JP2004155739A - Transition metal compound, catalyst for olefin polymerization and method for producing polyolefin - Google Patents

Transition metal compound, catalyst for olefin polymerization and method for producing polyolefin Download PDF

Info

Publication number
JP2004155739A
JP2004155739A JP2002324797A JP2002324797A JP2004155739A JP 2004155739 A JP2004155739 A JP 2004155739A JP 2002324797 A JP2002324797 A JP 2002324797A JP 2002324797 A JP2002324797 A JP 2002324797A JP 2004155739 A JP2004155739 A JP 2004155739A
Authority
JP
Japan
Prior art keywords
group
carbon atoms
transition metal
compound
metal compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002324797A
Other languages
Japanese (ja)
Other versions
JP4228135B2 (en
Inventor
Satoshi Hamura
敏 羽村
Ayaki Hasegawa
彩樹 長谷川
Akihiro Yano
明広 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2002324797A priority Critical patent/JP4228135B2/en
Publication of JP2004155739A publication Critical patent/JP2004155739A/en
Application granted granted Critical
Publication of JP4228135B2 publication Critical patent/JP4228135B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polymerization Catalysts (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst for olefin polymerization capable of efficiently producing a polyolefin and to provide a method for producing the polyolefin by using the catalyst. <P>SOLUTION: An olefin is polymerized by using the catalyst for olefin polymerization composed of (A) a transition metal compound having a specific structure and (B) a compound producing a cationic transition metal compound by reaction with the transition metal compound or the catalyst for olefin polymerization composed of (A) the transition metal compound having the specific structure, (B) the compound producing the cationic transition metal compound by reaction with the transition metal compound and (C) an organometallic compound. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、5員環と7員環の組み合わせからなる環状π電子共役化合物とシクロペンタジエニル基、インデニル基またはフルオレニル基を配位子に持つことを特徴とする遷移金属化合物、およびその遷移金属化合物を構成成分とするオレフィン重合用触媒、さらにそれを用いてオレフィンの重合を行うことを特徴とするポリオレフィンの製造方法に関する。
【0002】
【従来の技術】
均一系オレフィン重合用触媒として、周期表4族メタロセン化合物を触媒の構成成分として用いたメタロセン触媒がよく知られている。この触媒は重合活性が高く、組成分布が均一で、分子量分布が狭いオレフィン重合体が得られるという特徴を有することが知られている(たとえば、特許文献1参照)。さらに、このメタロセン触媒は、メタロセン化合物の構造を変えることで、その重合性能が大きく変化し、得られるポリマーの性質をコントロールすることが可能な為、様々なメタロセン化合物が合成され、オレフィン重合用触媒として検討が行われている。ところが、検討されているメタロセン化合物で用いられている配位子の基本構造は、シクロペンタジエニル基、インデニル基やフルオレニル基に限られており、それらの置換基を変えることでメタロセン触媒の性能コントロールが行われている。
【0003】
ところで、5員環と7員環が縮環した芳香族化合物であるアズレンは、アルキルリチウムやアリールリチウムなどの求核剤と反応させるとアズレンの4位に付加反応が起こり、4位にアルキル基やアリール基などの置換基を有するπ電子共役配位子となりうる。これまでにアリール化したアズレンをケイ素架橋した化合物を配位子として用いた周期表4族遷移金属化合物の合成が行われ、それを用いた重合触媒がα−オレフィン重合用触媒として有用であることが開示されている(たとえば、特許文献2参照)。しかしながら、エチレン系重合用触媒として、特に高い温度領域で重合を行うには、触媒性能が不十分であり、産業的に利用するための新たな触媒系の開発が望まれている。
【0004】
【特許文献1】
特開昭58−19309号公報
【特許文献2】
特開平6−239914号公報
【0005】
【発明が解決しようとする課題】
本発明の目的は、ポリオレフィンを効率よく製造することが可能なオレフィン重合用触媒を提供すること、並びにそれを用いたポリオレフィンの製造方法を提供することにある。
【0006】
【課題を解決するための手段】
上記課題を達成するため、鋭意検討の結果、特定の構造を有する遷移金属化合物をオレフィン重合用触媒の構成成分として用い、これに遷移金属化合物と反応してカチオン性遷移金属化合物を生成させる化合物および有機金属化合物を組み合わせることで、ポリオレフィンを効率よく製造できる新たな触媒系を見い出し、本発明を完成するに到った。
【0007】
すなわち本発明は、一般式(1)
【0008】
【化5】

Figure 2004155739
[式中、Mはチタン原子、ジルコニウム原子、ハフニウム原子であり、Xは各々独立して同一でも異なっていてもよく、水素原子、ハロゲン原子、炭素数1〜30のアルキル基、炭素数6〜30のアリール基、炭素数7〜30のアリールアルキル基または炭素数7〜30のアルキルアリール基である。
は下記一般式(2)、(3)、(4)または(5)
【0009】
【化6】
Figure 2004155739
[式中、Rは各々独立して同一でも異なっていてもよく、水素原子、炭素数1〜30のアルキル基、炭素数6〜30のアリール基、炭素数7〜30のアリールアルキル基、炭素数7〜30のアルキルアリール基、炭素数1〜30のアルキルシリル基、炭素数6〜30のアリールシリル基、炭素数7〜30のアルキルアリールシリル基、炭素数2〜20のジアルキルアミノ基または炭素数1〜20の酸素含有炭化水素基である。]
で表されるπ共役芳香族配位子である。Rは下記一般式(6)または(7)
【0010】
【化7】
Figure 2004155739
[式中、Rは各々独立して同一でも異なっていてもよく、水素原子、炭素数1〜30のアルキル基、炭素数6〜30のアリール基、炭素数7〜30のアリールアルキル基、炭素数7〜30のアルキルアリール基、炭素数1〜30のアルキルシリル基、炭素数6〜30のアリールシリル基、炭素数7〜30のアルキルアリールシリル基、炭素数2〜20のジアルキルアミノ基または炭素数1〜20の酸素含有炭化水素基である。Rは水素原子、炭素数1〜30のアルキル基、炭素数6〜30のアリール基、炭素数7〜30のアリールアルキル基、炭素数7〜30のアルキルアリール基である。ただし、R,Rは置換基としてハロゲン原子やヘテロ原子を含んでいてもよい。]
で表される配位子である。Yは下記一般式(8)または(9)
【0011】
【化8】
Figure 2004155739
[式中、Qは炭素原子、ケイ素原子またはゲルマニウム原子である。Rは各々独立して同一でも異なっていてもよく、水素原子、炭素数1〜30のアルキル基、炭素数6〜30のアリール基、炭素数7〜30のアリールアルキル基、炭素数7〜30のアルキルアリール基である。]
で表される、RとRを架橋する役割をする基である。nは0または1であり、nが0の時、Yは無く、RとRは架橋されていない。]
で表される遷移金属化合物を提供するものである。また本発明は、該遷移金属化合物、遷移金属化合物と反応してカチオン性遷移金属化合物を生成させる化合物および有機金属化合物からなるオレフィン重合用触媒を提供するものである。さらに本発明は、該オレフィン重合用触媒を用いてオレフィン重合を行うことを特徴とするポリオレフィンの製造方法を提供するものである。
【0012】
以下に本発明を詳細に説明する。本発明は、一般式(1)
【0013】
【化9】
Figure 2004155739
で表される構造の遷移金属化合物とこの遷移金属化合物を用いたオレフィン重合用触媒およびポリオレフィンの製造方法に関する。一般式(1)中、Mはチタン原子、ジルコニウム原子、ハフニウム原子である。Xは各々独立して同一でも異なっていてもよく、水素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基やそれらの異性体置換基などの炭素数1〜30のアルキル基、フェニル基、インデニル基、ナフチル基、フルオレニル基、ビフェニレニル基などの炭素数6〜30のアリール基、ベンジル基、フェニルエチル基、ジフェニルメチル基、ジフェニルエチル基などの炭素数7〜30のアリールアルキル基、またはメチルフェニル基、エチルフェニル基、メチルナフチル基などの炭素数7〜30のアルキルアリール基である。Rは下記一般式(2)、(3)、(4)または(5)
【0014】
【化10】
Figure 2004155739
で表されるπ共役芳香族配位子であり、式中、Rは各々独立して同一でも異なっていてもよく、水素原子、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基やそれらの異性体置換基などの炭素数1〜30のアルキル基、フェニル基、インデニル基、ナフチル基、フルオレニル基、ビフェニレニル基などの炭素数6〜30のアリール基、ベンジル基、フェニルエチル基、ジフェニルメチル基、ジフェニルエチル基などの炭素数7〜30のアリールアルキル基、メチルフェニル基、エチルフェニル基、メチルナフチル基などの炭素数7〜30のアルキルアリール基、トリメチルシリル基、トリtert−ブチルシリル基、ジtert−ブチルメチルシリル基、tert−ブチルジメチルシリル基、トリフェニルシリル基、ジフェニルメチルシリル基、フェニルジメチルシリル基などの炭素数1〜30のアルキルシリル基、炭素数6〜30のアリールシリル基、トリベンジルシリル基などの炭素数7〜30のアルキルアリールシリル基、ジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジブチルアミノ基、ジイソプロピルアミノ基、ジフェニルアミノ基、メチルフェニルアミノ基などの炭素数2〜20のジアルキルアミノ基、またはメトキシ基、エトキシ基、プロポキシ基、ブトキシ基、イソプロポキシ基、フェノキシ基などの炭素数1〜20の酸素含有炭化水素基である。Rは下記一般式(6)または(7)
【0015】
【化11】
Figure 2004155739
で表される配位子であり、式中、Rは各々独立して同一でも異なっていてもよく、水素原子、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基やそれらの異性体置換基などの炭素数1〜30のアルキル基、フェニル基、インデニル基、ナフチル基、フルオレニル基、ビフェニレニル基などの炭素数6〜30のアリール基、ベンジル基、フェニルエチル基、ジフェニルメチル基、ジフェニルエチル基などの炭素数7〜30のアリールアルキル基、メチルフェニル基、エチルフェニル基、メチルナフチル基などの炭素数7〜30のアルキルアリール基、トリメチルシリル基、トリtert−ブチルシリル基、ジtert−ブチルメチルシリル基、tert−ブチルジメチルシリル基、トリフェニルシリル基、ジフェニルメチルシリル基、フェニルジメチルシリル基などの炭素数1〜30のアルキルシリル基、炭素数6〜30のアリールシリル基、トリベンジルシリル基などの炭素数7〜30のアルキルアリールシリル基、ジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジブチルアミノ基、ジイソプロピルアミノ基、ジフェニルアミノ基、メチルフェニルアミノ基などの炭素数2〜20のジアルキルアミノ基、またはメトキシ基、エトキシ基、プロポキシ基、ブトキシ基、イソプロポキシ基、フェノキシ基などの炭素数1〜20の酸素含有炭化水素基である。Rは水素原子、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基やそれらの異性体置換基などの炭素数1〜30のアルキル基、フェニル基、インデニル基、ナフチル基、フルオレニル基、ビフェニレニル基などの炭素数6〜30のアリール基、ベンジル基、フェニルエチル基、ジフェニルメチル基、ジフェニルエチル基などの炭素数7〜30のアリールアルキル基、またはメチルフェニル基、エチルフェニル基、メチルナフチル基などの炭素数7〜30のアルキルアリール基である。ただし、R,Rは置換基としてハロゲン原子やヘテロ原子を含んでいてもよい。Yは下記一般式(8)または(9)
【0016】
【化12】
Figure 2004155739
で表される、RとRを架橋する役割をする基である。式中、Qは炭素原子、ケイ素原子またはゲルマニウム原子を示す。Rは各々独立して同一でも異なっていてもよく、水素原子、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基やそれらの異性体置換基などの炭素数1〜30のアルキル基、フェニル基、インデニル基、ナフチル基、フルオレニル基、ビフェニレニル基などの炭素数6〜30のアリール基、ベンジル基、フェニルエチル基、ジフェニルメチル基、ジフェニルエチル基などの炭素数7〜30のアリールアルキル基、またはメチルフェニル基、エチルフェニル基、メチルナフチル基などの炭素数7〜30のアルキルアリール基である。nは0または1であり、nが0の時、Yは存在しない。すなわち、nが0の時は、RとRの間に架橋基は存在せずに、非架橋であることを示す。
【0017】
本発明の一般式(1)で表される遷移金属化合物の合成例として、例えば4位にフェニル基を持つアズレニル基とフルオレニル基がジフェニルメチレン架橋された配位子を持つ架橋型ジルコニウム錯体に関する合成方法を例示すると、まず、アズレンをアルキルリチウムでリチオ化した後、ジフェニルシリルフルオレニルクロリドと反応させ配位子の合成を行う。この配位子をリチオ化した後、四塩化ジルコニウムを反応させる方法で合成することが可能であるが、この方法に限定されるものではない。
【0018】
本発明に用いる一般式(1)で表される遷移金属化合物の具体的な例として、次に挙げる化合物を例示することができるが、これらに限定されるものではない。例えば、ジフェニルメチレン(4−フェニルアズレニル)(フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(4−メチルアズレニル)(フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(4−フェニルアズレニル)(2,7−ジtert−ブチルフルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(4−メチルアズレニル)(2,7−ジtert−ブチルフルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(4−フェニルアズレニル)(インデニル)ジルコニウムジクロリド、ジフェニルメチレン(4−メチルアズレニル)(インデニル)ジルコニウムジクロリド、ジフェニルメチレン(4−フェニルアズレニル)(シクロペンタジエニル)ジルコニウムジクロリド、ジフェニルメチレン(4−メチルアズレニル)(シクロペンタジエニル)ジルコニウムジクロリド、ジメチルメチレン(4−フェニルアズレニル)(フルオレニル)ジルコニウムジクロリド、ジメチルメチレン(4−メチルアズレニル)(フルオレニル)ジルコニウムジクロリド、ジメチルメチレン(4−フェニルアズレニル)(2,7−ジtert−ブチルフルオレニル)ジルコニウムジクロリド、ジメチルメチレン(4−メチルアズレニル)(2,7−ジtert−ブチルフルオレニル)ジルコニウムジクロリド、ジメチルメチレン(4−フェニルアズレニル)(インデニル)ジルコニウムジクロリド、ジメチルメチレン(4−メチルアズレニル)(インデニル)ジルコニウムジクロリド、ジメチルメチレン(4−フェニルアズレニル)(シクロペンタジエニル)ジルコニウムジクロリド、ジメチルメチレン(4−メチルアズレニル)(シクロペンタジエニル)ジルコニウムジクロリド、ジフェニルシランジイル(4−フェニルアズレニル)(フルオレニル)ジルコニウムジクロリド、ジフェニルシランジイル(4−メチルアズレニル)(フルオレニル)ジルコニウムジクロリド、ジフェニルシランジイル(4−フェニルアズレニル)(2,7−ジtert−ブチルフルオレニル)ジルコニウムジクロリド、ジフェニルシランジイル(4−メチルアズレニル)(2,7−ジtert−ブチルフルオレニル)ジルコニウムジクロリド、ジフェニルシランジイル(4−フェニルアズレニル)(インデニル)ジルコニウムジクロリド、ジフェニルシランジイル(4−メチルアズレニル)(インデニル)ジルコニウムジクロリド、ジフェニルシランジイル(4−フェニルアズレニル)(シクロペンタジエニル)ジルコニウムジクロリド、ジフェニルシランジイル(4−メチルアズレニル)(シクロペンタジエニル)ジルコニウムジクロリド、ジメチルシランジイル(4−フェニルアズレニル)(フルオレニル)ジルコニウムジクロリド、ジメチルシランジイル(4−メチルアズレニル)(フルオレニル)ジルコニウムジクロリド、ジメチルシランジイル(4−フェニルアズレニル)(2,7−ジtert−ブチルフルオレニル)ジルコニウムジクロリド、ジメチルシランジイル(4−メチルアズレニル)(2,7−ジtert−ブチルフルオレニル)ジルコニウムジクロリド、ジメチルシランジイル(4−フェニルアズレニル)(インデニル)ジルコニウムジクロリド、ジメチルシランジイル(4−メチルアズレニル)(インデニル)ジルコニウムジクロリド、ジメチルシランジイル(4−フェニルアズレニル)(シクロペンタジエニル)ジルコニウムジクロリド、ジメチルシランジイル(4−メチルアズレニル)(シクロペンタジエニル)ジルコニウムジクロリドなどのジルコニウム化合物、これらの化合物中のアズレン部位の二重結合位置が異なる異性体、ジルコニウム原子をチタン原子、ハフニウム原子に変えた化合物や上記遷移金属化合物のジクロロ体をジメチル体、ジエチル体、ジヒドロ体、ジフェニル体、ジベンジル体に変えた化合物などを例示することができる。
【0019】
本発明におけるオレフィン重合用触媒の構成成分の一つであり、一般式(1)で表される遷移金属化合物および有機金属化合物と共に用いる(B)遷移金属化合物と反応してカチオン性遷移金属化合物を生成させる化合物とは、該遷移金属化合物または該遷移金属化合物と有機金属化合物との反応生成物と作用もしくは反応することにより、カチオン性遷移金属化合物を生成させる化合物を示している。生成したカチオン性遷移金属化合物は、オレフィンを重合することが可能な重合活性種として作用する。遷移金属化合物と反応してカチオン性遷移金属化合物を生成させる化合物は、重合活性種を形成した後、生成したカチオン性遷移金属化合物に対して弱く配位または相互作用するものの、該活性種と直接反応しない化合物を提供する化合物であることが望ましい。
【0020】
遷移金属化合物と反応してカチオン性遷移金属化合物を生成させる化合物の例として、均一系オレフィン重合用触媒系の助触媒成分としてよく用いられているアルキルアルミノオキサンや非配位性のアニオンを有するイオン化イオン性化合物、さらに変性粘土化合物などが好ましいが、これらに限定されるものではない。
【0021】
本発明のオレフィン重合用触媒の構成成分である遷移金属化合物と反応してカチオン性遷移金属化合物を生成させる化合物が、変性粘土化合物である場合、用いる粘土化合物はカチオン交換能を有するものが好ましい。また、本発明において用いられる粘土化合物は、酸、アルカリによる処理、塩類処理および有機化合物、無機化合物処理による複合体生成などの化学処理を行うことが好ましい。
【0022】
粘土化合物としては、天然に存在するカオリナイト、ディッカイト、ハロイサイト等のカオリン鉱物、モンモリロナイト、ヘクトライト、バイデライト、サポナイト、テニオライト、ソーコナイト等のスメクタイト族、白雲母、パラゴナイト、イライト等の雲母族、バーミキュライト族、マーガライト、クリントナイト等の脆雲母族、ドンバサイト、クッケアイト、クリノクロア等の縁泥石族、セピオライト・パリゴルスカイトなどや、人工合成された粘土化合物を挙げることができるが、これらに限定されない。
【0023】
化学処理に用いられる酸としては塩酸、硫酸、硝酸、酢酸等のブレンステッド酸が例示され、アルカリとしては水酸化ナトリウム、水酸化カリウム、水酸化カルシウムが好ましく用いられる。塩類処理において用いられる化合物としては、塩化ナトリウム、塩化カリウム、塩化リチウム、塩化マグネシウム、塩化アルミニウム、塩化鉄、塩化アンモニウム等のイオン性ハロゲン化物;硫酸ナトリウム、硫酸カリウム、硫酸アルミニウム、硫酸アンモニウム等の硫酸塩;炭酸カリウム、炭酸ナトリウム、炭酸カルシウム等の炭酸塩;リン酸ナトリウム、リン酸カリウム、リン酸アルミニウム、リン酸アンモニウム等のリン酸塩などの無機塩および酢酸ナトリウム、酢酸カリウム、シュウ酸カリウム、クエン酸ナトリウム、酒石酸ナトリウム等の有機酸塩などを挙げることができる。
【0024】
粘土化合物の有機化合物による複合体生成に用いられる有機化合物としては、オニウム塩や、トリチルクロライド、トロピリウムブロマイド等の炭素カチオンを生成するような化合物、フェロセニウム塩等の金属錯体カチオンを生成する錯体化合物が例示される。無機化合物による複合体生成に用いられる無機化合物としては、水酸化アルミニウム、水酸化ジルコニウム、水酸化クロム等の水酸化物陽イオンを生成する金属水酸化物等を挙げることができる。
【0025】
本発明において用いられる変性粘土化合物のうち、特に好ましくは、粘土化合物中に存在する交換性カチオンである金属イオンを特定の有機カチオン成分と交換した粘土化合物−有機イオン複合体である変性粘土化合物である。この変性粘土化合物に導入される有機カチオンとして、具体的にはブチルアンモニウム、ヘキシルアンモニウム、デシルアンモニウム、ドデシルアンモニウム、ジアミルアンモニウム、トリブチルアンモニウム、N,N−ジメチルデシルアンモニウム、N,N−ジメチルトリデシルアンモニウム、N,N−ジメチルテトラデシルアンモニウム、N,N−ジメチルペンタデシルアンモニウム、N,N−ジメチルヘキサデシルアンモニウム、N,N−ジメチルヘプタデシルアンモニウム、N,N−ジメチルオクタデシルアンモニウム、N,N−ジメチルノナデシルアンモニウム、N,N−ジメチルイコサアンモニウム、N,N−ジメチルヘンイコサアンモニウム、N,N−ジメチルドコサアンモニウム等の脂肪族アンモニウムカチオン、アニリニウム、N−メチルアニリニウム、N,N−ジメチルアニリニウム、N−エチルアニリニウム、N,N−ジエチルアニリニウム、ベンジルアンモニウム、トルイジニウム、ジベンジルアンモニウム、トリベンジルアンモニウム、N,N,2,4,6−ペンタメチルアニリニウム等の芳香族アンモニウムカチオン等のアンモニウムイオン、あるいはジメチルオキソニウム、ジエチルオキソニウム等のオキソニウムイオンなどが例示されるが、これらに限定されるものではない。
【0026】
遷移金属化合物と反応してカチオン性遷移金属化合物を生成させる化合物が、遷移金属に対して対アニオンを提供するプロトン酸、ルイス酸、イオン化イオン性化合物またはルイス酸性化合物である場合、その構造は、下記一般式(10)で表されるプロトン酸、一般式(11)で表されるイオン化イオン性化合物、一般式(12)で表されるルイス酸または一般式(13)で表されるルイス酸性化合物のいずれかの構造を有する化合物であることが望ましい。
【0027】
[HL][E(Ar)] (10)
[AL ][E(Ar)] (11)
[D][E(Ar)] (12)
E(Ar) (13)
(ここで、Hはプロトンであり、Eはホウ素原子またはアルミニウム原子である。Lはルイス塩基、Lはルイス塩基またはシクロペンタジエニル基である。Aはリチウム、鉄または銀から選ばれる金属の陽イオンであり、Dはカルボニウムカチオンまたはトロピリウムカチオンである。Arは炭素数6〜20のハロゲン置換アリール基である。mは0〜2の整数である。)
一般式(10)で表されるプロトン酸の具体例として、ジエチルオキソニウムテトラキス(ペンタフルオロフェニル)ボレート、ジメチルオキソニウムテトラキス(ペンタフルオロフェニル)ボレート、テトラメチレンオキソニウムテトラキス(ペンタフルオロフェニル)ボレート、ヒドロニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N−ジメチルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、トリn−ブチルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、ジエチルオキソニウムテトラキス(ペンタフルオロフェニル)アルミネート、ジメチルオキソニウムテトラキス(ペンタフルオロフェニル)アルミネート、テトラメチレンオキソニウムテトラキス(ペンタフルオロフェニル)アルミネート、ヒドロニウムテトラキス(ペンタフルオロフェニル)アルミネート、N,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)アルミネート、トリn−ブチルアンモニウムテトラキス(ペンタフルオロフェニル)アルミネート等を挙げることができるが、これらに限定されるものではない。
【0028】
一般式(11)で表されるイオン化イオン性化合物としては、具体的にはリチウムテトラキス(ペンタフルオロフェニル)ボレート、リチウムテトラキス(ペンタフルオロフェニル)アルミネート等のリチウム塩、またはそのエーテル錯体、フェロセニウムテトラキス(ペンタフルオロフェニル)ボレート、フェロセニウムテトラキス(ペンタフルオロフェニル)アルミネート等のフェロセニウム塩、シルバーテトラキス(ペンタフルオロフェニル)ボレート、シルバーテトラキス(ペンタフルオレフェニル)アルミネート等の銀塩等を挙げることができるが、これらに限定されるものではない。
【0029】
一般式(12)で表されるルイス酸としては、具体的にはトリチルテトラキス(ペンタフルオロフェニル)ボレート、トリチルテトラキス(ペンタフルオロフェニル)アルミネート、トロピリウムテトラキス(ペンタフルオロフェニル)ボレート、トロピリウムテトラキス(ペンタフルオロフェニル)アルミネート等を挙げることができるが、これらに限定されるものではない。
【0030】
一般式(13)で表されるルイス酸性化合物の具体的な例として、トリス(ペンタフルオロフェニル)ボラン、トリス(2,3,5,6−テトラフルオロフェニル)ボラン、トリス(2,3,4,5−テトラフェニルフェニル)ボラン、トリス(3,4,5−トリフルオロフェニル)ボラン、フェニルビス(パーフルオロフェニル)ボラン、トリス(3,4,5−トリフルオロフェニル)アルミニウム等を挙げることができるが、これらに限定されるものではない。
【0031】
遷移金属化合物と反応してカチオン性遷移金属化合物を生成させる化合物が、アルキルアルミノオキサンである場合、その構造は下記一般式(14)または(15)
【0032】
【化13】
Figure 2004155739
(式中、Rは各々同一でも異なっていてもよく、水素原子、メチル基、エチル基、プロピル基、tert−ブチル基などの炭素数1〜20の炭化水素基である。また、qは2〜60の整数である。)
で表される化合物であることが望ましい。なお、アルキルアルミノオキサンには少量の有機金属化合物が含まれていてもよい。
【0033】
本発明のオレフィン重合用触媒の構成成分であり、遷移金属化合物および遷移金属化合物と反応してカチオン性遷移金属化合物を生成させる化合物と共に用いられる(C)有機金属化合物とは、遷移金属化合物をアルキル化することが可能な化合物が好ましく、具体的にはメチルリチウムなどのアルキルリチウム化合物、メチルマグネシウムクロライド、エチルマグネシウムクロライド、イソプロピルマグネシウムクロライド、ベンジルマグネシウムクロライド、メチルマグネシウムブロマイド、エチルマグネシウムブロマイド、イソプロピルマグネシウムブロマイド、ベンジルマグネシウムブロマイドなどのグリニャール試薬、ジメチルマグネシウムなどのジアルキルマグネシウム、ジメチル亜鉛、ジエチル亜鉛などのジアルキル亜鉛、トリメチルボラン、トリエチルボランなどのアルキルボラン、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウムなどのアルキルアルミニウムなどを挙げることができる。好ましい有機金属化合物としては、下記一般式(16)で表される有機アルミニウム化合物を挙げることができる。
【0034】
(RAl (16)
(式中、Rは互いに同じでも異なっていてもよく、水素原子、アミド基、アルコキシ基、炭化水素基を示し、そのうち少なくとも一つは炭化水素基である。)特に好ましい化合物として、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム等を挙げることができる。
【0035】
本発明における(A)成分:遷移金属化合物と(B)成分:遷移金属化合物と反応してカチオン性遷移金属化合物を生成させる化合物および(C)成分:有機金属化合物の比に制限はないが、(B)成分の種類によって、次に示す比であることが望ましい。
【0036】
1)(B)成分がアルキルアルミノオキサンである場合:(A)成分と(C)成分の金属原子当たりのモル比は(A成分):(C成分)=100:1〜1:100000の範囲にあり、特に1:1〜1:10000の範囲であることが好ましく、(A)成分と(B)成分の金属原子当たりのモル比が(A成分):(B成分)=100:1〜1:1000000にあり、特に1:1〜1:100000の範囲であることが好ましい。
【0037】
2)(B)成分が遷移金属に対して対アニオンを提供するプロトン酸、ルイス酸、イオン化イオン性化合物またはルイス酸性化合物である場合:(A)成分と(C)成分の金属原子当たりのモル比は(A成分):(C成分)=100:1〜1:100000の範囲にあり、特に1:1〜1:10000の範囲であることが好ましく、(A)成分と(B)成分の金属原子当たりのモル比が(A成分):(B成分)=10:1〜1:1000にあり、特に3:1〜1:100の範囲であることが好ましい。
【0038】
3)(B)成分が変性粘土化合物である場合:(A)成分と(C)成分の金属原子当たりのモル比は(A成分):(C成分)=100:1〜1:100000の範囲にあり、特に1:1〜1:10000の範囲であることが好ましく、(A)成分と(B)成分の重量比が(A成分):(B成分)=10:1〜1:10000にあり、特に3:1〜1:1000の範囲であることが好ましい。
【0039】
(A)成分、(B)成分および(C)成分からなるオレフィン重合用触媒を調製する方法に関して制限はなく、調製の方法として、各成分に関して不活性な溶媒中あるいは重合を行うモノマーを溶媒として用い、混合する方法などを挙げることができる。また、これらの成分を反応させる順番に関しても制限はなく、この処理を行う温度、処理時間も制限はない。また、各成分を2種以上用いてオレフィン重合用触媒を調製することも可能である。
【0040】
本発明における触媒は、通常の重合プロセス、すなわちスラリー重合、気相重合、高圧重合、溶液重合、塊状重合のいずれのプロセスにも使用できる。
【0041】
本発明において重合とは単独重合のみならず共重合も意味し、これら重合により得られるポリオレフィンは、単独重合体のみならず共重合体も含む意味で用いられる。
【0042】
本発明におけるオレフィンの重合は、気相でも液相でも行うことができ、特に気相で重合を行う場合には、粒子形状の整ったポリオレフィンを効率よく安定的に生産することができる。また、重合を液相で行う場合、用いる溶媒は、一般に用いられている有機溶媒であればいずれでもよく、具体的にはベンゼン、トルエン、キシレン、ペンタン、ヘキサン、ヘプタン等が挙げられ、プロピレン、1−ブテン、1−オクテン、1−ヘキセンなどのオレフィンそれ自身を溶媒として用いることもできる。
【0043】
本発明に用いるオレフィンは、エチレン、プロピレン、1−ブテン、4−メチル−1−ペンテン、1−ヘキセン、1−オクテン等のα−オレフィン、スチレンおよびスチレン誘導体、ブタジエン、1,4−ヘキサジエン、5−エチリデン−2−ノルボルネン、ジシクロペンタジエン、4−メチル−1,4−ヘキサジエン、7−メチル−1,6−オクタジエン等の共役および非共役ジエン、シクロブテン等の環状オレフィン等が挙げられる。さらに、エチレンとプロピレンとスチレン、エチレンと1−ヘキセンとスチレン、エチレンとプロピレンとエチリデンノルボルネンのように、3種以上の成分を混合して重合することもできる。
【0044】
本発明の方法を用いてポリオレフィンを製造する上で、重合温度、重合時間、重合圧力、モノマー濃度などの重合条件について特に制限はないが、重合温度は−100〜300℃、重合時間は10秒〜20時間、重合圧力は常圧〜3000kg/cmGの範囲で行うことが好ましい。また、重合時に水素などを用いて分子量の調節を行うことも可能である。重合はバッチ式、半連続式、連続式のいずれの方法でも行うことが可能であり、重合条件を変えて、2段以上に分けて行うことも可能である。また、重合終了後に得られるポリオレフィンは、従来既知の方法により重合溶媒から分離回収され、乾燥して得ることができる。
【0045】
【実施例】
以下、実施例により本発明をさらに詳細に説明するが、本発明はこれら実施例にのみ限定されるものではない。なお、重合操作、反応および溶媒精製は、すべて不活性ガス下で行った。また、反応に用いた溶媒などはすべて予め公知の方法で精製、乾燥、脱酸素を行ったものを用いた。遷移金属化合物の同定は核磁気共鳴装置(日本電子、GSX−270)および質量分析装置(島津製作所、QP−1000)を用いて行った。変性粘土化合物中の変性反応によって置換したカチオンの量は、変性反応前後における粘土化合物のナトリウム含量の差から概算した。オレフィン重合体の融点Tmは、DSC(示差走査熱量計)SEIKO SC−5000を用いて測定した。MFR(メルトフローレート)は、ASTM D1238条件Eに準ずる方法で測定した。
【0046】
実施例1
[(4−フェニルアズレニル)[2,7−ジ(tert−ブチル)フルオレニル]ジメチルシランの合成]
0℃に冷却したアズレン(0.50g,3.90mmol)のヘキサン溶液(20mL)に、フェニルリチウムのシクロヘキサン−ジエチルエーテル溶液(1.8M,2.4mL,4.29mmol)を加え、室温で1時間攪拌した。再度、0℃に冷却した後、ジメチル[2,7−ジ(tert−ブチル)フルオレニル]シリルクロリド(1.4g,3.9mmol)のトルエン溶液(20mL)を加え、室温で終夜攪拌した。反応終了後、1N塩酸を加え、酢酸エチルで抽出、飽和食塩水で洗浄、硫酸マグネシウムで乾燥した後、減圧下で溶媒を留去することで、緑色の粘性固体を得た。シリカゲルカラム(シリカゲル20g,ヘキサン:塩化メチレン=5:1)で精製することで、薄い青色の固体として(4−フェニルアズレニル)[2,7−ジ(tert−ブチル)フルオレニル]ジメチルシラン(1.56g,2.89mmol,74%)を得た。
【0047】
H−NMR(CDCl)δ=−0.02(s,3H,Si−Me),0.06(s,3H,Si−Me),1.29(s,9H,tert−Bu),1.31(s,9H,tert−Bu),3.00(d,1H),3.90(s,1H),5.65(m,1H),6.1〜7.8(m).
MS(70eV,EI) M/z=540
[ジメチルシランジイル(フェニルアズレニル)[2,7−ジ(tert−ブチル)フルオレニル]ジルコニウムジクロリドの合成]
上述の方法で合成した(4−フェニルアズレニル)[2,7−ジ(tert−ブチル)フルオレニル]ジメチルシラン(1.49g,2.75mmol)のTHF溶液(60mL)を−78℃に冷却した後、n−BuLiのヘキサン溶液(1.59mol/L,5.2mL,8.25mmol)を加え、室温で終夜攪拌した。反応終了後、この反応混合物の溶媒を減圧下で留去したところ黄土色の泡状固体を得た。ヘキサンで洗浄した後、減圧下で乾燥したところ、黄土色の泡状固体を得た。
【0048】
上述の方法で得た黄土色泡状固体にトルエン(500mL)を加え、0℃に冷却した後、四塩化ジルコニウム(0.64g,2.75mmol)のトルエン懸濁液(30mL)を加え、室温で終夜攪拌を行った。反応終了後、セライトを敷いたG3フィルターを用いて、ろ過を行いトルエンに不溶な固体を取り除いた後、得られたオレンジ色のろ液の溶媒を減圧下で留去したところ、オレンジ色の固体を得た。トルエンとヘキサンの混合溶媒で再結晶を行ったところ、オレンジ色の固体として、(4−フェニルアズレニル)[2,7−ジ(tert−ブチル)フルオレニル]ジメチルシラン(0.20g,0.29mmol,10%)を得た。H−NMRスペクトルより2つの異性体の混合物として目的とする錯体を得た。
【0049】
H−NMR(CDCl)δ=0.95(s,Si−Me),1.03(s,Si−Me),1.06(s,Si−Me),1.08(s,Si−Me),1.15(s,tert−Bu),1.32(s,tert−Bu),1.34(s,tert−Bu),1.35(s,tert−Bu),4.12(d),4.54(d),4.78(d),5.14(d),5.44〜6.50(m),7.17〜8.02(m).
実施例2
[変性粘土化合物の調製]
水1500mLに、37%塩酸30mLおよびN,N−ジメチルオクタデシルアミンを89.1g加え、N,N−ジメチルオクタデシルアンモニウム塩酸塩水溶液を調製した。平均粒径7.8μmのモンモリロナイト300g(クニピアF(クニミネ工業製)をジェット粉砕機で粉砕することによって調製した)を上記塩酸塩水溶液に加え、6時間反応させた。反応終了後、反応溶液を濾過し、得られたケーキを6時間減圧乾燥し、変性粘土化合物360gを得た。有機カチオン導入量は、1.0mmol/gであった。
【0050】
[触媒の調製]
50mLのシュレンク管に、[変性粘土化合物の調製]に従って合成した変性粘土化合物0.6g、ヘプタン20.2mLを加え、そこへトリエチルアルミニウムのヘプタン溶液(10wt%希釈品)をアルミニウム原子当たり7.05mmol(11.5mL)加えた後、1時間攪拌した(これを懸濁液Aとする)。一方、別に用意した50mLのシュレンク管に、実施例1に記載の方法で合成したジメチルシランジイル(フェニルアズレニル)[2,7−ジ(tert−ブチル)フルオレニル]ジルコニウムジクロリドを30.8μmol、ヘプタン7.7mLおよびトリエチルアルミニウムのヘプタン溶液(10wt%希釈品)をアルミニウム原子当たり3.1mmol(5.1mL)加えた後、1時間攪拌した(これを溶液Bとする)。得られた溶液Bを懸濁液Aに加えて、その後室温で2時間攪拌することにより、触媒を調製した(ジルコニウム濃度0.5mmol/L)。
【0051】
[重合]
1Lのオートクレーブを窒素置換した後、C9〜C13飽和炭化水素溶媒(IPソルベント1620(出光石油化学社製))600mLと1−ヘキセン 40mLを加え、エチレンによりオートクレーブの内圧を21kg/cmGに調節し、オートクレーブの温度を170℃にした。次に、調製した触媒をジメチルシランジイル(フェニルアズレニル)[2,7−ジ(tert−ブチル)フルオレニル]ジルコニウムジクロリド当たり6.0μmol(12mL)を窒素圧により一緒にオートクレーブへ供給して、10分間重合を行った。未反応のエチレンを除去し、溶液状態のポリマーをオートクレーブ下部より抜き出した。そこへエタノールを投入し、ろ過および100℃での減圧乾燥を6時間実施することにより7.6gのポリマーを得た。ポリマーのTmは127℃、MFRは、9.8g/10minであった。
【0052】
実施例3
[触媒の調製]
50mLのシュレンク管に、実施例1に記載の方法で合成したジメチルシランジイル(フェニルアズレニル)[2,7−ジ(tert−ブチル)フルオレニル]ジルコニウムジクロリドを10μmol、トルエン6.0mLおよびメチルアルミノオキサンのトルエン溶液(2.85M)をアルミニウム原子当たり40mmol(14.0mL)加えることにより、触媒を調製した(ジルコニウム濃度0.5mmol/L)。
【0053】
[重合]
1Lのオートクレーブを窒素置換した後、C9〜C13飽和炭化水素溶媒(IPソルベント1620(出光石油化学社製))600mLと1−ヘキセン 40mLを加え、エチレンによりオートクレーブの内圧を21kg/cmGに調節し、オートクレーブの温度を170℃にした。次に、調製した触媒をジメチルシランジイル(フェニルアズレニル)[2,7−ジ(tert−ブチル)フルオレニル]ジルコニウムジクロリド当たり6.0μmol(12mL)を窒素圧により一緒にオートクレーブへ供給して、10分間重合を行った。未反応のエチレンを除去し、溶液状態のポリマーをオートクレーブ下部より抜き出した。そこへエタノールを投入し、ろ過および100℃での減圧乾燥を6時間実施することにより8.3gのポリマーを得た。ポリマーのTmは126℃、MFRは、10.1g/10minであった。
【0054】
実施例4
[触媒の調製]
50mLのシュレンク管に、実施例1に記載の方法で合成したジメチルシランジイル(フェニルアズレニル)[2,7−ジ(tert−ブチル)フルオレニル]ジルコニウムジクロリドを10μmol、トルエン7.0mLおよびトリイソブチルアルミニウムのトルエン溶液(0.85M)をアルミニウム原子当たり2.5mmol(3.0mL)加えた後、1時間攪拌した(これを溶液Cとする)。
【0055】
一方、別に用意した100mLのシュレンク管に、ジメチルアニリニウムテトラキスペンタフルオロボレート50.7mg、トルエン52.8mLを加えて溶解した(これを溶液Dとする)。
【0056】
溶液Cに溶液Dを10mL加えることにより触媒を調製した(ジルコニウム濃度0.5mmol/L)。
【0057】
[重合]
1Lのオートクレーブを窒素置換した後、C9〜C13飽和炭化水素溶媒(IPソルベント1620(出光石油化学社製))600mLと1−ヘキセン 40mLを加え、エチレンによりオートクレーブの内圧を21kg/cmGに調節し、オートクレーブの温度を170℃にした。次に、調製した触媒をジメチルシランジイル(フェニルアズレニル)[2,7−ジ(tert−ブチル)フルオレニル]ジルコニウムジクロリド当たり6.0μmol(12mL)を窒素圧により一緒にオートクレーブへ供給して、10分間重合を行った。未反応のエチレンを除去し、溶液状態のポリマーをオートクレーブ下部より抜き出した。そこへエタノールを投入し、ろ過および100℃での減圧乾燥を6時間実施することにより7.6gのポリマーを得た。ポリマーのTmは125℃、MFRは、9.9g/10minであった。
【0058】
比較例1
オレフィン重合用触媒に用いる遷移金属化合物としてジメチルシランジイル(メチルシクロペンタジエニル)ジルコニウムジクロリドを0.5μmol用い、1−ヘキセンを20mL用いて、重合温度を150℃に変えた以外は、実施例2に示す方法と同じ方法で重合を行ったところ、10.5gのポリマーを得た。ポリマーのTmは124℃で、MFRは100g/10min以上の値であった。
【0059】
実施例2〜4および比較例1で得られたポリマーのTmとMFRを表1にまとめる。
【0060】
【表1】
Figure 2004155739
【発明の効果】
本発明の遷移金属化合物を構成成分とするオレフィン重合用触媒は、オレフィン重合に対して極めて有効であり、本触媒をオレフィン重合用触媒として用いることで、工業的に有益なポリオレフィンを効率よく製造することが可能である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a transition metal compound having a cyclic π-electron conjugated compound composed of a combination of a 5-membered ring and a 7-membered ring and a cyclopentadienyl group, an indenyl group or a fluorenyl group as a ligand, and a transition metal compound thereof. The present invention relates to a catalyst for olefin polymerization comprising a metal compound as a component, and a method for producing a polyolefin, which comprises polymerizing an olefin using the catalyst.
[0002]
[Prior art]
As a homogeneous olefin polymerization catalyst, a metallocene catalyst using a Group 4 metallocene compound of the periodic table as a component of the catalyst is well known. It is known that this catalyst has a characteristic of having a high polymerization activity, an olefin polymer having a uniform composition distribution and a narrow molecular weight distribution (for example, see Patent Document 1). Furthermore, since the polymerization performance of the metallocene catalyst changes greatly by changing the structure of the metallocene compound, and the properties of the obtained polymer can be controlled, various metallocene compounds are synthesized, and the catalyst for olefin polymerization is synthesized. It is being studied. However, the basic structure of the ligand used in the studied metallocene compounds is limited to cyclopentadienyl group, indenyl group and fluorenyl group, and the performance of the metallocene catalyst is changed by changing those substituents. Control is being done.
[0003]
By the way, azulene, which is an aromatic compound in which a 5-membered ring and a 7-membered ring are condensed, undergoes an addition reaction at the 4-position of azulene when reacted with a nucleophile such as alkyllithium or aryllithium. And a π-electron conjugated ligand having a substituent such as an aryl group. So far, transition metal compounds of the Periodic Table Group 4 have been synthesized using a compound obtained by silicon-bridged arylated azulene as a ligand, and a polymerization catalyst using the compound is useful as a catalyst for α-olefin polymerization. Is disclosed (for example, refer to Patent Document 2). However, as a catalyst for ethylene-based polymerization, the catalyst performance is insufficient for performing polymerization in a particularly high temperature range, and the development of a new catalyst system for industrial use is desired.
[0004]
[Patent Document 1]
JP-A-58-19309
[Patent Document 2]
JP-A-6-239914
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide an olefin polymerization catalyst capable of efficiently producing a polyolefin, and to provide a method for producing a polyolefin using the catalyst.
[0006]
[Means for Solving the Problems]
To achieve the above object, as a result of intensive studies, a transition metal compound having a specific structure is used as a component of an olefin polymerization catalyst, and a compound which reacts with the transition metal compound to form a cationic transition metal compound; and By combining organometallic compounds, a new catalyst system capable of efficiently producing polyolefin has been found, and the present invention has been completed.
[0007]
That is, the present invention relates to general formula (1)
[0008]
Embedded image
Figure 2004155739
[In the formula, M is a titanium atom, a zirconium atom, a hafnium atom, X may be each independently the same or different, and may be a hydrogen atom, a halogen atom, an alkyl group having 1 to 30 carbon atoms, An aryl group having 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms, or an alkylaryl group having 7 to 30 carbon atoms.
R1Is the following general formula (2), (3), (4) or (5)
[0009]
Embedded image
Figure 2004155739
[Wherein, R4May be independently the same or different, and each may be a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms, or an alkyl group having 7 to 30 carbon atoms. Alkylaryl group, alkylsilyl group having 1 to 30 carbon atoms, arylsilyl group having 6 to 30 carbon atoms, alkylarylsilyl group having 7 to 30 carbon atoms, dialkylamino group having 2 to 20 carbon atoms or 1 to 20 carbon atoms Is an oxygen-containing hydrocarbon group. ]
Is a π-conjugated aromatic ligand represented by R2Is the following general formula (6) or (7)
[0010]
Embedded image
Figure 2004155739
[Wherein, R5May be independently the same or different, and each may be a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms, or an alkyl group having 7 to 30 carbon atoms. Alkylaryl group, alkylsilyl group having 1 to 30 carbon atoms, arylsilyl group having 6 to 30 carbon atoms, alkylarylsilyl group having 7 to 30 carbon atoms, dialkylamino group having 2 to 20 carbon atoms or 1 to 20 carbon atoms Is an oxygen-containing hydrocarbon group. R6Is a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms, and an alkylaryl group having 7 to 30 carbon atoms. Where R5, R6May contain a halogen atom or a hetero atom as a substituent. ]
Is a ligand represented by Y is the following general formula (8) or (9)
[0011]
Embedded image
Figure 2004155739
Wherein Q is a carbon atom, a silicon atom or a germanium atom. R7May be independently the same or different, and each may be a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms, or an alkyl group having 7 to 30 carbon atoms. It is an alkylaryl group. ]
R represented by1And R2Is a group that serves to crosslink n is 0 or 1, and when n is 0, there is no Y and R1And R2Is not crosslinked. ]
A transition metal compound represented by the formula: The present invention also provides an olefin polymerization catalyst comprising the transition metal compound, a compound which reacts with the transition metal compound to form a cationic transition metal compound, and an organometallic compound. Further, the present invention provides a method for producing a polyolefin, wherein olefin polymerization is carried out using the olefin polymerization catalyst.
[0012]
Hereinafter, the present invention will be described in detail. The present invention provides a compound represented by the general formula (1):
[0013]
Embedded image
Figure 2004155739
And a catalyst for olefin polymerization using the transition metal compound and a method for producing a polyolefin. In the general formula (1), M is a titanium atom, a zirconium atom, or a hafnium atom. X may be each independently the same or different, and include a hydrogen atom, a chlorine atom, a bromine atom, a halogen atom such as an iodine atom, a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, and a An alkyl group having 1 to 30 carbon atoms such as an isomer substituent, an aryl group having 6 to 30 carbon atoms such as a phenyl group, an indenyl group, a naphthyl group, a fluorenyl group, a biphenylenyl group, a benzyl group, a phenylethyl group, a diphenylmethyl group And an arylalkyl group having 7 to 30 carbon atoms such as diphenylethyl group, or an alkylaryl group having 7 to 30 carbon atoms such as methylphenyl group, ethylphenyl group and methylnaphthyl group. R1Is the following general formula (2), (3), (4) or (5)
[0014]
Embedded image
Figure 2004155739
Is a π-conjugated aromatic ligand represented by the formula:4May be independently the same or different, and each represents a hydrogen atom, a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group or an alkyl group having 1 to 30 carbon atoms such as a substituent thereof. , A phenyl group, an indenyl group, a naphthyl group, a fluorenyl group, a C6-C30 aryl group such as a biphenylenyl group, a benzyl group, a phenylethyl group, a diphenylmethyl group, a C7-30 arylalkyl such as a diphenylethyl group. Group, a methylphenyl group, an ethylphenyl group, an alkylaryl group having 7 to 30 carbon atoms such as a methylnaphthyl group, a trimethylsilyl group, a tritert-butylsilyl group, a ditert-butylmethylsilyl group, a tert-butyldimethylsilyl group, Phenylsilyl group, diphenylmethylsilyl group, phenyldimethylsilyl group An alkylsilyl group having 1 to 30 carbon atoms such as a group, an arylsilyl group having 6 to 30 carbon atoms, an alkylarylsilyl group having 7 to 30 carbon atoms such as a tribenzylsilyl group, a dimethylamino group, a diethylamino group, a dipropylamino Group, dibutylamino group, diisopropylamino group, diphenylamino group, dialkylamino group having 2 to 20 carbon atoms such as methylphenylamino group, or methoxy group, ethoxy group, propoxy group, butoxy group, isopropoxy group, phenoxy group, etc. Is an oxygen-containing hydrocarbon group having 1 to 20 carbon atoms. R2Is the following general formula (6) or (7)
[0015]
Embedded image
Figure 2004155739
A ligand represented by the formula:5May be independently the same or different, and each represents a hydrogen atom, a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group or an alkyl group having 1 to 30 carbon atoms such as a substituent thereof. , A phenyl group, an indenyl group, a naphthyl group, a fluorenyl group, a C6-C30 aryl group such as a biphenylenyl group, a benzyl group, a phenylethyl group, a diphenylmethyl group, a C7-30 arylalkyl such as a diphenylethyl group. Group, a methylphenyl group, an ethylphenyl group, an alkylaryl group having 7 to 30 carbon atoms such as a methylnaphthyl group, a trimethylsilyl group, a tritert-butylsilyl group, a ditert-butylmethylsilyl group, a tert-butyldimethylsilyl group, Phenylsilyl group, diphenylmethylsilyl group, phenyldimethylsilyl group An alkylsilyl group having 1 to 30 carbon atoms such as a group, an arylsilyl group having 6 to 30 carbon atoms, an alkylarylsilyl group having 7 to 30 carbon atoms such as a tribenzylsilyl group, a dimethylamino group, a diethylamino group, a dipropylamino Group, dibutylamino group, diisopropylamino group, diphenylamino group, dialkylamino group having 2 to 20 carbon atoms such as methylphenylamino group, or methoxy group, ethoxy group, propoxy group, butoxy group, isopropoxy group, phenoxy group, etc. Is an oxygen-containing hydrocarbon group having 1 to 20 carbon atoms. R6Is a hydrogen atom, a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, an alkyl group having 1 to 30 carbon atoms such as a hexyl group or an isomer substituent thereof, a phenyl group, an indenyl group, a naphthyl group, a fluorenyl group An aryl group having 6 to 30 carbon atoms such as a biphenylenyl group, an arylalkyl group having 7 to 30 carbon atoms such as a benzyl group, a phenylethyl group, a diphenylmethyl group, a diphenylethyl group, or a methylphenyl group, an ethylphenyl group, methyl It is an alkylaryl group having 7 to 30 carbon atoms such as a naphthyl group. Where R5, R6May contain a halogen atom or a hetero atom as a substituent. Y is the following general formula (8) or (9)
[0016]
Embedded image
Figure 2004155739
R represented by1And R2Is a group that serves to crosslink In the formula, Q represents a carbon atom, a silicon atom or a germanium atom. R7May be independently the same or different, and each represents a hydrogen atom, a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group or an alkyl group having 1 to 30 carbon atoms such as a substituent thereof. , A phenyl group, an indenyl group, a naphthyl group, a fluorenyl group, a C6-C30 aryl group such as a biphenylenyl group, a benzyl group, a phenylethyl group, a diphenylmethyl group, a C7-30 arylalkyl such as a diphenylethyl group. Or an alkylaryl group having 7 to 30 carbon atoms such as a methylphenyl group, an ethylphenyl group, and a methylnaphthyl group. n is 0 or 1, and when n is 0, Y does not exist. That is, when n is 0, R1And R2No cross-linking group is present between them, indicating that they are not cross-linked.
[0017]
Examples of the synthesis of the transition metal compound represented by the general formula (1) of the present invention include, for example, a synthesis relating to a bridged zirconium complex having a ligand in which an azulenyl group having a phenyl group at the 4-position and a fluorenyl group are diphenylmethylene-bridged. As an example of the method, azulene is first lithiated with alkyl lithium, and then reacted with diphenylsilylfluorenyl chloride to synthesize a ligand. The ligand can be synthesized by a method of reacting zirconium tetrachloride after lithiation of the ligand, but is not limited to this method.
[0018]
Specific examples of the transition metal compound represented by the general formula (1) used in the present invention include, but are not limited to, the following compounds. For example, diphenylmethylene (4-phenylazulenyl) (fluorenyl) zirconium dichloride, diphenylmethylene (4-methylazulenyl) (fluorenyl) zirconium dichloride, diphenylmethylene (4-phenylazulenyl) (2,7-ditert-butylfluoride) Nyl) zirconium dichloride, diphenylmethylene (4-methylazulenyl) (2,7-ditert-butylfluorenyl) zirconium dichloride, diphenylmethylene (4-phenylazulenyl) (indenyl) zirconium dichloride, diphenylmethylene (4-methylazulenyl) (Indenyl) zirconium dichloride, diphenylmethylene (4-phenylazulenyl) (cyclopentadienyl) zirconium dichloride, diphenylmethylene ( -Methylazulenyl) (cyclopentadienyl) zirconium dichloride, dimethylmethylene (4-phenylazulenyl) (fluorenyl) zirconium dichloride, dimethylmethylene (4-methylazulenyl) (fluorenyl) zirconium dichloride, dimethylmethylene (4-phenylazulenyl) ( 2,7-ditert-butylfluorenyl) zirconium dichloride, dimethylmethylene (4-methylazulenyl) (2,7-ditert-butylfluorenyl) zirconium dichloride, dimethylmethylene (4-phenylazulenyl) (indenyl) Zirconium dichloride, dimethylmethylene (4-methylazulenyl) (indenyl) zirconium dichloride, dimethylmethylene (4-phenylazulenyl) (cyclopentadienyl ) Zirconium dichloride, dimethylmethylene (4-methylazulenyl) (cyclopentadienyl) zirconium dichloride, diphenylsilanediyl (4-phenylazulenyl) (fluorenyl) zirconium dichloride, diphenylsilanediyl (4-methylazulenyl) (fluorenyl) zirconium dichloride, Diphenylsilanediyl (4-phenylazulenyl) (2,7-ditert-butylfluorenyl) zirconium dichloride, diphenylsilanediyl (4-methylazulenyl) (2,7-ditert-butylfluorenyl) zirconium dichloride, Diphenylsilanediyl (4-phenylazulenyl) (indenyl) zirconium dichloride, diphenylsilanediyl (4-methylazulenyl) (indenyl) zirco Dichloride, diphenylsilanediyl (4-phenylazulenyl) (cyclopentadienyl) zirconium dichloride, diphenylsilanediyl (4-methylazulenyl) (cyclopentadienyl) zirconium dichloride, dimethylsilanediyl (4-phenylazulenyl) ( Fluorenyl) zirconium dichloride, dimethylsilanediyl (4-methylazulenyl) (fluorenyl) zirconium dichloride, dimethylsilanediyl (4-phenylazulenyl) (2,7-ditert-butylfluorenyl) zirconium dichloride, dimethylsilanediyl (4 -Methylazulenyl) (2,7-ditert-butylfluorenyl) zirconium dichloride, dimethylsilanediyl (4-phenylazulenyl) (indenyl) zirco Dichloride, dimethylsilanediyl (4-methylazulenyl) (indenyl) zirconium dichloride, dimethylsilanediyl (4-phenylazulenyl) (cyclopentadienyl) zirconium dichloride, dimethylsilanediyl (4-methylazulenyl) (cyclopentadienyl) Zirconium compounds such as zirconium dichloride, isomers having different azulene double bond positions in these compounds, compounds in which zirconium atom is changed to titanium atom, hafnium atom, and dichloro form of the above transition metal compound in dimethyl form, diethyl form , Dihydro, diphenyl and dibenzyl compounds.
[0019]
It is one of the constituent components of the catalyst for olefin polymerization in the present invention, and reacts with the transition metal compound (B) used together with the transition metal compound and the organometallic compound represented by the general formula (1) to form a cationic transition metal compound. The compound to be formed refers to a compound that forms a cationic transition metal compound by acting or reacting with the transition metal compound or a reaction product of the transition metal compound and an organometallic compound. The generated cationic transition metal compound acts as a polymerization active species capable of polymerizing an olefin. The compound that reacts with the transition metal compound to form a cationic transition metal compound, after forming a polymerization active species, weakly coordinates or interacts with the generated cationic transition metal compound, but directly reacts with the active species. Desirably, the compound provides a compound that does not react.
[0020]
Examples of compounds that form a cationic transition metal compound by reacting with a transition metal compound include alkylaluminoxane and a non-coordinating anion that are often used as a promoter component of a homogeneous olefin polymerization catalyst system. Preferred are, but not limited to, ionized ionic compounds and modified clay compounds.
[0021]
When the compound which reacts with the transition metal compound as a component of the catalyst for olefin polymerization of the present invention to form a cationic transition metal compound is a modified clay compound, the clay compound used preferably has a cation exchange ability. The clay compound used in the present invention is preferably subjected to a chemical treatment such as a treatment with an acid or alkali, a salt treatment, and a complex formation by treatment with an organic compound or an inorganic compound.
[0022]
Examples of the clay compound include naturally occurring kaolinites, dickites, kaolin minerals such as halloysite, smectites such as montmorillonite, hectorite, beidellite, saponite, teniolite, and sauconite, micas such as muscovite, paragonite, illite, and vermiculites. , Margarite, clintonite and other brittle mica families, donbazite, coucheite, clinochlore and other mudstone families, sepiolite and palygorskite, and artificially synthesized clay compounds, but are not limited thereto.
[0023]
Examples of the acid used for the chemical treatment include Bronsted acids such as hydrochloric acid, sulfuric acid, nitric acid, and acetic acid. As the alkali, sodium hydroxide, potassium hydroxide, and calcium hydroxide are preferably used. Compounds used in the salt treatment include ionic halides such as sodium chloride, potassium chloride, lithium chloride, magnesium chloride, aluminum chloride, iron chloride, and ammonium chloride; sulfates such as sodium sulfate, potassium sulfate, aluminum sulfate, and ammonium sulfate. Carbonates such as potassium carbonate, sodium carbonate, and calcium carbonate; inorganic salts such as sodium phosphate, potassium phosphate, aluminum phosphate, and ammonium phosphate; and sodium acetate, potassium acetate, potassium oxalate, and citrate. Organic acid salts such as sodium acid salt and sodium tartrate can be exemplified.
[0024]
Examples of the organic compound used for forming the complex of the clay compound with the organic compound include an onium salt, a compound that generates a carbon cation such as trityl chloride and tropylium bromide, and a complex compound that generates a metal complex cation such as a ferrocenium salt. Is exemplified. Examples of the inorganic compound used for forming the complex with the inorganic compound include metal hydroxides that generate hydroxide cations such as aluminum hydroxide, zirconium hydroxide, and chromium hydroxide.
[0025]
Among the modified clay compounds used in the present invention, particularly preferred is a modified clay compound which is a clay compound-organic ion complex in which a metal ion which is an exchangeable cation present in the clay compound is replaced with a specific organic cation component. is there. Specific examples of the organic cation to be introduced into the modified clay compound include butyl ammonium, hexyl ammonium, decyl ammonium, dodecyl ammonium, diamyl ammonium, tributyl ammonium, N, N-dimethyldecylammonium, N, N-dimethyltridecyl. Ammonium, N, N-dimethyltetradecylammonium, N, N-dimethylpentadecylammonium, N, N-dimethylhexadecylammonium, N, N-dimethylheptadecylammonium, N, N-dimethyloctadecylammonium, N, N- Aliphatic ammonium cations such as dimethyl nonadecyl ammonium, N, N-dimethyl icosa ammonium, N, N-dimethyl hen ico s ammonium, N, N-dimethyl docosa ammonium, anilini , N-methylanilinium, N, N-dimethylanilinium, N-ethylanilinium, N, N-diethylanilinium, benzylammonium, toluidinium, dibenzylammonium, tribenzylammonium, N, N, 2,4 Examples thereof include ammonium ions such as aromatic ammonium cations such as 2,6-pentamethylanilinium, and oxonium ions such as dimethyloxonium and diethyloxonium, but are not limited thereto.
[0026]
When the compound that reacts with the transition metal compound to form a cationic transition metal compound is a proton acid, Lewis acid, ionized ionic compound, or Lewis acidic compound that provides a counter anion to the transition metal, the structure is: A proton acid represented by the following general formula (10), an ionized ionic compound represented by the general formula (11), a Lewis acid represented by the general formula (12) or a Lewis acid represented by the general formula (13) It is desirable that the compound has any structure of the compound.
[0027]
[HL1] [E (Ar)4] (10)
[AL2 m] [E (Ar)4] (11)
[D] [E (Ar)4] (12)
E (Ar)3                      (13)
(Where H is a proton and E is a boron or aluminum atom. L1Is a Lewis base, L2Is a Lewis base or a cyclopentadienyl group. A is a cation of a metal selected from lithium, iron or silver, and D is a carbonium cation or a tropylium cation. Ar is a halogen-substituted aryl group having 6 to 20 carbon atoms. m is an integer of 0 to 2. )
Specific examples of the protonic acid represented by the general formula (10) include diethyloxonium tetrakis (pentafluorophenyl) borate, dimethyloxonium tetrakis (pentafluorophenyl) borate, tetramethyleneoxonium tetrakis (pentafluorophenyl) borate, Hydronium tetrakis (pentafluorophenyl) borate, N, N-dimethylammonium tetrakis (pentafluorophenyl) borate, tri-n-butylammonium tetrakis (pentafluorophenyl) borate, diethyloxonium tetrakis (pentafluorophenyl) aluminate, dimethyl Oxonium tetrakis (pentafluorophenyl) aluminate, tetramethyleneoxonium tetrakis (pentafluorophenyl) aluminum , Hydronium tetrakis (pentafluorophenyl) aluminate, N, N-dimethylanilinium tetrakis (pentafluorophenyl) aluminate, tri-n-butylammonium tetrakis (pentafluorophenyl) aluminate, etc. However, the present invention is not limited to these.
[0028]
Specific examples of the ionized ionic compound represented by the general formula (11) include lithium salts such as lithium tetrakis (pentafluorophenyl) borate and lithium tetrakis (pentafluorophenyl) aluminate, or ether complexes thereof, and ferrocete. Ferrocenium salts such as uranium tetrakis (pentafluorophenyl) borate and ferrocenium tetrakis (pentafluorophenyl) aluminate, and silver salts such as silver tetrakis (pentafluorophenyl) borate and silver tetrakis (pentafluorphenyl) aluminate. Examples include, but are not limited to:
[0029]
Specific examples of the Lewis acid represented by the general formula (12) include trityltetrakis (pentafluorophenyl) borate, trityltetrakis (pentafluorophenyl) aluminate, tropylium tetrakis (pentafluorophenyl) borate, and tropylium tetrakis Examples thereof include (pentafluorophenyl) aluminate, but are not limited thereto.
[0030]
Specific examples of the Lewis acidic compound represented by the general formula (13) include tris (pentafluorophenyl) borane, tris (2,3,5,6-tetrafluorophenyl) borane, tris (2,3,4) , 5-tetraphenylphenyl) borane, tris (3,4,5-trifluorophenyl) borane, phenylbis (perfluorophenyl) borane, tris (3,4,5-trifluorophenyl) aluminum and the like. It is possible, but not limited to these.
[0031]
When the compound which reacts with the transition metal compound to form a cationic transition metal compound is an alkylaluminoxane, its structure is represented by the following general formula (14) or (15)
[0032]
Embedded image
Figure 2004155739
(Where R8May be the same or different, each being a hydrocarbon group having 1 to 20 carbon atoms such as a hydrogen atom, a methyl group, an ethyl group, a propyl group, and a tert-butyl group. Q is an integer of 2 to 60. )
Is desirable. The alkylaluminoxane may contain a small amount of an organometallic compound.
[0033]
The organometallic compound (C), which is a component of the catalyst for olefin polymerization of the present invention and is used together with a transition metal compound and a compound which reacts with the transition metal compound to form a cationic transition metal compound, is defined as an alkylene compound. Compounds that can be converted into a compound are preferable, specifically, an alkyl lithium compound such as methyl lithium, methyl magnesium chloride, ethyl magnesium chloride, isopropyl magnesium chloride, benzyl magnesium chloride, methyl magnesium bromide, ethyl magnesium bromide, isopropyl magnesium bromide, Grignard reagents such as benzylmagnesium bromide; dialkylmagnesium such as dimethylmagnesium; dialkylzinc such as dimethylzinc and diethylzinc; Methylborane, alkyl borane, trimethyl aluminum, such as triethyl borane, triethyl aluminum, alkyl aluminum such as tri-isobutyl aluminum and the like. Preferred organometallic compounds include organoaluminum compounds represented by the following general formula (16).
[0034]
(R9)3Al (16)
(Where R9May be the same or different and represent a hydrogen atom, an amide group, an alkoxy group, or a hydrocarbon group, at least one of which is a hydrocarbon group. Particularly preferred compounds include trimethylaluminum, triethylaluminum, triisobutylaluminum and the like.
[0035]
In the present invention, the ratio of the component (A): the transition metal compound and the component (B): a compound which reacts with the transition metal compound to form a cationic transition metal compound and the ratio of the component (C): the organometallic compound are not limited. Depending on the type of component (B), the following ratios are desirable.
[0036]
1) When the component (B) is an alkylaluminoxane: The molar ratio of the component (A) to the component (C) per metal atom is (A) :( C) = 100: 1 to 1: 100,000. It is preferable that the molar ratio of component (A) to component (B) per metal atom is (A component) :( B component) = 100: 1. To 1: 1,000,000, and particularly preferably in the range of 1: 1 to 1: 100000.
[0037]
2) When the component (B) is a protonic acid, a Lewis acid, an ionized ionic compound or a Lewis acidic compound that provides a counter anion to the transition metal: moles of the components (A) and (C) per metal atom The ratio is (A component) :( C component) = 100: 1 to 1: 100,000, particularly preferably 1: 1 to 1: 10000, and the ratio of the (A) component to the (B) component is preferable. The molar ratio per metal atom is (Component A) :( Component B) = 10: 1 to 1: 1000, and particularly preferably in the range of 3: 1 to 1: 100.
[0038]
3) When the component (B) is a modified clay compound: the molar ratio of the component (A) to the component (C) per metal atom is (A component) :( C component) = 100: 1 to 1: 100,000. In particular, the ratio is preferably in the range of 1: 1 to 1: 10000, and the weight ratio of the component (A) to the component (B) is (A) :( B) = 10: 1 to 1: 10000. Yes, and particularly preferably in the range of 3: 1 to 1: 1000.
[0039]
There is no limitation on the method for preparing the olefin polymerization catalyst comprising the components (A), (B) and (C), and the method for preparing the olefin polymerization catalyst is as follows. And mixing methods. Further, there is no restriction on the order in which these components are reacted, and there is no restriction on the temperature or the processing time for performing this processing. It is also possible to prepare an olefin polymerization catalyst by using two or more of each component.
[0040]
The catalyst in the present invention can be used in any of ordinary polymerization processes, that is, any of slurry polymerization, gas phase polymerization, high pressure polymerization, solution polymerization, and bulk polymerization.
[0041]
In the present invention, the polymerization means not only homopolymerization but also copolymerization, and the polyolefin obtained by these polymerizations is used in a meaning including not only a homopolymer but also a copolymer.
[0042]
The polymerization of the olefin in the present invention can be performed in a gas phase or a liquid phase. Particularly, when the polymerization is performed in a gas phase, a polyolefin having a uniform particle shape can be efficiently and stably produced. When the polymerization is carried out in a liquid phase, the solvent used may be any organic solvent generally used, and specific examples thereof include benzene, toluene, xylene, pentane, hexane, heptane and the like, and propylene, Olefins themselves such as 1-butene, 1-octene, 1-hexene and the like can be used as the solvent.
[0043]
The olefin used in the present invention includes α-olefins such as ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene and 1-octene, styrene and styrene derivatives, butadiene, 1,4-hexadiene, Conjugated and non-conjugated dienes such as -ethylidene-2-norbornene, dicyclopentadiene, 4-methyl-1,4-hexadiene and 7-methyl-1,6-octadiene; and cyclic olefins such as cyclobutene. Further, three or more kinds of components such as ethylene, propylene and styrene, ethylene and 1-hexene and styrene, and ethylene and propylene and ethylidene norbornene can be mixed and polymerized.
[0044]
In producing a polyolefin using the method of the present invention, the polymerization conditions such as polymerization temperature, polymerization time, polymerization pressure, and monomer concentration are not particularly limited, but the polymerization temperature is −100 to 300 ° C., and the polymerization time is 10 seconds. ~ 20 hours, polymerization pressure is normal pressure ~ 3000kg / cm2It is preferable to carry out in the range of G. It is also possible to control the molecular weight using hydrogen or the like during the polymerization. The polymerization can be carried out by any of a batch system, a semi-continuous system and a continuous system, and can be carried out in two or more stages by changing the polymerization conditions. Further, the polyolefin obtained after the completion of the polymerization can be separated and recovered from the polymerization solvent by a conventionally known method, and can be obtained by drying.
[0045]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. The polymerization operation, reaction, and solvent purification were all performed under an inert gas. The solvents used for the reaction were all purified, dried and deoxygenated by known methods in advance. The identification of the transition metal compound was performed using a nuclear magnetic resonance apparatus (JEOL, GSX-270) and a mass spectrometer (Shimadzu Corporation, QP-1000). The amount of cations replaced by the modification reaction in the modified clay compound was estimated from the difference in the sodium content of the clay compound before and after the modification reaction. The melting point Tm of the olefin polymer was measured using a DSC (differential scanning calorimeter) SEIKO SC-5000. MFR (melt flow rate) was measured by a method according to ASTM D1238 condition E.
[0046]
Example 1
[Synthesis of (4-phenylazulenyl) [2,7-di (tert-butyl) fluorenyl] dimethylsilane]
To a solution of azulene (0.50 g, 3.90 mmol) in hexane (20 mL) cooled to 0 ° C. was added a solution of phenyllithium in cyclohexane-diethyl ether (1.8 M, 2.4 mL, 4.29 mmol). Stirred for hours. After cooling again to 0 ° C., a toluene solution (20 mL) of dimethyl [2,7-di (tert-butyl) fluorenyl] silyl chloride (1.4 g, 3.9 mmol) was added, and the mixture was stirred at room temperature overnight. After completion of the reaction, 1N hydrochloric acid was added, extracted with ethyl acetate, washed with saturated saline, dried over magnesium sulfate, and the solvent was distilled off under reduced pressure to obtain a green viscous solid. Purification with a silica gel column (silica gel 20 g, hexane: methylene chloride = 5: 1) gave (4-phenylazulenyl) [2,7-di (tert-butyl) fluorenyl] dimethylsilane (1) as a pale blue solid. .56 g, 2.89 mmol, 74%).
[0047]
1H-NMR (CDCl3) =-0.02 (s, 3H, Si-Me), 0.06 (s, 3H, Si-Me), 1.29 (s, 9H, tert-Bu), 1.31 (s, 9H) , Tert-Bu), 3.00 (d, 1H), 3.90 (s, 1H), 5.65 (m, 1H), 6.1 to 7.8 (m).
MS (70 eV, EI) M / z = 540
[Synthesis of dimethylsilanediyl (phenylazulenyl) [2,7-di (tert-butyl) fluorenyl] zirconium dichloride]
A THF solution (60 mL) of (4-phenylazulenyl) [2,7-di (tert-butyl) fluorenyl] dimethylsilane (1.49 g, 2.75 mmol) synthesized by the above method was cooled to -78 ° C. Thereafter, a hexane solution of n-BuLi (1.59 mol / L, 5.2 mL, 8.25 mmol) was added, and the mixture was stirred at room temperature overnight. After completion of the reaction, the solvent of the reaction mixture was distilled off under reduced pressure to obtain an ocher foamy solid. After washing with hexane and drying under reduced pressure, an ocher foamy solid was obtained.
[0048]
Toluene (500 mL) was added to the ocher foam solid obtained by the above method, and the mixture was cooled to 0 ° C., and a toluene suspension (30 mL) of zirconium tetrachloride (0.64 g, 2.75 mmol) was added. And stirred overnight. After completion of the reaction, filtration was performed using a G3 filter covered with Celite to remove solids insoluble in toluene, and the solvent of the obtained orange filtrate was distilled off under reduced pressure. Got. When recrystallized with a mixed solvent of toluene and hexane, (4-phenylazulenyl) [2,7-di (tert-butyl) fluorenyl] dimethylsilane (0.20 g, 0.29 mmol) was obtained as an orange solid. , 10%).1From the 1 H-NMR spectrum, the desired complex was obtained as a mixture of two isomers.
[0049]
1H-NMR (CDCl3) Δ = 0.95 (s, Si-Me), 1.03 (s, Si-Me), 1.06 (s, Si-Me), 1.08 (s, Si-Me), 1.15 (S, tert-Bu), 1.32 (s, tert-Bu), 1.34 (s, tert-Bu), 1.35 (s, tert-Bu), 4.12 (d), 4. 54 (d), 4.78 (d), 5.14 (d), 5.44-6.50 (m), 7.17-8.02 (m).
Example 2
[Preparation of modified clay compound]
To 1500 mL of water, 30 mL of 37% hydrochloric acid and 89.1 g of N, N-dimethyloctadecylamine were added to prepare an aqueous solution of N, N-dimethyloctadecyl ammonium hydrochloride. 300 g of montmorillonite having an average particle size of 7.8 μm (prepared by crushing Kunipia F (manufactured by Kunimine Industries) with a jet crusher) was added to the above-mentioned aqueous solution of hydrochloride and reacted for 6 hours. After the completion of the reaction, the reaction solution was filtered, and the obtained cake was dried under reduced pressure for 6 hours to obtain a modified clay compound (360 g). The introduced amount of organic cation was 1.0 mmol / g.
[0050]
[Preparation of catalyst]
0.6 g of the modified clay compound synthesized according to [Preparation of modified clay compound] and 20.2 mL of heptane were added to a 50 mL Schlenk tube, and a heptane solution of triethylaluminum (10 wt% dilution) was added thereto at 7.05 mmol per aluminum atom. (11.5 mL) and then stirred for 1 hour (this is referred to as suspension A). On the other hand, 30.8 μmol of dimethylsilanediyl (phenylazulenyl) [2,7-di (tert-butyl) fluorenyl] zirconium dichloride synthesized by the method described in Example 1 was placed in a separately prepared 50 mL Schlenk tube, and heptane was added. 7.7 mL and a solution of triethylaluminum in heptane (10 wt% dilution) were added in an amount of 3.1 mmol (5.1 mL) per aluminum atom, followed by stirring for 1 hour (this is referred to as solution B). The resulting solution B was added to the suspension A, and then stirred at room temperature for 2 hours to prepare a catalyst (concentration of zirconium 0.5 mmol / L).
[0051]
[polymerization]
After the 1 L autoclave was replaced with nitrogen, 600 mL of a C9 to C13 saturated hydrocarbon solvent (IP Solvent 1620 (manufactured by Idemitsu Petrochemical)) and 40 mL of 1-hexene were added, and the internal pressure of the autoclave was adjusted to 21 kg / cm with ethylene.2G and the autoclave temperature was 170 ° C. Next, 6.0 μmol (12 mL) of the prepared catalyst per dimethylsilanediyl (phenylazulenyl) [2,7-di (tert-butyl) fluorenyl] zirconium dichloride was supplied to the autoclave together with nitrogen pressure to obtain an autoclave. Polymerization was performed for minutes. Unreacted ethylene was removed, and the polymer in solution was extracted from the lower part of the autoclave. Ethanol was added thereto, and filtration and drying under reduced pressure at 100 ° C. were performed for 6 hours to obtain 7.6 g of a polymer. The Tm of the polymer was 127 ° C. and the MFR was 9.8 g / 10 min.
[0052]
Example 3
[Preparation of catalyst]
In a 50 mL Schlenk tube, 10 μmol of dimethylsilanediyl (phenylazulenyl) [2,7-di (tert-butyl) fluorenyl] zirconium dichloride synthesized by the method described in Example 1, 6.0 mL of toluene, and methylaluminum oxide A catalyst was prepared (zirconium concentration 0.5 mmol / L) by adding 40 mmol (14.0 mL) of a toluene solution of xane (2.85 M) per aluminum atom.
[0053]
[polymerization]
After the 1 L autoclave was replaced with nitrogen, 600 mL of a C9 to C13 saturated hydrocarbon solvent (IP Solvent 1620 (manufactured by Idemitsu Petrochemical)) and 40 mL of 1-hexene were added, and the internal pressure of the autoclave was adjusted to 21 kg / cm with ethylene.2G and the autoclave temperature was 170 ° C. Next, 6.0 μmol (12 mL) of the prepared catalyst per dimethylsilanediyl (phenylazulenyl) [2,7-di (tert-butyl) fluorenyl] zirconium dichloride was supplied to the autoclave together with nitrogen pressure to obtain an autoclave. Polymerization was performed for minutes. Unreacted ethylene was removed, and the polymer in solution was extracted from the lower part of the autoclave. Ethanol was added thereto, and filtration and drying under reduced pressure at 100 ° C. were performed for 6 hours to obtain 8.3 g of a polymer. The Tm of the polymer was 126 ° C. and the MFR was 10.1 g / 10 min.
[0054]
Example 4
[Preparation of catalyst]
In a 50 mL Schlenk tube, 10 μmol of dimethylsilanediyl (phenylazulenyl) [2,7-di (tert-butyl) fluorenyl] zirconium dichloride synthesized by the method described in Example 1, 7.0 mL of toluene, and triisobutylaluminum Was added to 2.5 mmol (3.0 mL) per aluminum atom, followed by stirring for 1 hour (this is referred to as solution C).
[0055]
On the other hand, 50.7 mg of dimethylanilinium tetrakispentafluoroborate and 52.8 mL of toluene were added and dissolved in a separately prepared 100 mL Schlenk tube (this is referred to as solution D).
[0056]
A catalyst was prepared by adding 10 mL of solution D to solution C (zirconium concentration 0.5 mmol / L).
[0057]
[polymerization]
After the 1 L autoclave was replaced with nitrogen, 600 mL of a C9 to C13 saturated hydrocarbon solvent (IP Solvent 1620 (manufactured by Idemitsu Petrochemical)) and 40 mL of 1-hexene were added, and the internal pressure of the autoclave was adjusted to 21 kg / cm with ethylene.2G and the autoclave temperature was 170 ° C. Next, 6.0 μmol (12 mL) of the prepared catalyst per dimethylsilanediyl (phenylazulenyl) [2,7-di (tert-butyl) fluorenyl] zirconium dichloride was supplied to the autoclave together with nitrogen pressure to obtain an autoclave. Polymerization was performed for minutes. Unreacted ethylene was removed, and the polymer in solution was extracted from the lower part of the autoclave. Ethanol was added thereto, and filtration and drying under reduced pressure at 100 ° C. were performed for 6 hours to obtain 7.6 g of a polymer. The Tm of the polymer was 125 ° C., and the MFR was 9.9 g / 10 min.
[0058]
Comparative Example 1
Example 2 except that 0.5 μmol of dimethylsilanediyl (methylcyclopentadienyl) zirconium dichloride and 20 mL of 1-hexene were used as the transition metal compound used for the olefin polymerization catalyst, and the polymerization temperature was changed to 150 ° C. Polymerization was carried out in the same manner as in the above, to obtain 10.5 g of a polymer. The Tm of the polymer was 124 ° C., and the MFR was 100 g / 10 min or more.
[0059]
Table 1 summarizes the Tm and MFR of the polymers obtained in Examples 2 to 4 and Comparative Example 1.
[0060]
[Table 1]
Figure 2004155739
【The invention's effect】
The olefin polymerization catalyst comprising the transition metal compound of the present invention as a component is extremely effective for olefin polymerization, and by using this catalyst as an olefin polymerization catalyst, an industrially useful polyolefin is efficiently produced. It is possible.

Claims (7)

一般式(1)
Figure 2004155739
[式中、Mはチタン原子、ジルコニウム原子、ハフニウム原子であり、Xは各々独立して同一でも異なっていてもよく、水素原子、ハロゲン原子、炭素数1〜30のアルキル基、炭素数6〜30のアリール基、炭素数7〜30のアリールアルキル基または炭素数7〜30のアルキルアリール基である。
は下記一般式(2)、(3)、(4)または(5)
Figure 2004155739
[式中、Rは各々独立して同一でも異なっていてもよく、水素原子、炭素数1〜30のアルキル基、炭素数6〜30のアリール基、炭素数7〜30のアリールアルキル基、炭素数7〜30のアルキルアリール基、炭素数1〜30のアルキルシリル基、炭素数6〜30のアリールシリル基、炭素数7〜30のアルキルアリールシリル基、炭素数2〜20のジアルキルアミノ基または炭素数1〜20の酸素含有炭化水素基である。]
で表されるπ共役芳香族配位子である。Rは下記一般式(6)または(7)
Figure 2004155739
[式中、Rは各々独立して同一でも異なっていてもよく、水素原子、炭素数1〜30のアルキル基、炭素数6〜30のアリール基、炭素数7〜30のアリールアルキル基、炭素数7〜30のアルキルアリール基、炭素数1〜30のアルキルシリル基、炭素数6〜30のアリールシリル基、炭素数7〜30のアルキルアリールシリル基、炭素数2〜20のジアルキルアミノ基または炭素数1〜20の酸素含有炭化水素基である。Rは水素原子、炭素数1〜30のアルキル基、炭素数6〜30のアリール基、炭素数7〜30のアリールアルキル基、炭素数7〜30のアルキルアリール基である。ただし、R,Rは置換基としてハロゲン原子やヘテロ原子を含んでいてもよい。]
で表される配位子である。Yは下記一般式(8)または(9)
Figure 2004155739
[式中、Qは炭素原子、ケイ素原子またはゲルマニウム原子である。Rは各々独立して同一でも異なっていてもよく、水素原子、炭素数1〜30のアルキル基、炭素数6〜30のアリール基、炭素数7〜30のアリールアルキル基、炭素数7〜30のアルキルアリール基である。]
で表される、RとRを架橋する役割をする基である。nは0または1であり、nが0の時、Yは無く、RとRは架橋されていない。]
で表される遷移金属化合物。
General formula (1)
Figure 2004155739
[In the formula, M is a titanium atom, a zirconium atom, a hafnium atom, X may be each independently the same or different, and may be a hydrogen atom, a halogen atom, an alkyl group having 1 to 30 carbon atoms, An aryl group having 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms, or an alkylaryl group having 7 to 30 carbon atoms.
R 1 has the following general formula (2), (3), (4) or (5)
Figure 2004155739
[Wherein, R 4 may be independently the same or different, and each represents a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms, C7-30 alkylaryl group, C1-30 alkylsilyl group, C6-30 arylsilyl group, C7-30 alkylarylsilyl group, C2-20 dialkylamino group Alternatively, it is an oxygen-containing hydrocarbon group having 1 to 20 carbon atoms. ]
Is a π-conjugated aromatic ligand represented by R 2 is represented by the following general formula (6) or (7)
Figure 2004155739
[Wherein, R 5 may be independently the same or different and each represents a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms, C7-30 alkylaryl group, C1-30 alkylsilyl group, C6-30 arylsilyl group, C7-30 alkylarylsilyl group, C2-20 dialkylamino group Alternatively, it is an oxygen-containing hydrocarbon group having 1 to 20 carbon atoms. R 6 is a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms, or an alkylaryl group having 7 to 30 carbon atoms. However, R 5 and R 6 may contain a halogen atom or a hetero atom as a substituent. ]
Is a ligand represented by Y is the following general formula (8) or (9)
Figure 2004155739
Wherein Q is a carbon atom, a silicon atom or a germanium atom. R 7 may be independently the same or different, and may be a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms, 30 alkylaryl groups. ]
Is a group that plays a role in crosslinking R 1 and R 2 . n is 0 or 1, and when n is 0, there is no Y and R 1 and R 2 are not cross-linked. ]
A transition metal compound represented by the formula:
(A)請求項1に記載の遷移金属化合物と(B)遷移金属化合物と反応してカチオン性遷移金属化合物を生成させる化合物からなるオレフィン重合用触媒。An olefin polymerization catalyst comprising (A) a compound that reacts with the transition metal compound according to claim 1 and (B) a transition metal compound to form a cationic transition metal compound. (A)請求項1に記載の遷移金属化合物、(B)遷移金属化合物と反応してカチオン性遷移金属化合物を生成させる化合物および(C)有機金属化合物からなるオレフィン重合用触媒。An olefin polymerization catalyst comprising (A) the transition metal compound according to claim 1, (B) a compound which reacts with the transition metal compound to form a cationic transition metal compound, and (C) an organometallic compound. 請求項2または3に記載の(B)遷移金属化合物と反応してカチオン性遷移金属化合物を生成させる化合物が、(B1)変性粘土化合物であることを特徴とするオレフィン重合用触媒。The catalyst for olefin polymerization, wherein the compound that reacts with the transition metal compound (B) according to claim 2 or 3 to form a cationic transition metal compound is (B1) a modified clay compound. 請求項2または3に記載の(B)遷移金属化合物と反応してカチオン性遷移金属化合物を生成させる化合物が、(B2)遷移金属に対して対アニオンを提供するプロトン酸、ルイス酸、イオン化イオン性化合物またはルイス酸性化合物であることを特徴とするオレフィン重合用触媒。The compound which reacts with the transition metal compound (B) according to claim 2 or 3 to form a cationic transition metal compound, wherein the compound (B2) provides a counter anion to the transition metal, a proton acid, a Lewis acid, or an ionized ion. An olefin polymerization catalyst, which is an acidic compound or a Lewis acidic compound. 請求項2または3に記載の(B)遷移金属化合物と反応してカチオン性遷移金属化合物を生成させる化合物が、(B3)アルキルアルミノオキサンであることを特徴とするオレフィン重合用触媒。4. A catalyst for olefin polymerization, wherein the compound that reacts with the transition metal compound (B) according to claim 2 or 3 to form a cationic transition metal compound is (B3) an alkylaluminoxane. 請求項2〜6に記載のオレフィン重合用触媒を用いてオレフィンの重合を行うことを特徴とするポリオレフィンの製造方法。A method for producing a polyolefin, comprising polymerizing an olefin using the olefin polymerization catalyst according to claim 2.
JP2002324797A 2002-11-08 2002-11-08 Transition metal compound, catalyst for olefin polymerization, and method for producing polyolefin Expired - Fee Related JP4228135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002324797A JP4228135B2 (en) 2002-11-08 2002-11-08 Transition metal compound, catalyst for olefin polymerization, and method for producing polyolefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002324797A JP4228135B2 (en) 2002-11-08 2002-11-08 Transition metal compound, catalyst for olefin polymerization, and method for producing polyolefin

Publications (2)

Publication Number Publication Date
JP2004155739A true JP2004155739A (en) 2004-06-03
JP4228135B2 JP4228135B2 (en) 2009-02-25

Family

ID=32804234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002324797A Expired - Fee Related JP4228135B2 (en) 2002-11-08 2002-11-08 Transition metal compound, catalyst for olefin polymerization, and method for producing polyolefin

Country Status (1)

Country Link
JP (1) JP4228135B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007123110A1 (en) 2006-04-19 2007-11-01 Japan Polypropylene Corporation NOVEL TRANSITION METAL COMPOUND, CATALYST FOR OLEFIN POLYMERIZATION CONTAINING THE SAME, AND METHOD FOR PRODUCING PROPYLENE/ETHYLENE-α-OLEFIN BLOCK COPOLYMER BY USING THE CATALYST
JP2010095458A (en) * 2008-10-15 2010-04-30 Japan Polypropylene Corp NEW TRANSITION METAL COMPOUND, CATALYST FOR OLEFIN POLYMERIZATION USING THE SAME, AND POLYMERIZATION OR COPOLYMERIZATION METHOD OF alpha-OLEFIN
US8084559B2 (en) 2005-01-28 2011-12-27 Sumitomo Chemical Company, Limited Transition metal complex, process for producing said transition metal complex, substituent-carrying fluorene compound, process for producing said fluorene compound, catalyst component for olefin polymerization, catalyst for olefin polymerization, and process for producing olefin polymer
JP7505288B2 (en) 2019-06-28 2024-06-25 日本ポリエチレン株式会社 Metallocene compound, catalyst component for olefin polymerization, catalyst for olefin polymerization, and method for producing olefin-based polymer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10226712A (en) * 1996-12-09 1998-08-25 Mitsubishi Chem Corp Catalyst for polymerization of alpha-olefin and production of alpha-olefin polymer
JP2003201322A (en) * 2001-11-01 2003-07-18 Mitsubishi Chemicals Corp Polypropylene, composition containing the same and use
JP2003231714A (en) * 2001-08-24 2003-08-19 Mitsubishi Chemicals Corp Propylene-based polymer
JP2003292700A (en) * 2002-01-31 2003-10-15 Mitsubishi Chemicals Corp Soft propylene resin composition
JP2004002310A (en) * 2002-02-14 2004-01-08 Mitsubishi Chemicals Corp TRANSITION METAL COMPOUND, OLEFIN POLYMERIZATION CATALYST COMPONENT AND METHOD FOR PRODUCING alpha-OLEFIN POLYMER

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10226712A (en) * 1996-12-09 1998-08-25 Mitsubishi Chem Corp Catalyst for polymerization of alpha-olefin and production of alpha-olefin polymer
JP2003231714A (en) * 2001-08-24 2003-08-19 Mitsubishi Chemicals Corp Propylene-based polymer
JP2003201322A (en) * 2001-11-01 2003-07-18 Mitsubishi Chemicals Corp Polypropylene, composition containing the same and use
JP2003292700A (en) * 2002-01-31 2003-10-15 Mitsubishi Chemicals Corp Soft propylene resin composition
JP2004002310A (en) * 2002-02-14 2004-01-08 Mitsubishi Chemicals Corp TRANSITION METAL COMPOUND, OLEFIN POLYMERIZATION CATALYST COMPONENT AND METHOD FOR PRODUCING alpha-OLEFIN POLYMER

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8084559B2 (en) 2005-01-28 2011-12-27 Sumitomo Chemical Company, Limited Transition metal complex, process for producing said transition metal complex, substituent-carrying fluorene compound, process for producing said fluorene compound, catalyst component for olefin polymerization, catalyst for olefin polymerization, and process for producing olefin polymer
WO2007123110A1 (en) 2006-04-19 2007-11-01 Japan Polypropylene Corporation NOVEL TRANSITION METAL COMPOUND, CATALYST FOR OLEFIN POLYMERIZATION CONTAINING THE SAME, AND METHOD FOR PRODUCING PROPYLENE/ETHYLENE-α-OLEFIN BLOCK COPOLYMER BY USING THE CATALYST
US7906599B2 (en) 2006-04-19 2011-03-15 Japan Polypropylene Corporation Transition metal compound, catalyst for olefin polymerization containing the same, and method for producing propylene/ethylene-α-olefin block copolymer by using the catalyst
JP2010095458A (en) * 2008-10-15 2010-04-30 Japan Polypropylene Corp NEW TRANSITION METAL COMPOUND, CATALYST FOR OLEFIN POLYMERIZATION USING THE SAME, AND POLYMERIZATION OR COPOLYMERIZATION METHOD OF alpha-OLEFIN
JP7505288B2 (en) 2019-06-28 2024-06-25 日本ポリエチレン株式会社 Metallocene compound, catalyst component for olefin polymerization, catalyst for olefin polymerization, and method for producing olefin-based polymer

Also Published As

Publication number Publication date
JP4228135B2 (en) 2009-02-25

Similar Documents

Publication Publication Date Title
EP0427696A2 (en) Process and catalyst for producing syndiotactic polymers
EP1401880B1 (en) Metallocene catalysts containing an indenyl moiety substituted at the 4-, 5-, 6- or 7-position by a siloxy or germyloxy group
JP3189175B2 (en) Method for producing aromatic vinyl compound copolymer
JP2004527608A (en) Olefin polymerization catalyst components and catalyst systems, and polymerization processes using such catalyst systems
KR100789242B1 (en) Transition metal complexes, catalysts composition containing the same and olefin polymerization theirwith
CN106795229B (en) Metallocene-supported catalyst and method for preparing polyolefin using the same
KR102024328B1 (en) Metallocene compounds, catalyst compositions comprising the same, and method for preparing olefin polymers using the same
EP1095944B1 (en) Single-carbon bridged bis cyclopentadienyl compounds and metallocene complexes thereof
JP3978798B2 (en) Transition metal compound, olefin polymerization catalyst comprising the same, and method for producing olefin polymer using the same
JP2000095791A (en) Transition metal compound, catalyst component for olefin composition and production of alea-olefin polymer
JP3850048B2 (en) Organic transition metal compound and method for producing polyolefin using the same
JP4228135B2 (en) Transition metal compound, catalyst for olefin polymerization, and method for producing polyolefin
JP4062756B2 (en) Olefin polymerization catalyst and method for producing polyolefin using the same
CN110386955B (en) Early transition metal compound, preparation method and intermediate thereof, and application in olefin polymerization
JP3811563B2 (en) Novel transition metal compound, catalyst component for α-olefin polymerization, and method for producing α-olefin polymer
JP4590164B2 (en) Olefin polymerization catalyst and method for producing polyolefin
JP3572325B2 (en) Olefin polymerization catalyst and method for producing polyolefin using the same
JP2003292518A (en) Catalytic component for olefin polymerization, olefin polymerization catalyst, method for producing olefin polymer and transition metal compound
JP4161448B2 (en) Transition metal compound, catalyst for olefin polymerization, and method for producing polyolefin using the same
KR102022685B1 (en) Metallocene compounds, catalyst compositions comprising the same, and method for preparing olefin polymers using the same
JP4400631B2 (en) Method for producing organic transition metal compound
KR101785705B1 (en) Catalyst composition and method for preparing polyolefin using the same
JP4496643B2 (en) Transition metal compound, catalyst for olefin polymerization using the same, and method for producing polyolefin
JP3588665B2 (en) Olefin polymerization catalyst using transition metal complex and method for producing polyolefin using the same
JP3975230B2 (en) Olefin polymerization catalyst and method for producing polyolefin using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081117

R151 Written notification of patent or utility model registration

Ref document number: 4228135

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees