JP2004156818A - 高効率低温集熱パネルとその熱輸送システム - Google Patents

高効率低温集熱パネルとその熱輸送システム Download PDF

Info

Publication number
JP2004156818A
JP2004156818A JP2002321912A JP2002321912A JP2004156818A JP 2004156818 A JP2004156818 A JP 2004156818A JP 2002321912 A JP2002321912 A JP 2002321912A JP 2002321912 A JP2002321912 A JP 2002321912A JP 2004156818 A JP2004156818 A JP 2004156818A
Authority
JP
Japan
Prior art keywords
heat
temperature
solar
circulation path
hot water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002321912A
Other languages
English (en)
Other versions
JP3886045B2 (ja
Inventor
Haruki Sato
春樹 佐藤
Yuichi Yamaguchi
雄一 山口
Sukeyuki Hamada
祐行 濱田
Hiroki Kazuno
裕樹 数野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keio University
Original Assignee
Keio University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keio University filed Critical Keio University
Priority to JP2002321912A priority Critical patent/JP3886045B2/ja
Publication of JP2004156818A publication Critical patent/JP2004156818A/ja
Application granted granted Critical
Publication of JP3886045B2 publication Critical patent/JP3886045B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S90/00Solar heat systems not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/90Solar heat collectors using working fluids using internal thermosiphonic circulation
    • F24S10/95Solar heat collectors using working fluids using internal thermosiphonic circulation having evaporator sections and condenser sections, e.g. heat pipes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

【課題】自然エネルギーである太陽熱を効率的に利用する熱輸送システム、水供給システム、暖冷房・給湯などの建物環境制御システム並びに電子機器等の冷却デバイスを提供する。
【解決手段】集熱板101Aに太陽熱が加えられると、装置内が真空ポンプ105Hで減圧されているため、作動流体は低温で蒸発し蒸気となってヘッダー102Bへ移動する。また、集熱板銅管内では突沸現象が発生し、液および液に押し出された蒸気がヘッダーへと移動する。液はヘッダー下部から集熱板入口へと循環し、蒸気はヘッダー上部から凝縮器103Cへ移動し、循環式恒温槽104Dで温度制御された冷却水により凝縮される。凝縮液は再び集熱板入口へ移動し、液が循環される。このシステムでは装置内の非凝縮気体が排気されており、作動流体の蒸発温度を環境温度近くまで下げられる。作動流体は比較的低温の状態で循環するため、環境への熱損失を抑えることができる。
【選択図】図1

Description

【0001】
【発明の属する技術分野】
本発明は、高効率低温集熱パネルを用いた熱輸送システムおよびこの熱交換システムを用いた蒸留水製造システム、複合的暖冷房・給湯システム並びに冷却デバイスに関する。
【0002】
【技術の背景と従来技術】
人口の急増、地球環境の悪化に伴い、飲料用や農業用の水資源の汚染や不足は深刻な問題になっている。例えば、Kam,S.K. et al., Enviromental ManagementVol.28, No.4, 483−496 (2001) によると、バングラディシュ西部では、井戸水に砒素が混入しており、住民は有効な対策を殆ど受けられないまま摂取を余儀なくされ、皮膚などに疾患を持つ人々も少なくないことが記されている。安全な水を安定供給できる設備の開発と普及が急務である。
このような地域への水供給プラントとしては化石燃料の搬入や、電源設備などのインフラ整備が不十分なため、自律運転が可能な太陽熱利用蒸留器が好ましい。しかし、従来の太陽熱蒸留器はその蒸留性能や耐久性に難があり、広く普及した実績をもつ設備は無いのが現状である。
【0003】
一方、地球温暖化が深刻になり、エネルギー消費の低減、二酸化炭素の排出抑制が求められている。大気中の二酸化炭素濃度を調べると、人類が排出している二酸化炭素の量は自然界のバランスを保つことができる許容量を超えている。確かに、生活水準の向上により家庭におけるエネルギー消費量は年々増加しており、その対策として太陽熱、風力、地熱などの自然エネルギーの利用が進められてきている。中でも太陽エネルギーの利用に関しては、太陽光発電や給湯といった形でしか普及しておらず、経済性を考慮してもより有効なエネルギー利用が必要である。そして、一般の住宅における暖冷房・給湯に太陽エネルギーを適用できれば、地球温暖化の防止に大きく寄与できることは明らかである。
【0004】
太陽エネルギーを利用する淡水化装置およびその運転方法については、公表公報97/48646において提示されているが、そのシステムは太陽エネルギーを太陽熱集熱器中の熱媒である水により捕捉し、この熱を蒸発缶内の原水と熱交換させて蒸発缶内に水蒸気を発生させて凝縮器に導き、蒸留水を製造する方法である。この際、蒸発缶の内部を減圧状態にして水蒸気の発生を促進するようにしている。
【0005】
また、提示されている淡水化装置における蒸発缶には、多重効用関係の複数の蒸発缶と協働する凝縮器を備えることにより熱を効率的に捕捉するようになされており、構成の蒸発缶は、缶胴内に伝熱管を傾斜して配置し、伝熱管内で生成した凝縮水が滞留することなく排出されるようになされている。
【0006】
しかし、このように提示されている太陽熱を利用する淡水化装置においては、太陽熱集熱器中の熱媒である水により太陽熱が捕捉されるため媒体である水と外気との温度差が大きく、温度差が大きければ大きいほどエネルギー損失は大きくなるという問題点がある。したがって、熱媒である水温が高ければ、外気との温度差が大きくなりエネルギー損失が増大し、熱媒である水温が低ければサーモサイフォンシステムの作動が鈍るために蒸発缶への熱エネルギーの移送が減少するというジレンマが存在する。
【0007】
さらに、太陽熱集熱器で捕捉されたエネルギーは蒸発缶内に傾斜して配置されている缶胴の伝熱管で熱交換されるが、伝熱管の表面積は管の断面積と対比すると最小であるため効率的な熱捕捉をするには伝熱管の管径あるいは長さを大きくする必要があり、必然的に多重効用蒸発缶部は大きくなり、コンパクトな装置とは言い難い。
【0008】
【発明が解決しようとする課題】
このような状況に鑑みて、本発明の課題は、自然のエネルギー、特に太陽エネルギーの高効率低温集熱パネルを開発し、このパネルを用いた安価で耐久性のある効率的な太陽熱熱交換システムの開発とこの熱輸送システムを利用して輸送・運搬の容易なコンパクトな蒸留装置を確立すること、並びに同様の原理に基づくパネルを用いた効率的な暖房給湯システム、太陽熱等負荷削減システムそしてコンピューター等の電子機器用冷却デバイスを確立することである。
【0009】
【課題を解決するための手段】
本発明者らは、上記課題について鋭意研究した結果、温度を低く保ちながら集熱するパネルを得ることができ、この集熱パネルを用いて太陽熱の何倍も水の蒸発潜熱として利用できる、すなわち、多重効用といって一度集熱した太陽熱を何回も蒸発・凝縮のサイクルで使う蒸留器を開発した。
そして、このパネルを利用する新しい方法として太陽熱を利用した太陽光集熱熱交換器を暖房・給湯システムに適用した。これによりソーラーパネルを介して、暖房・給湯への太陽エネルギー利用が可能となり、こうしたソーラーシステムとヒートポンプ等を複合化したシステムを発明し、住宅における暖房・給湯需要に対するエネルギー供給シミュレーションにより完成して前記課題が解決されることを見いだし本発明を完成した。
さらに、パネルの低温集熱能力が高いことから、熱負荷を削減することで必要な環境を提供できる。住宅に用いることで、夏季の屋根や壁の太陽熱を効率的に熱輸送することで熱負荷を削減でき、並びに小型化することでコンピューター等の各種電子機器用冷却デバイスとして、エネルギー消費のないシステムが可能である。パネルが数℃の小さな温度差で稼働することを実験的に明らかにしており、本発明を完成した。
(1) 熱媒体循環経路を減圧にして気液両状態の熱媒体を利用し、かつ循環経路を備えたことを特徴とする低温集熱熱輸送システム。
(2) 熱媒体循環経路を減圧にして気液両状態の熱媒体を利用し、かつ循環経路を備えた低温集熱熱輸送システムと多重効用型減圧蒸留器を用いたことを特徴とする太陽熱利用多重効用型減圧蒸留システム。
(3) 熱媒体循環経路を減圧にして気液両状態の熱媒体を利用し、かつ循環経路を備えた低温集熱熱輸送システムを用いたことを特徴とする複合的暖房・給湯システム。
(4) 多重効用型減圧蒸留器の熱交換器の伝熱板としてハニカム型構造した傾斜平板熱交換器を用いることを特徴とする(2)記載の太陽熱利用多重効用型減圧蒸留システム。
(5) 多重効用型減圧蒸留器が集熱板、蒸発部、凝縮部、蒸留水槽、原水槽、真空ポンプからなることを特徴とする請求項2記載の太陽熱利用多重効用型減圧蒸留システム。
(6) (1)記載の低温集熱熱輸送システム、貯湯槽、蓄熱槽、給湯用ヒートポンプ、空調用ヒートポンプとからなることを特徴とする(3)記載の複合的暖房・給湯システム。
(7) 熱媒体循環経路を減圧にして気液両状態の熱媒体を利用し、かつ循環経路を備えた低温集熱熱輸送パネルを用いたことを特徴とする電子機器用冷却デバイス。
(8) 熱媒体循環経路を減圧にして気液両状態の熱媒体を利用し、かつ循環経路を備えた低温集熱熱輸送パネルを用いたことを特徴とする太陽熱等負荷削減システム。
【0010】
【実施の態様】
温度を低く保ちながら集熱するパネルは、通常の集熱ソーラーパネルの水を少し抜いて真空ポンプで空気を抜き減圧する。このようにすると下記の特徴が生ずる。
(1)太陽光がパネルに少しでも当たるとパネル内の水はすぐに沸騰して、わずかな温度差で潜熱として多くの熱量が凝縮部に運ばれる。太陽の入力熱量はまさに天候次第であるので、この特徴は重要である。
(2)環境温度付近で集熱することから、集熱効率はほぼ100%となる。凝縮部の温度が環境温度よりも低温である場合は、環境からも付加的に集熱できることから太陽熱以上の熱を集熱することもある。
(3)また、集熱温度が環境温度に近いので断熱しなくても熱損失は小さい。
【0011】
この減圧蒸発を利用した高効率熱輸送システムの機構を図1で示し、以下に説明する。集熱板101Aに太陽熱が加えられると、装置内が真空ポンプ105Hで減圧されているため、作動流体は低温で蒸発し蒸気となってヘッダー102Bへ移動する。また、集熱板銅管内では突沸現象が発生し、液および液に押し出された蒸気がヘッダーへと移動する。液はヘッダー下部から集熱板入口へと循環し、蒸気はヘッダー上部から凝縮器103Cへ移動し、循環式恒温槽104Dで温度制御された冷却水により凝縮される。凝縮液は再び集熱板入口へ移動し、液が循環される。このシステムでは装置内の非凝縮気体が排気されており、作動流体の蒸発温度を環境温度近くまで下げられる。作動流体は比較的低温の状態で循環するため、環境への熱損失を抑えることができる。また、熱輸送に水の潜熱を利用しているので多量の熱量を輸送することができる。
【0012】
一方、蒸留器本体は直方体で、屏風状の伝熱板で上部が蒸発部、下部が凝縮部に仕切られている一体型の図2に示す構造とした。この伝熱板は、傾斜平板熱交換器であり、段ボールと同じ構造で、容積と対比して伝熱面積を大きくして効率的な熱伝達を達成できるばかりか蒸留器に加わる負圧に対する補強材でもある。この段ボール状のハニカム構造をサインカーブとする波型にしても同様の効果を期待できる。このように集熱部・蒸発部の液面を在来機より大幅に増やし、蒸発促進を図るようにしている。
この補強作用により、平板状の多面積を確保できることとなり、多段状に積み重ねて省スペースで小型がになるとともに、上下の蒸留器を連結するパイプを短くすることができ、全体の効率性を向上させることができるものである。
【0013】
次に、この高効率低温集熱ソーラーパネルを用いた太陽熱利用多重効用減圧蒸留器を図3に示す。密閉した蒸留器に原水を入れ、その飽和蒸気圧力まで真空排気すると、この原水はわずかな熱入力でも沸騰・蒸発し、より低温・低圧の凝縮部へと移動する。減圧式蒸留器は、あらかじめ系内部を減圧することで、環境温度付近での蒸留が可能となるため、熱損失が小さい。さらに、蒸気が凝縮する際に生じる潜熱を再利用する多重効用型へと応用することができる。
減圧蒸留器は、単段でも太陽熱を効率よく利用して蒸留することができるが、集熱板における輻射などの回収困難な損失や、装置自体の費用対効果を考える上で、収量増加のための多重効用化は必要不可欠である。
【0014】
本研究で開発した減圧蒸留器は非常に高い蒸留性能をもち、耐久性にも優れている。この蒸留器に利用されているサーモサイフォンシステムは水を作動流体としているが、系内が減圧されているのでソーラーパネルで集熱された熱量を低温で効率よく輸送できる。また、より低温の冷却水を用いることでパネル温度を下げる冷却効果も期待できる。
【0015】
凝集部・冷却部・蒸発部を一体化し、部品点数と熱損失の削減を意図している。
蒸気の流動抵抗を減らすために、蒸発部と凝縮部との間の距離を短くし、原水の飛沫同伴対策にはデミスタではなく返し板を用いた。熱交換器として、安価な鉛直平板を採用し、部材を限界まで薄くして軽量化を図った。
【0016】
この太陽熱蒸留装置の特徴としては、
(1)海水淡水化を目的としてデザインされているので大型化が可能である。
(2)蒸発器内の洗浄が可能である。
(3)自律システムである。
(4)消耗品がほとんどない。
(5)維持管理が簡単である。
(6)真空脱気および太陽光が入らない構造であるから、海水の生物の発生を防げる。
【0017】
更にもう一つの利用法としては、暑さを凌ぐ屋根としての利用である。夏は木の葉が影をつくることで涼しい場所を確保することができる。木を植えることができない空間や住宅の屋根に、このパネルを置くことにより、ある程度の涼しい空間を提供できる。ビルや家屋等の建物の壁体や屋根体等として建築部材の一部の使用すると建物内部の温度上昇を緩和でき、又、外部への輻射等の熱放射を減少でき、環境に負荷の小さい建物を提供できる。
住宅に応用すれば冷房負荷を低減でき、商店街に応用すれば、商店の冷房負荷低減にも寄与し、商店街に自然な快適空間を提供できる可能性がある。新宿や渋谷の商店街に設置すれば、ヒートアイランドへの対策としても役立つ。公園の休憩施設、公衆トイレ、駅や停留所などの屋根に応用することも有効である。
【0018】
凝縮部の冷却は、冷却塔も応用できるが、水道をそのまま利用するなどの方法も考えられる。一方、高温用途にも利用できて便利である。
凝縮部の温度が上昇すると、パネル内部はその温度の水の飽和蒸気圧力となり、蒸発部と凝縮部に水を循環させることで水温は徐々に高くなる。この場合は一般の集熱パネルと同様の効率になると思われる。したがって、一般の給湯用集熱パネルにも低温用集熱パネルとしても、両方に利用できる点も特徴として挙げることができる。
また、このパネルの熱輸送特性向上および水の循環用動力という点で、もう一つの大きな特徴がある。それは、パネル内の減圧下の水に熱エネルギーを与えたとき、とても激しい沸騰が起こり、パネル内で水が飛ばされ自動的に循環が生じる。パネル配管内の内壁が常に濡れる結果にもなり、強制対流効果とともに伝熱が促進されるという点である。
【0019】
そこで、太陽エネルギーを効率よく集熱可能なソーラーパネルを利用して暖房・給湯への太陽エネルギーの利用が可能となる。このようなソーラーシステムとヒートポンプ等を複合化したシステムを発明し、住宅における暖房・給湯需要に対するエネルギー供給シュミレーションによってその有効性を確認した。
【0020】
暖房・給湯システムのシステムダイアグラムは、図4に示すようにソーラーパネル401A、貯湯槽402B、蓄熱槽403C、給湯用ヒートポンプ404D、空調用ヒートポンプ405Eからなるシステムで、分散化電源や床暖房は地域により必要になる。
各構成機器の詳細を以下に述べ、仕様一覧を表1に示す。図4に示している分散化電源や床暖房は地域によっては必要となるが、本報ではシステムに取り込んでいない。システム構成について次に説明する。
(1)ソーラーパネル401A
蒸発部(ソーラーパネル)と凝縮部からなる閉じた系を、飽和蒸気圧力付近まで減圧することで作動流体(水等)の沸点を降下させる。蒸発部へのわずかな熱入力によって作動流体を蒸発させ、蒸発部と凝縮部のわずかな圧力差により蒸気が凝縮部に移動する。これにより、潜熱として多量の熱をすみやかに凝縮部へ高効率に熱輸送することが可能となる(2)。これを減圧蒸発法と呼ぶ。減圧蒸発法を用いることで、大気温度付近で熱輸送が可能となるため、環境への熱損失も小さく、パネル温度も比較的低く抑えることができるため、太陽電池と組み合わせたハイブリッド化も期待できる。
本シミュレーションにおいて減圧蒸発法における潜熱輸送を制御するために、蒸発側と凝縮側との相互作用を記述した式(1)(2)を作成した。これにより、日射量が入力として与えられた時、ある程度以上の圧力差が存在するときに潜熱輸送が行われ凝縮部に熱を与え、十分な圧力差がないときは顕熱として集熱板の温度上昇に使われる制御を行った。
・パネル温度上昇に使われる場合
Pe < Pc +△P 式(1)
→ パネルの温度上昇のため、蒸発側の圧力が上昇
・潜熱輸送が行われる場合
Pe >Pc +△P 式(2)
→ 凝縮側への熱入力により、凝縮側の圧力が上昇
蒸発側の圧力をP、凝縮側の圧力をP、蒸発部―凝縮部間の圧力損失分をΔPとする。本例ではΔPを蒸発側が凝縮側温度よりも2 ℃高い温度での飽和蒸気圧力になるように設定した。もっと高温とすることもできるが、低温度差でも蒸発することができ、実用上とても有利な点である。
ソーラーパネルは蓄熱と暖房の2つの効果を得る役割を担っている。その他にも日射遮蔽効果による冷房負荷の低減や積雪時の融雪効果等もある。
減圧蒸発法では凝縮能力の大きさが性能を支配しており、凝縮部の慎重な設計が重要である。本システムでは凝縮部の冷却手段として水と空気の2つの媒体がある。凝縮部内部に配管を通し、その内部に蓄熱槽内の水を循環させ、蒸発部から流入する蒸気とのわずかな温度差で凝縮する。凝縮潜熱を受けた循環水は貯湯槽を経由し熱交換した後(経由しない場合もある)、蓄熱槽に戻り蓄熱される。一方、凝縮部外側をファンを用いて外気による強制冷却効果により蒸気を凝縮させる。この際に凝縮潜熱を得て温められた空気が暖房利用できる場合には室内に取り込み暖房する。
この他にも、ソーラーパネルと屋根との間にある空気層の熱をファンにより室内に取り込むことで暖房として利用することを可能となる。
(2)貯湯槽402B
給湯需要に対する供給は貯湯槽から行われる。
貯湯槽の加熱手段としては凝縮部―蓄熱槽間の循環水の熱を熱交換することで得られる分と、給湯用のヒートポンプによる加熱分とがある。
制御は、例えば、深夜(2時〜5時)に約300 Lの湯を60℃にまで加熱する運転を行い、それ以外の時間帯は常時、約200 Lの湯を60℃に保つような運転を行う。
(3)蓄熱槽403C
凝縮部へ蓄熱槽内の水を循環させ、太陽熱を得て蓄熱槽に戻り蓄熱する。効率的に熱交換(凝縮)させるために、ソーラーパネルの温度により流量を変化させた(最大25 L/min)。また、日射がない場合は水の循環を停止する。暖房・給湯需要がない場合でも、蓄熱の必要がある場合は循環させ蓄熱させた。
蓄熱槽に蓄えられた熱は、各ヒートポンプの熱源としても利用される。また、環境水温よりも高い水温で蓄熱している場合は、貯湯槽へ供給することで給湯負荷の低減を図ることが可能である。また、水量は常に5 mを蓄えるように市水から給水する。貯湯槽同様、蓄熱槽内は完全混合されるとし温度成層はないものとした。
(4)ヒートポンプ(空調用・給湯用)(404D,405E)
空調用はより高いCOP(成績係数)で運転可能な熱源は限定されないが空気熱源、水熱源が実用上容易である。給湯用は水熱源とした。
図5に過熱度8 ℃、サブクール度5 ℃、圧縮機効率を65%とした理論計算に基づくCOP特性を示す。本シミュレーションでは図5のCOP特性を用い、蒸発部、凝縮部それぞれの熱交換時に10℃の温度差を考慮して計算した。
【0021】
【実施例1】
減圧蒸発を利用した高効率低温集熱熱輸送パネルの熱輸送特性を検討する室内実験装置の概要を図6に示す。本実験装置は主に集熱板601A、ヘッダー602B、凝縮器603C、冷却箱付きビユレット604D、給水槽605E、循環式恒温槽606F、微少流量ポンプ607Gから構成されている。ヘッダーと凝縮器とを繋ぐ配管は、距離を短くし、太くすることにより流動抵抗が小さくなるように配慮した。
a)集熱板601A
集熱板はアルミニウム製の集熱プレート及びリン酸銅管製の通水管(φ9.52 xt0.4)から構成されている。1枚の集熱板の面積は 0.12 m であり、熱源として、この集熱板にラバーヒーターを圧着して断熱材で覆っている。
b)ヘッダー602B
ヘッダーはステンレス製で外形が三角柱のようになっている。内部は気液の分離循環経路となっている。集熱板での突沸現象による液体飛沫が凝縮部へ移動できないように邪魔板が取り付けられており、蒸気のみが凝縮器へ移動し凝縮する。凝縮した純水の質量により、樹発熱を用いて熱移動量を求めることが可能となる。
c) 凝縮器603C
凝縮部は円筒の銅配管(φ150×t 3)の中に1/4 inch管の銅管約7 mが螺旋状に封入されている。凝縮能力は、入力熱量1 kW/mの条件において蒸発部と凝縮部の温度差が1 °C以内となるのに十分な能力となるよう銅管長さを設計した。
作動原理は下記の通りである。
集熱板601Aにヒーターの熱が加えられると、装置内が減圧されているため、作動流体は低温で蒸発し蒸気となりヘッダー602Bに移動する。また、集熱板銅管内では突沸現象が発生し液及び液に押し出された蒸気がヘッダーへと移動する。液はヘッダー下部から集熱板入口へと循環し、蒸気はヘッダー上部から凝縮器603Cへ移動し、循環式恒温槽606Fで温度制御された冷却水により凝縮される。凝縮液は再び集熱板入口へ移動し、液が循環される。このシステムでは装置内の非凝縮気体が排気されており、作動流体の蒸発温度を環境温度近くまで下げられる。作動流体は比較的低温の状態で循環するため、環境への熱損失を抑えることができる。また熱輸送に水の潜熱を利用しているので多量の熱量を輸送できる。
試験方法では、装置内に作動流体である水を封入し、冷却水を凝縮器および冷却箱付きビュレットの周りに流す。真空ポンプを用いて真空排気した後、各温度、圧力が安定するまで待つ。その後、ヒーターで定量の熱量を与えると同時に測定を開始する。測定を開始してから2時間後に冷却箱付きビュレットにて潜熱による熱移動量を測定し、突沸によりヘッダーから移動した液体量も測定する。
熱電対による測定対象および測定箇所は、集熱板における銅管表面を流れ方向に40 mm毎26点、集熱板への流入口直前1点、凝縮器の流出口1点、凝縮器への冷却液流入口および流出口各1点、集熱板表面4点、集熱部表面2点である。圧力計をヘッダー上部に取り付け、装置内圧力を測定している。蒸発温度は、水の国際状態方程式(A. Pruβ and W. Wagner., Eine neue Fundamentalgleichung fur das fluide Zustandsgebiet von Wasser fur Temperaturen von der Schmelzlinie bis zu 1273 K bei Drucken bis zu 1000 MPa, Fortshr.−Ber. VDI 6, No. 320 (VDI, Dusseldorf, 1995); 1999年日本機械学会蒸気表, (1999).)を用いて装置内圧力から計算した。今回行った試験条件を表1に示す。
表1 実験条件
Figure 2004156818
以上の実験の結果をまとめると、
a) 各測定について
実験で得られた結果で入力熱量400 W/m、冷却水温度20 °Cの条件で封入率50%を図7から図9に、封入率75%を図10から図12に示した。図7と図10は集熱板中央に位置する銅管表面の最上端、最下端および流入口直前の温度、凝縮器出口温度、集熱器表面温度、環境温度と測定開始からの時間との関係を示したものであり、図8と図10は集熱板最下端からの銅管表面温度と測定時間、図9と図12は銅管表面5点の167分から177分までの温度分布を示したものである。図7と図10より測定開始から約60分後に各温度が安定し、定常状態では常に集熱板最上端温度よりも集熱板最下端温度の方が高い。また、封入率50%と比較して75%の方が集熱板最上端温度及び最下端温度が低く、温度変動の幅が小さく安定している。次に図8と図11より銅管表面温度は、蒸気側より液側の温度が高い。図9と図12では、封入率50%、75%ともに各測定温度がある一定の割合で上昇し、降下するという挙動が確認された。
これらの結果は、ヒーターの入力熱量により銅管内温度が上昇し、表面の微細なくぼみで発生した気泡が離脱し、急激にパイプの内径いっぱいに膨張し、上方の液層が膜のように薄くなったころで気泡は破裂する、という突沸現象が起因している。突沸により液体が押し上げられ蒸気側は液の薄膜ができ、同時に液が蒸発し潜熱が奪われるので、蒸気側温度が急激に降下し、液側に比べ温度が低いと思われる。また液側は水の存在により蒸気側に比べて温度上昇率が低いが、突沸により集熱板内の液がヘッダーへ移動し、環境温度付近の液が集熱板に循環し、液温度が降下していると思われる。さらに、50%では約3分に1回突沸が発生し、液18gが移動している。それに比べ75%では1分間に4、5回発生しており1回の突沸で液4gが移動し、安定して突沸が発生しているので温度変動が小さいと考えられる。
また、図8と図11で液側の温度分布は弧の形で中央部分が最も温度が高く封入率50%より75%の方が温度分布は安定しているが、液側の最高温度が高いことが分かる。これは、循環している作動流体の水が、集熱板最下端から流入されると、銅管内は一定の熱量が入力されているので、上部へ移動するほど銅管表面及び液の温度は上昇する。しかし蒸発面付近では、頻繁に沸騰が行われており、入力された熱が潜熱として蒸発に使われるので、蒸発面へ移動するほど銅管表面及び液が冷やされて温度が降下していると思われる。
冷却水温度20 ℃では初期圧力は2.1 kPaであり、実験開始後すぐに2.3 kPaまで上昇し、測定中は2.3 kPaで安定しており、凝縮器の凝縮能力が十分であることが確認された。
b) 成績係数
以下に成績係数ηを求める式(3)を示す。
式(3)
Figure 2004156818
η:成績係数 Teva:蒸発温度 [℃] :蒸留質量 [kg/s]
in:集熱板流入口への直前温度 [℃]
(T):定圧比熱 [kJ/(kg・K)] Qin:入力熱量 [W]
Δh:蒸発温度における蒸発潜熱 [kJ/kg](5)
式(3)を用いて図13に封入率50%での冷却水温度の違いによる成績係数の比較を示し、図14に冷却水温度20 ℃での封入率の違いによる成績係数の比較を示した。冷却水温度が25 ℃と比較して20 ℃の方が各入力熱量において成績係数が高いことが分かる。これは冷却水温度が25 ℃の条件では、環境温度が25 ℃のためヘッダー内でも凝縮が行われていて、凝縮器に移動する蒸気量が少ないことが考えられる。冷却水温度が20 ℃の場合には、冷却水が環境温度よりも低温であることから、環境からも熱を吸収して全体的に高効率であることが分かる。多くの場合で成績係数は1を超えている。また、突沸により蒸気側の銅管表面は液の薄膜が存在しているため、蒸発面からだけではなく、蒸気側銅管内表面からも蒸発が行われていることが考えられる。また、突沸でヘッダー内に残った液が蒸発し、ヘッダー下方の液溜まりでも蒸発が行われていることが考えられる。さらに、突沸により蒸気がヘッダーを通して凝縮器へ押し出されるため、蒸気速度が速くなることも考えられる。
封入率の違いによる成績係数の違いは見られなかったが、50%に比べて75%のほうが安定していることが明らかになった。
以上の結果から、下記の結論が得られた。
(1)減圧蒸発を用いたソーラーパネルに関して冷却水温度20 ℃の条件で90%以上の効率が得られた。
(2)封入率の違いにより突沸の発生率が異なり、それにより集熱板の温度分布が決定される。
【0022】
【実施例2】
太陽熱利用多重効用減圧蒸留器では、密閉した蒸留器に原水を入れ、その飽和蒸気圧力まで真空排気すると、この原水はわずかな熱入力でも沸騰・蒸発し、より低温・低圧の凝縮部へと移動する。減圧式蒸留器は、あらかじめ系内部を減圧することで、環境温度付近での蒸留が可能となるため、顕熱損失が小さい。さらに、蒸気が凝縮する際に生じる潜熱を再利用する多重効用型へと応用することができる。
なお、蒸留性能の評価には、蒸留の効率を示す蒸留成績係数(COPD)および水の導電率(EC)を用いている。COPDの定義式(4)は下記のとおりである。
式(4)
Figure 2004156818
L [kJ・kg−1] : 蒸発潜熱
ΣMout [kg・m−2・day−1] : 蒸留収量
ΣQin [kJ・m−2・day−1] : 傾斜面全天日射量
操作方法を以下に示す。
(1)集熱部・蒸発部・原水槽へ原水を注入。
(2)密閉して原水の飽和蒸気圧力まで真空排気。
(3)日の出とともに各部の温度・圧力を測定。
(4)適宜、蒸留器内部を真空排気。
(5)運転終了後、蒸留器を大気開放して、蒸留水の収量と電気伝導率を測定。
減圧式蒸留器は、単段でも太陽熱を効率よく利用して蒸留することができる。
集熱板における輻射などの回収困難な損失や、装置自体の費用対効果を考えるうえで、収量増加のための多重効用化を図り、新たに小型2段式蒸留器を開発した。
主な設計は、
(1)蒸発部・凝縮部・冷却部を一体化し、部品点数と熱損失の削減をした。
(2)蒸気の流動抵抗を減らすため、蒸発部と凝縮部との間の距離を短くし、原水の飛沫同伴対策にはデミスタではなく返し板を用いた。
(3)熱交換器として、安価な鉛直平板を採用した。
(4)部材を限界まで薄くして軽量化を図った。
とりわけ、設計において重要となるのは熱交換器の伝熱性能である。
2段式蒸留器の概略を図15に示す。本システムは集熱板1501A、蒸発部1502B、凝縮部1503C、蒸留水槽1504D、原水槽1505E、真空ポンプ1506F、冷却水循環ポンプ1507G、日射計1508H、圧力計1509J、熱電対1510K、データロガー1511Lで構成される。系の最終冷却部である原水槽では、循環ポンプを用いて冷却水を最終冷却部の上部へ放水し、伝熱を促進させた。また、冷却部の水を循環させることで、冷却部温度成層を少なくしている。原水の飛沫が凝縮部へ入ることを防ぐため、蒸気流路に返し板を設置している。
系内部を減圧するための真空ポンプには、油回転式真空ポンプ(200 W, 到達圧力6.7×10−2 Pa)とダイアフラム式真空ポンプ(150 W, 到達圧力1 kPa)の2種類を用いた。原水の初期水温が低い冬季には、より低圧まで排気できる前者が有利であるが、オイルフィルトレーション装置の追設、定期的なポンプオイルの交換が必要で、後者のほうが保守は容易である.
各部の容量は、1段目原水18 L蒸気30 L、2段目原水47 L蒸気42 Lで、約20分で真空排気できる。
本装置を用いた実機試験を、2001年11月 ̄2002年1月、ならびに2002年7月に行った。16に、2002年7月12日の運転における日射量および各部の温度の変化を示す。日射の増加に伴い、各段が2 ̄3 °Cの温度差を確保したまま蒸留が行われている。これは、飽和状態における水の温度差が、そのまま圧力差として作用し、蒸気がより低温・低圧である凝縮部へ絶えず移動していることを意味する。しかし、午後になると日射が減り始め、原水槽の温度が上昇して温度差は解消してしまう。
すべての実機試験結果をUdaらの2段式蒸留器[3]とともにプロットしたのが図17である。本装置の蒸留性能は、Udaらの水平円管群を用いた蒸留器に対し、同等もしくは若干劣る程度の蒸留性能であった。
ダイアフラム式真空ポンプを用いた場合に蒸留性能が低いのは、原水を飽和状態まで減圧することができず、蒸発温度が上がって熱損失を生じるからである。
【0023】
【実施例3】
小型2段式蒸留器およびガラス製屋内実験装置の実験結果を踏まえ、低コストでより高性能な蒸留システムを開発するため、以下の目標を設定し、多重効用型減圧蒸留器の設計・製作を行った。
(1)蒸留器本体の構造をさらに簡素化し、大型3段式蒸留器(Nishikawaら, 1997)に近い蒸留性能10 kg・m−2・day−1を経済的に達成する。
(2)大量生産に適し、ニーズに合わせた規模の製作が容易なデザインとする。
(3)ガラス製の屋内実験装置で確認された知見を活かし、凝縮能力を大きくとり、さらにそれを最大限に引き出す構造を検討する。
(4)真空に近い条件での使用となるため、軽量かつ負圧に強い構造にする。
多重効用減圧蒸留器の構造を図18に示す。蒸留器本体の構造は図2に示したとおりである。
多重効用型減圧蒸留器としての基本的な原理や周辺機器については、従来の蒸留システムをほぼ踏襲した。一方で蒸留器本体は直方体で、屏風状の伝熱板で上部が蒸発部、下部が凝縮部に仕切られている一体型の構造に改良した。
この伝熱板は、傾斜平板熱交換器であり、段ボールと同じ構造で、蒸留器に加わる負圧に対する補強材でもある。傾斜平板の有効伝熱面積は2.9 mと在来機(小型2段式蒸留器、本研究)の2倍以上の伝熱性能を有し、なおかつ2段式蒸留器で問題となっていた運転時の負圧による変形をほぼ完全に抑えることができた。
また、集熱部・蒸発部の液面を在来機より大幅に増やし、蒸発促進を図るようにしている。
本装置は、最終冷却部に冷却塔を用いているが、実用段階では河川などの流水を用いても運転可能となる。
効用段数は2,3,・・・と多段にすることができ、実用に際しては初期投資と効率のバランスから、最終的な効用段数を決定することになる。また、第1段の凝縮器と集熱板底部を直結することで、比較的腐食しやすい集熱部に原水が入ることを避けることができ、海水などの淡水化においては、ループ式へ容易に変更可能である。
以上の結果から、安価かつ性能の優れた多重効用型減圧蒸留器が可能であることが明らかになった。
【0024】
【実施例4】
本発明を住宅に応用した場合のシミュレーションを示す。用いた暖冷房・給湯システムの仕様一覧を表2に示す。4人家族の住む戸建住宅を対象とし、エネルギー需要モデルを作成した。設定の詳細を表3および表4に示す。需要作成およびシミュレーション計算の際に使用した環境情報を表4に示す。時季は東京における最寒期の 2000 年 2 月を対象に1ヶ月間の計算を行った。
なお、日射量や気温などは実測値( 気象庁年報2000年)および理論計算式から推算した。地中温度は2000年の年間平均気温16.9℃を用いた。
エネルギー需要モデル作成の結果から2月1日における時刻別負荷パターンを図19に示す。
ここではエネルギー需要モデルの対象住宅を便宜的に一室と考え、エネルギー供給シミュレーションを行った。
1時間毎に与えられるエネルギー需要に対して、システム概要で述べた制御に基づき、1分間毎のシステムシミュレーションを行った。その計算結果を1時間毎に整理した。なお、各要素機器間の配管における熱損失は簡略式を用いて計算している。また、ポンプ動力は軸動力から、ファン動力は風量ごとの消費電力から概算している。
計算の初期条件はソーラーパネルの温度を環境水温とし、貯湯槽に関しては60℃の湯が200 L、蓄熱槽に関しては30℃の湯が5 mあるものとした。
以下にシミュレーション結果を示す。システム評価のベースラインとして、本シミュレーションと同じエアコンと熱効率90%のガス給湯器を想定した。また、電力消費量の一次エネルギー換算は商用電力の利用端発電効率を40%として一次エネルギー消費量を算出した。
図20に暖房需要とエアコンによる熱供給量を示す。両者の差が外気を用いたソーラーパネルの凝縮潜熱回収および屋根―ソーラーパネル間の空気層の熱回収による暖房効果であり、太陽エネルギー寄与分に相当する。
日射量の少ない時には太陽エネルギー寄与分は少なく、エアコンによる暖房供給が主となる。しかしながら、太陽エネルギーによって最大で暖房需要の35%、月平均で23%の供給ができた。
また、エアコンの熱源として蓄熱槽(HST : Heat Storage Tank)か大気かを選択できるようにしたが、結果的にはほとんどの場合蓄熱槽に依存した。外気温度よりも15 ̄30℃高い熱源を確保できたことで、エアコンのCOPが最大で10を超える高効率運転となった。この結果、電力消費量を最大で78%、月平均で70%削減できた。
図21に給湯需要と給湯用ヒートポンプによる熱供給量を示す。図21の折れ線が示すように蓄熱槽温度が環境水温より平均的に20℃も高い。このように環境水温よりも高い温度で給水が行われたため、実質の給湯供給熱量が30 ̄50%も削減していることがわかる(図中の需要と供給量の差)。
また、暖房と同様に蓄熱槽をヒートポンプの熱源としているため、ヒートポンプのCOPも3.0以上、最大で4.2といった高効率運転となった。
この結果、一次エネルギー消費量も最大で81%、月平均で71%削減できた。
システム評価
本システムを構成する際に、2つのファンと3つのポンプの動力を考慮した。その1ヶ月間の一次エネルギー消費量を算出し、従来システムと本システムとの比較を図22に示してシステムの評価を行った。この結果、従来システムと比較して最大で79%、月平均で70%の削減ができた。
本システム導入による効果を、一次エネルギー消費量、二酸化炭素排出量、運用コストで評価した結果を表5に示した。その際に用いた二酸化炭素排出原単位は、電力に関しては全電源ベースの値0.106 kg−C/kWh、ガスに関しては0.0139 kg−C/MJを用いた。また、電力を15.58円/kWh、ガスを2.8円/MJで換算し、運用コストを算出した。
【0025】
【発明の効果】
本発明により、自然エネルギーである太陽エネルギーを効率的に利用できる高効率低温集熱ソーラーパネルを開発し、これを用いた多重効用型減圧蒸留器のシステムを確立して飲料用や農業用の水資源の汚染や不足している地域に安全な水を安定供給できるとともに住宅における暖房・給湯システムを確立し並びに同様の原理の低温集熱熱輸送パネルを用いて、夏季の太陽熱や西日等の不快な熱負荷を取り除くなど冷房負荷削減に貢献してエネルギー資源の枯渇および地球温暖化の防止に貢献することができる。
さらに、コンピューター等の小型化で最大の課題となっている冷却デバイスとしても、エネルギー消費のないシステムとすることが可能であり、これからの情報社会構築にも貢献することができる。
【図面の簡単な説明】
【図1】:減圧蒸発を利用した高効率熱輸送システムの機構
【図2】:凝縮器の構造
【図3】:太陽熱利用多重効用型減圧蒸留器の原理(The principle of multi−effect solar still)
【図4】:高効率低温集熱ソーラーパネルを用いた複合的暖冷房・給湯システム( System diagram)
【図5】:ヒートポンプの理論特性( Theoretical COP of heat pump)
【図6】:減圧蒸発を利用した高効率低温熱輸送パネルの熱輸送試験装置(Setup of the indoor apparatus)
【図7】:図6の装置の封入率50%時の各部の測定温度図( Temperature variation of solar collector (heat input 400 W/m2, filling rate 50%))
【図8】:図6の装置の封入率50%時の各部の測定温度図(Temperature variation of copper tube(heat input 400 W/m2, filling rate 50%))
【図9】:図6の装置の封入率50%時の各部の測定温度図(Temperature variation of copper tube(heat input 400 W/m2, filling rate 50%))
【図10】:図6の装置の封入率75%時の各部の測定温度図(Temperature variation of solar collector (hea input 400 W/m2, filling rate 75%))
【図11】:図6の装置の封入率75%時の各部の測定温度図(Temperature variation of copper tube(heat input 400 W/m2,filling rate 75%))
【図12】:図6の装置の封入率75%時の各部の測定温度図(Temperature variation of copper tube (heat input 400 W/m2, filling rate 75%))
【図13】:封入率50%・冷却水温度差異における成績係数比較(Comparisonof variation in efficiency (filling rate 50%))
【図14】:冷却水20℃の場合の封入率の違いによる成績係数比較(Comparisonof variation in efficiency (cooling water 20゜C))
【図15】:2段式蒸留器の概略構成( Setup of the double−effect still)
【図16】:試験日の日射量及び機器の温度計測図( Isolation and temperature variations of the double−effect solar still in July 19,2002)
【図17】:2段式蒸留器の蒸留成績図( The performance comparison of the
double−effect stills)
【図18】:多重効用型減圧蒸留器の概略構成(Setup of multi−effect solar still)
【図19】:2000年2月1日における住宅の1日のエネルギー付加パターン(Demand pattern ( on 1 February 2000))
【図20】:暖房需要をエアコンによる熱供給量(Simulation results for heating supply)
【図21】:給湯需要とヒートポンプによる熱供給量(Simulation results forhotwater supply)
【図22】:本システムと従来システムの一次エネルギー比較(comparison of primary energy consumption)
【表1】:図6の装置の試験条件( Experimental condition)
【表2】:図4のシステムの仕様表( Specification of this system)
【表3】:住宅設定条件表(Structure information )
【表4】:居住者設定条件表(Member information)
【表5】:環境設定条件表(Meteorological information)
【表6】:本システムによる経済効果(Economical effect by introducing thenew system)
【符号の説明】
101A:集熱板、105H真空ポンプ、102B:ヘッダー、103C:凝縮器103C、104D:循環式恒温槽
401A:ソーラーパネル、402B:貯湯槽、403C:蓄熱槽、404D:給湯用ヒートポンプ、405E空調用ヒートポンプ
601A:集熱板、602B:ヘッダー、603C凝縮器、604D:冷却箱付きビユレット、605E:給水槽、606F:循環式恒温槽、607G:微少流量ポンプ
1501A:集熱板,1502B:蒸発部,1503C:凝縮部,1504D:蒸留水槽,1505E:原水槽,1506F:真空ポンプ,1507G:冷却水循環ポンプ,1508H:日射計,1509J:圧力計,1510K:熱電対,1511L:データロガー

Claims (8)

  1. 熱媒体循環経路を減圧にして気液両状態の熱媒体を利用し、かつ循環経路を備えたことを特徴とする低温集熱熱輸送システム。
  2. 熱媒体循環経路を減圧にして気液両状態の熱媒体を利用し、かつ循環経路を備えた低温集熱熱輸送システムと多重効用型減圧蒸留器を用いたことを特徴とする太陽熱利用多重効用型減圧蒸留システム。
  3. 熱媒体循環経路を減圧にして気液両状態の熱媒体を利用し、かつ循環経路を備えた低温集熱熱輸送システムを用いたことを特徴とする複合的暖房・給湯システム。
  4. 多重効用型減圧蒸留器の熱交換器の伝熱板としてハニカム型構造した傾斜平板熱交換器を用いることを特徴とする請求項2記載の太陽熱利用多重効用型減圧蒸留システム。
  5. 多重効用型減圧蒸留器が集熱板、蒸発部、凝縮部、蒸留水槽、原水槽、真空ポンプからなることを特徴とする請求項2記載の太陽熱利用多重効用型減圧蒸留システム。
  6. 請求項1記載の低温集熱熱輸送システム、貯湯槽、蓄熱槽、給湯用ヒートポンプ、空調用ヒートポンプとからなることを特徴とする請求項3記載の複合的暖房・給湯システム。
  7. 熱媒体循環経路を減圧にして気液両状態の熱媒体を利用し、かつ循環経路を備えた低温集熱熱輸送パネルを用いたことを特徴とする電子機器用冷却デバイス。
  8. 熱媒体循環経路を減圧にして気液両状態の熱媒体を利用し、かつ循環経路を備えた低温集熱熱輸送パネルを用いたことを特徴とする太陽熱等負荷削減システム。
JP2002321912A 2002-11-06 2002-11-06 高効率低温集熱パネルとその熱輸送システム Expired - Fee Related JP3886045B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002321912A JP3886045B2 (ja) 2002-11-06 2002-11-06 高効率低温集熱パネルとその熱輸送システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002321912A JP3886045B2 (ja) 2002-11-06 2002-11-06 高効率低温集熱パネルとその熱輸送システム

Publications (2)

Publication Number Publication Date
JP2004156818A true JP2004156818A (ja) 2004-06-03
JP3886045B2 JP3886045B2 (ja) 2007-02-28

Family

ID=32802248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002321912A Expired - Fee Related JP3886045B2 (ja) 2002-11-06 2002-11-06 高効率低温集熱パネルとその熱輸送システム

Country Status (1)

Country Link
JP (1) JP3886045B2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100445662C (zh) * 2006-06-09 2008-12-24 李素明 太阳能饮用热水茶炉
CN102087053A (zh) * 2011-03-04 2011-06-08 浙江大学 微小通道换热的太阳能平板集热器
CN102032613B (zh) * 2009-09-30 2013-05-01 中山市汉科科技有限公司 一种供暖和热水两用型热水装置
CN104620055A (zh) * 2012-05-21 2015-05-13 索勒埃公司 利用太阳能板加热液体的加热装置
JP2016513234A (ja) * 2014-02-11 2016-05-12 凱 劉 新型太陽エネルギー蒸気圧力設備
CN105758026A (zh) * 2014-12-20 2016-07-13 哈尔滨聚吉轩科技开发有限公司 一种太阳能温控仓储系统
GR1009236B (el) * 2016-11-03 2018-02-23 Σολε Αε Ηλιακος θερμοσιφωνας κενου-αερος

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9495386B2 (en) 2008-03-05 2016-11-15 Ebay Inc. Identification of items depicted in images
WO2009111047A2 (en) 2008-03-05 2009-09-11 Ebay Inc. Method and apparatus for image recognition services
US10846766B2 (en) 2012-06-29 2020-11-24 Ebay Inc. Contextual menus based on image recognition

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100445662C (zh) * 2006-06-09 2008-12-24 李素明 太阳能饮用热水茶炉
CN102032613B (zh) * 2009-09-30 2013-05-01 中山市汉科科技有限公司 一种供暖和热水两用型热水装置
CN102087053A (zh) * 2011-03-04 2011-06-08 浙江大学 微小通道换热的太阳能平板集热器
CN104620055A (zh) * 2012-05-21 2015-05-13 索勒埃公司 利用太阳能板加热液体的加热装置
JP2015517647A (ja) * 2012-05-21 2015-06-22 ソレトエアー アーベーSoletaer Ab 加熱設備
JP2016513234A (ja) * 2014-02-11 2016-05-12 凱 劉 新型太陽エネルギー蒸気圧力設備
CN105758026A (zh) * 2014-12-20 2016-07-13 哈尔滨聚吉轩科技开发有限公司 一种太阳能温控仓储系统
GR1009236B (el) * 2016-11-03 2018-02-23 Σολε Αε Ηλιακος θερμοσιφωνας κενου-αερος

Also Published As

Publication number Publication date
JP3886045B2 (ja) 2007-02-28

Similar Documents

Publication Publication Date Title
Lawal et al. Humidification-dehumidification desalination systems driven by thermal-based renewable and low-grade energy sources: A critical review
Mohamed et al. Desalination process using humidification–dehumidification technique: A detailed review
Kasaeian et al. Solar humidification-dehumidification desalination systems: A critical review
Kabeel et al. Solar still with condenser–A detailed review
Rahimi-Ahar et al. Air humidification-dehumidification process for desalination: A review
Li et al. Technology development in the solar absorption air-conditioning systems
Parekh et al. Solar desalination with a humidification-dehumidification technique—a comprehensive technical review
Goosen et al. Thermodynamic and economic considerations in solar desalination
Ali et al. Performance assessment of an integrated free cooling and solar powered single-effect lithium bromide-water absorption chiller
Yamalı et al. A solar desalination system using humidification–dehumidification process: experimental study and comparison with the theoretical results
Kabeel et al. A hybrid solar desalination system of air humidification–dehumidification and water flashing evaporation: Part I. A numerical investigation
A. E et al. Different parameter and technique affecting the rate of evaporation on active solar still-a review
Ibrahim et al. Performance assessment of water production from solar cooling system in humid climate
Panchal et al. Recent advancements in condensers to enhance the performance of solar still: a review
JP3886045B2 (ja) 高効率低温集熱パネルとその熱輸送システム
Bazregari et al. A 2E analysis and optimization of a hybrid solar humidification-dehumidification water desalination system and solar water heater
Ananda et al. Performance analysis of combined two stage desalination and cooling plant with different solar collectors
Shaikh et al. Performance evaluation of a solar humidification dehumidification desalination system employing a multistage bubble column dehumidifier
Rajesh et al. Hybrid thermal desalination systems for sustainable development–A critical review
CN1595010A (zh) 真空玻璃盖板热管平板式太阳能热水器
Shojaei et al. Experimental investigation of a heat pump-assisted solar humidification–dehumidification desalination system with a free-flow solar humidifier
Hu et al. Experimental study of desalination using a system integrated by a glass-covered solar collection water basin and a heat dissipating chimney
Chiranjeevi et al. Experimental investigation on a hybrid desalination and cooling unit using humidification-dehumidification technique
Zhao et al. Theoretical study on multi-effect solar distillation system driven by tidal energy
Mahmoud Enhancement of solar desalination by humidification-dehumidification technique

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050902

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050902

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050902

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20050902

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20051206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060310

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060310

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060718

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060905

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131201

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees