JP2004156247A - Directional correction method for immersed tube - Google Patents

Directional correction method for immersed tube Download PDF

Info

Publication number
JP2004156247A
JP2004156247A JP2002321244A JP2002321244A JP2004156247A JP 2004156247 A JP2004156247 A JP 2004156247A JP 2002321244 A JP2002321244 A JP 2002321244A JP 2002321244 A JP2002321244 A JP 2002321244A JP 2004156247 A JP2004156247 A JP 2004156247A
Authority
JP
Japan
Prior art keywords
wedge
box
rubber gasket
new
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002321244A
Other languages
Japanese (ja)
Other versions
JP4022656B2 (en
Inventor
Yoshinari Fujio
良也 藤尾
Takanobu Honjo
隆宣 本庄
Ryosuke Horii
良介 堀井
Kazuhiro Yamamura
和弘 山村
Hideo Kimura
秀雄 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Toa Corp
Toray Engineering Co Ltd
Original Assignee
Nippon Steel Corp
Toa Corp
Toyo Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Toa Corp, Toyo Construction Co Ltd filed Critical Nippon Steel Corp
Priority to JP2002321244A priority Critical patent/JP4022656B2/en
Publication of JP2004156247A publication Critical patent/JP2004156247A/en
Application granted granted Critical
Publication of JP4022656B2 publication Critical patent/JP4022656B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)
  • Gasket Seals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the cost of a rubber gasket while developing the feature of an in-tube wedge type dimensional correction device. <P>SOLUTION: A wedge device which wedges vertically a fixing wedge 24 and a movable wedge 26 is arranged in the connection part of the right and left side walls of an existing tube 10 and a newly settled tube 11 and after the newly settled tube 11 is abutted against the existing tube 10 through the rubber gasket 12, a hermetically sealed chamber 18 between bulkheads is drained and the newly settled tube 11 is connected with hydraulic pressure to the existing tube 10 while sharing a load to the rubber gasket 12 and the right and left wedge devices. Next, water is injected between the bulkheads to push back the newly settled tube 11 by the reaction of the rubber gasket 12. In this state, the left or right movable wedge 26 is moved by a necessary distance to correct a shift of the rear end of the newly settled tube 11. Thereafter, the newly settled tube 11 is connected again by hydraulic pressure to the existing tube 10 while sharing a load to the rubber gasket 12 and right and left wedge devices. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明が属する技術分野】
本発明は、沈埋トンネル用沈埋函の沈設工法に係り、より詳しくはトンネル法線に対する新設函の後端の水平方向のずれを修正するための沈埋函の方向修正方法に関する。
【0002】
【従来の技術】
従来、沈埋函沈設工法においては、沈埋函(新設函)を沈降させて、その端面をゴムガスケットを介して既設函に突合わせた後、両函のバルクヘッド間の海水を排水して、新設函の背面にかかる水圧を利用して既設函に対して新設函を水圧接合するようにしている。
このような沈設函沈設工法においては、新設函の据付誤差、沈埋函の寸法誤差、ゴムガスケットの寸法誤差など、種々の要因により新設函の方向がトンネル法線からずれる場合が多い。このため、従来一般には、上記した水圧接合後、接合側のバルクヘッドを撤去して詳細測量(函内測量も含む)を行い、新設函の後端のトンネル法線からの水平方向ずれ量を計測して、このずれ量が予定より大きい場合は、新設函と既設函との端面間に方向修正ジャッキ(油圧ジャッキ)を介装し、新設函の右側または左側を押戻してその方向を修正するようにしていた。
しかし、上記した従来一般の沈埋函の方向修正方法によれば、水圧による大きな荷重に抗して新設函を押戻す必要があるため、大型の油圧ジャッキが多数必要となり、それらの取付けに長期間を要し、埋戻し完了までにジャッキの撤去を行うことができないこともあって、全体の工事期間が延長するという問題があった。
【0003】
そこで、例えば、特許文献1には、既設函および新設函の左右側壁の外壁面に相対向して複数対のストッパを固設し、各対のストッパの対向面に設けた楔合面の間に配置したウエッジ(可動くさび)を前記外壁面の法線方向へ移動可能にジャッキに支持させ、水圧接合する際の排水量を調整して、あるいは水圧接合後にバルクヘッド間に注水して水圧による荷重を軽減しながら前記可動くさびをジャッキにより移動させる方向修正装置、方法が提案されている。
【0004】
【特許文献1】
特開平10−88597号公報
【0005】
【発明が解決しようとする課題】
しかしながら、上記特許文献1に記載の沈埋函の方向修正装置、方法によれば、ブラケットおよび可動くさびを含むくさび装置が、沈埋函(新設函、既設函)の側面に突出して配置されるため、これらが沈埋函のえい航、沈設作業などの障害になる。特に、新設函の戻し量を微調整して方向修正の精度(数mm単位)を高めようとすると、くさび角度(楔合面傾斜角)を小さく設定しなければならず、これに伴ってくさび装置として長尺なものが必要になるばかりか、ストローク長の大きいジャッキが必要になり、これらが、障害物として沈埋函(新設函、既設函)の側方へ大きく突出することになる。
【0006】
そこで、本発明者等は、既設函および新設函の左右側壁の接合部の、ゴムガスケットの内側部位に、固定くさびと可動くさびとを縦方向で楔合させるくさび装置と、前記可動くさびを移動させる駆動装置とを配設した方向修正装置を考案し、既に特願2001−236429号(未公知)にて明らかにしている。この方向修正装置によれば、新設函と既設函との接合端面内にくさび装置が配置されるので、両函の側方へ障害物として突出することはなく、上記した特許文献1に記載の発明における問題点を解消できるようになる。
ところで最近、沈埋函沈設工法の工事費用に対する低減要求が厳しくなってきており、その一環として、沈埋函の相互間に介装するゴムガスケットについても種々のコスト低減の方策が検討されている。しかるに、従来一般的な沈埋函沈設工法はもちろん、上記したくさび装置を用いる沈埋函沈設工法においても、水圧接合の全荷重がゴムガスケットにかかるため、ゴムガスケットとしては、この全荷重を受けても座屈や破断を起こさない(反力抵抗の大きい)大型のものが必要となり、そのコスト低減には一定の限界があるのが現状であった。
このような現状に鑑み、本発明者等は、上記特願2001−236429号に記載の函内くさび方式の方向修正装置に着目し、該装置による方向修正の手順を変えることにより、ゴムガスケットにかかる負荷を軽減できることを見出した。本発明は、上記した知見に基づいてなされたもので、その課題とするところは、函内くさび方式の方向修正装置の特徴を生かしながらゴムガスケットのコスト低減を達成する方向修正方法を提供することにある。
【0007】
【課題を解決するための手段】
上記課題を解決するため、本発明は、既設函および新設函の左右側壁の接合部の、ゴムガスケットの内側部位に、固定くさびと可動くさびとを縦方向で楔合させるくさび装置と、前記可動くさびを移動させる駆動装置とを配設し、始めに、前記ゴムガスケットと前記左右のくさび装置とに水圧接合の荷重を分担させながら既設函に新設函を水圧接合し、次に、バルクヘッド間に注水してゴムガスケットの反力により新設函を押戻し、この状態で新設函の後端のずれを修正するために必要な量だけ前記左または右側のくさび装置の可動くさびを、対応する駆動装置により移動させ、しかる後、前記ゴムガスケットと前記左右のくさび装置とに水圧接合の荷重を分担させながら、既設函に新設函を再度水圧接合することを特徴とする。
本発明においては、上記くさび装置の初期楔合高さを、ゴムガスケットにその許容荷重より低い荷重を分担させ、かつゴムガスケットの止水性および許容戻り変形量を保証する範囲内に設定する。
このように行う沈埋函の方向修正方法においては、左右のくさび装置に水圧接合の荷重の一部を分担させることによりゴムガスケットにかかる負荷が軽減し、その軽減する分、小型のゴムガスケットの使用が可能になる。しかも、くさび装置とその駆動装置とは、函内くさび方式の方向修正装置と同じ形態で配置されるので、沈埋函(新設函、既設函)の側方に障害物として突出することもない。
【0008】
【発明の実施の形態】
以下、本発明の実施の形態を添付図面に基づいて説明する。
図7〜9は、本発明に係る沈埋函の方向修正方法の実施に用いる方向修正装置を示したものである。この方向修正装置20は、前記特願2001−236429号に記載されたものと同じもので、ゴムガスケット12を介して水圧接合される既設函10と新設函11との接合間隔を設定するくさび装置21とこのくさび装置21を作動させる駆動装置22とから概略構成されている。
【0009】
既設函10および新設函11は、ここでは矩形断面をなし、その内部空間は中壁13(図10)および左右隔壁14、15により複数分割されている。接合前において、既設函10の、新設函11との接合端側開口はバルクヘッド16により、新設函11の両端開口(後端側は省略)はバルクヘッド17によりそれぞれ閉鎖されており、両函10と11との接合に応じて両バルクヘッド16と17との間には、前記ゴムガスケット12により囲まれた密閉室18が区画形成されるようになる。なお、既設函10および新設函11の構造形式は任意であり、鉄筋コンクリート(RC)構造形式、鋼殻構造形式、鋼コンクリート合成構造形式などとすることができる。
【0010】
一方、ゴムガスケット12は、ここではジーナ型として構成されており、図3に示すように台形状をなす本体部12aの上面に山形状のノーズ部12bを設けると共に、本体部12aの下面に繊維補強のフランジ部12cを設けた構造となっている。ゴムガスケット12は、そのフランジ部12cを新設函11の端面に合せた状態で、該フランジ部12cに設けた貫通孔19を挿通させたボルト(図示略)を用いて該端面に密着固定されている。なお、このジーナ型ゴムガスケット12の大きさは、底面の幅Lと底面から本体部12aの上面までの高さHとで規定される。
【0011】
本発明で用いるくさび装置21は、再び図7〜9に戻って説明するように、既設函10の左右側壁10aの端面の、ゴムガスケット12の内側の段差部分に固定した台座23上に配置された固定くさび24と、新設函11の端面の、ゴムガスケット12の内側の段差部分に固定した台座25上に配置された可動くさび26とからなっている。固定くさび24と可動くさび26とは、それぞれ対応する台座23、25上に上下方向へ延ばして、すなわち縦方向で楔合するように配置されている。固定くさび24の楔合面24aと可動くさび26の楔合面26aとは、可動くさび26の下方向への移動に応じて楔合高さを増大させるように傾斜向きが設定されており、これにより可動くさび26の下方向への移動に応じて既設函10と新設函11との接合間隔が拡大する。
【0012】
一方、上記駆動装置22は、新設函11側の台座25の側方に縦方向に延ばして配置され、該台座25に対して位置固定された油圧シリンダ27と、この油圧シリンダ27の出力軸27aの上端に取付けられた昇降ブラケット28と、このブラケット28に上端が固定され、下端を前記可動くさび26に連結させた連結バー29とからなっている(図7)。油圧シリンダ27は、低出力ではあるが十分なるストローク長を確保できるように小径長尺に形成されており、その作動は、新設函11内に配置した給排油装置(図示略)からの油液給排により制御されるようになっている。
【0013】
新設函11の沈設工法としては、タワーポンツーン方式を始め、プレーシングバージ方式、フローティングクレーン方式等の種々の方式を採用できるが、タワーポンツーン方式を採用する場合は、図10に示すように、新設函11上に、1基または2基のコントロールタワー30(図示例では、1基)と2基のポンツーン31とが艤装される。コントロールタワー30の上部には測量および指令室32が設けられると共に、その内部には新設函11内に作業員を出入りさせるためのアクセスシャフト(図示略)が配設される。また、新設函11の周りには海底に据付けたシンカー33に先端を連結したワイヤ34が取回わされており、新設函11は、コントロールタワー30上に搭載したウインチ(図示略)の操作により水平方向へ操函されるようになっている。また、各ポンツーン31には新設函11を吊下支持するワイヤ35が取回されており、新設函11は、各ポンツーン31上に搭載した沈降用ウインチ(図示略)と新設函11内のバラストタンク(図示略)への注水とにより沈降する。
【0014】
新設函11にはまた、コントロールタワー30上のGPSアンテナ36からGPS信号を取込んでその全体的な位置管理を行う沈埋函位置測量システム(図示略)、既設函10との相対的な位置管理を行う端面探査装置(図示略)、ゴムガスケット12の圧縮量を高精度に測定する端面間距離計37、新設函11の水平および垂直方向の傾きを計測する計測装置(レーザ計測装置)38などの測量手段が搭載されている。新設函11にはさらに、上記バルクヘッド間の密閉室17内の海水を排水しかつ該密閉室18に海水を注水するための注排水ポンプを始め、支承ジャッキ、モルタルポンプ、、既設函11との位置合せするための鉛直せん断キー(ブラケット)等が搭載されているが、これらについては図示を省略する。
【0015】
新設函11の沈設に際しは、上記した各種艤装品の艤装を終えた沈埋函11を沈設位置に曳航し、その位置で、海底に必要数のシンカー33を据付けて必要なワイヤリングを行う。この準備完了後、前記沈埋函位置測量システム、端面探査装置等により位置管理を行いながら該新設函11を既設函10に対して誘導し、その先端の、図示を略す鉛直せん断キーを既設函10のブラケット(図示略)に着座させ、さらにその後端を、図示を略す支承ジャッキを介して海底の掘削底に設置した仮支承台の上に着座させる。次に、既設函10に設けられた引寄ジャッキ39(図1)の作動により新設函11を既設函10側へ引寄せ、以降、本発明に係る方向修正方法を含む接合工程が実行される。
【0016】
図1および2は、本発明に係る方向修正方法を含む接合工程を示したもので、引寄ジャッキ39による新設函11の引寄せにより、先ず図1▲1▼に示すように、新設函11の接合端面に取付けられているゴムガスケット12のノーズ部12bが圧縮し、既設函10のバルクヘッド16と新設函11のバルクヘッド17との間にはゴムガスケット12により囲まれた密閉室18が形成される。この時、上記方向修正装置20を構成するくさび装置21の可動くさびは、後に詳述するゴムガスケット12の最大圧縮量δ1(図3)内に含まれる適当な初期楔合高さSとなる原位置に位置決めされており、この段階では、図2▲1▼に示すように固定くさび24と可動くさび26とは非楔合状態を維持する。
【0017】
次に、新設函11内の注排水ポンプを排水運転させ、上記バルクヘッド間の密閉室18内の海水を排水する。すると、図1▲2▼に示すように、新設函11の背面にかかる水圧Pによって新設函11が既設函10側へ押され、水圧接合される。この時、左右のくさび装置21は、図2▲2▼に示すように前記した初期楔合高さSで楔合し、これによりゴムガスケット17は、図3に一点鎖線で示すようにその最大圧縮量δ1よりも少ない圧縮量で変形を停止する。すなわち、水圧Pによる荷重が、くさび装置21とゴムガスケット12とにより分担して受止められるようになる。なお、このゴムガスケット12の圧縮量は、前記端面間距離計37(図10)により監視されている。
【0018】
上記水圧接合の完了と同時に、コントロールタワー30内に配設された図示を略すアクセスシャフトを通して前記計測装置38により函内測量を行う。そして、図5に示すように、前記函内測量により新設函11の後端が、例えばトンネル法線よりも片側へCだけずれており、しかもそのずれ量Cが予定よりも大きくなっていたら、新設函11内の注排水ポンプを注水運転に切換え、図1▲3▼に示すように前記バルクヘッド間の密閉室18に海水を注入する。すると、ゴムガスケット12が、その本体部12aをほぼ元の高さに復元し、その復元力(反力)により新設函11が押戻され、これに応じて、図2▲3▼に示すように固定くさび24と可動くさび26とのトンネル法線方向の間隔も広がる。
【0019】
その後、図2▲3▼に示すように、左右のくさび装置21のうち、新設函11の後端がずれている側に配置されるくさび装置21の可動くさび26を油圧シリンダ27の作動により原位置より下動させる。この時の可動くさび26の移動量(シフト量)αは、新設函11のずれ量Cを解消するに見合う量であり、この可動くさび26の下動により該くさび装置21の楔合高さは、図4に示すようにh1(初期楔合高さ)からh2に増加する。この可動くさび26の移動(下動)は、固定くさび24と接触しないフリーの状態で行われるので、その駆動手段22を構成する油圧ジャッキ27としては、小型で低出力のものを用いることができる。
【0020】
次に、前記注排水ポンプを排水側に切換え、その排水運転によりバルクヘッド間の密閉室18内の海水を再度排水する。この排水により新設函11は、図1▲4▼に示すように再び既設函10に水圧接合されるが、この際、図2▲4▼に示すように、左右のくさび装置21を構成する固定くさび24と可動くさび26とが当接し、新設函11はくさび装置21によって既設函20側への移動が規制される。しかして、新設函11の後端がずれていた側のくさび装置21は、上記した可動くさび26のシフトにより楔合高さを増大させているので、新設函11のずれた側は、図1▲4▼に示すように既設函10に対して所定量(戻し量)δだけ戻された状態となり、その方向が修正される。
【0021】
その後、再び函内測量を行い、前記したトンネル法線からのずれ量が予定内に収まっているかどうかを確認し、予定内に収まっていたら、図示を略すバラストタンクに注水して新設函11に対するバラスト水荷重を増加し、続いて、既設函10のバルクヘッド16と新設函11のバルクヘッド17とを撤去し、これと並行して新設函11の周りに砕石ストッパーを施工する。以降、通常の沈埋函沈設工法に従って、函底へのモルタル充填、支承ジャッキのダウン、埋戻しを行い、これにて一つの沈埋函の沈設工事は終了する。
【0022】
ここで、既設函10に対する新設函11の戻し量δは、図5に示すように、新設函11のずれ量をC、新設函11の全長をA、左・右のくさび装置21の間隔をBとすると、下記(1)式で与えられる。
δ=B×C/A …(1)
一方、この戻し量δを得るための可動くさび26のシフト量αは、図4に示すように、くさび装置21を構成する各くさび24、26の楔合面24a、26aの傾斜角(くさび角度)をθとすると、下記(2)式によって与えられ、これに上記(1)式を代入すると、下記(3)式のようになる。
α=δ/tanθ …(2)
α=(B×C)/(A×tanθ) …(3)
【0023】
ところで、既設函10に対する新設函11の戻し量δの調整精度を高めるには、可動くさび26の単位シフト量当たりの戻し量をできるだけ小さくする、すなわち可動くさび26の有効移動量(シフト量)をできるだけ大きくする必要がある。この場合、新設函11の全長A、左・右のくさび装置21の間隔Bは一定であるので、上記(3)式より、可動くさび26のシフト量αをできるだけ大きくとるには、くさび装置21のくさび角度θをできるだけ小さく設定するのが望ましいことが分かる。この点、本発明におけるくさび装置21は、前記したように既設函10および新設函11の左右側壁10a、11aの接合部に縦方向で楔合する配置で設けられているので、そのくさび角度θを小さく設定しても、可動くさび26のシフト量αを十分大きくとることができ、新設函11の戻し量の調整精度を大幅に高めることができ、結果として新設函11の方向修正精度は著しく向上する。
【0024】
また、くさび装置21が、既設函10に対して新設函11を水圧接合した際の水圧Pを受けても安定的に楔合状態を維持するための条件、すなわち、可動くさび26が固定くさび24上を滑動しない条件は、同じく図4に示すように楔合面24a、26aに沿う方向の分力P×sinθと楔合面24a、26aの法線方向の分力P×cosθとの関係から、または両くさび24、26の摩擦係数μとの関係から下記(4)式または(5)式を満足する必要がある。
P×sinθ<P×cosθ×μ …(4)
tanθ<μ …(5)
【0025】
この場合、摩擦係数μは、固定および可動くさび24、26が鋼製となっていることから自ずから決まっており、したがって、可動くさび26の滑動を防止するには、上記(4)または(5)式より、くさび角度θをできるだけ小さく設定する必要がある。この点、本発明におけるくさび装置21は、前記したように、そのくさび角度θを十分小さく設定することができるので、新設函11の方向修正後、最終的な水圧接合を行っても、その水圧接合力Pによって可動くさび26が滑動することはなく、その接合状態が安定的に維持される。このことは、前記したバルクヘッド撤去と同時に油圧シリンダ27を撤去しても、新設函11はその位置(水圧接合位置)を維持することを意味し、後の新設函11の安定化工事を待たないでも油圧シリンダ27を撤去することが可能になり、その分、工事期間が短縮する。
【0026】
一方、新設函11の方向修正に必要なゴムガスケット12の許容戻り変形量δS は、くさび装置21を省略した場合の水圧接合時における最大圧縮量δ1 と、ゴムガスケット12のノーズ部12bの高さで定まる、止水を満足する変形量δ2と、沈埋函10、11同士の端面の製作誤差δ3と、ゴムガスケット12の製作精度および温度収縮量δ4と、想定外変形余裕代δ5との相関から下記(6)式に基づいて決定される。
δS=δ1−{δ2+δx(=δ3+δ4+δ5)} …(6)
したがって、上記くさび装置21は、ゴムガスケット12の止水性(δ2〜δ5)を阻害せずかつ許容戻り変形量δSを十分に保証する範囲内に、その原位置を設定する必要がある。図3には、ゴムガスケット12に要求される上記各要素を付記しており、これより、くさび装置21の原位置Sとしては、上記δx(=δ3+δ4+δ5)の範囲内に設定するのが望ましい、といえる。
【0027】
また、ゴムガスケット12は、その大きさ(L、H)および硬度により特有の圧縮特性を示し、一例として、L=155mm、H=109mm、硬度40のゴムガスケットの圧縮特性は、図6に示すとおりとなっている。この場合、その許容荷重Pfは、水圧接合の全荷重Po(約87×9.8kN/m)よりも低いレベル(約65×9.8kN/m)にあり、上記くさび装置21に水圧接合の荷重を分担させない場合は、ゴムガスケットが座屈または破壊を起こす可能性がある。また、くさび装置21に荷重を分担させる場合であっても、該くさび装置21の分担荷重Pkを前記許容荷重Pfよりも高いレベルに設定したのでは、同様にゴムガスケットが座屈または破壊を起こす可能性がある。したがって、くさび装置21の初期楔合高さSを設定するに際しては、くさび装置21の分担荷重Pkが前記許容荷重Pfよりも低いレベルになるように設定する必要がある。図6に示す例では、このくさび装置21の分担荷重Pkを約45×9.8kN/mに設定しており、この場合は、ゴムガスケットの座屈や破壊が未然に防止されることはもちろん、ゴムガスケットの止水性(δ2〜δ5)および許容戻り変形量δSの保証も十分となる。
【0028】
ここで、水圧接合の全荷重Po(約87×9.8kN/m)をゴムガスケットに負担させる従来工法では、この全荷重Poよりも高いレベルに許容荷重Pfが存在するゴムガスケットを選択しなければならならず、その分、大型のものが必要になる。因みに、許容荷重Pfが95×9.8kN/mレベルのゴムガスケットの大きさは、硬度を40とする、L=190mm、H=148mmとなり、上記した本発明の方法で使用可能なゴムガスケット12の大きさ(L=155mm、H=109mm)に比べて、かなり大型となっている。
【0029】
【発明の効果】
以上、説明したように、本発明に係る沈埋函の方向修正方法によれば、水圧接合の荷重の一部を左・右のくさび装置に分担させるので、ゴムガスケットにかかる負荷が軽減し、その軽減する分、小型のゴムガスケットの使用が可能になってコスト的に有利となる。しかも、くさび装置とその駆動装置とは、沈埋函の側方に障害物として突出することもないばかりか、駆動手段の早期撤去も可能になるので、沈設作業性の向上と工事期間の短縮とに大きく寄与する効果を奏する。
【図面の簡単な説明】
【図1】本発明に係る沈埋函の方向修正方法を含む接合工程を示す模式図である。
【図2】図1に示す接合工程におけるくさび装置の作動状態を示す模式図である。
【図3】沈埋函の接合部に用いるゴムガスケットの断面形状と変形状態とを示す断面図である。
【図4】くさび装置による方向修正原理を示す模式図である。
【図5】新設函の水平方向のずれの状態を示す模式図である。
【図6】本発明で使用可能なゴムガスケットの圧縮特性を示すグラフである。
【図7】本発明で用いる方向修正装置の設置構造を示す正面図である。
【図8】本方向修正装置の設置構造を示す縦断面図である。
【図9】本方向修正装置の設置構造を示す横断面図である。
【図10】新設函の沈設するタワーポンツーン式工法を模式的に示す斜視図である。
【符号の説明】
10 既設函
11 新設函
12 ゴムガスケット
16 既設函のバルクヘッド
17 新設函のバルクヘッド
18 バルクヘッド間の密閉室
20 方向修正装置
21 くさび装置
22 駆動装置
24 固定くさび
26 可動くさび
27 油圧シリンダ
39 引寄ジャッキ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for laying down a buried box for a buried tunnel, and more particularly to a method for correcting a direction of a buried box for correcting a horizontal displacement of a rear end of a new box with respect to a tunnel normal.
[0002]
[Prior art]
Conventionally, in the submerged box submerging method, the submerged box (new box) is settled, and its end face is abutted to the existing box via a rubber gasket. The new box is hydraulically joined to the existing box using the water pressure applied to the back of the box.
In such a submerged box submerging method, the direction of the new box is often shifted from the normal line of the tunnel due to various factors such as an installation error of the new box, a dimensional error of the submerged box, and a dimensional error of the rubber gasket. For this reason, conventionally, after the above-mentioned hydraulic joining, the bulkhead on the joining side was removed and detailed surveying (including surveying inside the box) was performed, and the horizontal displacement of the rear end of the new box from the tunnel normal was measured. Measured, if this deviation is larger than expected, insert a direction correction jack (hydraulic jack) between the end face of the new box and the existing box, and push back the right or left side of the new box to correct the direction I was trying to do it.
However, according to the conventional method of correcting the direction of a submerged box as described above, it is necessary to push back the newly installed box against a large load due to water pressure, so a large number of large hydraulic jacks are required, and it takes a long time to install them. However, there is a problem that the entire construction period is extended because the jack cannot be removed before the backfilling is completed.
[0003]
Therefore, for example, in Patent Document 1, a plurality of pairs of stoppers are fixed oppositely to the outer wall surfaces of the left and right side walls of the existing box and the new box, and between the wedge mating surfaces provided on the opposing surfaces of each pair of stoppers. The wedge (movable wedge) placed on the jack is supported by a jack so as to be movable in the normal direction of the outer wall surface, and the amount of drainage during hydraulic joining is adjusted, or water is injected between the bulkheads after the hydraulic joining to load by hydraulic pressure. A direction correcting device and method for moving the movable wedge by a jack while reducing the wobble have been proposed.
[0004]
[Patent Document 1]
JP-A-10-88597
[Problems to be solved by the invention]
However, according to the apparatus and method for correcting the direction of a buried box described in Patent Document 1, since a wedge device including a bracket and a movable wedge is arranged so as to protrude from a side surface of a buried box (a new box or an existing box), These are obstacles to the navigation of the buried box and the submersion work. In particular, in order to fine-tune the return amount of the new box to increase the accuracy of direction correction (in units of several mm), the wedge angle (wedge mating surface inclination angle) must be set to a small value. In addition to the need for a long device, jacks with a large stroke length are required, and these will protrude largely to the side of the buried box (new or existing box) as an obstacle.
[0006]
Therefore, the present inventors have moved a wedge device that vertically wedges a fixed wedge and a movable wedge to an inner portion of a rubber gasket at a joint between left and right side walls of an existing box and a new box, and moves the movable wedge. The present inventors have devised a direction correcting device provided with a driving device to be driven, and have already disclosed it in Japanese Patent Application No. 2001-236429 (unknown). According to this direction correcting device, since the wedge device is arranged in the joint end surface between the new box and the existing box, it does not protrude to the side of both boxes as an obstacle, and is described in Patent Document 1 described above. The problem in the invention can be solved.
By the way, recently, the demand for reducing the construction cost of the submerged box submersion method has become strict, and as a part thereof, various cost reduction measures have been studied for rubber gaskets interposed between submerged boxes. However, in addition to the conventional general submerged box submersion method, in the submerged box submersion method using the above-mentioned wedge device, since the entire load of hydraulic bonding is applied to the rubber gasket, even if the rubber gasket receives this full load It is necessary to use a large-sized one which does not cause buckling or breakage (has a large reaction force resistance), and there is a certain limit to the cost reduction.
In view of such a current situation, the present inventors have focused on a wedge-type direction correcting device described in Japanese Patent Application No. 2001-236429 and changed the direction correcting procedure by the device to obtain a rubber gasket. It has been found that such a load can be reduced. The present invention has been made based on the above findings, and an object thereof is to provide a direction correcting method which achieves a cost reduction of a rubber gasket while utilizing the characteristics of a box wedge type direction correcting device. It is in.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a wedge device for vertically wedge-locking a fixed wedge and a movable wedge to an inner portion of a rubber gasket at a joint between left and right side walls of an existing box and a new box. A driving device for moving the wedge is provided, and firstly, the new box is hydraulically joined to the existing box while sharing the load of hydraulic joining between the rubber gasket and the left and right wedge devices. And push back the new box by the reaction force of the rubber gasket, and in this state, move the movable wedge of the left or right wedge device by a corresponding amount to correct the displacement of the rear end of the new box. Then, the new box is hydraulically joined to the existing box while the rubber gasket and the left and right wedge devices are subjected to the hydraulic joining load.
In the present invention, the initial wedge height of the wedge device is set within a range that allows the rubber gasket to share a load lower than its allowable load and that guarantees the waterproofness and the allowable return deformation of the rubber gasket.
In the method of correcting the direction of the submerged box performed in this way, the load applied to the rubber gasket is reduced by sharing a part of the load of the hydraulic joining to the left and right wedge devices, and the use of a small rubber gasket is reduced. Becomes possible. In addition, since the wedge device and its driving device are arranged in the same manner as the wedge-type direction correcting device in the box, the wedge device does not protrude as an obstacle to the side of the submerged box (new or existing box).
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
7 to 9 show a direction correcting device used for carrying out the method for correcting the direction of a submerged box according to the present invention. This direction correcting device 20 is the same as that described in the above-mentioned Japanese Patent Application No. 2001-236429, and is a wedge device for setting a joining interval between the existing box 10 and the new box 11 which are hydraulically joined via the rubber gasket 12. It is schematically constituted by 21 and a driving device 22 for operating the wedge device 21.
[0009]
The existing box 10 and the new box 11 have a rectangular cross section here, and the internal space is divided into a plurality by an inner wall 13 (FIG. 10) and left and right partitions 14 and 15. Before joining, the opening of the existing box 10 on the joining end side with the new box 11 is closed by the bulkhead 16, and both ends of the new box 11 (the rear end side is omitted) are closed by the bulkhead 17. A sealed chamber 18 surrounded by the rubber gasket 12 is formed between the bulkheads 16 and 17 in accordance with the connection between the bulkheads 10 and 11. The existing box 10 and the new box 11 may be of any structure, and may be a reinforced concrete (RC) structure, a steel shell structure, a steel-concrete composite structure, or the like.
[0010]
On the other hand, the rubber gasket 12 is configured as a gina type here, and as shown in FIG. 3, a mountain-shaped nose portion 12b is provided on an upper surface of a trapezoidal main body portion 12a, and a fiber is provided on a lower surface of the main body portion 12a. The structure has a reinforcing flange portion 12c. The rubber gasket 12 is tightly fixed to the end surface of the new gasket 11 with the flange portion 12c aligned with the end surface of the new box 11 using a bolt (not shown) having a through hole 19 provided in the flange portion 12c. I have. The size of the gina-type rubber gasket 12 is defined by the width L of the bottom surface and the height H from the bottom surface to the upper surface of the main body 12a.
[0011]
The wedge device 21 used in the present invention is disposed on a pedestal 23 fixed to a step portion inside the rubber gasket 12 on the end surfaces of the left and right side walls 10a of the existing box 10, as will be described again with reference to FIGS. It comprises a fixed wedge 24 and a movable wedge 26 disposed on a pedestal 25 fixed to a step portion inside the rubber gasket 12 on the end face of the new box 11. The fixed wedge 24 and the movable wedge 26 are arranged on the corresponding pedestals 23 and 25 so as to extend in the vertical direction, that is, to be wedge-engaged in the vertical direction. The wedge engaging surface 24a of the fixed wedge 24 and the wedge engaging surface 26a of the movable wedge 26 are inclined so as to increase the wedge engagement height in accordance with the downward movement of the movable wedge 26. As a result, the joining distance between the existing box 10 and the new box 11 is increased in accordance with the downward movement of the movable wedge 26.
[0012]
On the other hand, the drive device 22 is disposed to extend in the vertical direction on the side of the pedestal 25 on the new box 11 side, and has a hydraulic cylinder 27 fixed to the pedestal 25 and an output shaft 27a of the hydraulic cylinder 27. And a connecting bar 29 whose upper end is fixed to the bracket 28 and whose lower end is connected to the movable wedge 26 (FIG. 7). The hydraulic cylinder 27 is formed to have a small diameter and a long length so as to secure a sufficient stroke length although having a low output. The operation of the hydraulic cylinder 27 is performed by an oil supply / discharge device (not shown) arranged in the new box 11. It is controlled by liquid supply and drainage.
[0013]
Various methods, such as a tower pontoon method, a placing barge method, and a floating crane method, can be adopted as a method of submerging the new box 11, but when the tower pontoon method is adopted, as shown in FIG. On the box 11, one or two control towers 30 (one in the illustrated example) and two pontoons 31 are fitted. A surveying and commanding room 32 is provided above the control tower 30, and an access shaft (not shown) for allowing workers to enter and leave the new box 11 is provided therein. A wire 34 having a tip connected to a sinker 33 installed on the sea floor is routed around the new box 11, and the new box 11 is operated by a winch (not shown) mounted on the control tower 30. It is designed to be operated horizontally. A wire 35 for suspending and supporting the new box 11 is routed through each pontoon 31. The new box 11 includes a sedimentation winch (not shown) mounted on each pontoon 31 and a ballast in the new box 11. It settles when water is injected into a tank (not shown).
[0014]
The new box 11 also has a submerged box position surveying system (not shown) which takes in GPS signals from the GPS antenna 36 on the control tower 30 and performs overall position management, and position management relative to the existing box 10. (Not shown), a distance meter 37 for measuring the compression amount of the rubber gasket 12 with high accuracy, a measuring device (laser measuring device) 38 for measuring the horizontal and vertical inclinations of the new box 11, and the like. Surveying means. The new box 11 further includes a pouring / draining pump for draining seawater in the closed chamber 17 between the bulkheads and injecting seawater into the closed chamber 18, a bearing jack, a mortar pump, and the existing box 11. A vertical shear key (bracket) and the like for positioning are mounted, but these are not shown.
[0015]
When the new box 11 is submerged, the submerged box 11 in which the above-described various outfittings have been fitted is towed to the submerged position, and at that position, a necessary number of sinkers 33 are installed on the seabed and necessary wiring is performed. After completion of the preparation, the new box 11 is guided with respect to the existing box 10 while controlling the position by the above-mentioned submerged box position measuring system, end face exploration device, etc., and a vertical shear key (not shown) at the tip thereof is inserted into the existing box 10. (Not shown), and the rear end thereof is further seated on a temporary support table installed on the excavated bottom of the sea floor via a support jack (not shown). Next, the new box 11 is pulled toward the existing box 10 by the operation of the pulling jack 39 (FIG. 1) provided on the existing box 10, and thereafter, the joining step including the direction correcting method according to the present invention is performed. .
[0016]
FIGS. 1 and 2 show a joining step including a direction correcting method according to the present invention. First, as shown in FIG. The nose portion 12b of the rubber gasket 12 attached to the joint end surface of the box 11 is compressed, and a closed chamber 18 surrounded by the rubber gasket 12 is provided between the bulkhead 16 of the existing box 10 and the bulkhead 17 of the new box 11. It is formed. At this time, the movable wedge of the wedge device 21 constituting the direction correcting device 20 has an appropriate initial wedge height S included in the maximum compression amount δ1 (FIG. 3) of the rubber gasket 12 described later. In this stage, the fixed wedge 24 and the movable wedge 26 maintain the non-wedge state at this stage, as shown in FIG.
[0017]
Next, the injection pump in the new box 11 is operated to drain, and the seawater in the closed chamber 18 between the bulkheads is drained. Then, as shown in FIG. 1 (2), the new box 11 is pushed toward the existing box 10 by the water pressure P applied to the back surface of the new box 11, and is hydraulically joined. At this time, the left and right wedge devices 21 wedge at the above-described initial wedge height S as shown in FIG. 2B, whereby the rubber gasket 17 has its maximum wedge as shown by the one-dot chain line in FIG. Deformation is stopped with a compression amount smaller than the compression amount δ1. That is, the load due to the water pressure P is received by being shared by the wedge device 21 and the rubber gasket 12. The amount of compression of the rubber gasket 12 is monitored by the end face distance meter 37 (FIG. 10).
[0018]
Simultaneously with the completion of the hydraulic joining, the inside of the box is surveyed by the measuring device 38 through an access shaft (not shown) provided in the control tower 30. Then, as shown in FIG. 5, if the rear end of the new box 11 is displaced by, for example, C to one side from the tunnel normal line by the inside-box survey and the displacement C is larger than expected, The injection pump in the new box 11 is switched to the water injection operation, and seawater is injected into the sealed chamber 18 between the bulkheads as shown in FIG. Then, the rubber gasket 12 restores the main body 12a to almost the original height, and the restoring force (reaction force) pushes back the new box 11, and accordingly, as shown in FIG. The distance between the fixed wedge 24 and the movable wedge 26 in the tunnel normal direction also increases.
[0019]
Then, as shown in FIG. 2 (3), the movable wedge 26 of the wedge device 21 of the left and right wedge devices 21 arranged on the side where the rear end of the new box 11 is shifted is moved by the operation of the hydraulic cylinder 27. Move down from the position. The moving amount (shift amount) α of the movable wedge 26 at this time is an amount suitable for eliminating the displacement amount C of the new box 11, and the wedge height of the wedge device 21 is reduced by the downward movement of the movable wedge 26. As shown in FIG. 4, the height increases from h1 (initial wedge height) to h2. The movement (downward movement) of the movable wedge 26 is performed in a free state in which the movable wedge 26 does not come into contact with the fixed wedge 24. Therefore, as the hydraulic jack 27 constituting the drive means 22, a small-sized and low-output hydraulic jack can be used. .
[0020]
Next, the pump is switched to the drain side, and the seawater in the closed chamber 18 between the bulkheads is drained again by the drain operation. Due to this drainage, the new box 11 is hydraulically joined to the existing box 10 again as shown in FIG. 1 (4). At this time, as shown in FIG. The wedge 24 and the movable wedge 26 come into contact with each other, and the movement of the new box 11 toward the existing box 20 is restricted by the wedge device 21. Since the wedge device 21 on the side where the rear end of the new box 11 has shifted has increased the wedge height by the shift of the movable wedge 26, the shifted side of the new box 11 is shown in FIG. As shown in (4), the state is returned to the existing box 10 by a predetermined amount (return amount) δ, and the direction is corrected.
[0021]
Thereafter, the inside of the box is surveyed again, and it is checked whether the deviation from the normal line of the tunnel is within the plan. If the deviation is within the plan, water is poured into a ballast tank (not shown) to the new box 11. The ballast water load is increased, and then the bulkhead 16 of the existing box 10 and the bulkhead 17 of the new box 11 are removed, and in parallel with this, a crushed stone stopper is constructed around the new box 11. Thereafter, mortar is filled into the bottom of the box, the bearing jack is lowered, and backfilling is performed in accordance with the normal method of submerging the submerged box, thereby completing the submerging of one submerged box.
[0022]
Here, as shown in FIG. 5, the return amount δ of the new box 11 with respect to the existing box 10 is C, the displacement of the new box 11 is A, the total length of the new box 11 is A, and the distance between the left and right wedge devices 21 is C. If B is given, it is given by the following equation (1).
δ = B × C / A (1)
On the other hand, as shown in FIG. 4, the shift amount α of the movable wedge 26 for obtaining the return amount δ is determined by the inclination angle (wedge angle) of the wedge engagement surfaces 24a, 26a of the wedges 24, 26 constituting the wedge device 21. ) Is given by θ, and is given by the following equation (2). By substituting equation (1) into this, the following equation (3) is obtained.
α = δ / tan θ (2)
α = (B × C) / (A × tan θ) (3)
[0023]
By the way, in order to improve the adjustment accuracy of the return amount δ of the new box 11 with respect to the existing box 10, the return amount per unit shift amount of the movable wedge 26 is made as small as possible, that is, the effective movement amount (shift amount) of the movable wedge 26 is reduced. Must be as large as possible. In this case, since the total length A of the new box 11 and the interval B between the left and right wedge devices 21 are constant, the wedge device 21 is required to obtain the shift amount α of the movable wedge 26 as large as possible from the above equation (3). It can be seen that it is desirable to set the wedge angle θ as small as possible. In this regard, as described above, the wedge device 21 of the present invention is provided so as to vertically wedge the joint between the left and right side walls 10a, 11a of the existing box 10 and the new box 11, so that the wedge angle θ Is small, the shift amount α of the movable wedge 26 can be made sufficiently large, and the adjustment accuracy of the return amount of the new box 11 can be greatly increased. As a result, the direction correction accuracy of the new box 11 is remarkably large. improves.
[0024]
The condition for maintaining the wedge state stably even when the wedge device 21 receives the water pressure P when the new box 11 is hydraulically joined to the existing box 10, that is, the movable wedge 26 is fixed to the fixed wedge 24. The condition for not sliding on the top is based on the relationship between the component force P × sin θ in the direction along the wedge engagement surfaces 24a and 26a and the component force P × cos θ in the normal direction of the wedge engagement surfaces 24a and 26a, as shown in FIG. Or from the relationship with the friction coefficient μ of the wedges 24 and 26, it is necessary to satisfy the following expression (4) or (5).
P × sin θ <P × cos θ × μ (4)
tanθ <μ ... (5)
[0025]
In this case, the friction coefficient μ is naturally determined because the fixed and movable wedges 24 and 26 are made of steel. Therefore, in order to prevent the movable wedge 26 from sliding, the above (4) or (5) From the equation, it is necessary to set the wedge angle θ as small as possible. In this regard, as described above, the wedge device 21 of the present invention can set the wedge angle θ to be sufficiently small. The movable wedge 26 does not slide due to the joining force P, and the joined state is stably maintained. This means that even if the hydraulic cylinder 27 is removed simultaneously with the removal of the bulkhead described above, the new box 11 maintains its position (hydraulic joining position), and awaiting the later stabilization work of the new box 11. It is possible to remove the hydraulic cylinder 27 without the need, and the construction period is shortened accordingly.
[0026]
On the other hand, the allowable return deformation amount δS of the rubber gasket 12 required for correcting the direction of the new box 11 is determined by the maximum compression amount δ1 at the time of hydraulic joining when the wedge device 21 is omitted and the height of the nose portion 12b of the rubber gasket 12. From the correlation between the deformation amount δ2 that satisfies the water stoppage, the manufacturing error δ3 of the end face between the submerged boxes 10 and 11, the manufacturing accuracy and the temperature shrinkage amount δ4 of the rubber gasket 12, and the unexpected deformation allowance δ5 determined by It is determined based on the following equation (6).
δS = δ1- {δ2 + δx (= δ3 + δ4 + δ5)} (6)
Therefore, it is necessary to set the original position of the wedge device 21 within a range that does not hinder the water stoppage (δ2 to δ5) of the rubber gasket 12 and sufficiently guarantees the allowable return deformation amount δS. In FIG. 3, the above-described elements required for the rubber gasket 12 are added. From this, it is desirable that the original position S of the wedge device 21 be set within the range of δx (= δ3 + δ4 + δ5). It can be said that.
[0027]
The rubber gasket 12 shows specific compression characteristics depending on its size (L, H) and hardness. As an example, the compression characteristics of a rubber gasket having L = 155 mm, H = 109 mm, and hardness 40 are shown in FIG. It is as follows. In this case, the allowable load Pf is at a level (about 65 × 9.8 kN / m) lower than the total load Po (about 87 × 9.8 kN / m) of the hydraulic joining, and the wedge device 21 is used for the hydraulic joining. If the load is not shared, the rubber gasket may buckle or break. Further, even when the load is shared by the wedge device 21, if the shared load Pk of the wedge device 21 is set to a level higher than the allowable load Pf, the rubber gasket similarly buckles or breaks. there is a possibility. Therefore, when setting the initial wedge height S of the wedge device 21, it is necessary to set the shared load Pk of the wedge device 21 to a level lower than the allowable load Pf. In the example shown in FIG. 6, the shared load Pk of the wedge device 21 is set to about 45 × 9.8 kN / m. In this case, the buckling and breakage of the rubber gasket can be prevented. In addition, the waterproofness of the rubber gasket (δ2 to δ5) and the allowable return deformation δS are sufficiently guaranteed.
[0028]
Here, in the conventional construction method in which the entire load Po (approximately 87 × 9.8 kN / m) of the hydraulic joining is applied to the rubber gasket, a rubber gasket having an allowable load Pf at a level higher than the total load Po must be selected. Must be used, and a large one is needed. Incidentally, the size of the rubber gasket having the allowable load Pf of the level of 95 × 9.8 kN / m is L = 190 mm, H = 148 mm when the hardness is 40, and the rubber gasket 12 usable in the method of the present invention described above. (L = 155 mm, H = 109 mm).
[0029]
【The invention's effect】
As described above, according to the method for correcting the direction of the buried box according to the present invention, a part of the load of the hydraulic joining is shared between the left and right wedge devices, so that the load applied to the rubber gasket is reduced. The reduced amount enables the use of a small rubber gasket, which is advantageous in cost. In addition, the wedge device and its driving device do not not only protrude as an obstacle to the side of the buried box, but also enable the removal of the driving means at an early stage. This has the effect of greatly contributing to
[Brief description of the drawings]
FIG. 1 is a schematic view showing a joining step including a method for correcting the direction of a buried box according to the present invention.
FIG. 2 is a schematic diagram showing an operation state of a wedge device in a joining step shown in FIG.
FIG. 3 is a cross-sectional view showing a cross-sectional shape and a deformed state of a rubber gasket used for a joint portion of a submerged box.
FIG. 4 is a schematic diagram showing the principle of direction correction by a wedge device.
FIG. 5 is a schematic diagram showing a state in which a new box is shifted in the horizontal direction.
FIG. 6 is a graph showing compression characteristics of a rubber gasket usable in the present invention.
FIG. 7 is a front view showing an installation structure of a direction correcting device used in the present invention.
FIG. 8 is a longitudinal sectional view showing an installation structure of the direction correcting device.
FIG. 9 is a cross-sectional view showing an installation structure of the direction correcting device.
FIG. 10 is a perspective view schematically showing a tower pontoon type construction method in which a new box is sunk.
[Explanation of symbols]
10 Existing Box 11 New Box 12 Rubber Gasket 16 Existing Box Bulkhead 17 New Box Bulkhead 18 Sealed Room 20 Between Bulkheads 20 Direction Correction Device 21 Wedge Device 22 Drive Device 24 Fixed Wedge 26 Movable Wedge 27 Hydraulic Cylinder 39 jack

Claims (2)

既設函および新設函の左右側壁の接合部の、ゴムガスケットの内側部位に、固定くさびと可動くさびとを縦方向で楔合させるくさび装置と、前記可動くさびを移動させる駆動装置とを配設し、始めに、前記ゴムガスケットと前記左右のくさび装置とに水圧接合の荷重を分担させながら既設函に新設函を水圧接合し、次に、バルクヘッド間に注水してゴムガスケットの反力により新設函を押戻し、この状態で新設函の後端のずれを修正するために必要な量だけ前記左または右側のくさび装置の可動くさびを、対応する駆動装置により移動させ、しかる後、前記ゴムガスケットと前記左右のくさび装置とに水圧接合の荷重を分担させながら、既設函に新設函を再度水圧接合することを特徴とする沈埋函の方向修正方法。A wedge device for vertically wedge-engaging a fixed wedge and a movable wedge, and a drive device for moving the movable wedge are provided at a joint portion between the left and right side walls of the existing box and the new box, inside the rubber gasket. First, a new box is hydraulically joined to the existing box while sharing the load of hydraulic joining between the rubber gasket and the left and right wedge devices, and then water is injected between the bulkheads and the new gasket is installed by the reaction force of the rubber gasket. Push back the box, and in this state, move the movable wedge of the left or right wedge device by a corresponding drive by an amount necessary to correct the displacement of the rear end of the new box, and thereafter, the rubber gasket A method of correcting the direction of an immersed box, wherein the new box is hydraulically joined to the existing box again while sharing the load of the hydraulic joining to the right and left wedge devices. くさび装置の初期楔合高さを、ゴムガスケットにその許容荷重より低い荷重を分担させ、かつゴムガスケットの止水性および許容戻り変形量を保証する範囲内に設定することを特徴とする請求項1に記載の沈埋函の方向修正方法。2. The wedge device according to claim 1, wherein an initial wedge height of the wedge device is set within a range that allows the rubber gasket to share a load lower than its allowable load and that guarantees the water stoppage and allowable return deformation of the rubber gasket. The method of correcting the direction of the buried box described in.
JP2002321244A 2002-11-05 2002-11-05 How to correct the direction of the sinking box Expired - Fee Related JP4022656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002321244A JP4022656B2 (en) 2002-11-05 2002-11-05 How to correct the direction of the sinking box

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002321244A JP4022656B2 (en) 2002-11-05 2002-11-05 How to correct the direction of the sinking box

Publications (2)

Publication Number Publication Date
JP2004156247A true JP2004156247A (en) 2004-06-03
JP4022656B2 JP4022656B2 (en) 2007-12-19

Family

ID=32801860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002321244A Expired - Fee Related JP4022656B2 (en) 2002-11-05 2002-11-05 How to correct the direction of the sinking box

Country Status (1)

Country Link
JP (1) JP4022656B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102720222A (en) * 2012-06-15 2012-10-10 中交一航局第二工程有限公司 Tail-end deviation rectifying process for immersed pipe
CN115186367A (en) * 2022-09-14 2022-10-14 中交第一航务工程局有限公司 Deviation matching display method and system in process of pulling and closing curve immersed tube

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102720222A (en) * 2012-06-15 2012-10-10 中交一航局第二工程有限公司 Tail-end deviation rectifying process for immersed pipe
CN102720222B (en) * 2012-06-15 2014-07-16 中交一航局第二工程有限公司 Tail-end deviation rectifying process for immersed pipe
CN115186367A (en) * 2022-09-14 2022-10-14 中交第一航务工程局有限公司 Deviation matching display method and system in process of pulling and closing curve immersed tube
CN115186367B (en) * 2022-09-14 2022-11-18 中交第一航务工程局有限公司 Deviation matching display method and system in process of pulling and closing curve immersed tube

Also Published As

Publication number Publication date
JP4022656B2 (en) 2007-12-19

Similar Documents

Publication Publication Date Title
JP2018162655A (en) Final joint of immersed tunnel as well as prefabrication method and installation method
CN102720140B (en) Large-span prestress concrete continuous beam deepwater pier construction process
CN108755763B (en) Final joint structure of immersed tube tunnel by jacking segment method and construction method of final joint structure
JP2015169018A (en) Self-posture control type submerged caisson and construction method of submerged tunnel
KR100937740B1 (en) A method of constructing precast concrete house under water using caisson
JP5136589B2 (en) Reinforcement beam and reinforcement method for underwater structure
JP2019044566A (en) Foundation post grouting method of submerged caisson
CN107338760B (en) Low-tidal-difference harbor section wall caisson wharf structure and construction method thereof
JP3658728B2 (en) Direction correction device and direction correction method for sinking box
JP2004156247A (en) Directional correction method for immersed tube
JP2002364006A (en) Construction method for underwater foundation
KR101031571B1 (en) Method for constructing seperating type caisson
JP2681503B2 (en) Steel sink and its installation method
CN115434359A (en) Offshore wind turbine foundation
CN112982424A (en) Open caisson construction method
JP2000110171A (en) Settling method for underground construction
RU2180028C2 (en) Method of reconstruction of berthing facilities
JP2008280738A (en) Retaining wall reinforcing structure and method of constructing the same
JP3404566B2 (en) How to build an underwater tunnel
JP3378982B2 (en) Basic structure of underwater tunnel
JP7467291B2 (en) Method for constructing a concrete structure
JP7207885B2 (en) Floating structure construction method
JP2002327445A (en) Construction method of underwater tunnel
CN114319320B (en) Temporary pier steel pipe pile and floating installation method thereof
JP2743279B2 (en) Protection method for buried objects

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041224

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070705

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070913

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees