JP2004154868A - Detection method of electrode wear loss in welding gun - Google Patents

Detection method of electrode wear loss in welding gun Download PDF

Info

Publication number
JP2004154868A
JP2004154868A JP2004023943A JP2004023943A JP2004154868A JP 2004154868 A JP2004154868 A JP 2004154868A JP 2004023943 A JP2004023943 A JP 2004023943A JP 2004023943 A JP2004023943 A JP 2004023943A JP 2004154868 A JP2004154868 A JP 2004154868A
Authority
JP
Japan
Prior art keywords
electrode
wear
side electrode
fixed
wear amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004023943A
Other languages
Japanese (ja)
Other versions
JP3686073B2 (en
Inventor
Takeshi Itakura
毅 板倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nachi Fujikoshi Corp
Original Assignee
Nachi Fujikoshi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nachi Fujikoshi Corp filed Critical Nachi Fujikoshi Corp
Priority to JP2004023943A priority Critical patent/JP3686073B2/en
Publication of JP2004154868A publication Critical patent/JP2004154868A/en
Application granted granted Critical
Publication of JP3686073B2 publication Critical patent/JP3686073B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Resistance Welding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide the detection method of an electrode wear amount in a welding gun which can detect the electrode wear loss without causing deformation of a welded object. <P>SOLUTION: Wear amounts of a movable side electrode 6 and a fixed side electrode 7 are measured beforehand by actually performing welding, hereby an electrode wear ratio α being computed, and a position, where the movable side electrode 6 and the fixed side electrode 7 have contacted when both electrodes are made to contact before both electrodes get worn, is memorized beforehand as a reference position. Then, the total of wear amounts of the movable side electrode 6 and the fixed side electrode 7 is computed from difference between the position where the movable side electrode 6 and the fixed side electrode 7 have contacted and the reference position, and the wear loss of the movable side electrode 6 and that of the fixed side electrode 7 are computed, based on the total of wear losses of both electrodes and the electrode wear ratio α. <P>COPYRIGHT: (C)2004,JPO

Description

本発明は、サーボ制御を利用した抵抗溶接技術に関し、特に産業用電動式ロボットに取り付けて利用されるスポット溶接ガンの電極駆動源としてサーボモータを使用した場合の溶接ガンの電極摩耗量検出方法に関する。   The present invention relates to a resistance welding technique using servo control, and more particularly to a method for detecting an electrode wear amount of a welding gun when a servo motor is used as an electrode driving source of a spot welding gun used by being attached to an industrial electric robot. .

従来の抵抗溶接ガンでは、エアシリンダー、モータ等の駆動源により電極を動作させ、対となる電極とで溶接対象物(被溶接物)を挟み、加圧保持し、大電流を流すことで溶接を行っていた。この溶接時の加圧及び溶接熱により次第に対となる電極が摩耗するので、ロボットの稼動中に電極の摩耗量を検出し、電極の位置を補正する必要があった。   With conventional resistance welding guns, the electrodes are operated by a drive source such as an air cylinder or motor, and the welding object (workpiece) is sandwiched between the paired electrodes, pressurized and held, and a large current is applied to perform welding. Had gone. Since the pair of electrodes gradually wears due to the pressurization and welding heat at the time of welding, it is necessary to detect the wear amount of the electrodes during operation of the robot and correct the position of the electrodes.

この電極の位置補正方法として、特許文献1では、アーク溶接の場合であるが、溶接開始時における溶接トーチとワークの原点合わせや、溶接トーチ摩耗時(損耗時)の位置補正を容易に行える自動溶接装置が開示されている。これは、被溶接物(ワーク)の原点に溶接トーチの先端を当て、このときの溶接トーチの位置を溶接トーチの原点とすることで原点合わせを行い、また、同様に、溶接トーチ摩耗時も、被溶接物に溶接トーチの先端を当てることにより溶接トーチの原点修正を行うものである。
特開平3−52771号公報
As a method of correcting the position of the electrode, Patent Document 1 describes a case of arc welding, but an automatic alignment that can easily adjust the origin of the welding torch and the workpiece at the start of welding and the position correction when the welding torch is worn (during wear). A welding device is disclosed. This is done by applying the tip of the welding torch to the origin of the work to be welded (workpiece) and setting the position of the welding torch at this time as the origin of the welding torch. The origin of the welding torch is corrected by applying the tip of the welding torch to the workpiece.
JP-A-3-52771

しかし、この特許文献1の係る方法では、溶接トーチを直接被溶接物に当てることにより、溶接トーチの摩耗量を算出し、溶接トーチの位置補正を行っているので、被溶接物が薄い鉄板などの場合、被溶接物の変形を招くという問題があった。   However, in the method according to Patent Literature 1, the welding torch is directly applied to the workpiece to calculate the wear amount of the welding torch and correct the position of the welding torch. In this case, there is a problem that the workpiece is deformed.

本発明は、C形溶接ガン、X形溶接ガン等の対となる複数の電極を有する溶接ガンにおいて、被溶接物に変形をきたすことなく電極の摩耗量を検出することが可能な、溶接ガンの電極摩耗量検出方法を提供することを目的とする。   The present invention relates to a welding gun having a plurality of electrodes to be paired, such as a C-shaped welding gun and an X-shaped welding gun, capable of detecting the amount of wear of the electrodes without causing deformation of the workpiece. It is an object of the present invention to provide a method for detecting the amount of electrode wear.

前述した目的を達成するために、本発明では、サーボモータにより一方の電極としての移動側電極を動作させ、この移動側電極と対をなす他方の電極としての固定側電極とで被溶接物を挟み加圧保持する溶接ガンにおいて、予め実際に溶接を行うことにより移動側電極および固定側電極の摩耗量を測定し、これにより電極摩耗比率αを算出しておき、移動側電極および固定側電極が摩耗する以前にこれら両電極を当接させ、このとき当接した位置を基準位置として予め記憶しておき、これ以降、移動側電極および固定側電極が当接した位置と前記基準位置との差から移動側電極および固定側電極の摩耗量の合計を算出し、この移動側電極および固定側電極の摩耗量の合計と前記電極摩耗比率αとに基づいて、移動側電極の摩耗量および固定側電極の摩耗量を算出するようにしたことを特徴とする溶接ガンの電極摩耗量検出方法を提供した。   In order to achieve the above-mentioned object, in the present invention, the moving electrode as one electrode is operated by a servomotor, and the workpiece is fixed to the moving electrode and the fixed electrode as the other electrode forming a pair. In the welding gun that holds the pinch and presses, the amount of wear of the moving side electrode and the fixed side electrode is measured by actually performing welding in advance, thereby calculating the electrode wear ratio α, and the moving side electrode and the fixed side electrode are measured. The two electrodes are brought into contact before wear occurs, and the contact position at this time is stored in advance as a reference position, and thereafter, the position where the moving-side electrode and the fixed-side electrode contact and the reference position are determined. The sum of the wear amount of the movable electrode and the fixed electrode is calculated from the difference, and based on the total wear amount of the movable electrode and the fixed electrode and the electrode wear ratio α, the wear amount and the fixed amount of the movable electrode are fixed. Side power An electrode wear amount detection method for a welding gun, wherein the electrode wear amount is calculated.

係る構成としたことにより、電極が摩耗する前後のそれぞれにおいて、移動側電極と固定側電極を当接させたときの移動側電極の位置を検出し、両位置の差を算出することにより、電極の合計摩耗量を求める。ここで、電極摩耗比率αを例えば電極の合計摩耗量に対する固定側電極の摩耗量の比率としておけば、求められた電極の合計摩耗量と電極摩耗比率αとに基づいて、固定側電極の摩耗量を算出することができる。さらに、電極の合計摩耗量から算出された固定側電極の摩耗量を差し引くことにより、移動側電極の摩耗量を算出することができる。   By adopting such a configuration, before and after the electrodes are worn, the position of the moving electrode when the moving electrode and the fixed electrode are brought into contact with each other is detected, and the difference between the two positions is calculated. To determine the total wear. Here, if the electrode wear ratio α is set as, for example, the ratio of the fixed-side electrode wear amount to the total electrode wear amount, the fixed-side electrode wear ratio is determined based on the determined total electrode wear amount and the electrode wear ratio α. The amount can be calculated. Further, the wear amount of the movable electrode can be calculated by subtracting the wear amount of the fixed electrode calculated from the total wear amount of the electrodes.

このように、本発明によれば、移動側電極および固定側電極を当接させることにより両電極の摩耗量を求めるようにしたので、従来技術のように被溶接物に変形をきたすことなく、電極の摩耗量を検出することが可能になった。   As described above, according to the present invention, the amount of wear of both electrodes is determined by bringing the moving-side electrode and the fixed-side electrode into contact with each other, so that the workpiece is not deformed as in the related art. It has become possible to detect the amount of electrode wear.

以下、本発明を実施するための最良の形態について、図面を参照して説明する。図1は、本発明を実施するための最良の形態に係る、溶接ガンの電極摩耗量検出方法が適用される装置の構成を示すブロック図である。また、図2は、本発明を実施するための最良の形態に係る、溶接ガンの電極摩耗量検出方法の処理の流れを示すフローチャートである。また、図3は、C形溶接ガンの作動説明図である。さらに、図4は、電極位置の補正状態を示す説明図である。なお、本実施形態で示した溶接ガンはC形溶接ガンであるが、X形溶接ガン等の2組の対となる電極を有する溶接ガンであってもよい。   Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a configuration of an apparatus to which a method for detecting an electrode wear amount of a welding gun according to a best mode for carrying out the present invention is applied. FIG. 2 is a flowchart showing a process flow of a method for detecting an electrode wear amount of a welding gun according to the best mode for carrying out the present invention. FIG. 3 is an operation explanatory view of the C-shaped welding gun. FIG. 4 is an explanatory diagram showing a correction state of the electrode position. The welding gun shown in the present embodiment is a C-shaped welding gun, but may be a welding gun having two pairs of electrodes such as an X-shaped welding gun.

図1に示すように、図示しない位置検出器付きのサーボモータによって制御される産業用ロボットのアーム先端1に、別の位置検出器4付きサーボモータ3を移動側電極6の駆動源として持ち、この移動側電極6のみが開閉動作するようにされたC型溶接ガン2が取り付けられている。移動側電極6はボールネジ5を介して、制御装置内の電極駆動回路14によって制御されるサーボモータ3により駆動される。また、固定側電極7はC型溶接ガン2の固定側に取り付けられており、制御装置内のロボット駆動回路12によって制御されるロボットのアーム先端1に取り付けられたC型溶接ガン2を上下することにより上下動するようにされている。   As shown in FIG. 1, an industrial robot controlled by a servomotor with a position detector (not shown) has another servomotor 3 with a position detector 4 at the arm tip 1 as a drive source of a moving-side electrode 6. A C-type welding gun 2 in which only the movable electrode 6 is opened and closed is attached. The moving-side electrode 6 is driven via the ball screw 5 by the servomotor 3 controlled by an electrode driving circuit 14 in the control device. The fixed electrode 7 is attached to the fixed side of the C-type welding gun 2 and moves up and down the C-type welding gun 2 attached to the robot arm tip 1 controlled by the robot drive circuit 12 in the control device. This makes it move up and down.

次に、制御装置内の回路構成について説明する。プログラムデータ9には、電極が摩耗していない状態における各溶接点のロボット位置データ及び移動側電極位置データと、電極合計摩耗量検出位置(電極の摩耗量を検出する際のロボット位置データ及び移動側電極位置データ)とが予め記憶されている。また、基準位置書込/摩耗量検出切替回路16は、「基準位置書込(書込)」、「摩耗量検出(検出)」及び中立状態(「書込」でも「検出」でもない状態)に設定できるようにされている。ここで、プログラムデータ読み込み回路10がプログラムデータ9から読み込む位置データは、基準位置書込/摩耗量検出切替回路16の設定状態により異なるようにされている。すなわち、プログラムデータ読み込み回路10は、基準位置書込/摩耗量検出切替回路16が中立状態の場合は、各溶接点のロボット位置データと移動側電極位置データをプログラムデータ9から読み込む。一方、基準位置書込/摩耗量検出切替回路16が「書込」または「検出」に選択された場合は、電極合計摩耗量検出位置をプログラムデータ9から読み込む。ロボット位置データはロボット位置指令作成回路11に送られ、移動側電極位置データは電極指令位置作成回路13に送られる。   Next, a circuit configuration in the control device will be described. The program data 9 includes the robot position data and the moving-side electrode position data of each welding point in a state where the electrodes are not worn, and the electrode total wear amount detection position (the robot position data and movement when detecting the electrode wear amount). Side electrode position data) is stored in advance. In addition, the reference position writing / wear amount detection switching circuit 16 includes “reference position writing (writing)”, “wear amount detection (detection)”, and a neutral state (a state that is neither “writing” nor “detection”). Can be set to. Here, the position data read from the program data 9 by the program data reading circuit 10 is made different depending on the setting state of the reference position writing / wear amount detection switching circuit 16. That is, when the reference position writing / wear amount detection switching circuit 16 is in the neutral state, the program data reading circuit 10 reads the robot position data and the moving-side electrode position data of each welding point from the program data 9. On the other hand, when the reference position writing / wear amount detection switching circuit 16 is selected to “write” or “detect”, the electrode total wear amount detection position is read from the program data 9. The robot position data is sent to the robot position command creation circuit 11, and the moving-side electrode position data is sent to the electrode command position creation circuit 13.

電極位置検出回路8は位置検出器4より電極位置を読み込む。基準位置書込/摩耗量検出切替回路16を「書込」または「検出」に選択し、かつ、位置検出器4で検出される位置データが変化しなくなった場合のみ、電極位置検出回路8は電極位置を基準位置書込/摩耗量検出切替回路16に送るようにされている。ここで、基準位置書込/摩耗量検出切替回路16を「書込」に選択した場合は、このときの電極位置を電極合計基準位置として電極合計基準位置メモリ18に書き込む。一方、基準位置書込/摩耗量検出切替回路16を「検出」に選択した場合は、このときの電極位置、電極合計基準位置及び電極摩耗比率αより電極合計摩耗量及び固定側電極摩耗量を算出し、それぞれ電極合計摩耗量メモリ20と固定側電極摩耗量メモリ15に書き込む。なお、電極摩耗比率αは固定側電極7の摩耗量の、電極の合計摩耗量に対する比率であり、使用する電極の種類、被溶接物の種類及び1回の溶接時間等の溶接条件によって決まる値であり、実際に数回溶接を行い、電極の摩耗量を測定する等して求める。   The electrode position detection circuit 8 reads the electrode position from the position detector 4. Only when the reference position writing / wear amount detection switching circuit 16 is set to “writing” or “detection” and the position data detected by the position detector 4 does not change, the electrode position detection circuit 8 The electrode position is sent to the reference position writing / wear amount detection switching circuit 16. Here, when the reference position writing / wear amount detection switching circuit 16 is selected as “writing”, the electrode position at this time is written to the electrode total reference position memory 18 as the electrode total reference position. On the other hand, when the reference position writing / wear amount detection switching circuit 16 is selected as "detection", the electrode total wear amount and the fixed-side electrode wear amount are determined from the electrode position, the electrode total reference position and the electrode wear ratio α at this time. It is calculated and written to the electrode total wear amount memory 20 and the fixed-side electrode wear amount memory 15, respectively. The electrode wear ratio α is a ratio of the wear amount of the fixed-side electrode 7 to the total wear amount of the electrodes, and is a value determined by welding conditions such as the type of the electrode used, the type of the work to be welded, and the time for one welding. It is obtained by actually performing welding several times and measuring the amount of wear of the electrodes.

電極合計基準位置メモリ18、電極合計摩耗量メモリ20及び固定側電極摩耗量メモリ15のそれぞれに記憶されている位置データの出力タイミングは、基準位置書込/摩耗量検出切替回路16の設定状態により異なる。即ち、電極合計基準位置メモリ18は、基準位置書込/摩耗量検出切替回路16を「検出」に選択した場合のみデータを出力する。また、電極合計摩耗量メモリ20及び固定側電極摩耗量メモリ15は、基準位置書込/摩耗量検出切替回路16が中立状態の場合のみデータを出力する。   The output timing of the position data stored in each of the electrode total reference position memory 18, the electrode total wear amount memory 20, and the fixed-side electrode wear amount memory 15 depends on the setting state of the reference position writing / wear amount detection switching circuit 16. different. That is, the electrode total reference position memory 18 outputs data only when the reference position writing / wear amount detection switching circuit 16 is selected as “detection”. The electrode total wear amount memory 20 and the fixed-side electrode wear amount memory 15 output data only when the reference position writing / wear amount detection switching circuit 16 is in the neutral state.

ロボット位置指令作成回路11から出力した溶接点のロボット位置データに、補正量である固定側電極摩耗量メモリ15より出力した固定側電極摩耗量が加えられ、ロボット駆動回路12に送られる。同様に、電極位置指令作成回路13から出力した溶接点の移動側電極位置データに、補正量である電極合計摩耗量メモリ20より出力した電極合計摩耗量が加えられ、電極駆動回路14に送られる。   The fixed-side electrode wear amount output from the fixed-side electrode wear amount memory 15, which is a correction amount, is added to the robot position data of the welding point output from the robot position command creation circuit 11 and sent to the robot drive circuit 12. Similarly, the electrode total wear amount output from the electrode total wear amount memory 20 as a correction amount is added to the moving-side electrode position data of the welding point output from the electrode position command creation circuit 13 and sent to the electrode drive circuit 14. .

次に、図2のフローチャート及び図3のC形溶接ガンの作動説明図により、本実施形態における処理の流れについて説明を行う。なお、以下の説明文中における「ステップ**」(**は整数)の記述は、図2のフローチャートにおけるステップ番号を示す符号に対応している。   Next, the flow of processing in this embodiment will be described with reference to the flowchart of FIG. 2 and the operation explanatory diagram of the C-type welding gun of FIG. Note that the description of "step **" (** is an integer) in the following description corresponds to the reference numeral indicating the step number in the flowchart of FIG.

第1に、電極合計基準位置の検出が行われる。図3(a)に示すように、未使用の対となる2個の電極、即ち移動側電極6及び固定側電極7をC形溶接ガン2に取り付け、基準位置書込/摩耗量検出切替回路16を「書込」に選択する(基準位置書込モードとする)。移動側電極6が固定側電極7側に動作し(ステップ31)、位置検出器4及び電極位置検出回路8により移動側電極6の現在位置データPが読み込まれる(ステップ32)。この現在位置データPを前回のスキャンで読み込んだ位置データP′と比較し、これらが同値であれば図3(b)に示すように、移動側電極6が固定側電極7に当接して停止したものと判断し(ステップ33Y)、サーボモータ3の回転を停止することにより移動側電極6の動作を停止させ(ステップ35)、ステップ36に進む。一方、現在位置データPと前回のスキャンで読み込んだ位置データP′が同値でなければ(ステップ33N)、ステップ32〜33を繰り返す(ステップ34)。ステップ36において、基準位置書込/摩耗量検出切替回路16は基準位置書込モードとなっているので(ステップ36Y)、この現在位置データPを電極合計基準位置P1として電極合計基準位置メモリ18に記憶する。   First, detection of the electrode total reference position is performed. As shown in FIG. 3A, two unused pairs of electrodes, namely, the movable side electrode 6 and the fixed side electrode 7 are attached to the C-shaped welding gun 2, and a reference position writing / wear amount detection switching circuit is provided. 16 is set to "write" (referred to as a reference position write mode). The moving electrode 6 moves toward the fixed electrode 7 (step 31), and the current position data P of the moving electrode 6 is read by the position detector 4 and the electrode position detecting circuit 8 (step 32). The current position data P is compared with the position data P 'read in the previous scan, and if they have the same value, as shown in FIG. 3B, the movable electrode 6 comes into contact with the fixed electrode 7 and stops. It is determined that the operation has been performed (Step 33Y), and the operation of the moving-side electrode 6 is stopped by stopping the rotation of the servomotor 3 (Step 35), and the process proceeds to Step 36. On the other hand, if the current position data P and the position data P 'read in the previous scan are not the same value (step 33N), steps 32 to 33 are repeated (step 34). In step 36, since the reference position writing / wear amount detection switching circuit 16 is in the reference position writing mode (step 36Y), the current position data P is stored in the electrode total reference position memory 18 as the electrode total reference position P1. Remember.

第2に、電極の摩耗量の検出が行われる。図3(c)は、未使用の対となる2個の電極の長さが摩耗により変化した様子を示している。基準位置書込/摩耗量検出切替回路16を「検出」に選択する(摩耗量検出モードとする)。移動側電極6が固定側電極7側に動作し(ステップ31)、位置検出器4及び電極位置検出回路8により移動側電極6の現在位置データPが読み込まれる(ステップ32)。この現在位置データPを前回のスキャンで読み込んだ位置データP′と比較し、これらが同値であれば図3(d)に示すように、移動側電極6が固定側電極7に当接して停止したものと判断し(ステップ33Y)、サーボモータ3の回転を停止することにより移動側電極6の動作を停止させ(ステップ35)、ステップ36に進む。一方、現在位置データPと前回のスキャンで読み込んだ位置データP′が同値でなければ(ステップ33N)、ステップ32〜33を繰り返す(ステップ34)。ステップ36において、基準位置書込/摩耗量検出切替回路16は摩耗量検出モードとなっているので(ステップ36N)、この現在位置データPと電極合計基準位置P1より、電極合計摩耗量Ltを「Lt=P−P1」により求め(ステップ38)、これを電極合計摩耗量メモリ20に記憶する(ステップ39)。さらに、電極摩耗比率α(0≦α≦1)より、固定側電極7の摩耗量Lsを「Ls=Lt×α」により求め(ステップ40)、これを固定側電極摩耗量メモリ15に記憶する(ステップ41)。   Second, the amount of electrode wear is detected. FIG. 3C shows a state in which the length of two unused pairs of electrodes changes due to wear. The reference position writing / wear amount detection switching circuit 16 is selected to "detect" (wear amount detection mode). The moving electrode 6 moves toward the fixed electrode 7 (step 31), and the current position data P of the moving electrode 6 is read by the position detector 4 and the electrode position detecting circuit 8 (step 32). The current position data P is compared with the position data P 'read in the previous scan, and if they have the same value, the moving side electrode 6 comes into contact with the fixed side electrode 7 and stops as shown in FIG. Then, the operation of the moving-side electrode 6 is stopped by stopping the rotation of the servo motor 3 (step 35Y), and the process proceeds to step 36. On the other hand, if the current position data P and the position data P 'read in the previous scan are not the same value (step 33N), steps 32 to 33 are repeated (step 34). In step 36, since the reference position writing / wear amount detection switching circuit 16 is in the wear amount detection mode (step 36N), the electrode total wear amount Lt is calculated from the current position data P and the electrode total reference position P1 by " Lt = P-P1 "(step 38), and this is stored in the electrode total wear amount memory 20 (step 39). Further, from the electrode wear ratio α (0 ≦ α ≦ 1), the wear amount Ls of the fixed-side electrode 7 is obtained by “Ls = Lt × α” (step 40), and this is stored in the fixed-side electrode wear amount memory 15. (Step 41).

なお、移動側電極6及び固定側電極7の位置補正は、図4に示すようにして行われる。図4(a)は電極が摩耗する前の初期状態を示している。また、図4(b)は固定側電極7がLs、移動側電極6がLmそれぞれ摩耗した状態を示している。図4(c)に示すように、固定側電極7の位置は、固定側電極7から移動側電極6に向かう方向に、固定側電極摩耗量メモリ15より読み込んだ固定側電極7の摩耗量Ls分だけ、C型溶接ガン2を動作させることにより補正する。図4(d)に示すように、移動側電極6の位置は、移動側電極6から固定側電極7に向かう方向に、電極合計摩耗量メモリ20より読み込んだ電極合計摩耗量Lt分だけ、サーボモータ3を回転させることにより補正する。ここで、移動側電極6の位置補正量は移動側電極6の摩耗量Lmではなく、電極合計摩耗量Ltとなっている。これは固定側電極7の位置補正はC型溶接ガン2を動作させることにより行っているため、固定側電極7の位置補正時に、移動側電極6の位置も固定側電極7の摩耗量Ls分変化してしまうので、移動側電極6の補正量は固定側電極7の摩耗量Lsと移動側電極6の摩耗量Lmの合計、即ち電極合計摩耗量Ltとなるためである。   The position correction of the movable electrode 6 and the fixed electrode 7 is performed as shown in FIG. FIG. 4A shows an initial state before the electrodes are worn. FIG. 4B shows a state in which the fixed side electrode 7 is worn by Ls and the movable side electrode 6 is worn by Lm. As shown in FIG. 4C, the position of the fixed-side electrode 7 is determined by the amount of wear Ls of the fixed-side electrode 7 read from the fixed-side electrode wear amount memory 15 in the direction from the fixed-side electrode 7 to the moving-side electrode 6. The correction is made by operating the C-type welding gun 2 by the amount. As shown in FIG. 4D, the position of the movable electrode 6 is servo-controlled in the direction from the movable electrode 6 to the fixed electrode 7 by the total electrode wear Lt read from the total electrode wear memory 20. The correction is made by rotating the motor 3. Here, the position correction amount of the moving side electrode 6 is not the wear amount Lm of the moving side electrode 6 but the electrode total wear amount Lt. Since the position of the fixed electrode 7 is corrected by operating the C-type welding gun 2, the position of the movable electrode 6 is also adjusted by the wear amount Ls of the fixed electrode 7 when the position of the fixed electrode 7 is corrected. This is because the amount of correction of the movable electrode 6 is the sum of the wear amount Ls of the fixed electrode 7 and the wear amount Lm of the movable electrode 6, that is, the total electrode wear amount Lt.

以上述べたように、本実施形態では、電極が摩耗する前後のそれぞれにおいて、移動側電極6と固定側電極7を当接させたときの移動側電極6の位置を検出し、両位置の差を算出することにより電極の合計摩耗量を求め、さらにこの電極の合計摩耗量と電極摩耗比率αとにより固定側電極7の摩耗量を求めるようにした。また、移動側電極6の摩耗量は電極の合計摩耗量から固定側電極7の摩耗量を差し引くことにより求めるようにした。この方法によれば、移動側電極6と固定側電極7を当接させるだけで、両電極の摩耗量を短時間に求めることができる。このように、本実施形態によれば、移動側電極6および固定側電極7を当接させることにより両電極の摩耗量を求めるようにしたので、従来技術のように被溶接物に変形をきたすことなく、電極の摩耗量を検出することが可能になる。   As described above, in the present embodiment, the position of the movable electrode 6 when the movable electrode 6 is brought into contact with the fixed electrode 7 before and after the electrode is worn is detected, and the difference between the two positions is detected. Is calculated to obtain the total wear of the electrode, and further, the wear of the fixed-side electrode 7 is obtained from the total wear of the electrode and the electrode wear ratio α. Further, the wear amount of the movable electrode 6 was determined by subtracting the wear amount of the fixed electrode 7 from the total wear amount of the electrodes. According to this method, the amount of wear of both electrodes can be obtained in a short time only by bringing the movable electrode 6 and the fixed electrode 7 into contact with each other. As described above, according to the present embodiment, the amount of wear of both electrodes is determined by bringing the moving-side electrode 6 and the fixed-side electrode 7 into contact with each other, so that the workpiece is deformed as in the related art. Without this, it becomes possible to detect the amount of wear of the electrode.

なお、電極位置の補正は、電極の交換や電極の研磨により電極の摩耗量が大きく変化した後の第1点目の溶接前に行い、溶接稼働中においては予め設定された溶接点数毎に行えば、高精度の電極の位置決めができるようになる。   The correction of the electrode position is performed before welding the first point after the amount of wear of the electrode has significantly changed due to electrode replacement or electrode polishing, and is performed for each preset number of welding points during welding operation. For example, highly accurate electrode positioning can be performed.

本発明を実施するための最良の形態に係る、溶接ガンの電極摩耗量検出方法が適用される装置の構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of an apparatus to which a method for detecting an electrode wear amount of a welding gun according to a best mode for carrying out the present invention is applied. 本発明を実施するための最良の形態に係る、溶接ガンの電極摩耗量検出方法の処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of the electrode wear amount detection method of the welding gun which concerns on the best mode for implementing this invention. C形溶接ガンの作動説明図である。It is operation | movement explanatory drawing of a C type welding gun. 電極位置の補正状態を示す説明図である。FIG. 5 is an explanatory diagram showing a correction state of an electrode position.

符号の説明Explanation of reference numerals

1 アーム先端
2 C形溶接ガン(溶接ガン)
3 サーボモータ
6 移動側電極
7 固定側電極
1 Arm tip 2 C type welding gun (welding gun)
3 Servo motor 6 Moving side electrode 7 Fixed side electrode

Claims (1)

サーボモータにより一方の電極としての移動側電極を動作させ、該移動側電極と対をなす他方の電極としての固定側電極とで被溶接物を挟み加圧保持する溶接ガンにおいて、
予め実際に溶接を行うことにより移動側電極および固定側電極の摩耗量を測定し、これにより電極摩耗比率αを算出しておき、
移動側電極および固定側電極が摩耗する以前にこれら両電極を当接させ、このとき当接した位置を基準位置として予め記憶しておき、
これ以降、移動側電極および固定側電極が当接した位置と前記基準位置との差から移動側電極および固定側電極の摩耗量の合計を算出し、
該移動側電極および固定側電極の摩耗量の合計と前記電極摩耗比率αとに基づいて、移動側電極の摩耗量および固定側電極の摩耗量を算出するようにしたことを特徴とする溶接ガンの電極摩耗量検出方法。
In a welding gun that operates a moving-side electrode as one electrode by a servomotor, and presses and holds an object to be welded between the moving-side electrode and a fixed-side electrode as the other electrode that forms a pair,
The wear amount of the movable side electrode and the fixed side electrode is measured by actually performing welding in advance, and the electrode wear ratio α is calculated thereby,
Before the moving-side electrode and the fixed-side electrode are worn, these two electrodes are brought into contact with each other, and the position where the two electrodes come into contact at this time is stored in advance as a reference position,
Thereafter, the sum of the wear amount of the movable electrode and the fixed electrode is calculated from the difference between the position where the movable electrode and the fixed electrode abut and the reference position,
A welding gun for calculating the amount of wear of the movable electrode and the amount of wear of the fixed electrode based on the total amount of wear of the movable electrode and the fixed electrode and the electrode wear ratio α. Electrode wear detection method.
JP2004023943A 2004-01-30 2004-01-30 Electrode wear detection method for welding gun Expired - Lifetime JP3686073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004023943A JP3686073B2 (en) 2004-01-30 2004-01-30 Electrode wear detection method for welding gun

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004023943A JP3686073B2 (en) 2004-01-30 2004-01-30 Electrode wear detection method for welding gun

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP10219094A Division JP3534819B2 (en) 1994-04-15 1994-04-15 Welding gun electrode wear detection method

Publications (2)

Publication Number Publication Date
JP2004154868A true JP2004154868A (en) 2004-06-03
JP3686073B2 JP3686073B2 (en) 2005-08-24

Family

ID=32822024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004023943A Expired - Lifetime JP3686073B2 (en) 2004-01-30 2004-01-30 Electrode wear detection method for welding gun

Country Status (1)

Country Link
JP (1) JP3686073B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005005089A1 (en) * 2003-07-11 2005-01-20 Abb Ab A method for positioning a welding robot tool

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005005089A1 (en) * 2003-07-11 2005-01-20 Abb Ab A method for positioning a welding robot tool
US7738996B2 (en) 2003-07-11 2010-06-15 Abb Ab Method for positioning a welding robot tool

Also Published As

Publication number Publication date
JP3686073B2 (en) 2005-08-24

Similar Documents

Publication Publication Date Title
US7863539B2 (en) Positioning method of spot welding robot
US6888089B2 (en) Method of and device for setting reference position for servo spot welding gun
JP3864240B2 (en) Welding method
JP2009090316A (en) Method and device for monitoring tip dress status, and spot welding system
JP2755073B2 (en) Positioning device for welding gun of welding robot
JP4653892B2 (en) Electrode tip dressing abnormality detection method and apparatus
JP2002361437A (en) Method and device for detecting wear of electrode of fixed welding gun
JP3686073B2 (en) Electrode wear detection method for welding gun
JP2010036232A (en) Method and device of measuring electrode consumption for spot welding apparatus
JP3668325B2 (en) Pressurization control method for welding gun
JP2002035951A (en) Position detection method for welding member and its device
JP2007268538A (en) Welding robot control device
JP3534819B2 (en) Welding gun electrode wear detection method
JP2009056480A (en) Spot welding method using spot welding gun
JP2008296226A (en) Device and method for controlling spot welding robot
JPH06312274A (en) Welding gun position correcting method
JPH08206846A (en) Method and equipment for spot welding
JPH10202371A (en) Spatter detecting method for welding gun and correcting method for welding condition
JP2001300738A (en) Method and device for controlling motor-driven servo type resistance welding equipment
JP2002316270A (en) Method for deciding weld condition and device for the same
JP2007061834A (en) Method and device for detecting electrode wear in robot seam welding system
JP3967533B2 (en) Scroll compressor centering method and centering apparatus
JP2002096177A (en) Welding gun position correcting method and device therefor
JP3598792B2 (en) Chip wear amount detection method and spot jig for spot welding gun
JP6258799B2 (en) Seam welding apparatus and seam welding method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050601

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080610

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120610

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120610

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130610

Year of fee payment: 8

EXPY Cancellation because of completion of term