JP2004154852A - Multilayered cylinder - Google Patents

Multilayered cylinder Download PDF

Info

Publication number
JP2004154852A
JP2004154852A JP2002325366A JP2002325366A JP2004154852A JP 2004154852 A JP2004154852 A JP 2004154852A JP 2002325366 A JP2002325366 A JP 2002325366A JP 2002325366 A JP2002325366 A JP 2002325366A JP 2004154852 A JP2004154852 A JP 2004154852A
Authority
JP
Japan
Prior art keywords
cylindrical body
multilayer
thickness
layer
bottomed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002325366A
Other languages
Japanese (ja)
Inventor
Hisao Iwamoto
久夫 岩本
Kazuhiko Tsukada
和彦 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP2002325366A priority Critical patent/JP2004154852A/en
Publication of JP2004154852A publication Critical patent/JP2004154852A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multilayered cylinder having little unevenness of diameter and large (L/D) ratio. <P>SOLUTION: A bottomed cup body is formed by performing drawing and redrawing working to a multilayered plate material, and the side wall thickness of the bottomed cup body is worked under reducing thickness with an ironing or the diameter and the side wall thickness of the bottomed cup body are worked under reduced thickness with the drawing or the ironing to form a thin bottomed cylinder. The above thin bottomed cylinder is drawn in order to form the drawn bottomed cylinder and the both ends of the drawn bottomed cylinder are trimmed in order to form the multilayered cylinder. This working under reduced thickness can be performed at one or more times with the ironings or the drawings. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明が属する技術分野】
本発明は、直径に対して長さが大きい、薄肉のシームレス管に関するものであり、より詳細には、プリンターやコピー機の感光ドラム基体、現像ロール、定着ロール、転写ロール、紙送りロール、帯電ロール等の各種ロール、ベルト、スリーブ、パイプなど、直径に対して長さが大きい高精度が要求される多層円筒体に関する。
【0002】
【従来の技術】
近年、プリンターやコピー機では部品のカートリッジ化が進展し、感光ドラムや現像ロールは消耗品としてカートリッジごと新品に交換する形態を採用している。そのため廃棄する際の便宜を考慮し減量化・軽量化が求められている。一方、省エネの観点からはコピー機等の予熱モードをなくし、使用時に所定温度まで加熱することが望ましいが、そうすると待機時間が長くなり実用上問題となる。そこで定着ロール等は薄肉化することで熱容量を小さくし、短時間で所定の温度まで上昇させる方法が検討されている。
このようにプリンターやコピー機の感光ドラム基体、現像ロール、定着ロール、転写ロール、紙送りロール、帯電ロール等の各種ロール、ベルト、スリーブ、パイプなど、直径に対して長さが大きい円筒体には「減量化・軽量化」、「小熱容量化」が求められている。
ところで、熱効率を向上させるために、磁束発生手段と対向する側に加熱手段である強磁性層、次に高熱伝導性層を設けた構成の定着ローラが提案されている(特許文献1参照)。
このような層構成のローラとしては、基材となる押出し−引抜き成形された単層の円筒の表面にめっき、溶射などの表面処理により層を形成したもの、多層の複合ビレットを押出し−引抜き成形し多層円筒体としたものが知られている。
また、多層の板材を丸め、端部を突合せ溶接して多層円筒体としたものが知られている。
更に、薄肉でベルトとして使用する場合はニッケル電鋳管に表面処理して多層ベルトとしたものが知られている。
【0003】
一方、これらの円筒体は中心軸の回りを自転する形態で使用され、例えば感光ドラム基体や現像ロールはトナー粒子の受け渡しを確実に行なうため外径の「振れ」はできるだけ小さくすること、即ち真円度、円筒度を高精度にすることが要求される。また、円筒体の内側に2本の回転軸を挿入し駆動させて、円筒体をベルトとして用いる、例えば定着ベルトの場合は、蛇行を防止するため、「径の均一性」を要求される。
最近では画像の高品質化や印刷速度の高速化にともない、正確に色を重ね合わせるために「振れ」「径の均一性」の高精度化に対する要求は厳しくなる一方である。これらの要求は多層円筒体であっても全く同じである。
【0004】
上述の方法で製造された多層円筒体には、例えば感光ドラムでは浸漬法によりその表面に感光塗料を塗布、乾燥され所定の感光層が形成され(特許文献2参照)、定着ベルトではトナー離型層として有機皮膜が形成される。
【特許文献1】
特開2001−230064号公報
【特許文献2】
特公平2−51501号公報
【0005】
【発明が解決しようとする課題】
しかし、従来の多層円筒体では上述の諸々の要求に十分こたえることができないという問題があった。即ち、表面処理で多層とする場合、特許文献1の方法では、予めパイプ状に成形したアルミニウム内面に電気ニッケルメッキを施す方法を採用しているが、L/Dの大きなパイプの内面にニッケルメッキを均一に施すことは相当の困難性を伴うといった問題がある。
また、多層の複合ビレットを押出し−引抜き成形した多層円筒体では側壁全体を薄肉化できず、かつ偏肉も10μm以上ある為、特定の層を数μm以下とし、その厚さが軸方向、円周方向に均一なものはない。
さらに、多層の板材では各層の厚さは均一にしたものができるが、板材を丸め、端部を溶接した多層円筒体は突き合わせ溶接部が存在する為、欠陥となりやすい。
次に、電鋳管は薄肉化、精度の点で優れているが歩留が悪く、生産性が低いので高価な上に、巣などの欠陥が生じやすいといった問題がある。
更に、従来は、円筒体の表面に塗料等をコーティングする場合、塗料の垂れや乾燥の不均一による塗膜の厚さのむら、オレンジピール等を生じやすく、また、浸漬後の引き上げの後に円筒体の下端部に塗料溜まりを生じ、その処理や一本ずつチャッキングして低速で上下させて浸漬するため生産性が悪いという問題がある。
本発明は上記の問題点に鑑みてなされたもので、高精度の「真円度」「径の均一性」を満足した、L/D比の大きい多層円筒体を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明の多層円筒体は、多層板材を成形加工により有底カップ体に成形後、
該有底カップ体の側壁を、減厚加工後の側壁の各層の厚さが板材における各層の厚さに対してほぼ同一の減少率で薄肉化されるように減厚加工して、
側壁薄肉化有底円筒体を形成し、
該側壁薄肉化有底円筒体の両端をトリミングしてなることを特徴とする。
このような多層円筒体は、前記減厚加工が、1回又は2回以上のしごき加工であるか、1回又は2回以上のしごき加工及び引抜き加工であることが望ましい。
また、前記引抜き加工を行う場合は、減厚加工の最後に引抜き加工を施すことが望ましい。
さらに、本発明の多層円筒体においては、多層円筒体の外径Dと長さLとの関係が、L/D>5であることを特徴とする。
本発明の多層円筒体においては、多層円筒体を形成するための多層板材が、クラッド材であること、クラッド材の最内層の硬さが最外層の硬さより硬いものであること、クラッド材が3層からなり、中間層の硬さが、最内層の硬さ及び最外層の硬さより硬いものであること、が好ましく採用される。
さらに、本発明の多層円筒体においては、前記多層板材は、樹脂被覆金属材であることも好ましく採用される。
【0007】
【発明の実施の形態】
以下、本発明の多層円筒体の好適な実施の形態を、図面を参照しながら説明する。
本発明の多層円筒体は、多層板材→ブランク材打抜き→絞り加工(再絞りを含む)の工程で有底カップ体を形成し、次のしごき加工及び/又は引抜き加工で、有底カップ体の側壁を、側壁各層の厚さが板材における各層の厚さに対してほぼ同一の減少率で薄肉化されるように減厚加工して、側壁薄肉化有底円筒体を形成する。
そして、この側壁薄肉化有底円筒体の長手方向上下両端をトリミングして最終的に底なしの多層円筒体を得る。
したがって、トリミング後の最終的な多層円筒体の各層の厚さを決め、減厚加工における減少率を決めたならば、必然的に使用する多層板材の厚さが決まることになる。多層板材を構成する各層の厚さは高精度にできるので、結果的に多層円筒体の各層の厚さも高精度とすることができる。
なお、前記減厚加工は、1回又は2回以上のしごき加工によってもよく、1回又は2回以上のしごき加工及び引抜き加工を組み合わせて行うこともできる。これらのいずれの加工法をいずれの段階で用いるかは、後述する多層板材の種類や、有底カップ体の側壁をどの程度まで薄肉化するかで、適宜決定される。
【0008】
図1は、本発明の多層円筒体の製造方法の一例を示す実施形態に係り、2層の多層板材から打ち抜きしたブランク材を絞り再絞りする工程を示す説明図である。
図1において、有底円筒状の有底カップ体12は、多層板材からプレス打抜き加工によって得られる円板(ブランク材11)(図1(a))をパンチを介して絞りダイスで絞り加工(図1(b))し、再絞り加工(図1(c))を行って形成される。
ここで、本発明において絞り再絞り工程を終えた後の最終的有底カップ体12の外径Dと高さHについて述べる。図1(c)に示す再絞り加工を繰り返して行なえば径の減少に伴い高さを高くでき、円筒体の所定の長さを得る為の減厚加工を軽減できる利点があるが、板の異方性の影響で有底カップ体の周方向の高さが不揃いになる、いわゆる「耳」が顕著になったり、側壁にしわが発生しやすくなる。耳はしごき後のストリッピング不良の原因になるなど安定した減厚加工を行なう上で障害となり、しわは本発明の目的である均一な層構成の側壁を得る上で極力避ける必要があるので有底カップ体のH/Dは無制限に大きくしない方が良く、材料にもよるがH/Dは6以下が望ましい。一方、H/Dが小さすぎると側壁厚減少率を大きくして所定の側壁高さを得る必要があるが、減厚加工を繰り返して行なえば、表面層の傷つきや剥離が生じやすくなり、加工硬化により円筒体がもろくなったりして良好な円筒体が得られない。限界となる側壁減少率は使用する材料にもよるが、通常H/Dは1以上であることが望ましい。図1では再絞りは1回であるが、H/Dの選定により再絞り回数を増やすことができる。
【0009】
(多層板材)
多層板材としては、
2種以上の金属を積層したものや、金属とプラスチックやセラミックスを積層することにより形成されたものが挙げられる。
2種以上の金属を積層したものとしては、アルミニウム(アルミニウム合金を含む。以下同じ)−鉄(鋼、ステンレスを含む。以下同じ)、アルミニウム−鉄−アルミニウム、
アルミニウム−ニッケル、アルミニウム−ニッケル−アルミニウム、
ニッケル−鉄、ニッケル−鉄−ニッケル、
チタン(チタン合金を含む。以下同じ)−アルミニウム、アルミニウム−チタン−アルミニウム、
銅(銅合金を含む。以下同じ)−ニッケル(ニッケル合金を含む。以下同じ)、
銅−鉄、銅−鉄−ニッケル、
等の2層、3層の金属板を積層したクラッド板が挙げられるが、4層以上の金属板であってもよい。
また、アルミニウムとアルミニウムのように合金組成の異なる同種の金属をクラッドしたものであってもよい。
さらに、クラッド板は、基板となる金属板上にメッキして構成されたものでもよい。例えば、鋼板表面にニッケルメッキしたもの等が挙げられる。
クラッド材とすることにより、それぞれの素材が有する特性を兼備した材料とすることができる。例えば、熱伝導性、耐食性、弾性、導電性など、目的によって素材の組み合わせを選択することができる。
クラッド材の製造法には、熱間圧延法、爆着法、肉盛法、鋳込法、拡散接合法、真空雰囲気での冷間圧延法などが適宜採用される。
【0010】
(樹脂皮膜材)
また、多層板材としては、単層又は多層金属素材上に樹脂皮膜を有した樹脂被覆金属材も好ましく用いられる。本発明の多層円筒体を感光ドラムや定着ベルトなどの基体として用いる場合には、基体表面にそれぞれ感光塗料、離型層を塗布して最終製品となるので、これらの感光塗料、離型層などを予め樹脂皮膜として、金属素材上に被覆したものをブランク材として用いれば、皮膜の厚さむら、表面欠陥のない樹脂被覆円筒体が得られる。
また、被覆樹脂は、固体潤滑膜として機能するので、多層円筒体加工時の表面疵の防止にもなる。
さらに、樹脂皮膜は、感光ドラムの場合は感光層として、定着ベルトの場合は離型層としての役割もある。
樹脂皮膜としては、熱可塑性ポリエステル、ポリオレフィン等の熱可塑性樹脂皮膜、又はエポキシ系、ビニル系等の塗膜が好ましく用いられる。樹脂皮膜を被覆の際に、樹脂皮膜の種類に応じて接着剤を用いても、用いなくてもよい。また、各層の機能を得るため、顔料、粉末、化合物等を樹脂皮膜中に分散、相溶させることもできる。
【0011】
樹脂皮膜は少なくとも金属素材表面に被覆されるが、1層以上であれば良く、又、その層構成に応じて多層であっても良い。樹脂被覆金属板は、金属板を切り板の状態で、または、コイル状に巻かれた状態からほどいて樹脂皮膜を被覆するため、比較的容易に上記皮膜の厚さを均一にすることができる。従って、樹脂被覆金属板は、金属板及び樹脂皮膜のそれぞれの厚さが均一であり、樹脂被覆金属板自体の厚さも均一となる。
【0012】
樹脂皮膜が熱可塑性樹脂をベースとする場合は、押出ラミネ−ト法、無延伸キャストフィルム・ラミネ−ト法、あるいは2軸延伸フィルムをラミネ−トする方法等のいずれの方法によっても被覆される。特に無延伸で非晶質の熱可塑性樹脂皮膜は、苛酷なしごき加工の際にも、金属板の薄肉化に伴う延びや収縮変形に対して剥離や亀裂などの損傷を生ずることなく追従することができ、潤滑剤の役割をするので樹脂被覆金属板に用いることが好ましい。
【0013】
次に、図2の(a),(b),(c)に示すように、前記有底カップ体の側壁を薄肉化するため、しごき加工(Ironing)を施す。前記しごき加工は、例えば図3に示す加工装置によって行うことができる。
図3において、しごきダイス33に貫通孔32が設けられており、有底カップ体12の表面に冷却潤滑液が塗布され、パンチ31によって図3に示す矢印方向にプレスされることによってしごき加工が行われる。
絞り加工を終えた有底カップ体12は、底厚と側厚は共にt0で等しい有底円筒状(図1参照)に成形されるが、この有底カップ体12がしごきダイス33を通過すると、側壁が薄肉化されるとともに全長が伸ばされて図2に示すように薄肉化有底円筒体21が形成される。
この時のしごき率を5〜50%、好ましくは10〜40%の範囲に限定することで、減厚後の側壁の各層の厚さが板材における各層の厚さに対してほぼ同一の減少率で薄肉化される。
このようなしごき加工を数段行うことで、図2の2層の例で示すように、第1のしごき加工で形成された側壁の各層の側壁厚みt1a、t1b(図2(a))は、第2のしごき加工でt2a,t2bと薄肉化され、さらに第3のしごき加工を施されることによりt3a、t3bと薄肉化され、側壁の各層がほぼ均等の割合で減厚された薄肉化有底円筒体が形成される。
この場合、各段階のしごき率を5〜50%の範囲に限定することが重要である。
50%を超えたしごき率では、側壁が破断したり、表面層が局部的に剥離するなどして各層が等しく減厚されず、5%未満のしごき率では減厚効率が低く、作業性が悪い。
また、スムースな減厚が行なわれるためには、しごきダイス33の貫通穴32の形状及び表面粗さに注意することが重要である。表面粗さは鏡面が望ましい。さらに、パンチ31の表面粗さも鏡面が望ましい。
なお、樹脂は高温で軟化する傾向があるので、表面に樹脂が被覆されている場合は、冷却潤滑液(クーラント)の温度管理をして、樹脂層の成形挙動を安定させるようにすることが望ましい。また、内外面に樹脂が被覆されている場合は、樹脂の潤滑作用により、必ずしも冷却潤滑液を使用する必要はないが、ポンチおよびしごきダイスの温度を調整して樹脂層の成形挙動を安定化することが望ましい。
また、しごき加工の効率を上げるため、例えば、図4の如く3個のしごきダイス33a,33b,33cをタンデムに並べて1工程で3段のしごき加工を行なうこともできる。
しごき加工は薄肉化有底円筒体を成形する簡便な方法であり、図4に示すような連続しごき加工を採用することにより、より生産性を高めることができる。
そして、このように形成された薄肉化有底円筒体21は、ストリッパ機構41を介してパンチ31から離脱される。
【0014】
(引抜き加工)
次に、図5の(a),(b),(c)に時間の経過に従って示すように、離脱された薄肉化有底円筒体21は、引抜きダイス51及び引抜きプラグ52からなる引抜き装置によって引抜き有底円筒体53が成形される。引抜きパスは工程簡略化のため1回とすることが好ましく、引抜き加工時の径方向圧下率(外径収縮率)を0.5〜10%とすることが好ましい。
その理由は、0.5%未満又は10%を超えると引抜き有底円筒体53の長手方向の真円度の向上及び径の均一化が図れないからである。特に好ましい径方向圧下率は1〜7%である。
また、引抜き加工時の肉厚方向圧下率(肉厚減少率)を1〜40%とすることが好ましい。
その理由は、1%未満では、引抜き有底円筒体53の長手方向の真円度の向上及び径の均一化が図れず、40%を超える肉厚減少率では、軟質の表面層が局部的に減厚されるなどして、各層の肉厚減少率に違いが生じ易くなるとともに、破断しやくなり生産性が低下するからである。特に好ましい肉厚方向圧下率は5〜30%である。
なお、本発明における引抜き加工は、円筒体の径の均一化の仕上げ工程として、少なくとも減厚加工の最終工程に設けられることが好ましいが、前記絞り加工やしごき加工工程の中間において行ってもよい。
また、前述したように、板材を絞り加工又は絞り再絞り加工して前記有底カップ体を形成し、有底カップ体の径及び/または厚みをしごき加工または絞り・しごき加工により減厚加工して、薄肉化有底円筒体を形成する説明をしたが、このような絞りやしごき加工を用いずに引抜き加工のみによって薄肉化有底円筒体を形成することもできる。
【0015】
(両端部トリミング)
次に、図6に示すように、油圧などによって外方へ膨張するチャック61を介してスピンドル62に挿入固定され、このスピンドル62の回転により外カッタ63,63及び内カッタ63a,63aを介して図6の一点鎖線で示す位置で、引抜き有底円筒体53の両端部がトリミング(切断)される。両端部をトリミングされた多層円筒体70(図7の2層の例を参照)は、例えば電子写真用感光ドラム基体として用いられることとなる。
このように、引抜き加工によって得られた多層化円筒体70は、肉厚、真円度、径の均一化に関する高い円筒精度と高い表面精度を有する。
また、引抜き加工の前工程でしごき加工を行うことによって、極めて生産性よく円筒体を薄肉化することができるので、多層円筒体70の軽量化を図ることができる。
【0016】
(L/D>5)
前述したように、プリンターやコピー機の感光ドラム基体、現像ロール、定着ロール、転写ロール、紙送りロール、帯電ロール等の各種ロール、ベルト、スリーブ、パイプなどは薄肉化・小径化することで熱容量を小さくして短時間で所定の温度まで上昇させるためには、円筒体のL/Dは大きい方が好ましい。
一方、円筒体を組み込む装置を考慮してその長さ(L)が決定され、円筒体の強度、熱伝導などを考慮して円筒体の肉厚、外径が決定される。
L/Dの比が5以下であると、260mm以上の長さが要求されている感光ドラム基体等に対して円筒体の外径が太くなることにより熱容量が大きくなり、所定温度までの昇温に時間を要するので好ましくない。
したがって、本発明では、トリミング代を除いた、(多層円筒体の長さL)/(円筒体の外径D)>5とした。
【0017】
加工の難しい硬い素材を用いて多層円筒体を形成しようとする場合は、多層円筒体の内側に硬い素材、外側に軟らかい素材が配設されるようにして、多層板材を用いることが好ましい。例えば、アルミニウム(軟)−チタン(硬)というような組み合わせのクラッド材である。
このようにする場合は、多層円筒体の外側に配設された軟らかな素材が加工時の潤滑剤としての役割を果たし、硬い素材の絞り、しごき、引抜き加工時の素材の割れ等を防止でき、長尺の多層円筒体を形成することができる。
また、硬い素材を軟らかい素材でサンドイッチにすることもできる。
例えば、アルミニウム(軟)−チタン(硬)−アルミニウム(軟)というような組み合わせのクラッド材である。
さらに、熱伝導性の優れた材料(例えば銅)の両面に、耐食性に優れた材料(例えばチタン)、成形しやすい柔らかい材料(例えばアルミニウム)をクラッドした、チタン−銅−アルミニウムをブランク材として多層円筒体を形成することができる。
【0018】
樹脂皮膜材を用いる場合は、絞り、しごき、引抜き加工の際、加工中の円筒体は、しごきダイス等の加工治具と直接接触することなく、両者の間に樹脂皮膜が介在するので、加工治具の摩損による表面欠陥を生ずる恐れがない。また、内外面に樹脂が被覆されている場合は、必ずしも冷却潤滑液(ク−ラント)を使用する必要がないので、油切れや、異物の巻き込み等による表面欠陥を生ずるおそれもない。
【0019】
【実施例】
(実施例1)
多層板材として、厚さ0.525mmのアルミニウム合金板(JIS H4000 合金番号3004H12)(第1層)に厚さ0.025mmの樹脂皮膜(無延伸PETフィルム)(第2層)を被覆した、直径152mm、厚さ0.55mmのブランク材を用いて、樹脂皮膜が外面となるように、絞り−再絞り加工により、内径φ31.1mmの有底カップ体を製造した。再絞りは6工程、有底カップ体のH/Dは5.5であった。その有底カップ体を外径φ31.05のしごきポンチを用い、厚さ0.38mmまでしごき加工して薄肉化有底円筒体を形成した。しごき加工後の薄肉化有底円筒体の外径はφ31.8mmであった。
しごき加工速度は0.5m/秒、冷却潤滑液として、日本クエーカーケミカル(株)製J602Aを水で3%に希釈したものを用いた。
次に、上記薄肉化有底円筒体に引抜き加工を施した。
引抜き加工は、引抜き速度を0.2m/秒に設定し、引抜き後の外径が30.0mm、厚さが0.30mm、高さが350mmなるように行なった。冷却潤滑液はしごき加工と同じものを用いた。
上記の引抜き加工により得られた引抜き有底円筒体の両端面をトリミングして切り落とし、長さが300mm、外径、厚さがそれぞれ30.0mm、0.30mmの多層円筒体を得た。
この時の薄肉有底円筒体の製造条件を表1に示し、多層円筒体完成時の各層の厚みを表2に示す。
この多層円筒体の真円度と径の均一度を表3に示す。なお、表中の真円度の値は多層円筒体の端部から20mmごとの各位置における真円度の中で最も大きい(悪い)値である。径の均一度は20mmごとの各位置における外径のうち、最大値と最小値の差である。
【0020】
(実施例2)
多層板材として、表面活性化接合法(真空雰囲気での冷間圧延法)により、厚さ0.05mmのアルミニウム板(第2層)と、厚さ0.25mmの鋼板(JIS G3303)(第1層)を接合した厚さ0.30mmのクラッド材をφ115mmに打抜いたブランク材を用いた。クラッド材のマイクロビッカース硬さはアルミニウム板がHv26、鋼板がHv178であった。このブランク材を鋼板が有底カップ体内面側となるように絞り−再絞り加工により、内径φ31.1mmの有底カップ体を製造した。再絞りは5工程、有底体のH/Dは3.1であった。その有底カップ体を3回のしごき加工により順次薄肉化し、厚さ0.12mmまでしごき加工して薄肉有底円筒体を形成した。しごき加工後の薄肉有底円筒体の外径は31.14mmであった。しごき加工速度、使用した冷却潤滑剤は実施例1と同じである。
引抜き加工は、引抜き速度を0.2m/秒に設定し、引抜き後の外径が30.0mm、厚さが0.10mm、高さが310mmなるように行なった。冷却潤滑剤はしごき加工時のものと同じものを用いた。
上記の引抜き加工後により得られた引抜き有底円筒体の両端面をトリミングして長さが260mm、外径、厚さがそれぞれ30.0mm、0.10mmの多層円筒体を得た。この時の薄肉有底円筒体の製造条件を表1に示し、
多層円筒体完成時の各層の厚みを表2に示す。
この多層円筒体の真円度と径の均一度を表3に示す。
【0021】
(実施例3)
多層板材として厚さ0.25mmの鋼板(JIS G3303)(第2層)の両側に厚さ0.03mmの無酸素銅(第3層)及び厚さ0.02mm(第1層)のニッケルを接合した厚さ0.30mmのクラッド材を用いた。クラッド材のマイクロビッカース硬さは銅板がHv50、鋼板がHv178、ニッケル板がHv149であった。ニッケルが内面側となるようにした。これ以外は実施例2と同様に行ない、長さが260mm、外径が30mm、厚さが0.10mmの多層円筒体を得た。
この時の薄肉有底円筒体の製造条件を表1に示し、多層円筒体完成時の各層の厚みを表2に示す。
この多層円筒体の真円度と径の均一度を表3に示す。
【0022】
(実施例4)
多層板材として厚さ0.27mmのステンレス(第2層)の両側に厚さ0.03mmの無酸素銅(第3層)及び厚さ0.02mm(第1層)のニッケルを接合した厚さ0.32mmのクラッド材をφ109mmに打抜いたブランク材を用いた。クラッド材のマイクロビッカース硬さは銅板がHv50、ステンレスがHv175、ニッケル板がHv149であった。ニッケル側が有底カップ体内面側となるように絞り−再絞り加工により内径φ31.1mmの有底カップ体を製造した。再絞りは5工程、有底カップ体のH/Dは2.7であった。5回のしごき加工により順次薄肉化し、厚さ0.08mmまでしごき加工して薄肉有底円筒体を形成した。しごき加工後の薄肉有底円筒体の外径は30.96mmであった。しごき加工速度、使用した冷却潤滑剤は実施例1と同じである。
引抜き加工は、引抜き速度を0.2m/秒に設定し、引抜き後の外径が30.0mm、厚さが0.07mm、高さが420mmなるように行なった。冷却潤滑剤はしごき加工時のものと同じものを用いた。
上記の引抜き加工後により得られた引抜き有底円筒体の両端面をトリミングして長さが370mm、外径、厚さがそれぞれ30.0mm、0.07mmの多層円筒体を得た。
この時の薄肉有底円筒体の製造条件を表1に示し、多層円筒体完成時の各層の厚みを表2に示す。この多層円筒体の真円度と径の均一度を表3に示す。
【0023】
(比較例1)
多層板材として、厚さ0.43mmのアルミニウム合金板(JIS H4000 合金番号3004H12)(第1層)に厚さ0.025mmの樹脂皮膜(種類を特定した方が良い場合は「無延伸PETフィルム」として下さい。)(第2層)を被覆した、厚さ0.455mm、直径167mmのブランク材を用いて、樹脂皮膜が外面となるように、絞り−再絞り加工により、内径φ31.1mmの有底カップ体を製造した。再絞りは7工程、有底カップ体のH/Dは6.8であった。有底カップ体の開口部には縦方向の絞りしわが発生したが、比較例1と同じ条件でしごき加工と引抜き加工を行なった。引抜き後の円筒体は、しわ発生部の樹脂皮膜が部分的に薄くなって、金属面が露出しているのが観察された。
この時の薄肉有底円筒体の製造条件を表1に示し、多層円筒体完成時の各層の厚みを表2に示す。この多層円筒体の真円度と径の均一度を表3に示す。
【0024】
(比較例2)
多層板材として厚さ0.85mmの鋼板(JIS G3303)(第2層)の両側に厚さ0.08mmの無酸素銅(第3層)及び厚さ0.07mm(第1層)のニッケルを接合した厚さ1.0mmのクラッド材をφ67.5mmに打抜いたブランク材を用いた。クラッド材のマイクロビッカース硬さは銅板がHv50、鋼板がHv165、ニッケル板がHv149であった。
ニッケル側が有底カップ体内面側となるように絞り−再絞り加工により内径φ31.1mmの有底カップ体を製造した。再絞りは2工程、有底カップ体のH/Dは0.9であった。5回のしごき加工により順次薄肉化し、厚さ0.12mmまでしごき加工して薄肉有底円筒体を形成した。しごき加工後の薄肉有底円筒体の外径は31.04mmであった。なお、しごき加工速度、使用した冷却潤滑剤は実施例1と同じである。
しごき後の内外面には部分的なわずかな剥離が生じていたが実施例2と同じ条件で引抜き加工を行い、得られた引抜き有底円筒体の両端面をトリミングして長さが260mm、外径、厚さがそれぞれ30.0mm、0.10mmの多層円筒体を得た。
この時の薄肉有底円筒体の製造条件を表1に示し、多層円筒体完成時の各層の厚みを表2に示す。この多層円筒体の真円度と径の均一度を表3に示す。
表2及び表3に示すように、本発明の実施例の多層円筒体は、各層の厚みが均等割合で減厚化されており、真円度、径の均一度も優れたものであった。一方、比較例の多層円筒体は、加工途中でしわや層剥離が生じ、実用に供するものとはならなかった。
【0025】
【表1】
(薄肉有底円筒体の製造条件)

Figure 2004154852
【0026】
【表2】
(多層円筒体各層の厚み)
Figure 2004154852
【0027】
【表3】
Figure 2004154852
【0028】
【発明の効果】
本発明は、上記のように構成されているので、形状及び寸法において高い精度を要求される多層円筒体とすることができる。
特に、高い真円度が要求されるプリンタやコピー機等の感光ドラム基体等に提供できる。
【図面の簡単な説明】
【図1】本発明の多層円筒体の製造方法を示す一実施形態にかかり、ブランク材を絞り再絞りする工程を示す説明図である。
【図2】有底カップ体の側壁を薄肉化するためのしごき加工(Ironing)の説明図である。
【図3】しごき加工装置を示す概略説明図である。
【図4】1工程で3回のしごきを行なう場合のしごき加工装置を示す概略説明図である。
【図5】引抜きダイス及び引抜きプラグからなる引抜き装置により引抜き有底円筒体を成形する概略説明図である。
【図6】引抜き有底円筒体の両端部をトリミングする工程の説明図である。
【図7】両端部をトリミングした後の多層円筒体の縦断面を示す説明図である。
【符号の説明】
11:円板(ブランク材)
12:有底円筒状の有底カップ体
21:多層有底円筒体
31:パンチ
32:貫通孔
33,33a,33b,33c:しごきダイス
41:ストリッパ機構
51:引抜きダイス
52:引抜きプラグ
53:引抜き有底円筒体
61:チャック
62:スピンドル
63:外カッタ
63a:内カッタ
70:多層円筒体[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a thin-walled seamless tube having a large length with respect to a diameter. The present invention relates to a multilayer cylindrical body, such as various rolls such as rolls, a belt, a sleeve, and a pipe, which have a large length with respect to the diameter and which require high precision.
[0002]
[Prior art]
2. Description of the Related Art In recent years, cartridges of components have been developed in printers and copiers, and photosensitive drums and developing rolls have adopted a form in which the cartridges are replaced with new ones as consumables. Therefore, reduction and weight reduction are required in consideration of convenience at the time of disposal. On the other hand, from the viewpoint of energy saving, it is desirable to eliminate the preheating mode of the copying machine or the like and to heat the copier to a predetermined temperature at the time of use. Therefore, a method of reducing the heat capacity by reducing the thickness of the fixing roll and the like and increasing the temperature to a predetermined temperature in a short time has been studied.
In this way, various types of rolls such as photosensitive drum bases, developing rolls, fixing rolls, transfer rolls, paper feed rolls, and charging rolls for printers and copiers, belts, sleeves, pipes, etc. Are required to reduce weight and weight and to reduce heat capacity.
By the way, in order to improve the thermal efficiency, there has been proposed a fixing roller having a configuration in which a ferromagnetic layer serving as a heating unit and then a high heat conductive layer are provided on the side facing the magnetic flux generating unit (see Patent Document 1).
Examples of the roller having such a layer configuration include a single-layer cylinder formed by extrusion-drawing and forming a layer by surface treatment such as plating and thermal spraying, and a multilayer composite billet by extrusion-drawing. A multi-layer cylindrical body is known.
Further, a multilayer plate is known in which a multi-layer plate material is rounded and ends thereof are butt-welded to form a multilayer cylinder.
Further, when a thin-walled belt is used, it is known that a nickel electroformed tube is subjected to a surface treatment to form a multilayer belt.
[0003]
On the other hand, these cylinders are used so as to rotate around a central axis. For example, the photosensitive drum substrate and the developing roll should have as small an outer diameter "vibration" as possible, in order to ensure the transfer of toner particles. It is required that the circularity and cylindricity be made highly accurate. In addition, in the case of using a cylindrical body as a belt by inserting and driving two rotating shafts inside the cylindrical body, for example, in the case of a fixing belt, "uniformity in diameter" is required to prevent meandering.
In recent years, as the quality of images and the printing speed have been increased, the demands for higher accuracy of "runout" and "uniformity of diameter" have been increasing in order to accurately overlap colors. These requirements are exactly the same for multilayer cylinders.
[0004]
In the multilayer cylindrical body manufactured by the above-described method, for example, a photosensitive drum is coated with a photosensitive paint by a dipping method and dried to form a predetermined photosensitive layer (see Patent Document 2). An organic film is formed as a layer.
[Patent Document 1]
JP 2001-230064 A [Patent Document 2]
Japanese Patent Publication No. 2-501501
[Problems to be solved by the invention]
However, there has been a problem that the conventional multilayer cylindrical body cannot sufficiently meet the above-mentioned various requirements. That is, in the case of forming a multilayer by surface treatment, the method of Patent Document 1 employs a method of applying an electric nickel plating to an aluminum inner surface formed in a pipe shape in advance, but a nickel plating is applied to an inner surface of a pipe having a large L / D. However, there is a problem that it is considerably difficult to perform the process uniformly.
In addition, in a multilayer cylindrical body formed by extrusion-drawing a multilayer composite billet, the entire side wall cannot be reduced in thickness, and the uneven thickness is 10 μm or more. Nothing is uniform in the circumferential direction.
Furthermore, in the case of a multi-layer plate material, the thickness of each layer can be made uniform, but the multi-layer cylindrical body obtained by rounding the plate material and welding the end portion is liable to be a defect due to the presence of a butt weld.
Next, the electroformed tube is excellent in thinning and accuracy, but has a problem that the yield is low, the productivity is low because of low productivity, and defects such as nests are easily generated.
Furthermore, conventionally, when coating the surface of the cylindrical body with a paint or the like, unevenness of the coating film thickness due to dripping of the paint or uneven drying, orange peel, etc. are likely to occur, and the cylindrical body is pulled up after dipping. There is a problem that productivity is poor because a paint pool is formed at the lower end of the film, and is treated or chucked one by one and immersed at a low speed.
The present invention has been made in view of the above problems, and has as its object to provide a multilayer cylinder having a large L / D ratio, which satisfies high precision “roundness” and “uniformity of diameter”. .
[0006]
[Means for Solving the Problems]
After the multilayer cylindrical body of the present invention is formed into a bottomed cup body by molding a multilayer plate material,
The thickness of the side wall of the bottomed cup body is reduced so that the thickness of each layer of the side wall after the thickness reduction is reduced at substantially the same reduction rate as the thickness of each layer in the plate material,
Forming a bottomed cylindrical body with thinner side walls,
It is characterized in that both ends of the cylindrical body with a thinner side wall are trimmed.
In such a multilayer cylindrical body, it is preferable that the thickness reducing processing is one or more times of ironing, or one or more times of ironing and drawing.
In the case where the drawing process is performed, it is preferable to perform the drawing process at the end of the thickness reducing process.
Furthermore, in the multilayer cylindrical body of the present invention, the relationship between the outer diameter D and the length L of the multilayer cylindrical body is L / D> 5.
In the multilayer cylindrical body of the present invention, the multilayer plate material for forming the multilayer cylindrical body is a clad material, the hardness of the innermost layer of the clad material is higher than the hardness of the outermost layer, and the clad material is It is preferable to adopt three layers, and that the hardness of the intermediate layer is higher than the hardness of the innermost layer and the hardness of the outermost layer.
Further, in the multilayer cylindrical body of the present invention, it is also preferable that the multilayer plate is a resin-coated metal material.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the multilayer cylindrical body of the present invention will be described with reference to the drawings.
The multilayer cylindrical body of the present invention forms a bottomed cup body in the steps of multilayer plate material → blank material punching → drawing (including redrawing), and then performs the following ironing and / or drawing to form the bottomed cup. The side wall is reduced in thickness so that the thickness of each side wall layer is reduced at substantially the same reduction rate with respect to the thickness of each layer in the plate material, to form a side wall thinned bottomed cylinder.
Then, the upper and lower ends in the longitudinal direction of the cylindrical body with a thinner side wall are trimmed to finally obtain a multilayer cylinder without a bottom.
Therefore, if the thickness of each layer of the final multilayer cylindrical body after trimming is determined and the reduction rate in the thickness reduction processing is determined, the thickness of the multilayer plate material to be used is inevitably determined. Since the thickness of each layer constituting the multilayer board can be made with high precision, the thickness of each layer of the multilayer cylindrical body can be made with high precision as a result.
The thickness reducing process may be performed once or twice or more, or may be performed by combining one or more times of ironing and drawing. Which of these processing methods is used at which stage is appropriately determined depending on the type of a multilayer plate material to be described later and how much the side wall of the bottomed cup body is thinned.
[0008]
FIG. 1 is an explanatory view showing a step of drawing and redrawing a blank material punched out of a two-layered multilayer plate material according to an embodiment showing an example of a method for manufacturing a multilayer cylindrical body of the present invention.
In FIG. 1, a bottomed cylindrical cup body 12 is formed by drawing a circular plate (blank material 11) (FIG. 1A) obtained by press punching from a multilayer plate material through a punch with a drawing die (FIG. 1A). 1 (b)) and formed by redrawing (FIG. 1 (c)).
Here, the outer diameter D 0 and the height H of the final bottomed cup body 12 after the drawing and re-drawing step in the present invention are described. If the redrawing shown in FIG. 1 (c) is repeated, the height can be increased as the diameter decreases, and there is an advantage that the thickness reduction for obtaining a predetermined length of the cylindrical body can be reduced. The height of the bottomed cup body in the circumferential direction becomes uneven due to the effect of anisotropy, so-called “ears” become noticeable, and wrinkles easily occur on the side walls. Ears become an obstacle in performing stable thickness reduction processing such as causing stripping defects after ironing, and wrinkles must be avoided as much as possible in order to obtain a side wall having a uniform layer structure which is the object of the present invention. It is better not to increase the H / D 0 of the bottom cup body indefinitely, and it is desirable that the H / D 0 is 6 or less depending on the material. On the other hand, if H / D 0 is too small, it is necessary to increase the side wall thickness reduction rate to obtain a predetermined side wall height. However, if the thickness reduction processing is repeated, the surface layer is easily damaged or peeled, A good cylindrical body cannot be obtained because the cylindrical body becomes brittle due to work hardening. Although the limit value of the side wall reduction rate depends on the material used, it is usually desirable that H / D 0 is 1 or more. In FIG. 1, the number of times of re-drawing is one, but the number of times of re-drawing can be increased by selecting H / D 0 .
[0009]
(Multilayer board material)
As a multilayer board,
Examples include those obtained by laminating two or more kinds of metals, and those formed by laminating metals and plastics or ceramics.
Aluminum (including aluminum alloy; the same applies hereinafter) -iron (including steel and stainless steel; the same applies hereinafter), aluminum-iron-aluminum,
Aluminum-nickel, aluminum-nickel-aluminum,
Nickel-iron, nickel-iron-nickel,
Titanium (including titanium alloy; the same applies hereinafter) -aluminum, aluminum-titanium-aluminum,
Copper (including a copper alloy; the same applies hereinafter) -nickel (including a nickel alloy; the same applies hereinafter),
Copper-iron, copper-iron-nickel,
And the like, and a clad plate in which two or three metal plates are laminated, but a metal plate with four or more layers may be used.
Moreover, the same type of metal having a different alloy composition such as aluminum and aluminum may be clad.
Further, the clad plate may be formed by plating a metal plate serving as a substrate. For example, a steel plate whose surface is nickel-plated can be used.
By using the clad material, it is possible to obtain a material having the characteristics of each material. For example, a combination of materials can be selected depending on the purpose, such as thermal conductivity, corrosion resistance, elasticity, and conductivity.
As a method for producing the clad material, a hot rolling method, an explosion bonding method, a cladding method, a casting method, a diffusion bonding method, a cold rolling method in a vacuum atmosphere, and the like are appropriately adopted.
[0010]
(Resin coating material)
Further, as the multilayer plate material, a resin-coated metal material having a resin film on a single-layer or multilayer metal material is also preferably used. When the multilayer cylindrical body of the present invention is used as a substrate such as a photosensitive drum or a fixing belt, a photosensitive paint and a release layer are applied to the surface of the substrate, respectively, so that a final product is obtained. Is used in advance as a resin film, and a material coated on a metal material is used as a blank material, whereby a resin-coated cylindrical body free from unevenness in film thickness and surface defects can be obtained.
Further, since the coating resin functions as a solid lubricating film, it also prevents surface flaws during processing of the multilayer cylindrical body.
Furthermore, the resin film also has a role as a photosensitive layer in the case of a photosensitive drum, and as a release layer in the case of a fixing belt.
As the resin film, a thermoplastic resin film such as a thermoplastic polyester or polyolefin, or an epoxy-based or vinyl-based coating film is preferably used. When coating the resin film, an adhesive may or may not be used depending on the type of the resin film. In order to obtain the function of each layer, pigments, powders, compounds, and the like can be dispersed and compatible in the resin film.
[0011]
The resin film is coated at least on the surface of the metal material, but may be one or more layers, or may be a multilayer according to the layer configuration. Since the resin-coated metal plate covers the resin film in a state where the metal plate is cut or unwound from a coiled state, the thickness of the film can be relatively easily made uniform. . Therefore, in the resin-coated metal plate, the thickness of each of the metal plate and the resin film is uniform, and the thickness of the resin-coated metal plate itself is also uniform.
[0012]
When the resin film is based on a thermoplastic resin, it is coated by any method such as an extrusion laminating method, a non-stretched cast film laminating method, or a method of laminating a biaxially stretched film. . In particular, non-stretched and amorphous thermoplastic resin films should be able to follow the elongation and shrinkage deformation associated with thinning of metal plates without causing damage such as peeling or cracking even during severe ironing. It is preferable to use it for a resin-coated metal plate because it functions as a lubricant.
[0013]
Next, as shown in FIGS. 2A, 2B and 2C, ironing is performed to reduce the thickness of the side wall of the bottomed cup body. The ironing can be performed, for example, by a processing device shown in FIG.
In FIG. 3, a through hole 32 is provided in an ironing die 33, a cooling lubricating liquid is applied to the surface of the bottomed cup body 12, and pressing is performed by a punch 31 in the arrow direction shown in FIG. Done.
After being drawn, the bottomed cup body 12 is formed into a bottomed cylindrical shape (see FIG. 1) whose bottom thickness and side thickness are both equal at t0, and when the bottomed cup body 12 passes through the ironing die 33. Then, the side wall is thinned and the entire length is extended to form a thinned bottomed cylindrical body 21 as shown in FIG.
By limiting the ironing rate at this time to the range of 5% to 50%, preferably 10% to 40%, the thickness of each layer on the side wall after thickness reduction is almost the same as the thickness of each layer in the plate material. And thinned.
By performing such ironing in several steps, the side wall thicknesses t1a and t1b (FIG. 2A) of each layer of the side wall formed by the first ironing as shown in the example of the two layers in FIG. The thickness is reduced to t2a and t2b by the second ironing process, and further reduced to t3a and t3b by the third ironing process, and the thickness of each side wall layer is reduced at a substantially equal ratio. A bottomed cylinder is formed.
In this case, it is important to limit the ironing rate at each stage to a range of 5 to 50%.
When the ironing rate exceeds 50%, the thickness of each layer is not equally reduced due to the breakage of the side wall or the local peeling of the surface layer, and the ironing rate of less than 5% results in low thickness reduction efficiency and workability. bad.
Also, in order to smoothly reduce the thickness, it is important to pay attention to the shape and surface roughness of the through hole 32 of the ironing die 33. The surface roughness is desirably a mirror surface. Further, the surface roughness of the punch 31 is preferably a mirror surface.
Since the resin tends to soften at a high temperature, when the surface is coated with the resin, it is necessary to control the temperature of the cooling lubricating liquid (coolant) to stabilize the molding behavior of the resin layer. desirable. When the inner and outer surfaces are coated with resin, the lubrication of the resin does not necessarily require the use of a cooling lubricant, but stabilizes the molding behavior of the resin layer by adjusting the temperature of the punch and ironing die. It is desirable to do.
In addition, in order to increase the efficiency of the ironing, for example, as shown in FIG. 4, three ironing dies 33a, 33b, and 33c can be arranged in tandem and three-step ironing can be performed in one process.
Ironing is a simple method of forming a thinned bottomed cylinder, and by employing continuous ironing as shown in FIG. 4, productivity can be further increased.
Then, the thinned bottomed cylindrical body 21 formed as described above is detached from the punch 31 via the stripper mechanism 41.
[0014]
(Drawing process)
Next, as shown in FIG. 5A, FIG. 5B, and FIG. 5C as time elapses, the detached thinned bottomed cylindrical body 21 is removed by a drawing device including a drawing die 51 and a drawing plug 52. A drawn bottomed cylindrical body 53 is formed. The number of drawing passes is preferably one for simplification of the process, and the radial reduction (outer diameter shrinkage ratio) at the time of drawing is preferably 0.5 to 10%.
The reason is that if it is less than 0.5% or more than 10%, the roundness in the longitudinal direction of the drawn bottomed cylindrical body 53 cannot be improved and the diameter thereof cannot be made uniform. A particularly preferred radial reduction is 1 to 7%.
Further, it is preferable that the thickness reduction rate (thickness reduction rate) in the thickness direction during the drawing process is 1 to 40%.
The reason is that if it is less than 1%, the roundness in the longitudinal direction of the drawn bottomed cylindrical body 53 cannot be improved and the diameter cannot be made uniform, and if the wall thickness reduction rate exceeds 40%, the soft surface layer is locally formed. This is because a difference in the thickness reduction rate of each layer tends to occur due to a reduction in the thickness, and the likelihood of breakage is increased, resulting in reduced productivity. A particularly preferred rolling reduction in the thickness direction is 5 to 30%.
The drawing process in the present invention is preferably provided at least in the final process of the thickness reducing process as a finishing process for making the diameter of the cylindrical body uniform, but may be performed in the middle of the drawing process and the ironing process. .
Further, as described above, the plate material is drawn or drawn and redrawn to form the bottomed cup body, and the diameter and / or thickness of the bottomed cup body is reduced by ironing or drawing / ironing. Although the description has been given of the case where the thinned bottomed cylindrical body is formed, the thinned bottomed cylindrical body may be formed only by the drawing process without using the drawing or the ironing process.
[0015]
(Trimming at both ends)
Next, as shown in FIG. 6, it is inserted and fixed to a spindle 62 via a chuck 61 which expands outward by hydraulic pressure or the like, and the rotation of the spindle 62 causes the outer cutters 63, 63 and the inner cutters 63a, 63a to rotate. At the position indicated by the one-dot chain line in FIG. 6, both ends of the drawn bottomed cylindrical body 53 are trimmed (cut). The multilayer cylindrical body 70 having both ends trimmed (see the example of two layers in FIG. 7) is used as, for example, a photosensitive drum base for electrophotography.
As described above, the multilayered cylindrical body 70 obtained by the drawing process has a high cylindrical accuracy and a high surface accuracy regarding the uniformity of the thickness, roundness, and diameter.
In addition, by performing ironing in a process prior to the drawing process, the thickness of the cylindrical body can be reduced with extremely high productivity, so that the weight of the multilayer cylindrical body 70 can be reduced.
[0016]
(L / D> 5)
As described above, the heat capacity of the photosensitive drum substrate, developing roll, fixing roll, transfer roll, paper feed roll, charging roll, and other various rolls, belts, sleeves, and pipes of printers and copiers is reduced by making them thinner and smaller in diameter. In order to reduce the temperature and raise the temperature to a predetermined temperature in a short time, the L / D of the cylindrical body is preferably large.
On the other hand, the length (L) is determined in consideration of the device in which the cylinder is incorporated, and the thickness and outer diameter of the cylinder are determined in consideration of the strength, heat conduction, and the like of the cylinder.
When the L / D ratio is 5 or less, the heat capacity increases due to an increase in the outer diameter of the cylindrical body with respect to the photosensitive drum base or the like that requires a length of 260 mm or more, and the temperature rises to a predetermined temperature. It is not preferable because it takes time.
Therefore, in the present invention, (length L of multilayer cylindrical body) / (outer diameter D of cylindrical body)> 5 excluding trimming allowance.
[0017]
When a multilayer cylindrical body is to be formed using a hard material that is difficult to process, it is preferable to use a multilayer plate material such that a hard material is disposed inside the multilayer cylindrical body and a soft material is disposed outside the multilayer cylindrical body. For example, a clad material having a combination of aluminum (soft) -titanium (hard) is used.
In this case, the soft material disposed outside the multilayer cylinder plays a role as a lubricant during processing, and it can prevent drawing, ironing, cracking of the material during drawing, etc. of a hard material. A long multilayer cylinder can be formed.
Also, a hard material can be made into a sandwich with a soft material.
For example, the clad material is a combination of aluminum (soft) -titanium (hard) -aluminum (soft).
Further, a material having excellent thermal conductivity (for example, copper) is clad on both sides with a material having excellent corrosion resistance (for example, titanium) and a soft material (for example, aluminum) which is easy to form. A cylindrical body can be formed.
[0018]
When using a resin film material, when drawing, ironing, or drawing, the cylindrical body being processed does not directly contact a processing jig such as an ironing die, and the resin film intervenes between the two. There is no risk of surface defects due to wear of the jig. Further, when the inner and outer surfaces are coated with a resin, there is no need to use a cooling lubricating liquid (coolant), so that there is no possibility that a surface defect due to running out of oil, entrapment of foreign matter, or the like will occur.
[0019]
【Example】
(Example 1)
As a multilayer plate material, a 0.525 mm thick aluminum alloy plate (JIS H4000 alloy number 3004H12) (first layer) coated with a 0.025 mm thick resin film (unstretched PET film) (second layer), diameter Using a blank material having a thickness of 152 mm and a thickness of 0.55 mm, a cup with a bottom having an inner diameter of 31.1 mm was manufactured by drawing and redrawing so that the resin film was on the outer surface. The redrawing was performed in six steps, and the H / D 0 of the bottomed cup body was 5.5. The bottomed cup body was ironed to a thickness of 0.38 mm using an ironing punch having an outer diameter of 31.05 to form a thinned bottomed cylindrical body. The outer diameter of the thinned bottomed cylinder after ironing was 31.8 mm.
The ironing speed was 0.5 m / sec, and J602A manufactured by Nippon Quaker Chemical Co., Ltd. diluted to 3% with water was used as a cooling lubricant.
Next, the thinned bottomed cylindrical body was subjected to a drawing process.
The drawing process was performed such that the drawing speed was set to 0.2 m / sec, the outer diameter after drawing was 30.0 mm, the thickness was 0.30 mm, and the height was 350 mm. The same cooling lubrication liquid as used in the ironing was used.
Both ends of the drawn bottomed cylinder obtained by the above-mentioned drawing were trimmed and cut off to obtain a multilayer cylinder having a length of 300 mm, an outer diameter of 30.0 mm and a thickness of 0.30 mm, respectively.
Table 1 shows the manufacturing conditions for the thin-walled bottomed cylinder at this time, and Table 2 shows the thickness of each layer when the multilayer cylinder was completed.
Table 3 shows the roundness and the uniformity of the diameter of the multilayer cylindrical body. The value of the roundness in the table is the largest (bad) value of the roundness at each position of every 20 mm from the end of the multilayer cylindrical body. The uniformity of the diameter is the difference between the maximum value and the minimum value of the outer diameter at each position every 20 mm.
[0020]
(Example 2)
As a multilayer plate material, a 0.05 mm-thick aluminum plate (second layer) and a 0.25 mm-thick steel plate (JIS G3303) (first method) were formed by a surface activated bonding method (cold rolling method in a vacuum atmosphere). A blank material obtained by punching out a 0.30 mm thick clad material having a thickness of .phi. The micro Vickers hardness of the clad material was Hv26 for the aluminum plate and Hv178 for the steel plate. This blank material was drawn and redrawn so that the steel plate was on the inner surface side of the bottomed cup to produce a bottomed cup body having an inner diameter of 31.1 mm. Redrawing was performed in 5 steps, and the H / D 0 of the bottomed body was 3.1. The bottomed cup body was sequentially thinned by ironing three times, and was ironed to a thickness of 0.12 mm to form a thin bottomed cylindrical body. The outer diameter of the thin-walled cylindrical body after ironing was 31.14 mm. The ironing speed and the cooling lubricant used are the same as in Example 1.
The drawing process was performed such that the drawing speed was set to 0.2 m / sec, the outer diameter after drawing was 30.0 mm, the thickness was 0.10 mm, and the height was 310 mm. The same cooling lubricant as that used for ironing was used.
Both ends of the drawn bottomed cylinder obtained after the above-mentioned drawing were trimmed to obtain a multilayer cylinder having a length of 260 mm, an outer diameter of 30.0 mm and a thickness of 0.10 mm, respectively. Table 1 shows the manufacturing conditions for the thin-walled bottomed cylinder at this time.
Table 2 shows the thickness of each layer when the multilayer cylindrical body was completed.
Table 3 shows the roundness and the uniformity of the diameter of the multilayer cylindrical body.
[0021]
(Example 3)
Oxygen-free copper (third layer) having a thickness of 0.03 mm and nickel having a thickness of 0.02 mm (first layer) were provided on both sides of a steel plate (JIS G3303) (second layer) having a thickness of 0.25 mm as a multilayer plate material. The joined clad material having a thickness of 0.30 mm was used. The micro Vickers hardness of the clad material was Hv50 for the copper plate, Hv178 for the steel plate, and Hv149 for the nickel plate. Nickel was provided on the inner surface side. Except for this, the same procedure as in Example 2 was performed to obtain a multilayer cylindrical body having a length of 260 mm, an outer diameter of 30 mm, and a thickness of 0.10 mm.
Table 1 shows the manufacturing conditions for the thin-walled bottomed cylinder at this time, and Table 2 shows the thickness of each layer when the multilayer cylinder was completed.
Table 3 shows the roundness and the uniformity of the diameter of the multilayer cylindrical body.
[0022]
(Example 4)
0.27 mm thick stainless steel (second layer) with both sides joined to 0.03 mm oxygen-free copper (third layer) and 0.02 mm (first layer) nickel as a multilayer board A blank material obtained by punching a 0.32 mm clad material to a diameter of 109 mm was used. The micro Vickers hardness of the clad material was Hv50 for the copper plate, Hv175 for the stainless steel, and Hv149 for the nickel plate. A bottomed cup body having an inner diameter of 31.1 mm was manufactured by drawing and redrawing so that the nickel side was on the inner surface side of the bottomed cup. Redrawing the H / D 0 of 5 steps, bottom cup body was 2.7. Thinning was performed sequentially by ironing five times, and ironing was performed to a thickness of 0.08 mm to form a thin-walled bottomed cylinder. The outer diameter of the thin-walled bottomed cylinder after ironing was 30.96 mm. The ironing speed and the cooling lubricant used are the same as in Example 1.
The drawing process was performed such that the drawing speed was set to 0.2 m / sec, the outer diameter after drawing was 30.0 mm, the thickness was 0.07 mm, and the height was 420 mm. The same cooling lubricant as that used for ironing was used.
Both end surfaces of the drawn bottomed cylindrical body obtained after the above drawing were trimmed to obtain a multilayer cylindrical body having a length of 370 mm, an outer diameter of 30.0 mm and a thickness of 0.07 mm, respectively.
Table 1 shows the manufacturing conditions for the thin-walled bottomed cylinder at this time, and Table 2 shows the thickness of each layer when the multilayer cylinder was completed. Table 3 shows the roundness and the uniformity of the diameter of the multilayer cylindrical body.
[0023]
(Comparative Example 1)
As a multilayer plate material, a 0.45 mm thick aluminum alloy plate (JIS H4000 alloy number 3004H12) (first layer) is coated with a 0.025 mm thick resin film (if it is better to specify the type, "unstretched PET film" Use a blank material with a thickness of 0.455 mm and a diameter of 167 mm coated with the (second layer). A bottom cup body was manufactured. Redrawing 7 steps, H / D 0 of the bottom cup body was 6.8. Although vertical drawing wrinkles occurred in the opening of the bottomed cup body, ironing and drawing were performed under the same conditions as in Comparative Example 1. In the cylindrical body after the drawing, it was observed that the resin film of the wrinkled portion was partially thinned and the metal surface was exposed.
Table 1 shows the manufacturing conditions for the thin-walled bottomed cylinder at this time, and Table 2 shows the thickness of each layer when the multilayer cylinder was completed. Table 3 shows the roundness and the uniformity of the diameter of the multilayer cylindrical body.
[0024]
(Comparative Example 2)
As a multilayer board material, 0.08 mm thick oxygen-free copper (third layer) and 0.07 mm thick (first layer) nickel were placed on both sides of a 0.85 mm thick steel sheet (JIS G3303) (second layer). A blank material obtained by punching a joined clad material having a thickness of 1.0 mm into a diameter of 67.5 mm was used. The micro Vickers hardness of the clad material was Hv50 for the copper plate, Hv165 for the steel plate, and Hv149 for the nickel plate.
A bottomed cup body having an inner diameter of 31.1 mm was manufactured by drawing and redrawing so that the nickel side was on the inner surface side of the bottomed cup. The redrawing was performed in two steps, and the H / D 0 of the bottomed cup body was 0.9. Thinning was performed sequentially by ironing five times, and ironing was performed to a thickness of 0.12 mm to form a thin bottomed cylindrical body. The outer diameter of the thin-walled cylindrical body after ironing was 31.04 mm. The ironing speed and the cooling lubricant used were the same as in Example 1.
The inner and outer surfaces after ironing had a partial slight peeling, but were subjected to a drawing process under the same conditions as in Example 2 and trimmed on both end surfaces of the obtained drawn bottomed cylindrical body to have a length of 260 mm. A multilayer cylindrical body having an outer diameter and a thickness of 30.0 mm and 0.10 mm, respectively, was obtained.
Table 1 shows the manufacturing conditions for the thin-walled bottomed cylinder at this time, and Table 2 shows the thickness of each layer when the multilayer cylinder was completed. Table 3 shows the roundness and the uniformity of the diameter of the multilayer cylindrical body.
As shown in Tables 2 and 3, in the multilayer cylindrical body of the example of the present invention, the thickness of each layer was reduced at a uniform ratio, and the roundness and the uniformity of the diameter were also excellent. . On the other hand, the multilayer cylindrical body of the comparative example was wrinkled and delaminated during the processing, and was not practical.
[0025]
[Table 1]
(Manufacturing conditions for thin-walled bottomed cylinder)
Figure 2004154852
[0026]
[Table 2]
(Thickness of each layer of multilayer cylinder)
Figure 2004154852
[0027]
[Table 3]
Figure 2004154852
[0028]
【The invention's effect】
Since the present invention is configured as described above, it is possible to provide a multilayer cylindrical body that requires high precision in shape and dimensions.
In particular, the present invention can be applied to a photosensitive drum substrate of a printer, a copying machine, or the like that requires a high roundness.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing a step of drawing and redrawing a blank material according to an embodiment showing a method of manufacturing a multilayer cylindrical body of the present invention.
FIG. 2 is an explanatory view of an ironing process (Ironing) for thinning a side wall of a cup body with a bottom;
FIG. 3 is a schematic explanatory view showing an ironing device.
FIG. 4 is a schematic explanatory view showing an ironing apparatus when ironing is performed three times in one step.
FIG. 5 is a schematic explanatory view of forming a drawn bottomed cylindrical body by a drawing device including a drawing die and a drawing plug.
FIG. 6 is an explanatory diagram of a step of trimming both ends of a drawn bottomed cylindrical body.
FIG. 7 is an explanatory view showing a vertical cross section of the multilayer cylindrical body after trimming both ends.
[Explanation of symbols]
11: disk (blank material)
12: bottomed cylindrical cup body 21: multilayer bottomed cylindrical body 31: punch 32: through holes 33, 33a, 33b, 33c: ironing die 41: stripper mechanism 51: drawing die 52: drawing plug 53: drawing. Bottomed cylinder 61: chuck 62: spindle 63: outer cutter 63a: inner cutter 70: multilayer cylinder

Claims (9)

多層板材を成形加工により有底カップ体に成形後、
該有底カップ体の側壁を、減厚加工後の側壁の各層の厚さが板材における各層の厚さに対してほぼ同一の減少率で薄肉化されるように減厚加工して、
側壁薄肉化有底円筒体を形成し、
該側壁薄肉化有底円筒体の両端をトリミングしてなることを特徴とする多層円筒体。
After forming the multi-layer plate material into a bottomed cup body by molding processing,
The thickness of the side wall of the bottomed cup body is reduced so that the thickness of each layer of the side wall after the thickness reduction is reduced at substantially the same reduction rate as the thickness of each layer in the plate material,
Forming a bottomed cylindrical body with thinner side walls,
A multilayer cylindrical body characterized by trimming both ends of the side wall thinned bottomed cylindrical body.
前記減厚加工が1回又は2回以上のしごき加工であることを特徴とする請求項1に記載の多層円筒体。The multilayer cylindrical body according to claim 1, wherein the thickness reduction is performed once or twice. 前記減厚加工が1回又は2回以上のしごき加工及び引抜き加工であることを特徴とする請求項1に記載の多層円筒体。2. The multilayer cylindrical body according to claim 1, wherein the reduction processing is one or more times of ironing and drawing. 3. 前記減厚加工の最後に引抜き加工を施すことを特徴とする請求項3に記載の多層円筒体。The multilayer cylindrical body according to claim 3, wherein a drawing process is performed at the end of the thickness reducing process. 前記多層円筒体の外径Dと長さLとの関係が、L/D>5であることを特徴とする請求項1〜4のいずれかに記載の多層円筒体。The multilayer cylinder according to any one of claims 1 to 4, wherein the relationship between the outer diameter D and the length L of the multilayer cylinder is L / D> 5. 前記多層板材がクラッド材であることを特徴とする請求項1〜5のいずれかに記載の多層円筒体。The multilayer cylindrical body according to any one of claims 1 to 5, wherein the multilayer board is a clad material. 前記クラッド材の最内層の硬さが最外層の硬さより硬いものであることを特徴とする請求項6に記載の多層円筒体。The multilayer cylindrical body according to claim 6, wherein the hardness of the innermost layer of the clad material is higher than the hardness of the outermost layer. 前記クラッド材が3層からなり、中間層の硬さが、最内層の硬さ及び最外層の硬さより硬いものであることを特徴とする請求項6に記載の多層円筒体。The multilayer cylindrical body according to claim 6, wherein the clad material is composed of three layers, and the hardness of the intermediate layer is higher than the hardness of the innermost layer and the hardness of the outermost layer. 前記多層板材が樹脂被覆金属材であることを特徴とする請求項1〜8のいずれかに記載の多層円筒体。The multilayer cylindrical body according to any one of claims 1 to 8, wherein the multilayer board is a resin-coated metal material.
JP2002325366A 2002-11-08 2002-11-08 Multilayered cylinder Pending JP2004154852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002325366A JP2004154852A (en) 2002-11-08 2002-11-08 Multilayered cylinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002325366A JP2004154852A (en) 2002-11-08 2002-11-08 Multilayered cylinder

Publications (1)

Publication Number Publication Date
JP2004154852A true JP2004154852A (en) 2004-06-03

Family

ID=32804618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002325366A Pending JP2004154852A (en) 2002-11-08 2002-11-08 Multilayered cylinder

Country Status (1)

Country Link
JP (1) JP2004154852A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006123666A1 (en) * 2005-05-17 2006-11-23 Toyo Seikan Kaisha, Ltd. Three-piece square can and method of manufacturing the same
JP2006320918A (en) * 2005-05-17 2006-11-30 Toyo Seikan Kaisha Ltd Three-piece rectangular can and method for manufacturing the same
JP2017523920A (en) * 2014-05-30 2017-08-24 アンハイザー−ブッシュ リミテッド ライアビリティ カンパニーAnheuser−Busch,Llc Two-stage ironing tool pack for forming long bottle-shaped metal containers

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006123666A1 (en) * 2005-05-17 2006-11-23 Toyo Seikan Kaisha, Ltd. Three-piece square can and method of manufacturing the same
JP2006320918A (en) * 2005-05-17 2006-11-30 Toyo Seikan Kaisha Ltd Three-piece rectangular can and method for manufacturing the same
JP2017523920A (en) * 2014-05-30 2017-08-24 アンハイザー−ブッシュ リミテッド ライアビリティ カンパニーAnheuser−Busch,Llc Two-stage ironing tool pack for forming long bottle-shaped metal containers

Similar Documents

Publication Publication Date Title
JP3406293B2 (en) Metallic ring and method for producing the same
US6074192A (en) Lenticular pattern forming roll and method for making the roll
US20070126148A1 (en) Microstructured embossing drum and articles made therefrom
US3950839A (en) Method of making an electroforming mandrel
JPH01315781A (en) Electrophotographic sensitive body
JP2004154852A (en) Multilayered cylinder
JP2004154789A (en) Method for manufacturing thin cylindrical body
US3927463A (en) Method of making a cylindrically shaped, hollow electroforming mandrel
JP2005035119A (en) Manufacturing method of embossing roll and manufacturing method of transfer sheet using the embossing roll
US3905400A (en) Electroforming mandrel
US20080112728A1 (en) Method for producing a metallic core for use in cylinder sleeves for an electrophotographic process
JPH09267222A (en) Manufacture of seamless metallic belt
JP3968213B2 (en) Processing method for thin cored bar, processing method for fixing roller cored bar for electrophotographic apparatus
JP2002169392A (en) Seamless belt base material for image forming device, and fixing belt and photoreceptor belt using the base material
JP2999940B2 (en) Aluminum tube for photosensitive drum and method of manufacturing aluminum tube for photosensitive drum using the tube
JP2017097020A (en) Electrophotographic photoreceptor, manufacturing method and identification method of the same, and image forming apparatus
JP2001330081A (en) Endless belt made of metal and its manufacturing method
US20170060058A1 (en) Fixing device using stainless steel material
JP4131307B2 (en) Method for manufacturing tube for electrophotographic photosensitive drum substrate
JP4356244B2 (en) Manufacturing method of electrophotographic photosensitive drum substrate and manufacturing method of electrophotographic photosensitive drum
TW201540526A (en) Patterned roll and manufacturing method therefor
JP2014117731A (en) Metallic tubular body and manufacturing method thereof
JP2014151636A (en) Endless belt-shaped metal mold, and method for producing the same
JP2015215393A (en) Fixing apparatus using stainless steel
JPH08248798A (en) Fixing roller and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090520

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090804