JP3534819B2 - Welding gun electrode wear detection method - Google Patents
Welding gun electrode wear detection methodInfo
- Publication number
- JP3534819B2 JP3534819B2 JP10219094A JP10219094A JP3534819B2 JP 3534819 B2 JP3534819 B2 JP 3534819B2 JP 10219094 A JP10219094 A JP 10219094A JP 10219094 A JP10219094 A JP 10219094A JP 3534819 B2 JP3534819 B2 JP 3534819B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- moving
- wear
- wear amount
- total
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K11/00—Resistance welding; Severing by resistance heating
- B23K11/30—Features relating to electrodes
- B23K11/3063—Electrode maintenance, e.g. cleaning, grinding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K11/00—Resistance welding; Severing by resistance heating
- B23K11/24—Electric supply or control circuits therefor
- B23K11/25—Monitoring devices
- B23K11/252—Monitoring devices using digital means
- B23K11/253—Monitoring devices using digital means the measured parameter being a displacement or a position
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
- Machine Tool Sensing Apparatuses (AREA)
Description
【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、サーボ制御を利用した
抵抗溶接技術に関し、特に産業用電動式ロボットに取り
付けて利用されるスポット溶接ガンの電極駆動源として
サーボモータを使用した場合の溶接ガン電極摩耗量検出
方法に関する。
【0002】
【従来の技術】従来の抵抗溶接ガンでは、エアシリンダ
ー、モータ等の駆動源により電極を動作させ、対となる
電極とで溶接対象物を挟み、加圧保持し、大電流を流す
ことで溶接を行っていた。この溶接時の加圧及び溶接熱
により次第に対となる電極が摩耗するので、ロボットの
稼動中にこの電極の摩耗量を検出し、電極の位置を補正
する必要があった。
【0003】この電極の位置補正方法として、特開平3
−52771号公報では、アーク溶接の場合であるが、
溶接開始時における溶接トーチとワークの原点合わせ
や、溶接トーチ摩耗時(損耗時)の位置補正を容易に行
える自動溶接装置が開示されている。これは、被溶接物
(ワーク)の原点に溶接トーチの先端を当て、このとき
の溶接トーチの位置を溶接トーチの原点とすることで原
点合わせを行い、また、同様に、溶接トーチ摩耗時も、
被溶接物に溶接トーチの先端を当てることにより溶接ト
ーチの原点修正を行うものである。
【0004】
【発明が解決しようとする課題】しかし、この方法は溶
接トーチを直接被溶接物に当てることにより、溶接トー
チの摩耗の摩耗量を算出し、溶接トーチの位置補正を行
っているので、被溶接物が薄い鉄板などの場合、被溶接
物の変形を招くという問題があった。また、同公報で
は、C形溶接ガン、X形溶接ガン等の対となる複数の電
極を有する溶接ガンの場合に適用しても煩雑になるとい
う問題があった。
【0005】本発明の課題は、C形溶接ガン、X形溶接
ガン等の対となる複数の電極を有する溶接ガンにおい
て、被溶接物に変形をきたすことなく電極の摩耗量を検
出し、この摩耗量をもとに電極の位置決めを行うことに
より、溶接時の電極の摩耗による加圧点の変位によって
生ずる被溶接物の変形を最小に抑えるような、電極位置
補正のための電極摩耗量検出方法を提供することにあ
る。
【0006】
【問題を解決するための手段】このため本発明は、特許
請求の範囲記載の溶接ガン電極摩耗量検出方法を提供す
ることによって従来技術の課題を解決した。
【0007】
【実施例】図1及び図2は、後述する本発明の実施例を
説明するに先立って説明する参考例に関する図面であ
り、それぞれ参考例に係る溶接ガン電極摩耗量検出方法
に使用される装置の構成を示すブロック図及びフローチ
ャートである。また、図3はC形溶接ガンの作動説明
図、図4は電極位置の補正状態を示す説明図である。さ
らに、図5及び図6はそれぞれ本発明の実施例に係る溶
接ガン電極摩耗量検出方法に使用される装置の構成を示
すブロック図及びフローチャートである。なお、図1乃
至図6に示されている溶接ガンはC形溶接ガンである
が、X形溶接ガン等の2個の対となる電極を有する溶接
ガンであってもよい。
【0008】まず、参考例について説明する。図1に示
すように、図示しない位置検出器付きのサーボモータに
よって制御される産業用ロボットのアーム先端1に、別
の位置検出器4付きサーボモータ3を移動側電極6の駆
動源として持ち、この移動側電極6のみが開閉動作する
ようにされたC型溶接ガン2が取り付けられている。移
動側電極6はボールネジ5を介して、制御装置内の電極
駆動回路14によって制御されるサーボモータ3により
駆動される。また、固定側電極7はC型溶接ガン2の固
定側に取り付けられており、制御装置内のロボット駆動
回路12によって制御されるロボットのアーム先端1に
取り付けられたC型溶接ガン2を上下することにより上
下動するようにされている。
【0009】次に、制御装置内の回路構成について説明
すると、プログラムデータ9には、電極が摩耗していな
い状態における各溶接点のロボット位置データ及び移動
側電極位置データと、電極合計摩耗量検出位置(電極の
摩耗量を検出する際のロボット位置データ及び移動側電
極位置データ)が予め記憶されている。プログラムデー
タ読み込み回路10がプログラムデータ9から読み込む
位置データは、基準位置書込/摩耗量検出切替回路16
の設定状態により異なる。基準位置書込/摩耗量検出切
替回路16は「基準位置書込(書込)」、「摩耗量検出
(検出)」及び中立状態(「書込」でも「検出」でもな
い状態)に設定できるようにしている。ここで、プログ
ラムデータ読み込み回路10は、基準位置書込/摩耗量
検出切替回路16が中立状態の場合は、各溶接点のロボ
ット位置データと移動側電極位置データを読み込むが、
基準位置書込/摩耗量検出切替回路16が「書込」また
は「検出」を選択した場合は、電極合計摩耗量検出位置
を読み込む。ロボット位置データはロボット位置指令作
成回路11に送られ、移動側電極位置データは電極指令
位置作成回路13に送られる。
【0010】電極位置検出回路8は位置検出器4より電
極位置を読み込む。基準位置書込/摩耗量検出切替回路
16を「書込」または「検出」に選択し、かつ、位置検
出器4で検出される位置データが変化しなくなった場合
のみ、電極位置検出回路8は電極位置を基準位置書込/
摩耗量検出切替回路16に送るようにされている。ここ
で、基準位置書込/摩耗量検出切替回路16を「書込」
に選択した場合は、このときの電極位置を電極合計基準
位置として電極合計基準位置メモリ18に書き込む。逆
に、基準位置書込/摩耗量検出切替回路16を「検出」
に選択した場合は、このときの電極位置、電極合計基準
位置及び電極摩耗比率αより電極合計摩耗量及び固定側
電極摩耗量を算出し、それぞれ電極合計摩耗量メモリ2
0と固定側電極摩耗量メモリ15に書き込む。なお、電
極摩耗比率αは固定側電極7の摩耗量の、電極の合計摩
耗量に対する比率であり、使用する電極の種類、被溶接
物の種類及び1回の溶接時間等の溶接条件によって決ま
る値であり、実際に数回溶接を行い、電極の摩耗量を測
定する等して求める。
【0011】電極合計基準位置メモリ18、電極合計摩
耗量メモリ20及び固定側電極摩耗量メモリ15のそれ
ぞれに記憶されている位置データの出力タイミングは、
基準位置書込/摩耗量検出切替回路16の設定状態によ
り異なる。即ち、電極合計基準位置メモリ18は、基準
位置書込/摩耗量検出切替回路16を「検出」に選択し
た場合のみデータを出力する。また、電極合計摩耗量メ
モリ20及び固定側電極摩耗量メモリ15は、基準位置
書込/摩耗量検出切替回路16が中立状態の場合のみデ
ータを出力する。
【0012】ロボット位置指令作成回路11から出力し
た溶接点のロボット位置データに、補正量である固定側
電極摩耗量メモリ15より出力した固定側電極摩耗量が
加えられ、ロボット駆動回路12に送られる。同様に、
電極位置指令作成回路13から出力した溶接点の移動側
電極位置データに、補正量である電極合計摩耗量メモリ
20より出力した電極合計摩耗量が加えられ、電極駆動
回路14に送られる。
【0013】次に、図2のフローチャート及び図3のC
形溶接ガンの作動説明図により、参考例についてのより
詳細な説明を行う。第1に、電極合計基準位置の検出が
行われる。図3(a)に示すように、未使用の対となる
2個の電極、即ち移動側電極6及び固定側電極7をC形
溶接ガン2に取り付け、基準位置書込/摩耗量検出切替
回路16を「書込」に選択する(基準位置書込モードと
する)。移動側電極6が固定側電極7側に動作し(ステ
ップ31)、位置検出器4及び電極位置検出回路8によ
り移動側電極6の現在位置データPが読み込まれる(ス
テップ32)。この現在位置データPを前回のスキャン
で読み込んだ位置データP′と比較し、これらが同値で
あれば図3(b)に示すように、移動側電極6が固定側
電極7に当接して停止したものと判断し(ステップ33
Y)、サーボモータ3の回転を停止し(ステップ3
5)、ステップ36に進む。逆に、現在位置データPと
前回のスキャンで読み込んだ位置データP′が同値でな
ければ、ステップ32〜33を繰り返す(ステップ3
4)。ステップ36において、基準位置書込/摩耗量検
出切替回路16は基準位置書込モードとなっているので
(ステップ36Y)、この現在位置データPを電極合計
基準位置P1として電極合計基準位置メモリ18に記憶
する。
【0014】第2に、電極の摩耗量の検出が行われる。
図3(c)は、未使用の対となる2個の電極の長さが摩
耗により変化した様子を示している。基準位置書込/摩
耗量検出切替回路16を「検出」に選択する(摩耗量検
出モードとする)。移動側電極6が固定側電極7側に動
作し(ステップ31)、位置検出器4及び電極位置検出
回路8により移動側電極6の現在位置データPが読み込
まれる(ステップ32)。この現在位置データPを前回
のスキャンで読み込んだ位置データP′と比較し、これ
らが同値であれば図3(d)に示すように、移動側電極
6が固定側電極7に当接して停止したものと判断し(ス
テップ33Y)、サーボモータ3の回転を停止し(ステ
ップ35)、ステップ36に進む。逆に、現在位置デー
タPと前回のスキャンで読み込んだ位置データP′が同
値でなければ、ステップ32〜33を繰り返す(ステッ
プ34)。ステップ36において、基準位置書込/摩耗
量検出切替回路16は摩耗量検出モードとなっているの
で(ステップ36N)、この現在位置データPと電極合
計基準位置P1より、電極合計摩耗量Ltを Lt=P
−P1 で求め、電極合計摩耗量メモリ20に記憶す
る。さらに、電極摩耗比率α(0≦α≦1)より、固定
側電極7の摩耗量Lsを Ls=Lt×α で求め、固
定側電極摩耗量メモリ15に記憶する。
【0015】なお、移動側電極6及び固定側電極7の位
置補正は、図4に示すようにして行われる。図4(a)
は電極が摩耗する前の初期状態を示している。また、図
4(b)は固定側電極7がLs、移動側電極6がLmそ
れぞれ摩耗した状態を示している。図4(c)に示すよ
うに、固定側電極7の位置は、固定側電極7から移動側
電極6に向かう方向に、固定側電極摩耗量メモリ15よ
り読み込んだ固定側電極7の摩耗量Ls分だけ、C型溶
接ガン2を動作させることにより補正する。図4(d)
に示すように、移動側電極6の位置は、移動側電極6か
ら固定側電極7に向かう方向に、電極合計摩耗量メモリ
20より読み込んだ電極合計摩耗量Lt分だけ、サーボ
モータ3を回転させることにより補正する。ここで、移
動側電極6の位置補正量は移動側電極6の摩耗量Lmで
はなく、電極合計摩耗量Ltとなっている。これは固定
側電極7の位置補正はC型溶接ガン2を動作させること
により行っているため、固定側電極7の位置補正時に、
移動側電極6の位置も固定側電極7の摩耗量Ls分変化
してしまうので、移動側電極6の補正量は固定側電極7
の摩耗量Lsと移動側電極6の摩耗量Lmの合計、即ち
電極合計摩耗量Ltとなるためである。
【0016】以上述べたように、参考例では、電極が摩
耗する前後において、移動側電極6と固定側電極7を当
接させたときの移動側電極6の位置をそれぞれ検出し、
この位置の差を算出することにより電極の合計摩耗量を
求め、さらにこの電極の合計摩耗量と電極摩耗比率αよ
り固定側電極7の摩耗量を求める。また、移動側電極6
の摩耗量は電極の合計摩耗量から固定側電極7の摩耗量
を差し引くことにより求める。この方法によれば、移動
側電極6と固定側電極7を当接させるだけで、両電極の
摩耗量を短時間に求めることができる。
【0017】次に、本発明の実施例について図3乃至図
6に基づき説明する。前述した参考例においては、被溶
接物が多種存在する工程では、被溶接物に対応した電極
摩耗比率αをその都度求める必要がある。そこで、本発
明の実施例では、電極摩耗比率αを用いることなく電極
の摩耗量を算出するようにした。なお、図5に示すよう
に、C形溶接ガンを備えたロボット本体の構成は前述し
た参考例における図1と同様なので説明を省略する。
【0018】図5に示すように、プログラムデータ9に
は、電極が摩耗していない状態における各溶接点のロボ
ット位置データ及び移動側電極位置データと、電極合計
摩耗量検出位置(電極の合計摩耗量を検出する際のロボ
ット位置データ及び移動側電極位置データ)と、移動側
電極摩耗量検出位置(移動側電極の摩耗量を検出する際
のロボット位置データ及び移動側電極位置データ)が予
め記憶されている。
【0019】プログラムデータ読み込み回路10がプロ
グラムデータ9から読み込む位置データは、合計検出/
移動側検出切替回路21及び基準位置書込/摩耗量検出
切替回路16の設定状態により異なる。合計検出/移動
側検出切替回路21は「合計検出(合計)」及び「移動
側検出(移動側)」に設定できるようにしている。ここ
で、プログラムデータ読み込み回路10は、基準位置書
込/摩耗量検出切替回路16が中立状態の場合は、各溶
接点のロボット位置データと移動側電極位置データを読
み込むが、基準位置書込/摩耗量検出切替回路16を
「書込」または「検出」に選択し、かつ、合計検出/移
動側検出切替回路21を「合計」に選択している場合
は、電極合計摩耗量検出位置を読み込む。また、基準位
置書込/摩耗量検出切替回路16を「書込」または「検
出」に選択し、かつ、合計検出/移動側検出切替回路2
1を「移動側」に選択している場合は、移動側電極摩耗
量検出位置を読み込む。ロボット位置データはロボット
位置指令作成回路11に送られ、移動側電極位置データ
は電極指令位置作成回路13に送られる。
【0020】電極位置検出回路8は位置検出器4より電
極位置を読み込む。電極位置検出回路8は基準位置書込
/摩耗量検出切替回路16を「書込」または「検出」に
選択し、かつ、位置検出器4で検出される位置データが
変化しなくなった場合のみ、電極位置を合計検出/移動
側検出切替回路21を経由して、基準位置書込/摩耗量
検出切替回路16に送る。
【0021】また、合計検出/移動側検出切替回路21
を「合計」に選択し、かつ、基準位置書込/摩耗量検出
切替回路16を「書込」に選択した場合は、このときの
電極位置が電極合計基準位置として電極合計基準位置メ
モリ18に書き込まれる。逆に、基準位置書込/摩耗量
検出切替回路16を「検出」に選択した場合は、このと
きの電極位置及び電極合計基準位置より電極合計摩耗量
が算出され、電極合計摩耗量メモリ20に書き込まれ
る。
【0022】同様に、合計検出/移動側検出切替回路2
1を「移動側」に選択し、かつ、基準位置書込/摩耗量
検出切替回路16を「書込」に選択した場合は、このと
きの電極位置が移動側電極基準位置として移動側電極基
準位置メモリ19に書き込まれる。逆に、基準位置書込
/摩耗量検出切替回路16を「検出」に選択した場合
は、このときの電極位置、移動側電極基準位置及び電極
合計摩耗量より固定側電極摩耗量が算出され、固定側電
極摩耗量メモリ15に書き込まれる。
【0023】電極合計基準位置メモリ18、電極合計摩
耗量メモリ20、移動側電極摩耗量メモリ19及び固定
側電極摩耗量メモリ15のそれぞれに記憶されている位
置データの出力タイミングは、基準位置書込/摩耗量検
出切替回路16の設定状態により異なる。即ち、電極合
計基準位置メモリ18及び移動側電極基準位置メモリ1
9は、基準位置書込/摩耗量検出切替回路16を「検
出」に選択した場合のみデータを出力する。また、電極
合計摩耗量メモリ20及び固定側電極摩耗量メモリ15
は、基準位置書込/摩耗量検出切替回路16が中立状態
の場合のみデータを出力する。
【0024】ロボット位置指令作成回路11から出力し
たロボット位置データは、前述した参考例と同様に、補
正量である固定側電極摩耗量メモリ15より出力した固
定側電極摩耗量が加えられ、ロボット駆動回路12に送
られる。同様に、電極位置指令作成回路13から出力し
た移動側電極位置データに、補正量である電極合計摩耗
量メモリ20より出力した電極合計摩耗量が加えられ、
電極駆動回路14に送られる。
【0025】次に、図6のフローチャート及び図3のC
形溶接ガンの作動説明図により、本発明の実施例につい
てのより詳細な説明を行う。第1に、電極合計基準位置
の検出が行われる。図3(a)に示すように、未使用の
対となる2個の電極、即ち移動側電極6及び固定側電極
7をC形溶接ガン2に取り付け、合計検出/移動側検出
切替回路21を「合計」に選択し(合計検出モードと
し)(ステップ51Y)、かつ、基準位置書込/摩耗量
検出切替回路16を「書込」に選択する(基準位置書込
モードとする)。移動側電極6が固定側電極7側に動作
し(ステップ53)、位置検出器4及び電極位置検出回
路8により移動側電極6の現在位置データPが読み込ま
れる(ステップ54)。この現在位置データPを前回の
スキャンで読み込んだ位置データP′と比較し、これら
が同値であれば図3(b)に示すように、移動側電極6
が固定側電極7に当接して停止したものと判断し(ステ
ップ55Y)、サーボモータ3の回転を停止し(ステッ
プ57)、ステップ58に進む。逆に、現在位置データ
Pと前回のスキャンで読み込んだ位置データP′が同値
でなければ、ステップ54〜55を繰り返す(ステップ
56)。ステップ58において、合計検出/移動側検出
切替回路21は合計検出モードに(ステップ58Y)、
かつ、基準位置書込/摩耗量検出切替回路16は基準位
置書込モードとなっているので(ステップ59Y)、こ
の現在位置データPを電極合計基準位置P1として電極
合計基準位置メモリ18に記憶する。
【0026】第2に、移動側電極基準位置の検出が行わ
れる。図3(e)に示すように、未使用の対となる2個
の電極、即ち移動側電極6及び固定側電極7をC形溶接
ガン2に取り付け、合計検出/移動側検出切替回路21
を「移動側」に選択し(移動側検出モードとし)、か
つ、基準位置書込/摩耗量検出切替回路16を「書込」
に選択する(基準位置書込モードとする)。合計検出/
移動側検出切替回路21を「移動側」に選択したので
(ステップ51N)、移動側電極6と固定側電極7の間
の予め設定された位置に治具が配置されるようにロボッ
トを移動する(ステップ52)。ロボットの移動が完了
すると、移動側電極6が固定側電極7側に動作し(ステ
ップ53)、位置検出器4及び電極位置検出回路8によ
り移動側電極6の現在位置データPが読み込まれる(ス
テップ54)。この現在位置データPを前回のスキャン
で読み込んだ位置データP′と比較し、これらが同値で
あれば図3(f)に示すように、移動側電極6が治具に
当接して停止したものと判断し(ステップ55Y)、サ
ーボモータ3の回転を停止し(ステップ57)、ステッ
プ58に進む。逆に、現在位置データPと前回のスキャ
ンで読み込んだ位置データP′が同値でなければ、ステ
ップ54〜55を繰り返す(ステップ56)。ステップ
58において、合計検出/移動側検出切替回路21は移
動側検出モードに(ステップ58N)、かつ、基準位置
書込/摩耗量検出切替回路16は基準位置書込モードと
なっているので(ステップ63Y)、この現在位置デー
タPを移動側電極基準位置P2として移動側電極基準位
置メモリ19に記憶する。
【0027】第3に、電極の合計摩耗量の検出が行われ
る。図3(c)は、未使用の対となる2個の電極の長さ
が摩耗により変化した様子を示している。合計検出/移
動側検出切替回路21を「合計」に選択し(合計検出モ
ードとし)(ステップ51Y)、かつ、基準位置書込/
摩耗量検出切替回路16を「検出」に選択する(摩耗量
検出モードとする)。移動側電極6が固定側電極7側に
動作し(ステップ53)、位置検出器4及び電極位置検
出回路8により移動側電極6の現在位置データPが読み
込まれる(ステップ54)。この現在位置データPを前
回のスキャンで読み込んだ位置データP′と比較し、こ
れらが同値であれば図3(d)に示すように、移動側電
極6が固定側電極7に当接して停止したものと判断し
(ステップ55Y)、サーボモータ3の回転を停止し
(ステップ57)、ステップ58に進む。逆に、現在位
置データPと前回のスキャンで読み込んだ位置データ
P′が同値でなければ、ステップ54〜55を繰り返す
(ステップ56)。ステップ58において、合計検出/
移動側検出切替回路21は合計検出モードに(ステップ
58Y)、かつ、基準位置書込/摩耗量検出切替回路1
6は摩耗量検出モードとなっているので(ステップ59
N)、この現在位置データPと電極合計基準位置P1よ
り、電極合計摩耗量Ltを Lt=P−P1 で求め、
電極合計摩耗量メモリ20に記憶する。
【0028】第4に、移動側電極の摩耗量の検出が行わ
れる。図3(g)は、未使用の対となる2個の電極の長
さが摩耗により変化した様子を示している。合計検出/
移動側検出切替回路21を「移動側」に選択し(移動側
検出モードとし)、かつ、基準位置書込/摩耗量検出切
替回路16を「検出」に選択する(摩耗量検出モードと
する)。合計検出/移動側検出切替回路21を「移動
側」に選択したので(ステップ51N)、移動側電極6
と固定側電極7の間の予め設定された位置に治具が配置
されるようにロボットが移動する(ステップ52)。ロ
ボットの移動が完了すると、移動側電極6が固定側電極
7側に動作し(ステップ53)、位置検出器4及び電極
位置検出回路8により移動側電極6の現在位置データP
が読み込まれる(ステップ54)。この現在位置データ
Pを前回のスキャンで読み込んだ位置データP′と比較
し、これらが同値であれば図3(h)に示すように、移
動側電極6が治具に当接して停止したものと判断し(ス
テップ55Y)、サーボモータ3の回転を停止し(ステ
ップ57)、ステップ58に進む。逆に、現在位置デー
タPと前回のスキャンで読み込んだ位置データP′が同
値でなければ、ステップ54〜55を繰り返す(ステッ
プ56)。ステップ58において、合計検出/移動側検
出切替回路21は移動側検出モードに(ステップ58
N)、かつ、基準位置書込/摩耗量検出切替回路16は
摩耗量検出モードとなっているので(ステップ63
N)、この現在位置データPと移動側電極基準位置P2
より、移動側電極摩耗量Lmを Lm=P−P2 で求
め、さらに固定側電極摩耗量Lsを Ls=Lt−Lm
で求め、固定側電極摩耗量メモリ15に記憶する。
【0029】なお、この摩耗量を用いて移動側電極6及
び固定側電極7の位置を補正する方法については、前述
の参考例の場合と同様なので、再度の説明は省略する。
【0030】以上述べたように、本発明の実施例では、
まず、治具のない状態で、電極が摩耗する前後におい
て、移動側電極6と固定側電極7を当接させたときの移
動側電極6の位置を検出し、この位置の差を算出するこ
とにより電極の合計摩耗量を求める。次に、電極間に治
具を配置した状態で、電極が摩耗する前後において、移
動側電極6を治具に当接させたときの移動側電極6の位
置を検出し、この位置の差を算出することにより移動側
電極6の摩耗量を求める。さらに、電極の合計摩耗量と
移動側電極6の摩耗量より固定側電極の摩耗量を求め
る。この方法によれば、移動側電極6の摩耗量を求める
ためにロボット本体及び電極の動作が必要なので、前述
した参考例の方法に比して移動側電極6の摩耗量の算出
に時間がかかる。しかし、本発明の実施例の方法は前述
した参考例の方法のように被溶接物が多種存在する工程
では電極摩耗比率αをその都度求める必要はなくなると
ともに、より精度の高い摩耗量検出が可能である。
【0031】本発明の電極位置の補正は、電極の交換や
電極の研磨により電極の摩耗量が大きく変化した後の第
1点目の溶接前に行い、溶接稼働中においては予め設定
された溶接点数毎に行えば、高精度の電極の位置決めが
できるようになる。
【0032】
【発明の効果】以上説明したように本発明により、C形
溶接ガン、X形溶接ガン等の対となる複数個の電極を有
する溶接ガンにおいて、電極の摩耗量を電極と治具を用
いて検出するようにしたので、被溶接物に変形をきたす
ことなく電極の摩耗量を検出することが可能になるとと
もに、より精度の高い摩耗量検出が可能となり、溶接時
の電極の摩耗による加圧点の変位によって生ずる被溶接
物の変形を最小に抑えるものとなった。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resistance welding technique using servo control, and more particularly to an electrode drive source of a spot welding gun used by being attached to an industrial electric robot. The present invention relates to a method for detecting a wear amount of a welding gun electrode when a servo motor is used as a method. In a conventional resistance welding gun, an electrode is operated by a driving source such as an air cylinder or a motor, and an object to be welded is sandwiched between a pair of electrodes, pressed and held, and a large current flows. We were doing welding by that. Since the paired electrodes gradually wear due to the pressurization and welding heat during the welding, it is necessary to detect the amount of wear of the electrodes during operation of the robot and correct the position of the electrodes. As a method of correcting the electrode position, Japanese Patent Laid-Open No.
In Japanese Patent No. 52771, the case of arc welding is used.
There is disclosed an automatic welding apparatus capable of easily aligning the origin of a welding torch and a workpiece at the start of welding and correcting the position when the welding torch is worn (wearing). This is done by applying the tip of the welding torch to the origin of the work to be welded (workpiece) and setting the position of the welding torch at this time as the origin of the welding torch. ,
The origin of the welding torch is corrected by applying the tip of the welding torch to the workpiece. [0004] However, in this method, the welding torch is directly applied to the workpiece to calculate the amount of wear of the welding torch and to correct the position of the welding torch. When the workpiece is a thin iron plate, there is a problem that the workpiece is deformed. Further, in the publication, there is a problem that the method is complicated even when applied to a welding gun having a plurality of electrodes to be paired, such as a C-shaped welding gun and an X-shaped welding gun. SUMMARY OF THE INVENTION An object of the present invention is to detect a wear amount of an electrode in a welding gun having a pair of electrodes such as a C-type welding gun and an X-type welding gun without causing deformation of a workpiece. Detecting electrode wear for electrode position correction by positioning the electrode based on the amount of wear to minimize deformation of the workpiece caused by displacement of the pressurized point due to electrode wear during welding It is to provide a method. Accordingly, the present invention has solved the problems of the prior art by providing a method for detecting the amount of wear of a welding gun electrode according to the present invention. FIG . 1 and FIG. 2 show an embodiment of the present invention to be described later.
FIG.
The welding gun electrode wear amount detection method according to each reference example
Block diagram and float showing the configuration of an apparatus used for
It is a chart. FIG. 3 is an explanatory view of the operation of the C-shaped welding gun, and FIG. 4 is an explanatory view showing a correction state of the electrode position. 5 and 6 are a block diagram and a flow chart, respectively, showing the configuration of an apparatus used in the method for detecting the amount of wear of the welding gun electrode according to the embodiment of the present invention . Although the welding gun shown in FIGS. 1 to 6 is a C-shaped welding gun, it may be a welding gun having two pairs of electrodes, such as an X-shaped welding gun. First, a reference example will be described. As shown in FIG. 1, an industrial robot controlled by a servomotor with a position detector (not shown) has another servomotor 3 with a position detector 4 at the arm tip 1 as a drive source of a moving-side electrode 6. A C-type welding gun 2 in which only the movable electrode 6 is opened and closed is attached. The moving-side electrode 6 is driven via the ball screw 5 by the servomotor 3 controlled by an electrode driving circuit 14 in the control device. The fixed electrode 7 is attached to the fixed side of the C-type welding gun 2 and moves up and down the C-type welding gun 2 attached to the robot arm tip 1 controlled by the robot drive circuit 12 in the control device. This makes it move up and down. Next, the circuit configuration in the control device will be described. The program data 9 includes robot position data and moving-side electrode position data of each welding point in a state where electrodes are not worn, and detection of total electrode wear. Positions (robot position data and moving-side electrode position data when detecting the amount of electrode wear) are stored in advance. The position data read from the program data 9 by the program data reading circuit 10 is a reference position writing / wear amount detection switching circuit 16.
Depends on the setting status of. The reference position writing / wear amount detection switching circuit 16 can be set to “reference position writing (writing)”, “wear amount detection (detection)”, and a neutral state (a state that is neither “writing” nor “detection”). Like that. Here, the program data reading circuit 10 reads the robot position data and the moving-side electrode position data of each welding point when the reference position writing / wear amount detection switching circuit 16 is in the neutral state.
When the reference position writing / wear amount detection switching circuit 16 selects “write” or “detection”, the electrode total wear amount detection position is read. The robot position data is sent to the robot position command creation circuit 11, and the moving-side electrode position data is sent to the electrode command position creation circuit 13. The electrode position detection circuit 8 reads the electrode position from the position detector 4. Only when the reference position writing / wear amount detection switching circuit 16 is set to “writing” or “detection” and the position data detected by the position detector 4 does not change, the electrode position detection circuit 8 Write electrode position as reference position /
It is sent to the wear amount detection switching circuit 16. Here, the reference position writing / wear amount detection switching circuit 16 is "written".
Is selected, the electrode position at this time is written to the electrode total reference position memory 18 as the electrode total reference position. Conversely, the reference position writing / wear amount detection switching circuit 16 is "detected".
Is selected, the electrode total wear amount and the fixed-side electrode wear amount are calculated from the electrode position at this time, the electrode total reference position, and the electrode wear ratio α.
0 is written to the fixed-side electrode wear amount memory 15. The electrode wear ratio α is a ratio of the wear amount of the fixed-side electrode 7 to the total wear amount of the electrodes, and is a value determined by welding conditions such as the type of the electrode used, the type of the work to be welded, and the time for one welding. It is obtained by actually performing welding several times and measuring the amount of wear of the electrodes. The output timing of the position data stored in each of the electrode total reference position memory 18, the electrode total wear amount memory 20, and the fixed side electrode wear amount memory 15 is as follows.
It depends on the setting state of the reference position writing / wear amount detection switching circuit 16. That is, the electrode total reference position memory 18 outputs data only when the reference position writing / wear amount detection switching circuit 16 is selected as “detection”. The electrode total wear amount memory 20 and the fixed-side electrode wear amount memory 15 output data only when the reference position writing / wear amount detection switching circuit 16 is in the neutral state. The fixed-side electrode wear amount output from the fixed-side electrode wear amount memory 15 as a correction amount is added to the robot position data of the welding point output from the robot position command creation circuit 11 and sent to the robot drive circuit 12. . Similarly,
The electrode total wear amount output from the electrode total wear amount memory 20, which is a correction amount, is added to the moving-side electrode position data of the welding point output from the electrode position command creation circuit 13 and sent to the electrode drive circuit 14. Next , a flowchart shown in FIG. 2 and a flowchart shown in FIG.
By the operation explanatory diagram in the form a welding gun, and more in reference example
A detailed description will be given. First, detection of the electrode total reference position is performed. As shown in FIG. 3A, two unused pairs of electrodes, namely, the movable side electrode 6 and the fixed side electrode 7 are attached to the C-shaped welding gun 2, and a reference position writing / wear amount detection switching circuit is provided. 16 is set to "write" (referred to as a reference position write mode). The moving electrode 6 moves toward the fixed electrode 7 (step 31), and the current position data P of the moving electrode 6 is read by the position detector 4 and the electrode position detecting circuit 8 (step 32). The current position data P is compared with the position data P 'read in the previous scan, and if they have the same value, as shown in FIG. 3B, the movable electrode 6 comes into contact with the fixed electrode 7 and stops. (Step 33)
Y), stop the rotation of the servo motor 3 (Step 3)
5) Go to step 36. Conversely, if the current position data P and the position data P 'read in the previous scan are not the same value, steps 32 to 33 are repeated (step 3).
4). In step 36, since the reference position writing / wear amount detection switching circuit 16 is in the reference position writing mode (step 36Y), the current position data P is stored in the electrode total reference position memory 18 as the electrode total reference position P1. Remember. Second, the amount of wear of the electrodes is detected.
FIG. 3C shows a state in which the length of two unused pairs of electrodes changes due to wear. The reference position writing / wear amount detection switching circuit 16 is selected to "detect" (wear amount detection mode). The moving electrode 6 moves toward the fixed electrode 7 (step 31), and the current position data P of the moving electrode 6 is read by the position detector 4 and the electrode position detecting circuit 8 (step 32). The current position data P is compared with the position data P 'read in the previous scan, and if they have the same value, as shown in FIG. 3D, the movable electrode 6 comes into contact with the fixed electrode 7 and stops. It is determined that the rotation has been performed (step 33Y), the rotation of the servo motor 3 is stopped (step 35), and the process proceeds to step 36. Conversely, if the current position data P and the position data P 'read in the previous scan are not the same value, steps 32 to 33 are repeated (step 34). In step 36, since the reference position writing / wear amount detection switching circuit 16 is in the wear amount detection mode (step 36N), the electrode total wear amount Lt is calculated from the current position data P and the electrode total reference position P1 by Lt. = P
−P1 and stored in the electrode total wear amount memory 20. Further, from the electrode wear ratio α (0 ≦ α ≦ 1), the wear amount Ls of the fixed-side electrode 7 is obtained as Ls = Lt × α and stored in the fixed-side electrode wear amount memory 15. The positions of the movable electrode 6 and the fixed electrode 7 are corrected as shown in FIG. FIG. 4 (a)
Indicates an initial state before the electrodes are worn. FIG. 4B shows a state in which the fixed side electrode 7 is worn by Ls and the movable side electrode 6 is worn by Lm. As shown in FIG. 4C, the position of the fixed-side electrode 7 is determined by the amount of wear Ls of the fixed-side electrode 7 read from the fixed-side electrode wear amount memory 15 in the direction from the fixed-side electrode 7 to the moving-side electrode 6. The correction is made by operating the C-type welding gun 2 by the amount. FIG. 4 (d)
As shown in (2), the position of the movable electrode 6 is such that the servo motor 3 is rotated in the direction from the movable electrode 6 to the fixed electrode 7 by the total electrode wear amount Lt read from the total electrode wear memory 20. To compensate for this. Here, the position correction amount of the moving-side electrode 6 is not the wear amount Lm of the moving-side electrode 6 but the electrode total wear amount Lt. This is because the position correction of the fixed side electrode 7 is performed by operating the C-type welding gun 2.
Since the position of the moving-side electrode 6 also changes by the wear amount Ls of the fixed-side electrode 7, the correction amount of the moving-side electrode 6 is
Is the sum of the wear amount Ls of the moving side electrode 6 and the wear amount Lm of the moving side electrode 6, that is, the electrode total wear amount Lt. As described above, in the reference example, before and after the electrode is worn, the position of the movable electrode 6 when the movable electrode 6 and the fixed electrode 7 are brought into contact with each other is detected.
By calculating the difference between the positions, the total wear of the electrode is determined, and further, the wear of the fixed electrode 7 is determined from the total wear of the electrode and the electrode wear ratio α. Also, the moving side electrode 6
Is determined by subtracting the wear amount of the fixed electrode 7 from the total wear amount of the electrodes. According to this method, the amount of wear of both electrodes can be obtained in a short time only by bringing the movable electrode 6 and the fixed electrode 7 into contact with each other. Next, an embodiment of the present invention will be described with reference to FIGS. In the above-described reference example, in a process in which there are many types of workpieces, it is necessary to calculate the electrode wear ratio α corresponding to the workpieces each time. Therefore, the present onset
In the embodiment described above, the amount of electrode wear is calculated without using the electrode wear ratio α. As shown in FIG. 5, the configuration of the robot body provided with the C-shaped welding gun was described above.
The description is omitted because it is the same as FIG. 1 in the reference example . As shown in FIG. 5, the program data 9 includes robot position data and moving-side electrode position data of each welding point in a state where the electrodes are not worn, and the electrode total wear amount detection position (total electrode wear). The robot position data and the moving-side electrode position data when detecting the amount) and the moving-side electrode wear amount detection position (the robot position data and the moving-side electrode position data when detecting the moving amount of the moving-side electrode) are stored in advance. Have been. The position data read from the program data 9 by the program data reading circuit 10 is based on the total detection /
It depends on the setting state of the moving side detection switching circuit 21 and the reference position writing / wear amount detection switching circuit 16. The total detection / moving side detection switching circuit 21 can be set to “total detection (total)” and “moving side detection (moving side)”. Here, when the reference position writing / wear amount detection switching circuit 16 is in the neutral state, the program data reading circuit 10 reads the robot position data and the moving-side electrode position data of each welding point. When the wear amount detection switching circuit 16 is selected as “write” or “detection” and the total detection / moving side detection switching circuit 21 is selected as “total”, the electrode total wear amount detection position is read. . Further, the reference position writing / wear amount detection switching circuit 16 is selected as “writing” or “detection”, and the total detection / moving side detection switching circuit 2 is selected.
When 1 is selected as "moving side", the moving side electrode wear amount detection position is read. The robot position data is sent to the robot position command creation circuit 11, and the moving-side electrode position data is sent to the electrode command position creation circuit 13. The electrode position detecting circuit 8 reads the electrode position from the position detector 4. The electrode position detection circuit 8 selects the reference position writing / wear amount detection switching circuit 16 to “write” or “detection”, and only when the position data detected by the position detector 4 does not change, The electrode position is sent to the reference position writing / wear amount detection switching circuit 16 via the total detection / moving side detection switching circuit 21. A total detection / moving side detection switching circuit 21
Is selected as “total” and the reference position writing / wear amount detection switching circuit 16 is selected as “writing”, the electrode position at this time is stored in the electrode total reference position memory 18 as the electrode total reference position. Written. Conversely, when the reference position writing / wear amount detection switching circuit 16 is selected as “detection”, the electrode total wear amount is calculated from the electrode position at this time and the electrode total reference position, and is stored in the electrode total wear amount memory 20. Written. Similarly, the total detection / moving side detection switching circuit 2
1 is selected as "moving side" and the reference position writing / wear amount detection switching circuit 16 is selected as "writing", the electrode position at this time is set as the moving side electrode reference position as the moving side electrode reference position. The data is written to the position memory 19. Conversely, when the reference position writing / wear amount detection switching circuit 16 is selected as "detection", the fixed-side electrode wear amount is calculated from the electrode position at this time, the moving-side electrode reference position, and the electrode total wear amount. The data is written to the fixed-side electrode wear amount memory 15. The output timing of the position data stored in each of the electrode total reference position memory 18, the electrode total wear amount memory 20, the moving side electrode wear amount memory 19, and the fixed side electrode wear amount memory 15 is based on the reference position writing. / It depends on the setting of the wear amount detection switching circuit 16. That is, the electrode total reference position memory 18 and the moving-side electrode reference position memory 1
No. 9 outputs data only when the reference position writing / wear amount detection switching circuit 16 is selected as "detection". The electrode total wear amount memory 20 and the fixed-side electrode wear amount memory 15
Outputs data only when the reference position writing / wear amount detection switching circuit 16 is in the neutral state. The robot position data output from the robot position command generation circuit 11 is added with the fixed-side electrode wear amount output from the fixed-side electrode wear amount memory 15 as a correction amount, as in the above-described reference example, and the robot is driven. The signal is sent to the circuit 12. Similarly, the electrode total wear amount output from the electrode total wear amount memory 20 as a correction amount is added to the moving-side electrode position data output from the electrode position command creation circuit 13,
It is sent to the electrode drive circuit 14. Next , the flowchart of FIG. 6 and C in FIG.
According to the operation explanatory view of the welding gun, the embodiment of the present invention is described.
A more detailed explanation will be given. First, detection of the electrode total reference position is performed. As shown in FIG. 3A, two unused pairs of electrodes, that is, the moving side electrode 6 and the fixed side electrode 7 are attached to the C-shaped welding gun 2, and the total detection / moving side detection switching circuit 21 is provided. "Total" is selected (set to the total detection mode) (step 51Y), and the reference position writing / wear amount detection switching circuit 16 is selected to "write" (set to the reference position writing mode). The moving electrode 6 moves toward the fixed electrode 7 (step 53), and the current position data P of the moving electrode 6 is read by the position detector 4 and the electrode position detecting circuit 8 (step 54). The current position data P is compared with the position data P 'read in the previous scan, and if they have the same value, as shown in FIG.
Is determined to have stopped by contacting the fixed-side electrode 7 (step 55Y), the rotation of the servomotor 3 is stopped (step 57), and the routine proceeds to step 58. Conversely, if the current position data P and the position data P 'read in the previous scan are not the same, steps 54 to 55 are repeated (step 56). In step 58, the total detection / moving side detection switching circuit 21 enters the total detection mode (step 58Y),
Since the reference position writing / wear amount detection switching circuit 16 is in the reference position writing mode (step 59Y), the current position data P is stored in the electrode total reference position memory 18 as the electrode total reference position P1. . Second, the detection of the reference position of the movable electrode is performed. As shown in FIG. 3E, two unused pairs of electrodes, namely, the movable side electrode 6 and the fixed side electrode 7 are attached to the C-shaped welding gun 2 and a total detection / movement side detection switching circuit 21 is provided.
Is selected as "moving side" (moving side detection mode), and the reference position writing / wear amount detection switching circuit 16 is "written".
(Reference position writing mode). Total detection /
Since the moving-side detection switching circuit 21 is selected as “moving-side” (step 51N), the robot is moved so that the jig is arranged at a preset position between the moving-side electrode 6 and the fixed-side electrode 7. (Step 52). When the movement of the robot is completed, the movable electrode 6 moves toward the fixed electrode 7 (step 53), and the current position data P of the movable electrode 6 is read by the position detector 4 and the electrode position detection circuit 8 (step 53). 54). The current position data P is compared with the position data P 'read in the previous scan, and if they have the same value, the moving-side electrode 6 comes into contact with the jig and stops as shown in FIG. (Step 55Y), the rotation of the servo motor 3 is stopped (Step 57), and the routine proceeds to Step 58. Conversely, if the current position data P and the position data P 'read in the previous scan are not the same, steps 54 to 55 are repeated (step 56). In step 58, the total detection / moving side detection switching circuit 21 is in the moving side detection mode (step 58N) and the reference position writing / wear amount detection switching circuit 16 is in the reference position writing mode (step 58N). 63Y), the current position data P is stored in the moving-side electrode reference position memory 19 as the moving-side electrode reference position P2. Third, the total amount of electrode wear is detected. FIG. 3C shows a state in which the length of two unused pairs of electrodes changes due to wear. The total detection / moving side detection switching circuit 21 is selected as “total” (to be a total detection mode) (step 51Y), and the reference position writing /
The wear amount detection switching circuit 16 is selected as "detection" (wear amount detection mode). The moving electrode 6 moves toward the fixed electrode 7 (step 53), and the current position data P of the moving electrode 6 is read by the position detector 4 and the electrode position detecting circuit 8 (step 54). The current position data P is compared with the position data P 'read in the previous scan, and if they have the same value, as shown in FIG. 3D, the movable electrode 6 comes into contact with the fixed electrode 7 and stops. It is determined that the rotation has been performed (Step 55Y), the rotation of the servo motor 3 is stopped (Step 57), and the process proceeds to Step 58. Conversely, if the current position data P and the position data P 'read in the previous scan are not the same, steps 54 to 55 are repeated (step 56). In step 58, the total detection /
The moving side detection switching circuit 21 is set to the total detection mode (step 58Y), and the reference position writing / wear amount detection switching circuit 1
6 is in the wear amount detection mode (step 59).
N), from the current position data P and the electrode total reference position P1, the electrode total wear amount Lt is obtained by Lt = P-P1,
It is stored in the electrode total wear amount memory 20. Fourth, the amount of wear of the moving-side electrode is detected. FIG. 3G shows a state in which the length of two unused pairs of electrodes changes due to wear. Total detection /
The moving side detection switching circuit 21 is selected as "moving side" (moving side detection mode), and the reference position writing / wear amount detection switching circuit 16 is selected as "detection" (wear amount detection mode). . Since the total detection / moving side detection switching circuit 21 is selected as “moving side” (step 51N), the moving side electrode 6
The robot moves so that the jig is arranged at a preset position between the and the fixed-side electrode 7 (step 52). When the movement of the robot is completed, the moving side electrode 6 moves to the fixed side electrode 7 side (step 53), and the current position data P of the moving side electrode 6 is obtained by the position detector 4 and the electrode position detecting circuit 8.
Is read (step 54). The current position data P is compared with the position data P 'read in the previous scan, and if they have the same value, the moving-side electrode 6 comes into contact with the jig and stops, as shown in FIG. (Step 55Y), the rotation of the servo motor 3 is stopped (Step 57), and the routine proceeds to Step 58. Conversely, if the current position data P and the position data P 'read in the previous scan are not the same, steps 54 to 55 are repeated (step 56). In step 58, the total detection / moving side detection switching circuit 21 switches to the moving side detection mode (step 58).
N) Since the reference position writing / wear amount detection switching circuit 16 is in the wear amount detection mode (step 63).
N), the current position data P and the moving-side electrode reference position P2
From the equation, the moving-side electrode wear amount Lm is determined by Lm = P−P2, and the fixed-side electrode wear amount Ls is further calculated as
And stored in the fixed-side electrode wear amount memory 15. The method of correcting the positions of the movable electrode 6 and the fixed electrode 7 using the wear amount is described above.
Since it is the same as that of the reference example, the description will not be repeated. As described above, in the embodiment of the present invention ,
First, the position of the movable electrode 6 when the movable electrode 6 and the fixed electrode 7 are brought into contact with each other before and after the electrodes are worn without the jig is detected, and the difference between the positions is calculated. To determine the total wear of the electrodes. Next, with the jig disposed between the electrodes, before and after the electrodes are worn, the position of the moving-side electrode 6 when the moving-side electrode 6 is brought into contact with the jig is detected, and the difference between the positions is determined. The amount of wear of the moving-side electrode 6 is obtained by the calculation. Further, the wear amount of the fixed electrode is obtained from the total wear amount of the electrodes and the wear amount of the movable electrode 6. According to this method, since the operation of the robot body and the electrodes in order to determine the amount of wear of the movable electrode 6 is required, the aforementioned
It takes more time to calculate the amount of wear of the moving-side electrode 6 than in the method of the reference example described above . However, the method of the embodiment of the present invention is described above.
In the process where there are many types of objects to be welded as in the method of the reference example, it is no longer necessary to determine the electrode wear ratio α each time.
In both cases, more accurate wear amount detection is possible. The correction of the electrode position according to the present invention is performed before the first welding after the electrode wear is greatly changed due to electrode replacement or electrode polishing. If it is performed for each score, highly accurate electrode positioning can be performed. As described above, according to the present invention, in a welding gun having a plurality of electrodes to be paired, such as a C-shaped welding gun, an X-shaped welding gun, etc., the amount of wear of the electrodes is reduced by using the electrodes and the jig. It is assumed that it is possible to detect the amount of electrode wear without causing deformation of the work to be welded.
In particular, it is possible to detect the amount of wear with higher accuracy, and to minimize the deformation of the workpiece caused by the displacement of the pressing point due to the wear of the electrode during welding.
【図面の簡単な説明】
【図1】参考例に係る溶接ガン電極摩耗量検出方法に使
用される装置の構成を示すブロック図。
【図2】参考例に係る溶接ガン電極摩耗量検出方法を詳
細に示すフローチャート。
【図3】C形溶接ガンの作動説明図。
【図4】電極位置の補正状態を示す説明図。
【図5】本発明の実施例に係る溶接ガン電極摩耗量検出
方法に使用される装置の構成を示すブロック図。
【図6】本発明の実施例に係る溶接ガン電極摩耗量検出
方法を詳細に示すフローチャート。
【符号の説明】
1 アーム先端
2 C形溶接ガン(溶接ガン)
3 サーボモータ6 移動側電極 7 固定側電極 BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing a configuration of an apparatus used for a welding gun electrode wear amount detecting method according to a reference example. FIG. 2 is a flowchart showing in detail a welding gun electrode wear amount detection method according to a reference example . FIG. 3 is a diagram illustrating the operation of a C-type welding gun. FIG. 4 is an explanatory diagram showing a correction state of an electrode position. FIG. 5 is a block diagram illustrating a configuration of an apparatus used in a method for detecting a wear amount of a welding gun electrode according to an embodiment of the present invention. FIG. 6 is a flowchart illustrating in detail a welding gun electrode wear amount detecting method according to the embodiment of the present invention. [Description of Signs] 1 Arm tip 2 C-shaped welding gun (welding gun) 3 Servo motor 6 Moving electrode 7 Fixed side electrode
フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B23K 11/24 336 Continuation of front page (58) Field surveyed (Int.Cl. 7 , DB name) B23K 11/24 336
Claims (1)
動側電極を動作させ、該移動側電極と対をなす他方の電
極としての固定側電極とで被溶接物を挟み加圧保持する
溶接ガンにおいて、 移動側電極および固定側電極 が摩耗する以前にこれら両
電極を合致させ、この位置を基準位置1として記憶し、 次いで前記サーボモータを動作させることにより移動側
電極を固定された治具に押しつけ、この位置を基準位置
2として記憶し、 これ以降、移動側電極および固定側電極が合致した位置
と前記基準位置1との差から移動側電極および固定側電
極の摩耗量の合計を算出し、 次いで前記サーボモータを動作させることにより移動側
電極を前記固定された治具に押しつけ、この位置と前記
基準位置2との差から移動側電極の摩耗量を算出し、前記移動側電極および固定側電極 の摩耗量の合計から前
記移動側電極の摩耗量を差し引くことにより前記固定側
電極の摩耗量を算出するようにしたことを特徴とする溶
接ガン電極摩耗量検出方法。(57) [Claims] [Claim 1] Transfer as one electrode by a servomotor
Activating the moving electrode and the other electrode forming a pair with the moving electrode.
The workpiece is sandwiched between the fixed electrode as the pole and the pressure is held.
In the welding gun, before the moving side electrode and the fixed side electrode are worn out, these two electrodes are matched with each other, this position is stored as a reference position 1, and then the servo motor is operated to move the moving side electrode and the fixed side electrode.
The electrode is pressed against a fixed jig, and this position is stored as a reference position 2. Thereafter, the difference between the position where the moving side electrode and the fixed side electrode match and the reference position 1 is referred to as the moving side electrode and the fixed side electrode.
Calculate the total amount of wear on the poles , and then operate the servo motor to move
Pressing the electrode on the fixed fixture, and calculates the wear amount of the movable electrode from the difference between this position and the reference position 2, the movable electrode from the total amount of wear of the movable electrode and the fixed electrode By subtracting the amount of wear on the fixed side
A method for detecting a wear amount of a welding gun electrode, wherein a wear amount of the electrode is calculated.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10219094A JP3534819B2 (en) | 1994-04-15 | 1994-04-15 | Welding gun electrode wear detection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10219094A JP3534819B2 (en) | 1994-04-15 | 1994-04-15 | Welding gun electrode wear detection method |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004023943A Division JP3686073B2 (en) | 2004-01-30 | 2004-01-30 | Electrode wear detection method for welding gun |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07284957A JPH07284957A (en) | 1995-10-31 |
JP3534819B2 true JP3534819B2 (en) | 2004-06-07 |
Family
ID=14320753
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10219094A Expired - Lifetime JP3534819B2 (en) | 1994-04-15 | 1994-04-15 | Welding gun electrode wear detection method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3534819B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3864240B2 (en) * | 1997-02-07 | 2006-12-27 | 株式会社安川電機 | Welding method |
JP4688183B2 (en) * | 2008-07-04 | 2011-05-25 | 株式会社エスエムケイ | Work welding management method based on zero point setting |
JP5870125B2 (en) | 2014-01-29 | 2016-02-24 | ファナック株式会社 | Spot welding system for managing electrode inspection and robot used therefor |
-
1994
- 1994-04-15 JP JP10219094A patent/JP3534819B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH07284957A (en) | 1995-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5367138A (en) | Welding assurance control techniques | |
US7863539B2 (en) | Positioning method of spot welding robot | |
JP3114440B2 (en) | Spot welding equipment | |
KR100306366B1 (en) | a spot welding method | |
JP2002283059A (en) | Method for setting reference position of axis of servo type spot welding gun, and robot controller | |
JP3864240B2 (en) | Welding method | |
JP3534819B2 (en) | Welding gun electrode wear detection method | |
JP2755073B2 (en) | Positioning device for welding gun of welding robot | |
JP2002035951A (en) | Position detection method for welding member and its device | |
JP3668325B2 (en) | Pressurization control method for welding gun | |
JP2596722B2 (en) | Spot welding method and apparatus | |
JP3686073B2 (en) | Electrode wear detection method for welding gun | |
JP3551339B2 (en) | Control device and control method for spot welding robot | |
JPH1099973A (en) | Servo controller for robot welding gun | |
JPH10202371A (en) | Spatter detecting method for welding gun and correcting method for welding condition | |
JP2002096177A (en) | Welding gun position correcting method and device therefor | |
JP3598792B2 (en) | Chip wear amount detection method and spot jig for spot welding gun | |
JPS6268685A (en) | Control unit for spot welding robot | |
JPH0371983A (en) | Method of detecting wear in back bar electrode | |
JPS6235861B2 (en) | ||
JP3320530B2 (en) | Method of correcting welding spot position in resistance welding machine | |
JP2666575B2 (en) | Stud welding method | |
JP2000190082A (en) | Resistance welding control device | |
JP2900773B2 (en) | Spot welding method | |
JP2002035946A (en) | Spot welding method and its apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20031216 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040130 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040309 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040310 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080319 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090319 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100319 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100319 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110319 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110319 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120319 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120319 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130319 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130319 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140319 Year of fee payment: 10 |
|
EXPY | Cancellation because of completion of term |