属であり、x、y、zは任意の実数)などであらわされるリチウム還移金属化合物が使用されていた。
【0003】
また、負極材料としては、リチウムイオンの吸蔵・放出が可能な黒鉛、コークス、高分子焼成体などの炭素材料、金属リチウム、リチウムと他の金属との合金、TiO、Nb、SnO、Fe、SiOなどの金属酸化物、金属硫化物などが使用されていた。
【0004】
また、固体電解質としては、ポリエチレンオキシド、ポリプロピレンオキシド、ポリエチレンオキシド誘導体などの高分子材料中にLiPE、LiClOなどのリチウム塩からなる溶質を含有させたものや、この溶質を有機溶媒に溶解させた非水電解液を含浸させたゲル状のものや、LiS、Li、PO、−Nなどの無機固体電解質が知られていた。
【0005】
最近、固体リチウム二次電池やリチウム金属を用いない二次電池の研究に大きな関心が持たれ、報告されている。このようなロッキングチェアタイプの二次電池を半導体基板を支持基板とした薄膜電極と固体電解液のみで構成すること(特許文献1)が知られていた。
【0006】
本発明者は、先に、負極にアルカリ金属またはアルカリ金属合金を用い、電解質に固体電解質を用いた二次電池において、金属基板またはシリコン基板上に正極活物質として5酸化ニオブ膜の高配向性薄膜または5酸化ニオブ膜を予めリチウム化した高配向性薄膜を用いることにより電池を薄型化および小型化でき、しかも、充放電容量が増大し、優れた充放電特性を示すことを見出した(特許文献2)。また、予め、リチウムを含ませたV、Nb3、WO、またはMoOを負極活物質とすることによって、電池の薄型化、軽量化が可能になるとともに、充放電特性に優れることを見出した。(特許文献3)。
【0007】
また、正極および負極の両方にVを用いた全固体リチウムイオン二次電池を開発し、報告した(Electrochemical and Solid−State Lettes、2(7)320−322、1999)。この二次電池は、開放端子電圧3.5〜3.6V、10μAh/cmで1.0Vまで放電したとき、約6μAh/cm放電容量を有する。また、350サイクル以上および0.079V/月の比較的良好なサイクル特性と自己放電性能を示した。
【0008】
さらに、本発明者は薄膜固体リチウムイオン二次電池セルを2個以上積層したことを特徴とする積層型薄膜固体リチウムイオン二次電池について公開した(特許文献4)。
【0009】
【特許文献1】
特開平10−284139号公報(第2、3頁、第1図)
【特許文献2】
特開平7−142054号公報(第2、3頁、第1図)
【特許文献3】
特開平8−241707号公報(第2、3頁、第1図)
【特許文献4】
特開2002−42863号公報(第2、3頁、第1図)
【0010】
【発明が解決しようとする課題】
前述の積層型薄膜固体リチウムイオン二次電池は、コンパクトで高い信頼性を有し、それゆえに、種々の形態の携帯電子機器に広範に使用されるであろう。すなわち、軽量化された薄膜固体リチウムイオン二次電池を一つの電池セルとして多段積層した多層積層電池に対する利用者は決して少なくはない。
【0011】
それら多くの利用者の使用する電池は、いづれにしても電池セルを多段に積層した多層積層電池となり、またそのような電池が期待されている。
【0012】
しかしながら、正極及び負極活物質層、その間にある固体電解質層、活物質層の直上及び直下にある集電体層の5層からなる薄膜固体リチウムイオン二次電池を一つの電池セルとして、その電池セルを何段も重ねて一枚の基板の上に順次積層して、一つの多層積層電池とすることは容易ではない。
【0013】
本発明は以上のような問題点に鑑みてなされたものであり、その目的とすることは以下の通りである。
【0014】
各層の積層工程にはフォトレジスト工程が必要としない以下のような積層構造とする。すなわち、各層の積層膜は方形状、円形状、楕円形状、多角形状などを含む2次元形状であるが、その周縁部では所定の膜間がイオン伝導的に或いは電子伝導的に絶縁される必要がある。
【0015】
そこで、前記固体電解質層が隣接セル間の対電子伝導用絶縁膜となる機能と、それに加え、前記集電体層が隣接セルの活物質層間の対イオン伝導用絶縁膜となる機能とを利用して、活物質層の周辺部を固定電解質層及び集電体層で絶縁し、さらに、その集電体層の外縁部を固定電解質層によりさらにその外側で絶縁する積層構成とする。
【0016】
以上のようにして、フォトレジスト工程を使わずに、形状及び寸法の異なる複数枚のシャドーマスクを用いて、多段の電池セルを積重ねる積層電池セルは製造プロセスの大幅な簡略化とそれに伴う製造コストの低減に大きな効果を与える多層積層電池を提供することが目的である。
【0017】
【課題を解決するための手段】
本発明の多層積層電池は、リチウムイオンの吸蔵・放出が可能な正極活物質層及び負極活物質層と、それらの間にある電子伝導的に分離絶縁する機能を持つ固体電解質層と、それらの活物質層の直上及び直下で電流を集める機能を有する金属膜からなる正極側及び負極側集電体層とから構成される薄膜固体リチウムイオン二次電池を1つの電池セルとし、その電池セルを複数段重ねる多層積層構造の多層積層電池であって、
前記固体電解質層は、さらに隣接セル間の対電子伝導用絶縁膜となる前記機能と、前記集電体層(金属膜)は、上下隣接セルの活物質層間の対イオン伝導用絶縁膜となる機能とを利用して、前記正極及び負極活物質層の周辺を前記固体電解質層及び集電体層によりその周辺外側部位置で被覆絶縁し、さらに、その集電体層の前記外縁部を前記固体電解質層によりその外縁部外側部位置で被覆絶縁した積層構成とし、個々の前記電池セル間に新たな絶縁膜を用いることなく、前記複数段構造を一つの基板上に各層を順次積層して構成したことを特徴とする。
【0018】
また、リチウムイオンの吸蔵・放出が可能な正極活物質層及び負極活物質層と、それらの間にある電子伝導的に分離絶縁する機能を持つ固体電解質層と、それら活物質層の直上及び直下で電流を集める機能を有する金属膜からなる正極側及び負極側集電体層とから構成される薄膜固体リチウムイオン二次電池を1つの電池セルとし、その電池セルを複数n段重ねるn層セル構造の多層積層電池であって、
前記各電池セルを電気的に直列接続とする場合は、上下の電池セルで挟まれた前記集電体層(金属膜)が前記本来の前記機能に加えて直下層セルの負極(又は正極)活物質層と、直上層セルの正極(又は負極)活物質層とをイオン伝導的に分離絶縁する機能を合わせ持つことにより、前記上下の電池セルの集電体層を一つに兼用する兼用集電体層構造を備え、
一枚の基板上に、第1層セルを正極(又は負極)集電体層、正極(又は負極)活物質層、固体電解質層、負極(又は正極)活物質層、兼用集電体層の5層により順次集積形成層と、
第2層セルを前記兼用集電体層の上に正極(又は負極)活物質層、固体電解質層、負極(又は正極)活物質層、兼用集電体層の4層により順次集積形成層と、
同様に前記集積をn段重ねて第n層セルまでフォトレジスト工程を使用しないで全工程を集積形成層とする非フォトレジスト集積構造層を備え、
前記各層を順次非フォトレジスト集積構造とするに際し、前記基板上に各電池セルの必要とする所定面積の正極及び負極活物質層の外周縁に対して、正・負極及び兼用集電体層の外周縁はそれぞれ第1の所定巾だけ外側に張り出した構造層を備え、
前記正・負極及び兼用集電体層の外周縁に対して、前記固体電解質層の外周縁はそれぞれ第2の所定巾だけ外側に張り出した構造層を備え、
前記最下層の正極(又は負極)集電体層には電極端子用引出タブと、最上層の負極(又は正極)集電体層には電極端子用引出タブをそれぞれ備え、個々の電池セル間に新たな絶縁膜を用いることなく多段電池セルの多層構造を構成することを特徴とする。
【0019】
また、リチウムイオンの吸蔵・放出が可能な正極活物質層及び負極活物質層と、それらの間にある電子伝導的に分離絶縁する機能を持つ固体電解質層と、それら活物質層の直上及び直下で電流を集める機能を有する金属膜からなる正極側及び負極側集電体層とから構成される薄膜固体リチウムイオン二次電池を1つの電池セルとし、その電池セルを複数n段重ねるn層セル構造の多層積層電池であって、
前記各電池セルを電気的に並列接続とする場合は、上下の電池セルで挟まれた正極(又は負極)集電体層(金属膜)が前記本来の前記機能に加えて直下層セルの正極(又は負極)活物質層と、直上層セルの正極(又は負極)活物質層とをイオン伝導的に分離絶縁する機能を合わせ持つことにより、前記上下の電池セルの正極又は負極の集電体層を一つに兼用する正・負極集電体層構造を備え、
一枚の基板上に、第1層セルを正極(又は負極)集電体層、正極(又は負極)活物質層、固体電解質層、負極(又は正極)活物質層、負極(又は正極)集電体層の5層により、順次集積形成層と、
第2層セルを前記負極(又は正極)集電体層の上に負極(正極)活物質層、固体電解質層、正極(又は負極)活物質層、正極(又は負極)集電体層の4層により順次集積形成層と、
同様に、前記第1層セルの第1層を除く4層と、前記第2層セルの4層とを交互にn段重ねて第n層までフォトレジスト工程を使用しないで全工程を集積形成層とする非フォトレジスト集積構造層を備え、
前記各層を順次非フォトレジスト集積構造とするに際し、前記基板上に各電池セルの必要とする所定面積の正極及び負極活物質層の外周縁に対して、正・負極集電体層の外周縁はそれぞれ第1の所定巾だけ外側に張り出した構造層を備え、
前記正・負極電体層の外周縁に対して、前記固体電解質層の外周縁はそれぞれ第2の所定巾だけ外側に張り出した構造層を備え、
前記最下層の正極(又は負極)集電体層には電極端子用引出タブと、そのタブに合わせて、上層の正極(又は負極)集電体層の総てのそれぞれ引出しタブとを集積して接続し、
一方、負極(又は正極)集電体層には最下層から最上層まで、それぞれ前記正極(又は負極)端子線と重ならないような引出しタブを同一位置で集積して接続し、個々の電池セル間に新たな絶縁膜を用いることなく多段電池セルの多層構造を構成することを特徴とする。
【0020】
また、リチウムイオンの吸蔵・放出が可能な正極活物質層及び負極活物質層と、それらの間にある電子伝導的に分離絶縁する機能を持つ固体電解質層と、それら活物質層の直上及び直下で電流を集める機能を有する金属膜からなる正極側及び負極側集電体層とから構成される薄膜固体リチウムイオン二次電池を1つの電池セルとし、その電池セルを複数n段重ねるn層セル構造の多層積層電池であって、
前記各電池セルをそれぞれ同一の積層順序構成としてn段重ね、多層積層電池を構成するに際し、個々の電池セル間にそれぞれ電気的に絶縁する絶縁体層を備え、
一枚の基板上に第1層セル、第2層セルからn段重ねて第n層セルまで、各層セル5層のn段の層に、セル層間の絶縁体層n−1を加えた5×n+(n−1)層をフォトレジスト工程を使用しないで全工程を集積形成層とする非フォトレジスト集積構造層を備え、
前記各層を順次集積して前記非フォトレジスト集積構造層とするに際し、前記基板上に各電池セルの必要とする所定面積の正極・負極集電体層及び正極・負極活物質層の外周縁に対して、固体電解質層の外周縁はそれぞれ第1の所定巾だけ外側に張り出した構造層を備え、
前記固体電解質層の外周縁に対して、前記絶縁体層の外周縁はそれぞれ第2の所定巾だけ外側に張り出した構造層を備え、
前記正極及び負極集電体層の外周縁部に設けた引出タブだけを絶縁層の外側に引出して配設し、その配設位置は集電体によりその位置を異ならせて集電体層構造層の周縁の複数箇所に設け、それらの引出タブの接続の組合せにより直列型、並列型、直並列型のいづれかの接続を選択できることを特徴とする。
【0021】
また、前記絶縁体層を挟んで直上層の正極(又は負極)集電体層と直下層の負極(又は正極)集電体層のそれぞれの引出タブを周縁の同一な位置に上下対で設け接続し、また同様な他の引出タブを周縁の他の位置に上下対で設け接続し、最下層の正極(又は負極)集電体層には電極端子用引出タブと、最上層の負極(又は正極)集電体層には電極端子用引出タブをそれぞれ備え、直列型とすることを特徴とする。
【0022】
また、前記絶縁体層の外縁部から外側へ引出した集電体層の引出タブの中で、正極集電体層用引出タブをすべてその集電体周縁部の第1の同一位置に設け接続し、一方、負極集電体層用引出タブをすべて前記位置とは異なる前記周縁部の第2の同一位置に設け接続し、それぞれ電極端子用引出タブを備え並列型とすることを特徴とする。
【0023】
また、リチウムイオンの吸蔵・放出が可能な正極活物質層及び負極活物質層と、それらの間にある電子伝導的に分離絶縁する機能を持つ固体電解質層と、それら活物質層の直上及び直下で電流を集める機能を有する金属膜からなる正極側及び負極側集電体層とから構成される薄膜固体リチウムイオン二次電池を1つの電池セルとし、その電池セルを複数n段重ねるn層セル構造の多層積層電池であって、
前記各電池セルをそれぞれ同一の積層順序構造としてn段重ね、多層積層電池を構成するに際し、個々の電池セル間にそれぞれ電気的に絶縁する絶縁体層と、さらに、最上部に絶縁体層を備え、
一枚の基板上に、第1層セル、第2層セルからn段重ねて第n層まで、各層セル5層のn段の層に、セル層間の絶縁体層nを加えた5×n+n層をフォトレジスト工程を使用しないで全工程を集積形成層とする非フォトレジスト集積構造層を備え、
前記各層を順次集積して、非フォトレジスト集積構造層とするに際し、前記基板上に各電池セルの必要とする所定面積の正極・負極集電体層及び正極・負極活物質層の外周縁に対して、固体電解質層の外周縁はそれぞれ第1の所定巾だけ外側に張り出した構造層を備え、
前記固体電解質層の外周縁に対して、その引出タブを含めて、前記絶縁体層の外周縁はそれぞれ第2の所定巾だけ外側に張り出した構造層を備え、
前記正極及び負極集電体の外周縁部に設けた引出タブだけを固体電解質層外側で且つ絶縁層の内側に引出して配設し、その配設位置は集電体によりその位置を異ならせて集電体層の構造層の周縁の複数箇所に設け、それらの引出タブにはそれぞれすべての絶縁層を貫通した接続用ビアホールを設け、ビアホールは金属電極を埋め込み接続可能とし、それらの接続の組合せにより直列型、並列型、直並列型のいづれかの接続を選択できることを特徴とする。
【0024】
また、前記絶縁体層を挟んで直上層の正極(又は負極)集電体層と、直下層の負極(又は正極)集電体層のそれぞれの引出タブを周縁部の同一な位置に上下対で設けすべての絶縁層を貫通したビアホールを介して金属電極で接続し、また同様な他の引出タブを周縁の他の位置を上下対で設け、すべての絶縁層を貫通したビアホールを介して金属電極で接続し、最下層の正極(又は負極)集電体層には電極端子用引出タブと、最上層の負極(又は正極)集電体層には電極端子用引出タブをそれぞれ備え、直列型とすることを特徴とする。
【0025】
また、前記絶縁体層の外縁部の内側において、前記正極集電体層用引出タブをすべてその集電体周縁部の第1の同一位置に設け、すべての絶縁層を貫通したビアホールを介して金属電極で接続し、一方、負極集電体層用引出タブをすべて前記位置とは異なる前記周縁部の第2の同一位置に設け、すべての絶縁層を貫通したビアホールを介して金属電極で接続し、それぞれ電極端子用引出タブを備え、並列型とすることを特徴とする。
【0026】
【発明の実施の形態】
本発明の実施の形態について以下図に基づいて説明する。尚、前述したように、本実施例では、一般的な二次元形状を方形状として説明する。
【0027】
図1は本発明の多層積層電池の直列接続n層セルの第1実施例20を示す。(a)は断面図、(b)は平面図を示す。ここで、9は基板であり、その上に第1層の電池セルとして先ずタブ20aのある正極集電体層4を積層する。次に、順次、正極活物質層1、固体電解質3、負極活物質層2、集電体層6を積層して第1層セルとする。次に、その集電体層6を正極・負極兼用集電体層6として、その上へ第1層セルと同様に順次層1、3、2、6を積層して第2層セルとする。以上の積層をセルn段繰り返し第n層セルではタブ20bのある負極集電体層5を最上層とした積層構造となる。
【0028】
以上の積層する各層(1〜6)はそれぞれ(b)平面図に示すように方形状であり、それぞれ方形状積層膜の横巾及び縦巾が図に示すように異なる。横巾及び縦巾がそれぞれ一番短い膜は正極及び負極活物質層1、2である。この最小面積は各電池セルが必要とする機能から定める。これらの活物質層1、2の膜周縁をそれぞれ絶縁するため、それぞれ上下層の集電体層4、5、6及び固体電解質層3はそれぞれその横巾及び縦巾を長くなるように積層する。さらに、その集電体層4、5、6の外縁部を絶縁するため、固体電解質層3は、さらにその横巾及び縦巾を長くなるように積層する。
【0029】
結局、図1(b)に示すように、正・負極集電体層4、5、6は正・負極活物質層1、2より横巾及び縦巾が第1の所定長d長く、固体電解質層3はその集電体層4、5、6よりさらに横巾及び縦巾が第2の所定長d長い。
【0030】
すなわち、集電体層は、上下隣接セルの活物質層間の対イオン伝導用絶縁膜となる第1の機能と、固体電解質層は、正・負極活物質層の間にあり電子伝導的に絶縁する機能に加えて隣接セル間(直上層セルと直下層セル間)を電子伝導的に絶縁する第2の機能とにより、それらの2つの機能を利用して正極及び負極活物質層の方形状周辺を前記電解質層及び集電体層により絶縁し、さらに集電体層の外縁部を固体電解質層により絶縁することとなる。よって電池セル間に新たな絶縁膜を用いることなく、しかもフォトレジスト工程の必要も無く、極めて単純な工程で、複数段セルの多層積層膜の形成が行える構造である。図3(a)にはその周縁部の状態を拡大して示してある。
【0031】
図3(a)には直列接続第1実施例20(図1)の場合の積層電池の周縁部の第1の所定長d、第2の所定長dの付近の多層積層断面拡大図を示す。
【0032】
図1の断面図(a)の各層の厚さ(縦軸方向)は実際には約1ミクロン程度であり、一方横軸は1mm単位で表せる長さであり、従って断面図(a)は縦軸は約1000倍に拡大された状態を示している。
【0033】
従って、図1の(a)における各層間は空間的に離れて見える上下の集電体層は積層することにより、即、結線する。他の層も同様である。
【0034】
図2は本発明の多層積層電池の並列隣接n層セルの第1実施例30を示す。(a)は断面図、(b)は平面図を示す。ここで9は基板であり、その上に第1層の電池セルとして、先ず、タブ30aのある正極集電体層4を積層する。次に、順次、正極活物質層1、固体電解質層3、負極活物質層2、負極集電体層5を積層して第1層セルとする。次に、その負極集電体層5を兼用して、その上へ第1層セルと逆の順序で順次層2、3、1、4を積層して第2層セルとする。以上の積層をセルn段繰返し、第n層セルではタブ30bのある正極集電体層4を最上層とした積層構造となる。
【0035】
以上の積層する各層(1〜5)はそれぞれ(b)平面図に示すように方形状であり、それぞれ方形状積層膜の横巾及び縦巾が図に示すように異なる。横巾及び縦巾がそれぞれ一番短い膜は正極及び負極活物質層1、2である。この最小面積は各電池セルが必要とする機能から定める。これらの膜周縁をそれぞれ絶縁するため、それぞれ上下層の集電体層4、5、6及び固体電解質層3は、それぞれその横巾及び縦巾を長くなるように積層する。さらに、その集電体層4、5、6の外縁部を絶縁するため、固体電解質層3は、さらに、その横巾及び縦巾を長くなるように積層する。
【0036】
結局、図2(b)に示すように正・負集電体層4、5は正・負極活物質層1、2より横巾及び縦巾が第1の所定長d長く、固体電解質層3はその集電体層4、5、6よりさらに横巾及び縦巾が第2の所定長d長い。
【0037】
すなわち、前述した第1の機能と第2の機能を利用して、正極及び負極活物質層の方形状周辺を電解質層及び集電体層により絶縁し、さらに集電体層の外縁部を固体電解質層により絶縁することとなる。
【0038】
よって、電池セル間に新たな絶縁膜を用いることなくしかもフォトレジスト工程の必要もなく、極めて単純な工程で複数段セルの多層積層膜の形成が行える構造である。図3(b)にはその周縁部の状態を拡大して示してある。
【0039】
尚、タブ30a群は積層することにより総て接続される。タブ30bも同様である。
【0040】
図4は本発明の多層積層電池の直列接続第2実施例50を示す。第1層セルから第n層セルまでの各電池セルはそれぞれ同一の積層順序構造として、n段重ね多層積層電池を構成するに際して、個々の電池セル間にそれぞれ電気的に絶縁する絶縁体層7を備えているのが特徴である。但し図4の場合は最上部には絶縁体層7はない。
【0041】
一枚の基板9上に第1層セル、絶縁体層7、第2層セル、絶縁体層7と、n段重ねて5×n+(n−1)層をフォトレジスト工程を使用しないで形成できる非フォトレジスト積層構造層の断面図を図4(a)に示す。
【0042】
図4(b)はこの平面図であり、正・負極集電体層4、5及び正・負極活物質層1、2を電池セルが必要とする性能を得るための面積に定めて、個体電解質層3はその方形状の横巾及び縦巾をそれぞれ第1の所定長d長くし、前記絶縁層7はその固体電解質層3の横巾及び縦巾をそれぞれ第2の所定長d長くする。これによって、周縁の絶縁をフォトレジスト工程なしの積層により自動的に行うことができる。
【0043】
さらに、正極・負極集電体層4、5にはそれぞれ複数のタブを方形状の周縁に備える。電源出力端子50a、50bのタブ位置を除いて、絶縁体層7の直上、直下の集電体層4、5をタブ対としてそれら対を異なる位置の周縁に設ける。
【0044】
図4(b)の50a´、50a´´、50a´´´、50b´、50b´´、50b´´´などが、そのタブ対を示す。以上のように集電体層4、5へタブを配設しておけば、積層するときその対は自動的に接続される。
【0045】
電池セルを何段にするかによりそのタブ対の数と位置を定める。
【0046】
尚、前記引出タブを対としないで、それぞれの集電体層から一個又は複数個引出タブを設けておき、さらにそれらの引出タブ位置を総て異なる周辺位置に配設した多層積層電池として、使用者が必要に応じてその電池セル間の電線による配線を行い、直列接続、並列接続、直並列接続、不良電池セルを除く接続、電圧調整接続などを行うことができる。
【0047】
図5は本発明の多層積層電池の並列接続第2実施例60を示す。第1層セルから第n層セルまで各電池セルはそれぞれ同一の積層順序構造としてn段重ね多層積層電池を構成するに際して、個々の電池セル間にそれぞれ電気的に絶縁する絶縁体層7を備えているのが特徴である。但し、図5の場合は最上部には絶縁体層7はない。
【0048】
一枚の基板9上に第1層セル、絶縁体層7、第2層セル絶縁体層7、とn段重ねて5×n+(n−1)層をフォトレジスト工程を使用しないで形成できる非フォトレジスト積層構造層の断面図を図5(a)に示す。
【0049】
図5(b)はその平面図であり、正・負極集電体層4、5及び正・負極活物質層1、2を電池セルが必要とする性能を得るための面積に定めて、前記固体電解質層3はその方形状の横巾及び縦巾をそれぞれ第1の所定長d長くし、前記絶縁層7はその固体電解質層3の横巾及び縦巾をそれぞれ第2の所定長d長くする。これにより周縁絶縁をフォトレジスト工程なしの積層により自動的に行うことができる。
【0050】
さらに、正極・負極集電体層4、5には電源出力端子60a、60bのタブ位置を備える。さらに、正極集電体層4のタブ位置を総て60aのタブ位置に合わせる。一方、負極集電体層5のタブ位置を総て60bのタブ位置に合わせる。60aのタブは積層によってその都度接続され、一方60bのタブも積層によって総て接続され、並列接続となる。
【0051】
図6は本発明の多層積層電池直列接続第3実施例80を示す。図6の実施例80は図4の実施例50と類似しているが、図6(a)断面図に示してあるように最上層に絶縁体層7が加えられている。
【0052】
さらにその絶縁体層7の横巾及び縦巾は、正・負極集電体層から引出されるタブの先端より長い。従って、第2の所定長dは図1〜図5までの第2の所定長dより引出タブの長さだけ長くなる。つまり絶縁体層7は総てその分面積が大きくなる。
【0053】
電池セル間の接続、すなわち、正・負極集電体層の接続は上下対の引出タブ80a´、80a´´・・・80b´、80b´´・・・貫通孔であるビアホールを介して金属線で配線接続する。
【0054】
電池セルを何段にするかによりそのタブ対の数と位置を定める。
【0055】
尚、前記引出タブを対としないで、それぞれの集電体層から一個又は複数個引出タブを設けておき、さらにそれらの引出タブ位置は総て異なる周辺位置に配設した多層積層電池として、利用者が必要に応じて電池セル間の電線による配線を行い直列接続、並列接続、直並列接続、不良電池セルを除く接続、電圧調整接続などを行うことができる。
【0056】
図7は本発明の多層積層電池の並列接続第3実施例90を示す。図7の実施例90は図5の実施例60と類似しているが、図7(a)断面図に示してあるように最上層に絶縁体層7が加えられている。
【0057】
さらに図6の絶縁体層7と同様にその横巾及び縦巾は正・負極集電体層から引出されるタブの先端より長い。従って第2の所定長d2は引出タブの長さだけ長く、絶縁体層7は総てその分面積が大きくなる。
【0058】
並列接続のため、最下層の正極集電体層4の引出タブ90aの位置に、他の総ての正極集電体層4のビアホールのある引出タブ90aをそれぞれ合わせ、そのビアホールを介して一本の金属線により総てを接続して正極端子とする。
【0059】
一方、最上層の負極集電体層5の引出タブ90bの位置に、他の総ての負極集電体層5のビアホールのある引出タブ90bをそれぞれ合わせ、そのビアホールを介して一本の金属線により総てを接続して負極端子とする。尚、実施例として、各層の積層膜は法形状の場合としたが、他の二次元形状、例えば、円形、楕円形、上下が平行線で左右が半円状の類似だ円形、多角形などの形状においても同様に適用することができる。
【0060】
【発明の効果】
本発明の多層積層電池は以下に示す効果を奏する。すなわち、正・負極活物質層・固体電解層・集電体層からなる薄膜・固体リチウムイオン二次電池を一つの電池セルとして、多段に重ねた構成を一つの基板上に前記各層をそれぞれその方形状の膜の周縁の絶縁を維持するように積層して形成する多層積層電池の構造は、各電池セル間に新たな絶縁膜を用いることなく、また、フォトレジスト工程を必要とせず、その製造プロセスの大幅な簡略化とそれに伴う製造コストの低減に大きく寄与する。
【0061】
また、各電池セル間に絶縁体層を備える構造とすれば、利用者が、直列接続、並列接続、直並列接続、不良電池セルを除く接続を選択接続できる構造とすることができる。
【0062】
以上の多層積層電池は、積層の数を最小にするのでコンパクトとなり、またフォトレジスト工程を必要としないシンプルな製造プロセスなので高い信頼性を有し、それ故に種々の形態の携帯電子機器に広範に使用される効果がある。
【図面の簡単な説明】
【図1】本発明の多層積層電池(直列接続第1実施例)を示し、(a)は断面図、(b)は平面図である。
【図2】本発明の多層積層電池(並列接続第1実施例)を示し、(a)は断面図、(b)は平面図である。
【図3】本発明の多層積層電池の周縁部の断面図で、(a)は直列接続の場合、(b)は並列接続の場合を示す断面図である。
【図4】本発明の多層積層電池(直列接続第2実施例)を示し、(a)は断面図、(b)は平面図である。
【図5】本発明の多層積層電池(並列接続第2実施例)を示し、(a)は断面図、(b)は平面図である。
【図6】本発明の多層積層電池(直列接続第3実施例)を示し、(a)は断面図、(b)は平面図である。
【図7】本発明の多層積層電池(並列接続第3実施例)を示し、(a)は断面図、(b)は平面図である。
【符号の説明】
1 正極活物質層
2 負極活物質層
3 固体電解質層
4 正極集電体層
5 負極集電体層
6 (兼用)集電体層(正極及び負極兼用)
7 絶縁体層
9 基板
20 直列接続n層セル(第1実施例)
20a 正極タブ
20b 負極タブ
30 並列接続n層セル(第1実施例)
30a 正極タブ
30b 負極タブ
50 直列接続n層セル(第2実施例)
50a 正極タブ
50b 負極タブ
50a´、50a´´ 正極タブ
50b´、50b´´ 負極タブ
60 並列接続n層セル(第2実施例)
60a 正極タブ
60b 負極タブ
80 直列接続n層セル(第3実施例)
80a 正極タブ
80b 負極タブ
80a´、80a´´ 正極タブ
80b´、80b´´ 負極タブ
90 並列接続n層セル(第3実施例)
90a 正極タブ
90b 負極タブ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a multilayer stacked battery having a rectangular multilayer stacked structure in which a thin-film solid lithium ion secondary battery is regarded as one cell and the battery cells are stacked in a plurality of stages.
[0002]
[Prior art]
Conventionally, as a positive electrode material of a lithium ion secondary battery, LiCoO 2 , LiNiO 2 , LiMn 2, O 2 , LiMnO 2 , LiFePO 4 capable of inserting and extracting lithium ions , LiM1 × M2yOz (M1 and M2 are transfer metals) In this case, lithium transfer metal compounds represented by x, y, and z are arbitrary real numbers) have been used.
[0003]
Examples of the negative electrode material include graphite capable of absorbing and releasing lithium ions, carbon materials such as coke, and fired polymer, metallic lithium, alloys of lithium and other metals, TiO 2 , Nb 2 O 3 , and SnO. 2 , metal oxides such as Fe 2 O 3 and SiO 2 , and metal sulfides have been used.
[0004]
Examples of the solid electrolyte include a polymer material such as polyethylene oxide, polypropylene oxide, or a polyethylene oxide derivative containing a solute composed of a lithium salt such as LiPE 6 or LiClO 4 , or the solute dissolved in an organic solvent. gelled objects or impregnated with nonaqueous electrolyte, Li 2 S, Li 3, PO 4, inorganic solid electrolytes such as -N was known.
[0005]
Recently, there has been a great deal of interest in studies of solid lithium secondary batteries and secondary batteries that do not use lithium metal, and reports have been made. It has been known that such a rocking chair type secondary battery is composed of only a thin film electrode using a semiconductor substrate as a supporting substrate and a solid electrolyte (Patent Document 1).
[0006]
The present inventor has previously described a high orientation of a niobium pentoxide film as a positive electrode active material on a metal substrate or a silicon substrate in a secondary battery using an alkali metal or an alkali metal alloy for the negative electrode and a solid electrolyte for the electrolyte. It has been found that the use of a thin film or a highly oriented thin film in which a niobium pentoxide film is preliminarily lithiated makes it possible to reduce the thickness and size of the battery, increase the charge / discharge capacity, and exhibit excellent charge / discharge characteristics. Reference 2). In addition, by using V 2 O 3 , Nb 2 O 3, WO 3 , or MoO 3 containing lithium in advance as the negative electrode active material, the battery can be made thinner and lighter, and the charge and discharge characteristics can be reduced. Was found to be excellent. (Patent Document 3).
[0007]
In addition, an all-solid lithium ion secondary battery using V 2 O 3 for both the positive electrode and the negative electrode was developed and reported (Electrochemical and Solid-State Lettes, 2 (7) 320-322, 1999). In the secondary battery, the open terminal voltage 3.5~3.6V, when discharged at 10μAh / cm 2 to 1.0 V, with about 6μAh / cm 2 discharge capacity. In addition, it exhibited relatively good cycle characteristics of 350 cycles or more and 0.079 V / month and self-discharge performance.
[0008]
Furthermore, the present inventor has disclosed a stacked thin-film solid-state lithium-ion secondary battery characterized by stacking two or more thin-film solid-state lithium-ion secondary battery cells (Patent Document 4).
[0009]
[Patent Document 1]
JP-A-10-284139 (pages 2, 3; FIG. 1)
[Patent Document 2]
Japanese Patent Application Laid-Open No. 7-142054 (pages 2, 3; FIG. 1)
[Patent Document 3]
JP-A-8-241707 (pages 2, 3; FIG. 1)
[Patent Document 4]
JP-A-2002-42863 (pages 2, 3 and FIG. 1)
[0010]
[Problems to be solved by the invention]
The above-mentioned stacked thin-film solid lithium ion secondary battery is compact and highly reliable, and therefore will be widely used in various forms of portable electronic devices. That is, there are not a few users who use a multi-layer battery in which a light-weight thin-film solid lithium ion secondary battery is stacked in multiple stages as one battery cell.
[0011]
In any case, the batteries used by many users are multi-layer stacked batteries in which battery cells are stacked in multiple stages, and such batteries are expected.
[0012]
However, a thin-film solid-state lithium-ion secondary battery composed of a positive electrode and a negative electrode active material layer, a solid electrolyte layer between them, and a current collector layer immediately above and immediately below the active material layer is regarded as one battery cell, It is not easy to form a single multi-layer battery by stacking cells in layers and sequentially stacking them on a single substrate.
[0013]
The present invention has been made in view of the above-mentioned problems, and the objects are as follows.
[0014]
The layering process of each layer has the following layered structure that does not require a photoresist process. That is, the laminated film of each layer has a two-dimensional shape including a square shape, a circular shape, an elliptical shape, a polygonal shape, and the like. There is.
[0015]
Therefore, the function of the solid electrolyte layer as an insulating film for electron conduction between adjacent cells and the function of the current collector layer as an insulating film for counter ion conduction between active material layers of adjacent cells are utilized. Then, the periphery of the active material layer is insulated by the fixed electrolyte layer and the current collector layer, and the outer edge of the current collector layer is further insulated by the fixed electrolyte layer on the outside thereof.
[0016]
As described above, a stacked battery cell in which multiple stages of battery cells are stacked using a plurality of shadow masks having different shapes and dimensions without using a photoresist process greatly simplifies the manufacturing process and the accompanying manufacturing process. It is an object of the present invention to provide a multi-layer laminated battery which has a great effect on cost reduction.
[0017]
[Means for Solving the Problems]
The multi-layer laminated battery of the present invention has a positive electrode active material layer and a negative electrode active material layer capable of inserting and extracting lithium ions, a solid electrolyte layer having a function of electronically conductively insulating between them, A thin-film solid lithium ion secondary battery composed of a positive electrode side and a negative electrode side current collector layer made of a metal film having a function of collecting current immediately above and below the active material layer is defined as one battery cell. A multilayer laminated battery having a multilayer laminated structure in which a plurality of layers are stacked,
The solid electrolyte layer further serves as an insulating film for electron conduction between adjacent cells, and the current collector layer (metal film) serves as an insulating film for counter ion conduction between active material layers of upper and lower adjacent cells. Utilizing the function, the periphery of the positive electrode and the negative electrode active material layer is covered and insulated at the peripheral outer position by the solid electrolyte layer and the current collector layer, and further, the outer edge of the current collector layer is A layered structure in which the solid electrolyte layer is coated and insulated at the outer edge portion outside position, and without using a new insulating film between the individual battery cells, the multi-stage structure is formed by sequentially stacking each layer on one substrate. It is characterized by comprising.
[0018]
In addition, a positive electrode active material layer and a negative electrode active material layer capable of inserting and extracting lithium ions, a solid electrolyte layer having a function of separating and insulating electronically conductive therebetween, and a layer directly above and below the active material layer An n-layer cell in which a thin-film solid-state lithium-ion secondary battery composed of a positive electrode side and a negative electrode side current collector layers made of a metal film having a function of collecting current is used as one battery cell, and the battery cells are stacked in a plurality of n stages. A multilayer laminated battery having a structure,
When the respective battery cells are electrically connected in series, the current collector layer (metal film) sandwiched between the upper and lower battery cells has a negative electrode (or a positive electrode) of the immediately lower cell in addition to the original function. By combining the active material layer and the positive electrode (or negative electrode) active material layer of the immediately upper layer cell with the function of ionically separating and insulating the same, the current collector layers of the upper and lower battery cells can also be used as one. With a current collector layer structure,
On one substrate, a first layer cell is formed of a positive electrode (or negative electrode) current collector layer, a positive electrode (or negative electrode) active material layer, a solid electrolyte layer, a negative electrode (or positive electrode) active material layer, and a dual-purpose current collector layer. 5 layers successively forming an integrated formation layer,
A second-layer cell is formed on the dual-purpose current collector layer by sequentially forming a positive electrode (or negative electrode) active material layer, a solid electrolyte layer, a negative electrode (or positive electrode) active material layer, and a dual-purpose current collector layer into an integrated formation layer. ,
Similarly, a non-photoresist integrated structure layer is provided in which the integration is performed by stacking n stages and the entire process is an integrated formation layer without using a photoresist process up to the nth layer cell,
In order to sequentially form the respective layers into a non-photoresist integrated structure, the outer periphery of a positive electrode and a negative electrode active material layer having a predetermined area required for each battery cell on the substrate, and a positive / negative electrode and a dual-purpose current collector layer. The outer peripheral edge is provided with a structural layer that protrudes outward by a first predetermined width.
With respect to the outer periphery of the positive / negative electrode and the dual purpose current collector layer, the outer periphery of the solid electrolyte layer includes a structural layer projecting outward by a second predetermined width, respectively.
The lowermost positive electrode (or negative electrode) current collector layer has an electrode terminal lead-out tab, and the uppermost negative electrode (or positive electrode) current collector layer has an electrode terminal lead-out tab. A multilayer structure of a multi-stage battery cell without using a new insulating film.
[0019]
In addition, a positive electrode active material layer and a negative electrode active material layer capable of inserting and extracting lithium ions, a solid electrolyte layer having a function of separating and insulating electronically conductive therebetween, and a layer directly above and below the active material layer An n-layer cell in which a thin-film solid-state lithium-ion secondary battery composed of a positive electrode side and a negative electrode side current collector layers made of a metal film having a function of collecting current is used as one battery cell, and the battery cells are stacked in a plurality of n stages. A multilayer laminated battery having a structure,
When each of the battery cells is electrically connected in parallel, a positive electrode (or negative electrode) current collector layer (metal film) sandwiched between upper and lower battery cells has a positive electrode of a directly lower cell in addition to the original function. The current collector of the positive or negative electrode of the upper and lower battery cells by having the function of ionically separating and insulating the (or negative electrode) active material layer and the positive (or negative electrode) active material layer of the immediately upper cell. Equipped with a positive / negative current collector layer structure that doubles as one layer,
On a single substrate, a first layer cell is formed of a positive electrode (or negative electrode) current collector layer, a positive electrode (or negative electrode) active material layer, a solid electrolyte layer, a negative electrode (or positive electrode) active material layer, and a negative electrode (or positive electrode) collector. With the five layers of the electric conductor layer, an integrated formation layer is sequentially formed,
A second layer cell is formed by forming a negative electrode (positive electrode) active material layer, a solid electrolyte layer, a positive electrode (or negative electrode) active material layer, and a positive electrode (or negative electrode) current collector layer on the negative electrode (or positive electrode) current collector layer. Layer by layer,
Similarly, the four layers except the first layer of the first layer cell and the four layers of the second layer cell are alternately stacked in n stages, and all processes are integrated up to the nth layer without using a photoresist process. A non-photoresist integrated structure layer as a layer,
When the respective layers are sequentially formed into a non-photoresist integrated structure, the outer peripheral edges of the positive / negative electrode current collector layer relative to the outer peripheral edges of the positive and negative electrode active material layers of a predetermined area required for each battery cell on the substrate. Each comprise a structural layer projecting outward by a first predetermined width,
With respect to the outer peripheral edge of the positive and negative electrode conductor layers, the outer peripheral edge of the solid electrolyte layer includes a structural layer projecting outward by a second predetermined width, respectively.
On the lowermost positive electrode (or negative electrode) current collector layer, a lead tab for an electrode terminal and all of the upper positive electrode (or negative electrode) current collector layers with the respective lead tabs are integrated in accordance with the tab. Connect
On the other hand, on the negative electrode (or positive electrode) current collector layer, from the lowermost layer to the uppermost layer, lead tabs which do not overlap with the positive electrode (or negative electrode) terminal line are integrated and connected at the same position, and each individual battery cell is connected. It is characterized by forming a multilayer structure of a multi-stage battery cell without using a new insulating film in between.
[0020]
In addition, a positive electrode active material layer and a negative electrode active material layer capable of inserting and extracting lithium ions, a solid electrolyte layer having a function of separating and insulating electronically conductive therebetween, and a layer directly above and below the active material layer An n-layer cell in which a thin-film solid-state lithium-ion secondary battery composed of a positive electrode side and a negative electrode side current collector layers made of a metal film having a function of collecting current is used as one battery cell, and the battery cells are stacked in a plurality of n stages. A multilayer laminated battery having a structure,
Each of the battery cells is stacked in the same lamination order in n stages, and when configuring a multilayer stacked battery, each of the battery cells includes an insulator layer that is electrically insulated between the individual battery cells,
N layers from the first layer cell and the second layer cell to n-th layer cells on a single substrate, and n-th layer of each layer cell; A non-photoresist integrated structure layer in which the × n + (n−1) layer is an integrated formation layer without using a photoresist process, and
When the respective layers are successively integrated to form the non-photoresist integrated structure layer, the outer peripheral edges of the positive electrode / negative electrode current collector layer and the positive electrode / negative electrode active material layer having a predetermined area required for each battery cell on the substrate. On the other hand, the outer peripheral edge of the solid electrolyte layer is provided with a structural layer projecting outward by a first predetermined width, respectively.
With respect to the outer peripheral edge of the solid electrolyte layer, the outer peripheral edge of the insulator layer includes a structural layer projecting outward by a second predetermined width, respectively.
Only the extraction tabs provided on the outer peripheral edges of the positive electrode and negative electrode current collector layers are drawn out of the insulating layer and arranged, and the arrangement positions are different depending on the current collector. It is provided at a plurality of locations on the periphery of the layer, and one of a series type, a parallel type, and a series-parallel type can be selected by a combination of the connection of the extraction tabs.
[0021]
In addition, the lead tabs of the positive electrode (or negative electrode) current collector layer immediately above and the negative electrode (or positive electrode) current collector layer immediately below the insulator layer are provided in the same position on the periphery in a vertical pair. In addition, another drawing tab similar to the above is provided and connected in another pair at the other edge of the periphery, and the lowermost positive electrode (or negative electrode) current collector layer has a drawing tab for an electrode terminal and the uppermost layer negative electrode ( Each of the current collector layers is provided with a lead-out tab for an electrode terminal, and is formed in series.
[0022]
Further, among the lead-out tabs of the current collector layer drawn out from the outer edge of the insulator layer, all the lead-out tabs for the positive electrode current collector layer are provided at the first same position on the periphery of the current collector and connected. On the other hand, all the lead-out tabs for the negative electrode current collector layer are provided at the second same position on the peripheral portion different from the above-mentioned position, and are connected to each other. .
[0023]
In addition, a positive electrode active material layer and a negative electrode active material layer capable of inserting and extracting lithium ions, a solid electrolyte layer having a function of separating and insulating electronically conductive therebetween, and a layer directly above and below the active material layer An n-layer cell in which a thin-film solid-state lithium-ion secondary battery composed of a positive electrode side and a negative electrode side current collector layers made of a metal film having a function of collecting current is used as one battery cell, and the battery cells are stacked in a plurality of n stages. A multilayer laminated battery having a structure,
Each of the battery cells is stacked in the same stacking order structure in n stages, and when configuring a multilayer stacked battery, an insulator layer that is electrically insulated between the individual battery cells, and further, an insulator layer on the top. Prepare,
5 × n + n obtained by adding an insulator layer n between cell layers to n layers of each layer cell from the first layer cell and the second layer cell to the nth layer on the single substrate, from the nth layer to the nth layer A non-photoresist integrated structure layer in which the layer is an integrated formation layer without using a photoresist step,
When the respective layers are sequentially integrated to form a non-photoresist integrated structure layer, the outer periphery of the positive electrode / negative electrode current collector layer and the positive electrode / negative electrode active material layer of a predetermined area required for each battery cell on the substrate is formed. On the other hand, the outer peripheral edge of the solid electrolyte layer is provided with a structural layer projecting outward by a first predetermined width, respectively.
With respect to the outer peripheral edge of the solid electrolyte layer, including the extraction tab, the outer peripheral edge of the insulator layer includes a structural layer projecting outward by a second predetermined width, respectively.
Only the extraction tabs provided on the outer peripheral edges of the positive electrode and the negative electrode current collector are drawn out outside the solid electrolyte layer and inside the insulating layer, and the arrangement positions are different depending on the current collector. Provided at a plurality of locations on the periphery of the current collector layer structure layer, provided with connection via holes that penetrate all the insulating layers in their extraction tabs, and embeded metal electrodes in the via holes to enable connection. , A connection of any of a serial type, a parallel type, and a series-parallel type can be selected.
[0024]
Further, the respective lead-out tabs of the positive electrode (or negative electrode) current collector layer immediately above and the immediately lower negative electrode (or positive electrode) current collector layer with the insulator layer interposed therebetween are vertically aligned at the same position on the periphery. Connected with a metal electrode through a via hole penetrating all the insulating layers, and another similar pull-out tab is provided at another position on the periphery at the top and bottom, and the metal is connected through a via hole penetrating all the insulating layers. Connected by electrodes, the lowermost positive electrode (or negative electrode) current collector layer is provided with an electrode terminal extraction tab, and the uppermost negative electrode (or positive electrode) current collector layer is provided with an electrode terminal extraction tab. It is characterized by being a mold.
[0025]
Further, inside the outer edge portion of the insulator layer, all the lead-out tabs for the positive electrode current collector layer are provided at the first same position on the peripheral edge portion of the current collector, and via the via holes penetrating all the insulator layers. Connected by metal electrodes, on the other hand, all of the tabs for the negative electrode current collector layer are provided at the second same position on the peripheral portion different from the above positions, and connected by metal electrodes via via holes penetrating all insulating layers Each of the battery packs is provided with a lead-out tab for an electrode terminal and is of a parallel type.
[0026]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described below with reference to the drawings. As described above, in this embodiment, a general two-dimensional shape is described as a square shape.
[0027]
FIG. 1 shows a first embodiment 20 of the series-connected n-layer cell of the multilayer battery according to the present invention. (A) is a sectional view, and (b) is a plan view. Here, reference numeral 9 denotes a substrate, on which a positive electrode current collector layer 4 having a tab 20a is first laminated as a first layer of battery cells. Next, the positive electrode active material layer 1, the solid electrolyte 3, the negative electrode active material layer 2, and the current collector layer 6 are sequentially laminated to form a first layer cell. Next, the current collector layer 6 is used as a positive electrode / negative current collector layer 6, and layers 1, 3, 2, and 6 are sequentially stacked thereon similarly to the first layer cell to form a second layer cell. . The above-described lamination is repeated by n cells, and the n-th layer cell has a laminated structure in which the negative electrode current collector layer 5 having the tab 20b is the uppermost layer.
[0028]
Each of the layers (1 to 6) to be laminated has a rectangular shape as shown in the plan view (b), and the lateral width and vertical width of the rectangular laminated film are different as shown in the figure. The films having the shortest width and length are the positive and negative electrode active material layers 1 and 2, respectively. This minimum area is determined from the functions required by each battery cell. In order to insulate the film edges of these active material layers 1 and 2, respectively, the upper and lower current collector layers 4, 5, and 6 and the solid electrolyte layer 3 are laminated so that their width and length become longer, respectively. . Furthermore, in order to insulate the outer edges of the current collector layers 4, 5, and 6, the solid electrolyte layer 3 is laminated so that its width and length are further increased.
[0029]
As a result, as shown in FIG. 1B, the positive and negative electrode current collector layers 4, 5, and 6 have a width and a length longer than the positive and negative electrode active material layers 1 and 2 by the first predetermined length d 1 . solid electrolyte layer 3 is further horizontal width and Tatehaba second predetermined length d 2 larger than the collector layer 4, 5 and 6.
[0030]
That is, the current collector layer has the first function as an insulating film for counter ion conduction between the active material layers of the upper and lower adjacent cells, and the solid electrolyte layer is between the positive and negative electrode active material layers and is electrically insulated. And the second function of electronically insulating between adjacent cells (between the upper cell and the immediately lower cell) in addition to the function of forming a positive electrode and a negative electrode active material layer using these two functions. The periphery is insulated by the electrolyte layer and the current collector layer, and the outer edge of the current collector layer is further insulated by the solid electrolyte layer. Therefore, a multilayer laminated film of a plurality of cells can be formed by a very simple process without using a new insulating film between the battery cells and without the need for a photoresist process. FIG. 3A shows the state of the peripheral portion in an enlarged manner.
[0031]
FIG. 3A is an enlarged cross-sectional view of a multilayer stack in the vicinity of the first predetermined length d 1 and the second predetermined length d 2 of the periphery of the stacked battery in the case of the first embodiment 20 (FIG. 1) connected in series. Is shown.
[0032]
The thickness (vertical direction) of each layer in the sectional view (a) of FIG. 1 is actually about 1 micron, while the horizontal axis is a length that can be expressed in units of 1 mm. The axis shows a state of being enlarged about 1000 times.
[0033]
Therefore, the upper and lower current collector layers that appear to be spatially separated from each other in FIG. 1A are immediately connected by being laminated. The same applies to other layers.
[0034]
FIG. 2 shows a first embodiment 30 of the parallel adjacent n-layer cell of the multilayer battery according to the present invention. (A) is a sectional view, and (b) is a plan view. Here, reference numeral 9 denotes a substrate, on which a positive electrode current collector layer 4 having a tab 30a is first laminated as a first layer of battery cells. Next, the positive electrode active material layer 1, the solid electrolyte layer 3, the negative electrode active material layer 2, and the negative electrode current collector layer 5 are sequentially laminated to form a first layer cell. Next, the layers 2, 3, 1, and 4 are sequentially stacked on the negative electrode current collector layer 5 in the reverse order of the first layer cell to form a second layer cell. The above lamination is repeated by n cells, and the n-th layer cell has a laminated structure in which the positive electrode current collector layer 4 having the tab 30b is the uppermost layer.
[0035]
Each of the layers (1 to 5) to be laminated has a rectangular shape as shown in the plan view (b), and the lateral width and the vertical width of the rectangular laminated film are different as shown in the figure. The films having the shortest width and length are the positive and negative electrode active material layers 1 and 2, respectively. This minimum area is determined from the functions required by each battery cell. In order to insulate the periphery of each of these films, the upper and lower current collector layers 4, 5, 6 and the solid electrolyte layer 3 are laminated so that their horizontal width and vertical width respectively become longer. Further, in order to insulate the outer edges of the current collector layers 4, 5, and 6, the solid electrolyte layer 3 is further laminated so that its width and length become longer.
[0036]
After all, and FIG. 2 (b) are shown as positive and negative collector layers 4 and 5 is Yokohaba and Tatehaba the positive and negative electrode active material layers 1 and 2 a first predetermined length d 1 long, solid electrolyte layer 3 further transverse width and Tatehaba second predetermined length d 2 larger than the collector layer 4, 5 and 6.
[0037]
That is, utilizing the first and second functions described above, the periphery of the rectangular shape of the positive electrode and the negative electrode active material layers is insulated by the electrolyte layer and the current collector layer, and the outer edge of the current collector layer is solid. It is insulated by the electrolyte layer.
[0038]
Therefore, the multi-layer laminated film of the multi-stage cells can be formed by a very simple process without using a new insulating film between the battery cells and without the need for a photoresist process. FIG. 3B shows the state of the peripheral portion in an enlarged manner.
[0039]
The tabs 30a are all connected by stacking. The same applies to the tab 30b.
[0040]
FIG. 4 shows a second embodiment 50 of the series connection of the multilayer laminated battery of the present invention. Each of the battery cells from the first layer cell to the n-th layer cell has the same stacking order structure, and when forming an n-stage stacked multilayer battery, an insulator layer 7 that is electrically insulated between the individual battery cells is provided. It is characterized by having. However, in the case of FIG. 4, there is no insulator layer 7 at the top.
[0041]
A first layer cell, an insulator layer 7, a second layer cell, and an insulator layer 7 are formed on one substrate 9 to form a 5.times.n + (n-1) layer without using a photo resist process. FIG. 4A is a sectional view of a possible non-photoresist laminated structure layer.
[0042]
FIG. 4B is a plan view of the solid-state battery, in which the positive and negative electrode current collector layers 4 and 5 and the positive and negative electrode active material layers 1 and 2 are defined as areas for obtaining the performance required by the battery cell. the electrolyte layer 3 is a transverse width and Tatehaba the square shape and the first predetermined length d 1 long respectively, the insulating layer 7 is the solid electrolyte layer a second predetermined length, respectively horizontal width and Tatehaba of 3 d 2 Lengthen. Thus, the peripheral insulation can be automatically performed by lamination without the photoresist process.
[0043]
Further, each of the positive electrode / negative electrode current collector layers 4 and 5 is provided with a plurality of tabs on the periphery of the square. Except for the tab positions of the power supply output terminals 50a and 50b, the current collector layers 4 and 5 immediately above and below the insulator layer 7 are provided as tab pairs, and the pairs are provided on the periphery of different positions.
[0044]
In FIG. 4B, 50a ′, 50a ″, 50a ″ ″, 50b ′, 50b ″, 50b ″ ″ indicate the tab pair. If tabs are provided on the current collector layers 4 and 5 as described above, the pair is automatically connected when laminating.
[0045]
The number and positions of the tab pairs are determined according to the number of stages of the battery cells.
[0046]
Note that, as a multilayer laminated battery in which one or a plurality of pull-out tabs are provided from each current collector layer, and the positions of the pull-out tabs are all disposed at different peripheral positions, without pairing the draw-out tabs, The user can wire the battery cells as necessary, and perform series connection, parallel connection, series-parallel connection, connection excluding defective battery cells, voltage adjustment connection, and the like.
[0047]
FIG. 5 shows a second embodiment 60 of the parallel connection of the multilayer battery according to the present invention. Each of the battery cells from the first layer cell to the nth layer cell is provided with an insulator layer 7 that is electrically insulated between the individual battery cells when forming an n-stage stacked multilayer battery with the same stacking order structure. The feature is that. However, in the case of FIG. 5, there is no insulator layer 7 at the top.
[0048]
The first layer cell, the insulator layer 7, the second cell insulator layer 7, and the 5 × n + (n−1) layers can be formed on one substrate 9 without using a photoresist process by stacking n stages. FIG. 5A is a sectional view of the non-photoresist laminated structure layer.
[0049]
FIG. 5 (b) is a plan view thereof, in which the positive / negative electrode current collector layers 4, 5 and the positive / negative electrode active material layers 1, 2 are defined as areas for obtaining the performance required by the battery cell. The solid electrolyte layer 3 has a rectangular width and a vertical width which are respectively increased by a first predetermined length d 1, and the insulating layer 7 has a solid width and a vertical width which are each a second predetermined length d. Make it 2 longer. Thereby, peripheral insulation can be automatically performed by lamination without a photoresist process.
[0050]
Further, the positive / negative current collector layers 4 and 5 have tab positions for the power output terminals 60a and 60b. Further, the tab positions of the positive electrode current collector layer 4 are all adjusted to the tab positions of 60a. On the other hand, the tab positions of the negative electrode current collector layer 5 are all adjusted to the tab positions of 60b. The tabs 60a are connected in each case by stacking, while the tabs 60b are also all connected by stacking, making a parallel connection.
[0051]
FIG. 6 shows a third embodiment 80 of the series connection of the multilayer laminated battery of the present invention. The embodiment 80 of FIG. 6 is similar to the embodiment 50 of FIG. 4, except that the insulator layer 7 is added to the uppermost layer as shown in the cross-sectional view of FIG.
[0052]
Further, the width and length of the insulator layer 7 are longer than the tip of the tab drawn out from the positive and negative electrode current collector layers. Accordingly, the second predetermined length d 2 is longer by the length of the second lead tab than a predetermined length d 2 to FIGS. That is, the area of the insulator layer 7 is increased by that much.
[0053]
The connection between the battery cells, that is, the connection between the positive and negative electrode current collector layers is made via upper and lower pairs of extraction tabs 80a ', 80a "... 80b", 80b ". Connect with wires.
[0054]
The number and positions of the tab pairs are determined according to the number of stages of the battery cells.
[0055]
In addition, without forming the pull-out tabs as a pair, one or a plurality of pull-out tabs are provided from each current collector layer, and further, the positions of the pull-out tabs are all different from each other as a multilayer stacked battery arranged at peripheral positions. The user can perform wiring by electric wires between the battery cells as necessary to perform series connection, parallel connection, series-parallel connection, connection excluding defective battery cells, voltage adjustment connection, and the like.
[0056]
FIG. 7 shows a third embodiment 90 of the parallel connection of the multilayer battery according to the present invention. The embodiment 90 of FIG. 7 is similar to the embodiment 60 of FIG. 5, but the insulator layer 7 is added to the uppermost layer as shown in the cross-sectional view of FIG.
[0057]
Further, as in the case of the insulator layer 7 of FIG. 6, the width and length are longer than the ends of the tabs drawn from the positive and negative electrode current collector layers. Therefore, the second predetermined length d2 is longer by the length of the pull-out tab, and the area of the insulator layer 7 is increased by that much.
[0058]
For the parallel connection, all of the tabs 90a with via holes of the other positive electrode current collector layers 4 are aligned with the positions of the tabs 90a of the lowermost positive electrode current collector layer 4, and one through the via holes. All are connected by a metal wire to form a positive electrode terminal.
[0059]
On the other hand, the extraction tabs 90b having via holes of all the other negative electrode current collector layers 5 are respectively aligned with the positions of the extraction tabs 90b of the uppermost negative electrode current collector layer 5, and one metal is formed through the via holes. All are connected by wires to form a negative terminal. Note that, as an example, the laminated film of each layer has a normal shape, but other two-dimensional shapes, for example, a circular shape, an elliptical shape, a similar circular shape with upper and lower parallel lines and a left and right semicircular shape, a polygonal shape, and the like. The same can be applied to the above-mentioned shape.
[0060]
【The invention's effect】
The multilayer laminated battery of the present invention has the following effects. In other words, a thin-film / solid-state lithium-ion secondary battery composed of a positive / negative electrode active material layer, a solid electrolytic layer, and a current collector layer as one battery cell. The structure of the multi-layer laminated battery formed by laminating so as to maintain the insulation of the peripheral edge of the rectangular film does not use a new insulating film between each battery cell, does not require a photoresist process, and It greatly contributes to greatly simplifying the manufacturing process and reducing the manufacturing cost accordingly.
[0061]
Further, if the structure is provided with an insulator layer between each battery cell, a structure can be provided in which a user can selectively connect a series connection, a parallel connection, a series-parallel connection, and a connection excluding a defective battery cell.
[0062]
The above-described multi-layer stacked battery is compact because it minimizes the number of stacks, and has high reliability because of a simple manufacturing process that does not require a photoresist process, and is therefore widely used in various forms of portable electronic devices. There are effects used.
[Brief description of the drawings]
FIGS. 1A and 1B show a multilayer laminated battery (first embodiment in series connection) of the present invention, wherein FIG. 1A is a cross-sectional view and FIG. 1B is a plan view.
FIGS. 2A and 2B show a multilayer laminated battery (first embodiment of parallel connection) of the present invention, wherein FIG. 2A is a cross-sectional view and FIG.
FIGS. 3A and 3B are cross-sectional views of a peripheral portion of the multilayer laminated battery of the present invention, wherein FIG. 3A is a cross-sectional view showing a case of series connection, and FIG.
4A and 4B show a multi-layer laminated battery (second embodiment in series connection) of the present invention, wherein FIG. 4A is a cross-sectional view and FIG. 4B is a plan view.
FIGS. 5A and 5B show a multi-layer laminated battery of the present invention (parallel connection second embodiment), wherein FIG. 5A is a cross-sectional view and FIG.
FIGS. 6A and 6B show a multilayer laminated battery (third embodiment of a series connection) according to the present invention, wherein FIG. 6A is a cross-sectional view and FIG.
FIGS. 7A and 7B show a multilayer laminated battery (third embodiment of parallel connection) according to the present invention, wherein FIG. 7A is a cross-sectional view and FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Positive electrode active material layer 2 Negative electrode active material layer 3 Solid electrolyte layer 4 Positive electrode current collector layer 5 Negative current collector layer 6 (Common use) Current collector layer (Common use for positive electrode and negative electrode)
7 Insulator layer 9 Substrate 20 Series-connected n-layer cell (first embodiment)
20a Positive electrode tab 20b Negative electrode tab 30 Parallel-connected n-layer cell (first embodiment)
30a Positive electrode tab 30b Negative electrode tab 50 Series-connected n-layer cell (second embodiment)
50a Positive electrode tab 50b Negative electrode tab 50a ', 50a "Positive electrode tab 50b', 50b" Negative electrode tab 60 Parallel-connected n-layer cell (second embodiment)
60a Positive electrode tab 60b Negative electrode tab 80 Series-connected n-layer cell (third embodiment)
80a Positive electrode tab 80b Negative electrode tab 80a ', 80a "Positive electrode tab 80b', 80b" Negative electrode tab 90 Parallel-connected n-layer cell (third embodiment)
90a Positive electrode tab 90b Negative electrode tab

Claims (9)

リチウムイオンの吸蔵・放出が可能な正極活物質層及び負極活物質層と、それらの間にある電子伝導的に分離絶縁する機能を持つ固体電解質層と、それらの活物質層の直上及び直下で電流を集める機能を有する金属膜からなる正極側及び負極側集電体層とから構成される薄膜固体リチウムイオン二次電池を1つの電池セルとし、その電池セルを複数段重ねる多層積層構造の多層積層電池であって、
前記固体電解質層は、さらに隣接セル間の対電子伝導用絶縁膜となる前記機能と、前記集電体層(金属膜)は、上下隣接セルの活物質層間の対イオン伝導用絶縁膜となる機能とを利用して、前記正極及び負極活物質層の周辺を前記固体電解質層及び集電体層によりその周辺外側部位置で被覆絶縁し、さらに、その集電体層の前記外縁部を前記固体電解質層によりその外縁部外側部位置で被覆絶縁した積層構成とし、個々の前記電池セル間に新たな絶縁膜を用いることなく、前記複数段構造を一つの基板上に各層を順次積層して構成したことを特徴とする多層積層電池。
A positive electrode active material layer and a negative electrode active material layer capable of inserting and extracting lithium ions, a solid electrolyte layer having a function of electrically conducting separation and insulation between them, and a layer directly above and below the active material layer A thin-film solid-state lithium-ion secondary battery composed of a positive electrode side and a negative electrode side current collector layers made of a metal film having a function of collecting current is used as one battery cell, and the battery cells are stacked in a plurality of layers. A laminated battery,
The solid electrolyte layer further serves as an insulating film for electron conduction between adjacent cells, and the current collector layer (metal film) serves as an insulating film for counter ion conduction between active material layers of upper and lower adjacent cells. Utilizing the function, the periphery of the positive electrode and the negative electrode active material layer is covered and insulated at the peripheral outer position by the solid electrolyte layer and the current collector layer, and further, the outer edge of the current collector layer is A layered structure in which the solid electrolyte layer is coated and insulated at the outer edge portion outside position, and without using a new insulating film between the individual battery cells, the multi-stage structure is formed by sequentially stacking each layer on one substrate. A multilayer laminated battery, comprising:
リチウムイオンの吸蔵・放出が可能な正極活物質層及び負極活物質層と、それらの間にある電子伝導的に分離絶縁する機能を持つ固体電解質層と、それら活物質層の直上及び直下で電流を集める機能を有する金属膜からなる正極側及び負極側集電体層とから構成される薄膜固体リチウムイオン二次電池を1つの電池セルとし、その電池セルを複数n段重ねるn層セル構造の多層積層電池であって、
前記各電池セルを電気的に直列接続とする場合は、上下の電池セルで挟まれた前記集電体層(金属膜)が前記本来の前記機能に加えて直下層セルの負極(又は正極)活物質層と、直上層セルの正極(又は負極)活物質層とをイオン伝導的に分離絶縁する機能を合わせ持つことにより、前記上下の電池セルの集電体層を一つに兼用する兼用集電体層構造を備え、
一枚の基板上に、第1層セルを正極(又は負極)集電体層、正極(又は負極)活物質層、固体電解質層、負極(又は正極)活物質層、兼用集電体層の5層により順次集積形成層と、
第2層セルを前記兼用集電体層の上に正極(又は負極)活物質層、固体電解質層、負極(又は正極)活物質層、兼用集電体層の4層により順次集積形成層と、
同様に前記集積をn段重ねて第n層セルまでフォトレジスト工程を使用しないで全工程を集積形成層とする非フォトレジスト集積構造層を備え、
前記各層を順次非フォトレジスト集積構造とするに際し、前記基板上に各電池セルの必要とする所定面積の正極及び負極活物質層の外周縁に対して、正・負極及び兼用集電体層の外周縁はそれぞれ第1の所定巾だけ外側に張り出した構造層を備え、
前記正・負極及び兼用集電体層の外周縁に対して、前記固体電解質層の外周縁はそれぞれ第2の所定巾だけ外側に張り出した構造層を備え、
前記最下層の正極(又は負極)集電体層には電極端子用引出タブと、最上層の負極(又は正極)集電体層には電極端子用引出タブをそれぞれ備え、個々の電池セル間に新たな絶縁膜を用いることなく多段電池セルの多層構造を構成することを特徴とする多層積層電池。
A positive electrode active material layer and a negative electrode active material layer capable of inserting and extracting lithium ions, a solid electrolyte layer having a function of separating and insulating electronically conductive between them, and a current flowing directly above and below these active material layers An n-layer cell structure in which a thin-film solid lithium-ion secondary battery composed of a positive electrode side and a negative electrode side current collector layer composed of a metal film having a function of collecting A multi-layer laminated battery,
When the respective battery cells are electrically connected in series, the current collector layer (metal film) sandwiched between the upper and lower battery cells has a negative electrode (or a positive electrode) of the immediately lower cell in addition to the original function. By combining the active material layer and the positive electrode (or negative electrode) active material layer of the immediately upper layer cell with the function of ionically separating and insulating the same, the current collector layers of the upper and lower battery cells can also be used as one. With a current collector layer structure,
On one substrate, a first layer cell is formed of a positive electrode (or negative electrode) current collector layer, a positive electrode (or negative electrode) active material layer, a solid electrolyte layer, a negative electrode (or positive electrode) active material layer, and a dual-purpose current collector layer. 5 layers successively forming an integrated formation layer,
A second-layer cell is formed on the dual-purpose current collector layer by sequentially forming a positive electrode (or negative electrode) active material layer, a solid electrolyte layer, a negative electrode (or positive electrode) active material layer, and a dual-purpose current collector layer into an integrated formation layer. ,
Similarly, a non-photoresist integrated structure layer is provided in which the integration is performed by stacking n stages and the entire process is an integrated formation layer without using a photoresist process up to the nth layer cell,
In order to sequentially form the respective layers into a non-photoresist integrated structure, the outer periphery of a positive electrode and a negative electrode active material layer having a predetermined area required for each battery cell on the substrate, and a positive / negative electrode and a dual-purpose current collector layer. The outer peripheral edge is provided with a structural layer that protrudes outward by a first predetermined width.
With respect to the outer periphery of the positive / negative electrode and the dual purpose current collector layer, the outer periphery of the solid electrolyte layer includes a structural layer projecting outward by a second predetermined width, respectively.
The lowermost positive electrode (or negative electrode) current collector layer has an electrode terminal lead-out tab, and the uppermost negative electrode (or positive electrode) current collector layer has an electrode terminal lead-out tab. A multi-layer stacked battery comprising a multi-layered structure of multi-stage battery cells without using a new insulating film.
リチウムイオンの吸蔵・放出が可能な正極活物質層及び負極活物質層と、それらの間にある電子伝導的に分離絶縁する機能を持つ固体電解質層と、それら活物質層の直上及び直下で電流を集める機能を有する金属膜からなる正極側及び負極側集電体層とから構成される薄膜固体リチウムイオン二次電池を1つの電池セルとし、その電池セルを複数n段重ねるn層セル構造の多層積層電池であって、
前記各電池セルを電気的に並列接続とする場合は、上下の電池セルで挟まれた正極(又は負極)集電体層(金属膜)が前記本来の前記機能に加えて直下層セルの正極(又は負極)活物質層と、直上層セルの正極(又は負極)活物質層とをイオン伝導的に分離絶縁する機能を合わせ持つことにより、前記上下の電池セルの正極又は負極の集電体層を一つに兼用する正・負極集電体層構造を備え、
一枚の基板上に、第1層セルを正極(又は負極)集電体層、正極(又は負極)活物質層、固体電解質層、負極(又は正極)活物質層、負極(又は正極)集電体層の5層により、順次集積形成層と、
第2層セルを前記負極(又は正極)集電体層の上に負極(正極)活物質層、固体電解質層、正極(又は負極)活物質層、正極(又は負極)集電体層の4層により順次集積形成層と、
同様に、前記第1層セルの第1層を除く4層と、前記第2層セルの4層とを交互にn段重ねて第n層までフォトレジスト工程を使用しないで全工程を集積形成層とする非フォトレジスト集積構造層を備え、
前記各層を順次非フォトレジスト集積構造とするに際し、前記基板上に各電池セルの必要とする所定面積の正極及び負極活物質層の外周縁に対して、正・負極集電体層の外周縁はそれぞれ第1の所定巾だけ外側に張り出した構造層を備え、
前記正・負極電体層の外周縁に対して、前記固体電解質層の外周縁はそれぞれ第2の所定巾だけ外側に張り出した構造層を備え、
前記最下層の正極(又は負極)集電体層には電極端子用引出タブと、そのタブに合わせて、上層の正極(又は負極)集電体層の総てのそれぞれ引出しタブとを集積して接続し、
一方、負極(又は正極)集電体層には最下層から最上層まで、それぞれ前記正極(又は負極)端子線と重ならないような引出しタブを同一位置で集積して接続し、個々の電池セル間に新たな絶縁膜を用いることなく多段電池セルの多層構造を構成することを特徴とする多層積層電池。
A positive electrode active material layer and a negative electrode active material layer capable of inserting and extracting lithium ions, a solid electrolyte layer having a function of separating and insulating electronically conductive between them, and a current flowing directly above and below these active material layers An n-layer cell structure in which a thin-film solid lithium-ion secondary battery composed of a positive electrode side and a negative electrode side current collector layer composed of a metal film having a function of collecting A multi-layer laminated battery,
When each of the battery cells is electrically connected in parallel, a positive electrode (or negative electrode) current collector layer (metal film) sandwiched between upper and lower battery cells has a positive electrode of a directly lower cell in addition to the original function. The current collector of the positive or negative electrode of the upper and lower battery cells by having the function of ionically separating and insulating the (or negative electrode) active material layer and the positive (or negative electrode) active material layer of the immediately upper cell. Equipped with a positive / negative current collector layer structure that doubles as one layer,
On a single substrate, a first layer cell is formed of a positive electrode (or negative electrode) current collector layer, a positive electrode (or negative electrode) active material layer, a solid electrolyte layer, a negative electrode (or positive electrode) active material layer, and a negative electrode (or positive electrode) collector. With the five layers of the electric conductor layer, an integrated formation layer is sequentially formed,
A second layer cell is formed by forming a negative electrode (positive electrode) active material layer, a solid electrolyte layer, a positive electrode (or negative electrode) active material layer, and a positive electrode (or negative electrode) current collector layer on the negative electrode (or positive electrode) current collector layer. Layer by layer,
Similarly, the four layers except the first layer of the first layer cell and the four layers of the second layer cell are alternately stacked in n stages, and all processes are integrated up to the nth layer without using a photoresist process. A non-photoresist integrated structure layer as a layer,
When the respective layers are sequentially formed into a non-photoresist integrated structure, the outer peripheral edges of the positive / negative electrode current collector layer relative to the outer peripheral edges of the positive and negative electrode active material layers of a predetermined area required for each battery cell on the substrate. Each comprise a structural layer projecting outward by a first predetermined width,
With respect to the outer peripheral edge of the positive and negative electrode conductor layers, the outer peripheral edge of the solid electrolyte layer includes a structural layer projecting outward by a second predetermined width, respectively.
On the lowermost positive electrode (or negative electrode) current collector layer, a lead tab for an electrode terminal and all of the upper positive electrode (or negative electrode) current collector layers with the respective lead tabs are integrated in accordance with the tab. Connect
On the other hand, on the negative electrode (or positive electrode) current collector layer, from the lowermost layer to the uppermost layer, lead tabs which do not overlap with the positive electrode (or negative electrode) terminal line are integrated and connected at the same position, and each individual battery cell is connected. A multi-layer stacked battery comprising a multi-layered structure of a multi-stage battery cell without using a new insulating film in between.
リチウムイオンの吸蔵・放出が可能な正極活物質層及び負極活物質層と、それらの間にある電子伝導的に分離絶縁する機能を持つ固体電解質層と、それら活物質層の直上及び直下で電流を集める機能を有する金属膜からなる正極側及び負極側集電体層とから構成される薄膜固体リチウムイオン二次電池を1つの電池セルとし、その電池セルを複数n段重ねるn層セル構造の多層積層電池であって、
前記各電池セルをそれぞれ同一の積層順序構成としてn段重ね、多層積層電池を構成するに際し、個々の電池セル間にそれぞれ電気的に絶縁する絶縁体層を備え、
一枚の基板上に第1層セル、第2層セルからn段重ねて第n層セルまで、各層セル5層のn段の層に、セル層間の絶縁体層n−1を加えた5×n+(n−1)層をフォトレジスト工程を使用しないで全工程を集積形成層とする非フォトレジスト集積構造層を備え、
前記各層を順次集積して前記非フォトレジスト集積構造層とするに際し、前記基板上に各電池セルの必要とする所定面積の正極・負極集電体層及び正極・負極活物質層の外周縁に対して、固体電解質層の外周縁はそれぞれ第1の所定巾だけ外側に張り出した構造層を備え、
前記固体電解質層の外周縁に対して、前記絶縁体層の外周縁はそれぞれ第2の所定巾だけ外側に張り出した構造層を備え、
前記正極及び負極集電体層の外周縁部に設けた引出タブだけを絶縁層の外側に引出して配設し、その配設位置は集電体によりその位置を異ならせて集電体層構造層の周縁の複数箇所に設け、それらの引出タブの接続の組合せにより直列型、並列型、直並列型のいづれかの接続を選択できることを特徴とする多層積層電池。
A positive electrode active material layer and a negative electrode active material layer capable of inserting and extracting lithium ions, a solid electrolyte layer having a function of separating and insulating electronically conductive between them, and a current flowing directly above and below these active material layers An n-layer cell structure in which a thin-film solid lithium-ion secondary battery composed of a positive electrode side and a negative electrode side current collector layer composed of a metal film having a function of collecting A multi-layer laminated battery,
Each of the battery cells is stacked in the same lamination order in n stages, and when configuring a multilayer stacked battery, each of the battery cells includes an insulator layer that is electrically insulated between the individual battery cells,
N layers from the first layer cell and the second layer cell to n-th layer cells on a single substrate, and n-th layer of each layer cell; A non-photoresist integrated structure layer in which the × n + (n−1) layer is an integrated formation layer without using a photoresist process, and
When the respective layers are successively integrated to form the non-photoresist integrated structure layer, the outer peripheral edges of the positive electrode / negative electrode current collector layer and the positive electrode / negative electrode active material layer having a predetermined area required for each battery cell on the substrate. On the other hand, the outer peripheral edge of the solid electrolyte layer is provided with a structural layer projecting outward by a first predetermined width, respectively.
With respect to the outer peripheral edge of the solid electrolyte layer, the outer peripheral edge of the insulator layer includes a structural layer projecting outward by a second predetermined width, respectively.
Only the extraction tabs provided on the outer peripheral edges of the positive electrode and negative electrode current collector layers are drawn out of the insulating layer and arranged, and the arrangement positions are different depending on the current collector. A multilayer laminated battery provided at a plurality of locations on the periphery of a layer, wherein one of a series type, a parallel type, and a series-parallel type can be selected by a combination of the connection of the draw-out tabs.
前記絶縁体層を挟んで直上層の正極(又は負極)集電体層と直下層の負極(又は正極)集電体層のそれぞれの引出タブを周縁の同一な位置に上下対で設け接続し、また同様な他の引出タブを周縁の他の位置に上下対で設け接続し、最下層の正極(又は負極)集電体層には電極端子用引出タブと、最上層の負極(又は正極)集電体層には電極端子用引出タブをそれぞれ備え、直列型とすることを特徴とする請求項4記載の多層積層電池。The respective lead-out tabs of the positive electrode (or negative electrode) current collector layer immediately above and the negative electrode (or positive electrode) current collector layer immediately below the insulating layer are provided at the same position on the periphery in the upper and lower pairs and connected. Further, another similar pull-out tab is provided and connected at another position on the periphery in an upper and lower pair, and the lowermost positive electrode (or negative electrode) current collector layer has an electrode terminal pull-out tab and the uppermost layer negative electrode (or positive electrode). 5. The multi-layer laminated battery according to claim 4, wherein each of the current collector layers has a lead-out tab for an electrode terminal and is of a series type. 前記絶縁体層の外縁部から外側へ引出した集電体層の引出タブの中で、正極集電体層用引出タブをすべてその集電体周縁部の第1の同一位置に設け接続し、一方、負極集電体層用引出タブをすべて前記位置とは異なる前記周縁部の第2の同一位置に設け接続し、それぞれ電極端子用引出タブを備え並列型とすることを特徴とする請求項4記載の多層積層電池。Among the tabs of the current collector layer pulled out from the outer edge of the insulator layer to the outside, all the tabs for the positive electrode current collector layer are provided and connected at the first same position on the periphery of the current collector, On the other hand, all the lead-out tabs for the negative electrode current collector layer are provided and connected at a second same position on the peripheral portion different from the above-mentioned position, and each is provided with a lead-out tab for an electrode terminal to be a parallel type. 5. The multilayer laminated battery according to 4. リチウムイオンの吸蔵・放出が可能な正極活物質層及び負極活物質層と、それらの間にある電子伝導的に分離絶縁する機能を持つ固体電解質層と、それら活物質層の直上及び直下で電流を集める機能を有する金属膜からなる正極側及び負極側集電体層とから構成される薄膜固体リチウムイオン二次電池を1つの電池セルとし、その電池セルを複数n段重ねるn層セル構造の多層積層電池であって、
前記各電池セルをそれぞれ同一の積層順序構造としてn段重ね、多層積層電池を構成するに際し、個々の電池セル間にそれぞれ電気的に絶縁する絶縁体層と、さらに、最上部に絶縁体層を備え、
一枚の基板上に、第1層セル、第2層セルからn段重ねて第n層まで、各層セル5層のn段の層に、セル層間の絶縁体層nを加えた5×n+n層をフォトレジスト工程を使用しないで全工程を集積形成層とする非フォトレジスト集積構造層を備え、
前記各層を順次集積して、非フォトレジスト集積構造層とするに際し、前記基板上に各電池セルの必要とする所定面積の正極・負極集電体層及び正極・負極活物質層の外周縁に対して、固体電解質層の外周縁はそれぞれ第1の所定巾だけ外側に張り出した構造層を備え、
前記固体電解質層の外周縁に対して、その引出タブを含めて、前記絶縁体層の外周縁はそれぞれ第2の所定巾だけ外側に張り出した構造層を備え、
前記正極及び負極集電体の外周縁部に設けた引出タブだけを固体電解質層外側で且つ絶縁層の内側に引出して配設し、その配設位置は集電体によりその位置を異ならせて集電体層の構造層の周縁の複数箇所に設け、それらの引出タブにはそれぞれすべての絶縁層を貫通した接続用ビアホールを設け、ビアホールは金属電極を埋め込み接続可能とし、それらの接続の組合せにより直列型、並列型、直並列型のいづれかの接続を選択できることを特徴とする多層積層電池。
A positive electrode active material layer and a negative electrode active material layer capable of inserting and extracting lithium ions, a solid electrolyte layer having a function of separating and insulating electronically conductive between them, and a current flowing directly above and below these active material layers An n-layer cell structure in which a thin-film solid lithium-ion secondary battery composed of a positive electrode side and a negative electrode side current collector layer composed of a metal film having a function of collecting A multi-layer laminated battery,
Each of the battery cells is stacked in the same stacking order structure in n stages, and when configuring a multilayer stacked battery, an insulator layer that is electrically insulated between the individual battery cells, and further, an insulator layer on the top. Prepare,
5 × n + n obtained by adding an insulator layer n between cell layers to n layers of each layer cell from the first layer cell and the second layer cell to the nth layer on the single substrate, from the nth layer to the nth layer A non-photoresist integrated structure layer in which the layer is an integrated formation layer without using a photoresist step,
When the respective layers are sequentially integrated to form a non-photoresist integrated structure layer, the outer periphery of the positive electrode / negative electrode current collector layer and the positive electrode / negative electrode active material layer of a predetermined area required for each battery cell on the substrate is formed. On the other hand, the outer peripheral edge of the solid electrolyte layer is provided with a structural layer projecting outward by a first predetermined width, respectively.
With respect to the outer peripheral edge of the solid electrolyte layer, including the extraction tab, the outer peripheral edge of the insulator layer includes a structural layer projecting outward by a second predetermined width, respectively.
Only the extraction tabs provided on the outer peripheral edges of the positive electrode and the negative electrode current collector are drawn out outside the solid electrolyte layer and inside the insulating layer, and the arrangement positions are different depending on the current collector. Provided at multiple locations on the periphery of the structure layer of the current collector layer, their extraction tabs are provided with connection via holes that penetrate all the insulating layers, and the via holes are buried with metal electrodes and can be connected. Wherein the connection can be selected from a series type, a parallel type, and a series-parallel type.
前記絶縁体層を挟んで直上層の正極(又は負極)集電体層と、直下層の負極(又は正極)集電体層のそれぞれの引出タブを周縁部の同一な位置に上下対で設けすべての絶縁層を貫通したビアホールを介して金属電極で接続し、また同様な他の引出タブを周縁の他の位置を上下対で設け、すべての絶縁層を貫通したビアホールを介して金属電極で接続し、最下層の正極(又は負極)集電体層には電極端子用引出タブと、最上層の負極(又は正極)集電体層には電極端子用引出タブをそれぞれ備え、直列型とすることを特徴とする請求項7記載の多層積層電池。Lead-out tabs of the positive electrode (or negative electrode) current collector layer immediately above and the negative electrode (or positive electrode) current collector layer immediately below the insulating layer are provided at the same position on the peripheral edge in a vertical pair. Connected with metal electrodes through via holes penetrating all insulating layers, and other similar pull-out tabs are also provided at other positions on the periphery in upper and lower pairs, with metal electrodes through via holes penetrating all insulating layers. The lowermost positive electrode (or negative electrode) current collector layer is provided with an electrode terminal lead-out tab, and the uppermost negative electrode (or positive electrode) current collector layer is provided with an electrode terminal lead-out tab. The multilayer laminated battery according to claim 7, wherein 前記絶縁体層の外縁部の内側において、前記正極集電体層用引出タブをすべてその集電体周縁部の第1の同一位置に設け、すべての絶縁層を貫通したビアホールを介して金属電極で接続し、一方、負極集電体層用引出タブをすべて前記位置とは異なる前記周縁部の第2の同一位置に設け、すべての絶縁層を貫通したビアホールを介して金属電極で接続し、それぞれ電極端子用引出タブを備え、並列型とすることを特徴とする請求項7記載の多層積層電池。Inside the outer edge of the insulator layer, all the tabs for the positive electrode current collector layer are provided at the first same position on the peripheral edge of the current collector, and the metal electrode is connected via a via hole penetrating all the insulating layers. On the other hand, all of the tabs for the negative electrode current collector layer are provided at the second same position of the peripheral portion different from the above-mentioned position, and connected by metal electrodes through via holes penetrating all the insulating layers, The multi-layer stacked battery according to claim 7, wherein each of the stacked batteries is provided with a lead-out tab for an electrode terminal and is of a parallel type.
JP2002320435A 2002-11-01 2002-11-01 Multilayer layer built battery Pending JP2004158222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002320435A JP2004158222A (en) 2002-11-01 2002-11-01 Multilayer layer built battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002320435A JP2004158222A (en) 2002-11-01 2002-11-01 Multilayer layer built battery

Publications (1)

Publication Number Publication Date
JP2004158222A true JP2004158222A (en) 2004-06-03

Family

ID=32801342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002320435A Pending JP2004158222A (en) 2002-11-01 2002-11-01 Multilayer layer built battery

Country Status (1)

Country Link
JP (1) JP2004158222A (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004158307A (en) * 2002-11-06 2004-06-03 Nissan Motor Co Ltd Bipolar battery
JP2007305425A (en) * 2006-05-11 2007-11-22 Toyota Motor Corp Battery pack and vehicle
JP2008027659A (en) * 2006-07-19 2008-02-07 Toyota Motor Corp Battery pack
JP2008198492A (en) * 2007-02-13 2008-08-28 Namics Corp All solid secondary battery
JP2009502011A (en) * 2005-07-15 2009-01-22 シンベット・コーポレイション Thin film battery and method with soft and hard electrolyte layers
JP2009037965A (en) * 2007-08-03 2009-02-19 Hitachi Vehicle Energy Ltd Electrode sheet, group of electrodes, and lithium-ion battery
JPWO2008099468A1 (en) * 2007-02-13 2010-05-27 国立大学法人岩手大学 All solid state secondary battery
JP2010231969A (en) * 2009-03-26 2010-10-14 Seiko Epson Corp Solid secondary battery and method for manufacturing the same
JP2011008976A (en) * 2009-06-23 2011-01-13 Ulvac Japan Ltd Complex thin film battery
WO2011033702A1 (en) * 2009-09-17 2011-03-24 株式会社村田製作所 Intercellular separation structure and stacked solid secondary battery comprising same
CN102956868A (en) * 2011-08-24 2013-03-06 通用汽车环球科技运作有限责任公司 Battery design
CN103053061A (en) * 2010-08-09 2013-04-17 株式会社村田制作所 Layered solid-state battery
US8753770B2 (en) 2008-10-03 2014-06-17 Toyota Jidosha Kabushiki Kaisha Electrode body, all solid state battery element, and all solid state battery
US8755169B2 (en) 2009-09-30 2014-06-17 Semiconductor Energy Laboratory Co., Ltd. Electrochemical capacitor
JP2014241242A (en) * 2013-06-12 2014-12-25 新光電気工業株式会社 Battery and process of manufacturing the same
WO2015145783A1 (en) 2014-03-26 2015-10-01 株式会社日本マイクロニクス Multilayer secondary battery
US9190652B2 (en) 2010-08-09 2015-11-17 Murata Manufacturing Co., Ltd. Layered solid-state battery
US9401525B2 (en) 2009-03-20 2016-07-26 Semiconductor Energy Laboratory Co., Ltd. Power storage device and manufacturing method thereof
CN107180995A (en) * 2016-03-11 2017-09-19 日立金属株式会社 Bipolar cascade type all solid lithium secondary battery and its manufacture method
US9768467B2 (en) 2013-04-19 2017-09-19 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and a method for fabricating the same
JP2017183052A (en) * 2016-03-30 2017-10-05 Tdk株式会社 All-solid type secondary battery
JP2018129222A (en) * 2017-02-09 2018-08-16 パナソニックIpマネジメント株式会社 All-solid battery and method for manufacturing the same
CN110335982A (en) * 2019-07-28 2019-10-15 电子科技大学 A kind of micro-nano integrated Solid State film lithium cell and preparation method thereof
CN110731020A (en) * 2017-05-31 2020-01-24 Tdk电子股份有限公司 Energy storage device
CN111384448A (en) * 2018-12-29 2020-07-07 东泰高科装备科技有限公司 Flexible lithium ion battery and preparation method thereof
US20200373624A1 (en) * 2019-05-23 2020-11-26 Hyundai Motor Company All-solid-state battery having high energy density and method of manufacturing same
WO2021009959A1 (en) 2019-07-12 2021-01-21 パナソニックIpマネジメント株式会社 Battery
CN112803057A (en) * 2014-11-05 2021-05-14 24M技术公司 Electrochemical cell with semi-solid electrode and method of making same
CN113169373A (en) * 2018-12-06 2021-07-23 株式会社村田制作所 Solid-state battery
US11264641B2 (en) 2018-01-10 2022-03-01 Samsung Electronics Co., Ltd. All-solid secondary battery, multilayered all-solid secondary battery, and method of manufacturing all-solid secondary battery
US20220223920A1 (en) * 2021-01-13 2022-07-14 Honda Motor Co., Ltd. Electrode and secondary battery including the same
US11646437B2 (en) 2012-05-18 2023-05-09 24M Technologies, Inc. Electrochemical cells and methods of manufacturing the same
US11742525B2 (en) 2020-02-07 2023-08-29 24M Technologies, Inc. Divided energy electrochemical cell systems and methods of producing the same
US11831026B2 (en) 2015-06-18 2023-11-28 24M Technologies, Inc. Single pouch battery cells and methods of manufacture
US11888144B2 (en) 2011-09-07 2024-01-30 24M Technologies, Inc. Stationary semi-solid battery module and method of manufacture

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01105477A (en) * 1987-10-19 1989-04-21 Sumitomo Electric Ind Ltd Laminated lithium secondary cell
JPH09102302A (en) * 1995-10-04 1997-04-15 Yuasa Corp Battery electrode, its manufacture, and battery
WO2001059869A1 (en) * 2000-02-08 2001-08-16 Lg Chemical Co., Ltd. Stacked electrochemical cell
JP2002042863A (en) * 2000-07-28 2002-02-08 Japan Science & Technology Corp Thin-film solid lithium ion secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01105477A (en) * 1987-10-19 1989-04-21 Sumitomo Electric Ind Ltd Laminated lithium secondary cell
JPH09102302A (en) * 1995-10-04 1997-04-15 Yuasa Corp Battery electrode, its manufacture, and battery
WO2001059869A1 (en) * 2000-02-08 2001-08-16 Lg Chemical Co., Ltd. Stacked electrochemical cell
JP2002042863A (en) * 2000-07-28 2002-02-08 Japan Science & Technology Corp Thin-film solid lithium ion secondary battery

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004158307A (en) * 2002-11-06 2004-06-03 Nissan Motor Co Ltd Bipolar battery
JP2009502011A (en) * 2005-07-15 2009-01-22 シンベット・コーポレイション Thin film battery and method with soft and hard electrolyte layers
JP2007305425A (en) * 2006-05-11 2007-11-22 Toyota Motor Corp Battery pack and vehicle
WO2007132621A1 (en) * 2006-05-11 2007-11-22 Toyota Jidosha Kabushiki Kaisha Assembly battery, and vehicle
US7997367B2 (en) 2006-05-11 2011-08-16 Toyota Jidosha Kabushiki Kaisha Assembled battery and vehicle
JP4501905B2 (en) * 2006-07-19 2010-07-14 トヨタ自動車株式会社 Assembled battery
JP2008027659A (en) * 2006-07-19 2008-02-07 Toyota Motor Corp Battery pack
JP5717318B2 (en) * 2007-02-13 2015-05-13 ナミックス株式会社 All solid state secondary battery
JP2008198492A (en) * 2007-02-13 2008-08-28 Namics Corp All solid secondary battery
JPWO2008099468A1 (en) * 2007-02-13 2010-05-27 国立大学法人岩手大学 All solid state secondary battery
JP2009037965A (en) * 2007-08-03 2009-02-19 Hitachi Vehicle Energy Ltd Electrode sheet, group of electrodes, and lithium-ion battery
US8753770B2 (en) 2008-10-03 2014-06-17 Toyota Jidosha Kabushiki Kaisha Electrode body, all solid state battery element, and all solid state battery
US9590277B2 (en) 2009-03-20 2017-03-07 Semiconductor Energy Laboratory Co., Ltd. Power storage device and manufacturing method thereof
US9401525B2 (en) 2009-03-20 2016-07-26 Semiconductor Energy Laboratory Co., Ltd. Power storage device and manufacturing method thereof
JP2010231969A (en) * 2009-03-26 2010-10-14 Seiko Epson Corp Solid secondary battery and method for manufacturing the same
JP2011008976A (en) * 2009-06-23 2011-01-13 Ulvac Japan Ltd Complex thin film battery
WO2011033702A1 (en) * 2009-09-17 2011-03-24 株式会社村田製作所 Intercellular separation structure and stacked solid secondary battery comprising same
KR101338094B1 (en) * 2009-09-17 2013-12-06 가부시키가이샤 무라타 세이사쿠쇼 Intercellular separation structure and stacked solid secondary battery comprising same
JP5397475B2 (en) * 2009-09-17 2014-01-22 株式会社村田製作所 Inter-battery separation structure and laminated solid secondary battery including the same
US8895175B2 (en) 2009-09-17 2014-11-25 Murata Manufacturing Co., Ltd. Intercellular separation structure body and laminate type solid secondary battery provided with the same
US8755169B2 (en) 2009-09-30 2014-06-17 Semiconductor Energy Laboratory Co., Ltd. Electrochemical capacitor
CN103053061A (en) * 2010-08-09 2013-04-17 株式会社村田制作所 Layered solid-state battery
US9190652B2 (en) 2010-08-09 2015-11-17 Murata Manufacturing Co., Ltd. Layered solid-state battery
US9118068B2 (en) 2010-08-09 2015-08-25 Murata Manufacturing Co., Ltd. Layered solid-state battery
CN102956868A (en) * 2011-08-24 2013-03-06 通用汽车环球科技运作有限责任公司 Battery design
CN102956868B (en) * 2011-08-24 2016-08-03 通用汽车环球科技运作有限责任公司 Battery design
DE102012214839B4 (en) 2011-08-24 2018-07-05 GM Global Technology Operations, LLC (n.d. Ges. d. Staates Delaware) BATTERY ASSEMBLY WITH A MULTIPLE OF COMPOUNDS
US11888144B2 (en) 2011-09-07 2024-01-30 24M Technologies, Inc. Stationary semi-solid battery module and method of manufacture
US11646437B2 (en) 2012-05-18 2023-05-09 24M Technologies, Inc. Electrochemical cells and methods of manufacturing the same
US9768467B2 (en) 2013-04-19 2017-09-19 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and a method for fabricating the same
US11594752B2 (en) 2013-04-19 2023-02-28 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and a method for fabricating the same
US11923499B2 (en) 2013-04-19 2024-03-05 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and a method for fabricating the same
US11005123B2 (en) 2013-04-19 2021-05-11 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and a method for fabricating the same
US10319963B2 (en) 2013-06-12 2019-06-11 Shinko Electric Industries Co., Ltd. Battery and method for producing the same
JP2014241242A (en) * 2013-06-12 2014-12-25 新光電気工業株式会社 Battery and process of manufacturing the same
US9865859B2 (en) 2014-03-26 2018-01-09 Kabushiki Kaisha Nihon Micronics Stacked-type secondary battery
WO2015145783A1 (en) 2014-03-26 2015-10-01 株式会社日本マイクロニクス Multilayer secondary battery
US11611061B2 (en) 2014-11-05 2023-03-21 24M Technologies, Inc. Electrochemical cells having semi-solid electrodes and methods of manufacturing the same
JP2021144947A (en) * 2014-11-05 2021-09-24 24エム・テクノロジーズ・インコーポレイテッド24M Technologies, Inc. Electrochemical cell having semi-solid electrode and method of manufacturing the same
CN112803057A (en) * 2014-11-05 2021-05-14 24M技术公司 Electrochemical cell with semi-solid electrode and method of making same
US11831026B2 (en) 2015-06-18 2023-11-28 24M Technologies, Inc. Single pouch battery cells and methods of manufacture
CN107180995A (en) * 2016-03-11 2017-09-19 日立金属株式会社 Bipolar cascade type all solid lithium secondary battery and its manufacture method
JP2017183052A (en) * 2016-03-30 2017-10-05 Tdk株式会社 All-solid type secondary battery
JP7065323B2 (en) 2017-02-09 2022-05-12 パナソニックIpマネジメント株式会社 All-solid-state battery and its manufacturing method
JP2018129222A (en) * 2017-02-09 2018-08-16 パナソニックIpマネジメント株式会社 All-solid battery and method for manufacturing the same
CN110731020A (en) * 2017-05-31 2020-01-24 Tdk电子股份有限公司 Energy storage device
US11264641B2 (en) 2018-01-10 2022-03-01 Samsung Electronics Co., Ltd. All-solid secondary battery, multilayered all-solid secondary battery, and method of manufacturing all-solid secondary battery
CN113169373A (en) * 2018-12-06 2021-07-23 株式会社村田制作所 Solid-state battery
CN113169373B (en) * 2018-12-06 2024-04-19 株式会社村田制作所 Solid-state battery
CN111384448B (en) * 2018-12-29 2023-05-26 紫石能源有限公司 Flexible lithium ion battery and preparation method thereof
CN111384448A (en) * 2018-12-29 2020-07-07 东泰高科装备科技有限公司 Flexible lithium ion battery and preparation method thereof
US20200373624A1 (en) * 2019-05-23 2020-11-26 Hyundai Motor Company All-solid-state battery having high energy density and method of manufacturing same
WO2021009959A1 (en) 2019-07-12 2021-01-21 パナソニックIpマネジメント株式会社 Battery
CN110335982A (en) * 2019-07-28 2019-10-15 电子科技大学 A kind of micro-nano integrated Solid State film lithium cell and preparation method thereof
US11742525B2 (en) 2020-02-07 2023-08-29 24M Technologies, Inc. Divided energy electrochemical cell systems and methods of producing the same
US20220223920A1 (en) * 2021-01-13 2022-07-14 Honda Motor Co., Ltd. Electrode and secondary battery including the same

Similar Documents

Publication Publication Date Title
JP2004158222A (en) Multilayer layer built battery
JP5779828B2 (en) Electrode assembly having step, battery cell, battery pack and device including the same
KR101395017B1 (en) A Stepwise Electrode Assembly, and Battery Cell, Battery Pack and Device Comprising the Same
KR101395016B1 (en) A Stepwise Electrode Assembly, and Battery Cell, Battery Pack and Device Comprising the Same
KR101575984B1 (en) Electrode assembly having a good bondability of tab, battery cell and device comprising thereof
TWI504038B (en) Secondary battery
KR100509437B1 (en) Stacked type lithium secondary battery and its fabrication
JP6136026B2 (en) Electrode assembly comprising electrode units having the same overall width and different overall lengths, battery cell including the same, and device
TWI603524B (en) Stacked-type secondary battery
TWI546997B (en) Lithium ion secondary battery
KR20130118716A (en) Electrode assembly, battery cell and device comprising the same
CN102549808A (en) Intercellular separation structure and stacked solid secondary battery comprising same
JP5628456B1 (en) Solar secondary battery and manufacturing method thereof
WO2017195645A1 (en) Lithium ion secondary battery
KR20170116030A (en) Design for solid cells
CN107210453A (en) The design of solid state battery
WO2021103518A1 (en) Separator, battery combination, and electric device
JP2006134697A (en) Lithium-ion rechargeable battery
KR20210017086A (en) Electrode-assembly and manufacturing method thereof
KR100514214B1 (en) Stacked type lithium secondary battery with separated two films of separator and its fabrication
KR101666433B1 (en) Secondary battery and manufacturing method thereof
KR100514215B1 (en) Fabrication of stacked type lithium secondary battery with multiple row attachment
JPH10284138A (en) Electric charge storing part compounded battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090303