JP2004154840A - Fusible flux for submerged-arc welding - Google Patents

Fusible flux for submerged-arc welding Download PDF

Info

Publication number
JP2004154840A
JP2004154840A JP2002324472A JP2002324472A JP2004154840A JP 2004154840 A JP2004154840 A JP 2004154840A JP 2002324472 A JP2002324472 A JP 2002324472A JP 2002324472 A JP2002324472 A JP 2002324472A JP 2004154840 A JP2004154840 A JP 2004154840A
Authority
JP
Japan
Prior art keywords
mass
slag
content
welding
flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002324472A
Other languages
Japanese (ja)
Other versions
JP3759100B2 (en
Inventor
Shigeki Nishiyama
繁樹 西山
Yoshihito Ishizaki
圭人 石▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2002324472A priority Critical patent/JP3759100B2/en
Publication of JP2004154840A publication Critical patent/JP2004154840A/en
Application granted granted Critical
Publication of JP3759100B2 publication Critical patent/JP3759100B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Nonmetallic Welding Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fusible flux for a submerged-arc welding which does neither cause a shrinkage cavity nor such welding defects as slag engulfment and under-cut etc., and provides an excellent bead shape etc. and welding workability as well as a superb toughness in the welded metal. <P>SOLUTION: The fused flux for the submerged-arc welding contains, for the total weight of the flux, SiO<SB>2</SB>;23-33 mass%, CaO;25-35 mass%, CaF<SB>2</SB>;15-25 mass%, MgO;2-8 mass%, Al<SB>2</SB>O<SB>3</SB>;2-8 mass%, MnO;2-8 mass%, TiO<SB>2</SB>;4-10 mass%, FeO;0.5-4.0 mass% and BaO;≤0.9 mass%. Additionally, it is preferable to contain SrO;0.3-3.0 mass%. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は溶接金属の低温靭性が優れ、しかも高速溶接における溶接作業性が優れたサブマージアーク溶接用溶融型フラックスに関する。
【0002】
【従来の技術】
一般に、サブマージアーク溶接は低炭素鋼及び高張力鋼等の溶接に広く使用されている。一方、溶接構造物の使用環境が過酷化するのに伴い、溶接金属の靭性向上に対する要求が高まっている。しかも、従来以上の高能率化のために高速溶接の要求が一層高まっており、溶接金属の靭性向上を含む溶接部の衝撃特性の向上と高速溶接化とが両立するサブマージアーク溶接用フラックスが求められている。
【0003】
サブマージアーク溶接において、溶接金属の靭性を高めるためには、溶接金属の酸素含有量を低くすることが効果的である。ところで、サブマージアーク溶接において使用されるフラックスには、ボンドフラックスと溶融型フラックスとがある。ボンドフラックスにはフラックス自体に金属Si及び/又は金属Mn等の脱酸剤を添加しておくことができるので、比較的容易に溶接金属の酸素含有量を低下させることができる。しかしながら、ボンドフラックスを使用して高速溶接を行うと、溶接金属にポックマーク及び/又はブローホールが発生し易いので、実用性に乏しい。そのため、高速のサブマージアーク溶接には溶融型フラックスが広く使用されている。
【0004】
これに対して、溶融型フラックスにはその製造工程の制約により、ボンドフラックスの場合と異なり予め脱酸剤を添加しておくことはできないが、ボンドフラックスの場合のように、フラックスの塩基度を高めた成分組成とすることはできるので、溶接金属の酸素含有量を低減することができる。更に、溶融型フラックスを使用すれば、高速溶接時にブローホール及びスラグ巻込みのない均一なビードを得ることができる。ところが、サブマージアーク溶接において、溶接速度を更に速くすると、アンダーカット、ビード形状不良及びスラグ巻込み等の溶接欠陥が発生し易くなり、これらの溶接欠陥の発生を防止することが、溶接部の衝撃特性の向上と高速溶接化との両立のために必要となった。
【0005】
そこで、従来、上記問題を解決するための種々のサブマージアーク溶接用フラックスが提案されている。例えば、特開平6−31481号公報(特許文献1という)には、フラックス中のCaO及びCaFの各添加量を、CaO+CaF≧35質量%、且つ(CaF含有量)/(CaO含有量)≧1.0に制限し、単体として融点が高いAl及びMgO含有量を低く抑え、且つフラックスの軟化温度を1100℃以下として、特にスラグ巻込みの発生を防止し、更にBaO≦5質量%、NaO+KO≦2質量%、B≦1質量%を含有させて、ビード形状等を改善するためのフラックスが開示されている。また、特開平7−256488号公報(特許文献2という)には、フラックス中の下記金属弗化物と金属酸化物との比を、(CaF+MgF+BaF)/(CaO+MgO+BaO)≧1.4(但し、金属弗化物は上記化合物のうち1種以上とする)、且つ合計F含有量を25質量%以下に調整し、これらを混合塩として添加して、スラグの流動性を良くしてスラグ巻込みを低減すると共に、高塩基性フラックスとして溶接金属の酸素含有量を減らすという技術が開示されている。更に、特開平9−262692号公報(特許文献3という)には、フラックス中の不可避的不純物であるBaO及びTiO含有量を夫々1及び0.5質量%以下に規制してスラグの粘性を抑制し、スラグ巻込みを防止すると共に、MgO含有量/(SiO含有量+CaF含有量)を0.20乃至0.60に調整してアンダーカットの発生を防止すると共に溶接金属の酸素含有量の増加を抑制し、またAl含有量を8質量%以上としてビード形状を改善し、18質量%以下に抑えてスラグ剥離性を改善する技術が開示されている。
【0006】
以上のように、特許文献1、2及び3には、サブマージアーク溶接において、アンダーカット、ビード形状不良及びスラグ巻込み等の溶接欠陥の発生を防止して高速溶接における良好な作業性を確保しつつ、溶接金属の靭性向上を図るフラックスが記載されている。
【0007】
【特許文献1】
特開平6−31481号公報(この公報の第2頁の段落番号0008乃至0009、第3頁の段落番号0016乃至0020)。
【特許文献2】
特開平7−256488号公報(この公報の第2乃至3頁の段落番号0005乃至0012)。
【特許文献3】
特開平9−262692号公報(この公報の第2乃至4頁の段落番号0009乃至0024)。
【0008】
【発明が解決しようとする課題】
しかしながら、上記特許文献1乃至3には、サブマージアーク溶接における高速溶接において発生するシュリンケージキャビティ(収縮孔)の発生防止方法については記載されていない。シュリンケージキャビティは、ビードの最終凝固部に形成される収縮孔であると考えられ、ビードに沿って溶接金属内部に島状に点在する場合及びビード全長にわたり発生する場合がある。シュリンケージキャビティは溶接金属自身の強度等、機械的性質に直接影響を及ぼすものではないが、シュリンケージキャビティが存在する場所の溶接部の品質特性は劣化し、溶接構造物の品質劣化を引き起こす欠陥となるという問題点がある。例えば、UOE鋼管のシーム溶接金属に発生したシュリンケージキャビティは、溶接後このUOE鋼管の表面にコーティングされた樹脂に気泡を発生させたり、また樹脂膜厚のバラツキを著しく大きくするといった樹脂コーティング膜の品質にバラツキを発生させ、その鋼管の製品品質を著しく劣化させる。
【0009】
本発明はかかる問題点に鑑みてなされたものであって、高速溶接を行ってもシュリンケージキャビティが発生せず、またスラグ巻込み及びアンダーカット等の溶接欠陥が発生せず、ビード形状等が良好で溶接作業性が優れており、且つ溶接金属の靭性が優れているサブマージアーク溶接用溶融型フラックスを提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明に係るサブマージアーク溶接用溶融型フラックスは、フラックス全重量当たり、SiO:23乃至33質量%、CaO:25乃至35質量%、CaF:15乃至25質量%、MgO:2乃至8質量%、Al:2乃至8質量%、MnO:2乃至8質量%、TiO:4乃至10質量%、FeO:0.5乃至4.0質量%及びBaO:0.9質量%以下を含有することを特徴とする。本発明においては、更に、SrOを0.3乃至3.0質量%含有することが好ましい。
【0011】
【発明の実施の形態】
以下、本発明の実施形態に係るサブマージアーク溶接用溶融型フラックスについて説明する。上述の目的を達成するために本願発明者等は鋭意実験研究した結果、サブマージアーク溶接用溶融型フラックスの組成を適切に規定することにより、スラグ巻込み及びアンダーカット等の溶接欠陥の発生を抑制し、シュリンケージキャビティの発生をも抑制しつつ、作業性良く高速溶接を行うことができ、且つ溶接金属の酸素含有量を低く抑えることができることを見出した。なお、以下に、特にシュリンケージキャビティの発生防止について得られた知見について述べる。
【0012】
サブマージアーク溶接において溶接速度を大きくするにつれて溶融池の形状は涙滴形状になり易く、その涙滴は細長くなり、そのため溶鋼はその溶融池の溶接進行方向後方へ流れ難くなり、ビード中央部にシュリンケージキャビティ(収縮孔)が発生し易くなる。本発明者等は種々の成分組成の溶融型フラックスを試作し、スラグの塩基度とシュリンケージキャビティの発生状況との関係を調査した結果、スラグの塩基度が高くなるほどシュリンケージキャビティが発生し易くなることを知見した。かかる現象の発生機構は、スラグの塩基度が増大すると、この塩基度と関係する溶融スラグの凝固温度範囲、粘性及び形状等の因子が、この溶融スラグの直下にあるビードの表面溶鋼の流動性に影響を及ぼして、シュリンケージキャビティが形成し易い溶鋼の凝固条件を満たすからであると推察される。そこで、フラックスの主要成分系とシュリンケージキャビティ発生との関係を調査した結果、SiO−CaO−CaFの3元系成分に、MgO、Al、MnO、TiO及びFeOの各成分含有量をバランス良く組み合わせて添加し、且つBaOの含有量の上限値を規制することにより、高塩基度フラックスであっても、高速溶接時にシュリンケージキャビティの発生を防止できることを見出した。特に、上記成分のうち、FeOの適切量の添加はシュリンケージキャビティの発生防止に効果があり、またBaOの含有量を制限することがシュリンケージキャビティの発生防止に効果があることを見出した。
【0013】
以下、本発明に係るサブマージアーク溶接用溶融型フラックスの成分組成の限定理由について説明する。
【0014】
「SiO:23乃至33質量%」
SiOは酸性成分であり、溶融スラグの粘性及びスラグの融点を調整するために有効な成分であり、高速溶接時のアンダーカット発生に影響を及ぼす。SiOの含有量が23質量%未満であると、溶融スラグの粘性が不足してアンダーカットの発生原因となり、また溶融スラグが急速に凝固してスラグ巻込みの発生原因となる。一方、SiOの含有量が33質量%を超えると、溶融スラグの粘性が高くなり過ぎてビード形状が凸になり易く、またスラグの高塩基性を確保できなくなり、溶接金属の酸素含有量が上昇して靭性が劣化するので、高塩基性の確保と溶接作業性との両立が困難となる。従って、SiOの含有量は23乃至33質量%とする。
【0015】
「CaO:25乃至35質量%」
CaOは塩基性成分であり、溶融スラグの粘性及び凝固温度を高めるために有効な成分である。CaOの含有量が25質量%未満であると、溶融スラグの粘性が不足して、ビード蛇行の発生原因となる。一方、CaOの含有量が35質量%を超えると、スラグ巻込みが発生し易くなると共に、スラグ剥離性が悪くなって、シュリンケージキャビティが発生し易くなる。従って、CaOの含有量は25乃至35質量%とする。
【0016】
「CaF:15乃至25質量%」
CaFもまた塩基性成分であり、溶融スラグの流動性を高め、且つスラグの融点を調整するために有効な成分である。CaFの含有量が15質量%未満であると、溶融スラグの流動性を高める効果及びスラグの融点を調整する効果が小さい。一方、CaFの含有量が25質量%を超えると、スラグ巻込みが発生し易くなり、しかもスラグ剥離性が劣化して、ビード際のスラグ焼付きも増加し、更にシュリンケージキャビティの発生を助長する。従って、CaFの含有量は15乃至25質量%とする。
【0017】
「MgO:2乃至8質量%」
MgOは塩基性成分であり、溶融スラグの粘性を高め、またスラグの融点を調整するために有効な成分である。MgOの含有量が2質量%未満であると、溶融スラグの粘性を高める効果及びスラグの融点を調整する効果が小さい。一方、MgOの含有量が8質量%を超えると、スラグの融点が高くなり過ぎて、スラグ巻込み及びポックマークの発生原因となり、またビード形状が不安定になる。従って、MgOの含有量は2乃至8質量%とする。
【0018】
「Al:2乃至8質量%」
Alは塩基性及び酸性酸化物のいずれにも属さない成分であるため、塩基度を大きく低下させることなく溶融スラグの粘性及びスラグの融点を高めるために有効な成分である。Alの含有量が2質量%未満であると、溶融スラグの粘性がやや不足であり、またスラグの融点が低下して、アンダーカット及びビード形状不良の発生原因となる。一方、Alの含有量が8質量%を超えると、溶融スラグの粘性及びスラグの融点が高くなり過ぎて、スラグ巻込みが発生し易くなり、またビード形状が凸になり易い。従って、Alの含有量は2乃至8質量%とする。
【0019】
「MnO:2乃至8質量%」
MnOは塩基性成分であり、溶融スラグの流動性を高めてビードを平滑にし、またスラグの融点を調整するために有効な成分である。MnOの含有量が2質量%未満であると、スラグが焼き付いたり、アンダーカットが発生し易くなる。一方、MnOの含有量が8質量%を超えると、ビードが蛇行し易くなる。従って、MnOの含有量は2乃至8質量%とする。
【0020】
「TiO:4乃至10質量%」
TiOは酸性成分であり、溶融スラグの粘性を大きく高めることなくスラグの融点を調整し、更にビード形状を平滑にしてシュリンケージキャビティの発生を抑制するために有効な成分である。TiOの含有量が4質量%未満であると、上記全ての効果が小さいために、ビードの形状不良及びシュリンケージキャビティが発生する。一方、TiOの含有量が10質量%を超えると、スラグ剥離性が著しく劣化し、スラグ焼付きも多発する。従って、TiOの含有量は4乃至10質量%とする。
【0021】
「FeO:0.5乃至4.0質量%」
FeOは塩基性成分であり、溶融スラグの粘性及びスラグの融点を調整するために有効な成分であり、ビード表面にリップルが形成するのを抑制すると共に、溶融金属の最終凝固部がビード中央部へ偏在しないような凝固形態に改善して、シュリンケージキャビティの形成を防止することができる。しかしながら、FeOの含有量が0.5質量%未満であると、ビード形状が不安定で部分的に凸になり易く、またシュリンケージキャビティが発生する。一方、FeOの含有量が4.0質量%を超えると、溶融スラグの流動性が過剰になってアンダーカットが発生し易くなると共に、ビード形状が不揃いになる。従って、FeOの含有量は0.5乃至4.0質量%とする。
【0022】
「BaO:0.9質量%以下」
BaOは塩基性成分であるため、溶接金属の酸素含有量を低くする作用を有する。しかしながら、BaOの含有量が0.9質量%を超えると、ビード形状が不良となり、更にリップルが顕著に発生して、ビード中央部にシュリンケージキャビティが発生する。従って、BaOの含有量は0.9質量%以下とする。
【0023】
上述のとおり、フラックスの成分組成の範囲を規定することにより、サブマージアーク溶接で高速溶接をしてもシュリンケージキャビティの発生は抑制され、スラグ巻込み及びアンダーカット等の溶接欠陥は発生せず、ビード形状等が良好で溶接作業性が優れ、且つ溶接金属の靭性が優れたものになる。
【0024】
更に、本発明に係るフラックスはSrOを0.5乃至3.0質量%含有することが好ましい。
【0025】
「SrO:0.3乃至3.0質量%」
SrOは溶融スラグの粘性を高め、ビード形状を改善し、またアークを安定化させ、更にシュリンケージキャビティを抑制するために有効な成分である。しかしながら、SrOの含有量が0.3質量%未満であると上記効果は小さい。一方、SrOの含有量が3.0質量%を超えると、溶融スラグの粘性が過大になり、ビード形状が凸になり易い。従って、SrOの含有量を0.3乃至3.0質量%とすることが好ましい。
【0026】
なお、NaO、KO及びB等、上記以外の成分組成については、特には規定しないが、必要に応じて適宜添加することができる。
【0027】
【実施例】
次に、本発明の範囲に入る実施例のサブマージアーク溶接用溶融型フラックスについて、本発明の範囲から外れる比較例と比較して、その効果について説明する。
【0028】
下記表1及び表2に示す成分組成の溶融型フラックスを使用してサブマージアーク溶接による高速溶接試験を行い、溶接作業性(スラグ剥離性、スラグ焼付き、ビード外観、ビード形状、アンダーカット、スラグ巻込み及びシュリンケージキャビティ)及び溶接金属の酸素含有量を評価した。なお、表1及び表2中の「その他」はアルカリ金属の酸化物及びB等である。図1は溶接試験に使用した供試鋼板の開先形状を示す板幅方向断面図である。図1に示すように、1枚の供試鋼板1の上面側に開先角度が90°、開先深さが6mmのV型開先2を加工した。供試鋼板1は、板厚が20mm、板幅が150mm、溶接方向の板長さが1200mmで、鋼種はSM490Aである。供試ワイヤーは直径が4.0mmで、その主要成分組成は表3に示すとおりである。溶接機はタンデム式3電極サブマージアーク溶接機を使用し、溶接条件を表4に示す。
【0029】
溶接作業性の試験結果及び溶接金属の酸素含有量の分析結果を表5及び表6に示す。表5及び表6の各項目の判定基準について説明する。なお、各供試鋼板1(図1参照)の試験溶接長さは1200mmである。
【0030】
スラグ剥離性については、スラグハンマーによる1回の軽い打突でスラグを除去可能なものを◎、2回以下の打突でスラグを除去可能なものを○、3乃至5回の打突でスラグを除去可能なものを△、6回以上の打突でスラグを除去可能なものを×で表記した。
【0031】
スラグ焼付きについては、ビードの幅方向両端部に点状の焼付きがあるものを◎、ビードの幅方向両端部の所々に、連続的な焼付きがあるものを○、ビードの幅方向両端部にほぼ連続的な焼付きがあるものを△、ビード上に焼付きが多数あるものを×で表記した。
【0032】
ビード外観については、ポックマークが溶接長さ1mあたり1個以下のものを◎、ポックマークが溶接長さ1mあたり2乃至3個のものを○、ポックマークが溶接長さ1mあたり4乃至5個のものを△、ポックマークが溶接長さ1mあたり6個以上のものを×と表記した。
【0033】
ビード形状については、溶接長さ1mあたり凹凸が2mm以下で蛇行が3mm以下のときを◎、溶接長さ1mあたり凹凸が3.5mm以下で蛇行が3超6mm以下のときを○、溶接長さ1mあたり凹凸が3.5超5mm以下で蛇行が6超10mm以下のときを△、溶接長さ1mあたり凹凸が5mm超で蛇行が10mm超のときを×で表記した。
【0034】
アンダーカットについては、溶接長さ1mあたり深さが0.5mm以下のときを◎、溶接長さ1mあたり深さが0.5超1mm以下のときを○、溶接長さ1mあたり深さが1超1.5mm以下のときを△、溶接長さ1mあたり深さが1.5mm超のときを×と表記した。
【0035】
シュリンケージキャビティについては、溶接長さ1mあたり20mm以下のときを◎、溶接長さ1mあたり20超50mm以下のときを○、溶接長さ1mあたり50超80mm以下のときを△、溶接長さ1mあたり80mm超のときを×で表記した。
【0036】
溶接作業性に関する上記各試験項目で、◎のときは非常に良好、○のときは良好、△のときは並み、×のときは不良であり、非常に良好から並みまでを合格とした。
【0037】
溶接金属の酸素含有量については、300ppm以下のものを○(良好)とし、300ppm超のものを×(不良)とした。スラグ巻き込みについては、X線透過試験によりスラグ巻き込みの有無を判定し、無い場合を○、有りの場合を×とした。なお、溶接スタート部150mmと、クレータ部は判定対象外とした。
【0038】
【表1】

Figure 2004154840
【0039】
【表2】
Figure 2004154840
【0040】
【表3】
Figure 2004154840
【0041】
【表4】
Figure 2004154840
【0042】
【表5】
Figure 2004154840
【0043】
【表6】
Figure 2004154840
【0044】
上記表5及び表6に示すように、実施例No.1乃至14及び実施例No.16乃至22はいずれも本発明に係るサブマージアーク溶接用溶融型フラックスの要件を満たしており、良好な溶接作業性を有し、且つ溶接金属の酸素含有量が低く抑制されている。実施例No.15は不純物成分のSrOの含有量が3.4質量%と異常に高いために、ビード形状がやや凸となり、ビード形状の評価結果は合格ではあったが良好ではなく並みであった。なお、実施例No.9、12、16及び22は、本発明の請求項2も満たすため、請求項2から外れる実施例No.1、3、6、17、19及び20に比べて、シュリンケージキャビティの評価結果が更に良好であった。また、実施例No.9、12及び16は本発明の請求項2も満たすため、実施例No.2、5、8、10、11、13乃至15、18及び20に比べて、ビード形状の評価結果が更に良好であった。
【0045】
これに対して、比較例No.25はSiOの含有量が本発明の下限値(23質量%)未満であるため、溶融スラグの粘性が不足してアンダーカットが発生した。比較例No.33はSiOの含有量が本発明の上限値(33質量%)を超えており、溶融スラグの粘性が高くなり過ぎてビード形状が凸になり、またスラグの高塩基度を確保できず、溶接金属の酸素含有量が340ppmと高く、目標値(300ppm以下)を大きくオーバーした。
【0046】
比較例No.38はCaOの含有量が本発明の下限値(25質量%)未満であるため、溶融スラグの粘性が不足して、ビード蛇行が発生した。比較例No.23はCaOの含有量が本発明の上限値(35質量%)を超えており、溶融スラグの粘性及び融点が高くなり過ぎてスラグ剥離性が悪く、またシュリンケージキャビティも発生した。
【0047】
比較例No.29はCaFの含有量が本発明の下限値(15質量%)未満であるため、溶融スラグの流動性が悪く、融点が下がらず、ビード形状が凸となって不良となった。比較例No.39はCaFの含有量が本発明の上限値(25質量%)を超えており、溶融スラグの流動性が過大となり、融点が低くなり過ぎてスラグ剥離性が悪く、ビード際のスラグ焼付きが発生し、更にシュリンケージキャビティも発生した。
【0048】
比較例No.34はMgOの含有量が本発明の下限値(2質量%)未満であるため、溶融スラグの粘性が不足したために、ビード蛇行が発生してビード形状が不良であった。比較例No.24はMgOの含有量が本発明の上限値(8質量%)を超えており、スラグの融点が高くなり過ぎて、ビード形状が不安定でビード形状不良となり、ポックマークも発生してビード外観が不良となった。
【0049】
比較例No.36はAlの含有量が本発明の下限値(2質量%)未満であるため、溶融スラグの粘性が不足し、またスラグの融点が低下して、アンダーカットが発生し、ビード形状が不安定でビード形状が不良となった。比較例No.31はAlの含有量が本発明の上限値(8質量%)を超えており、溶融スラグの粘性及びスラグの融点が高くなり過ぎて、ビード形状が凸になりビード形状が不良となった。
【0050】
比較例No.27はMnOの含有量が本発明の下限値(2質量%)未満であるため、溶融スラグの流動性及び融点が低過ぎてスラグ焼付きが発生し、アンダーカットが発生した。比較例No.32はMnOの含有量が本発明の上限値(8質量%)を超えており、溶融スラグの流動性が高すぎてビード蛇行が発生してビード形状が不良となった。
【0051】
比較例No.30はTiOの含有量が本発明の下限値(4質量%)未満であるため、スラグの融点を低下させることができないため、シュリンケージキャビティが多発し、ビード形状が不良となった。比較例No.26はTiOの含有量が本発明の上限値(10質量%)を超えており、溶融スラグの流動性が過大となり、融点が低くなり過ぎてスラグ剥離性が不良で、スラグ焼付きも多発した。
【0052】
比較例No.35はFeOの含有量が本発明の下限値(0.5質量%)未満であるため、スラグの粘性及び融点が低下せず、ビード形状が不良となり、またシュリンケージキャビティが多発した。比較例No.28はFeOの含有量が本発明の上限値(4.0質量%)を超えており、溶融スラグの流動性が過剰になってビード形状が不揃いになりビード形状が不良となり、またアンダーカットが発生した。
【0053】
比較例No.37はBaOの含有量が本発明の上限規制値(0.9質量%)を超えているため、ビード形状が不良となった。なお、BaOの含有量が本発明の上限規制値(0.9質量%)を外れているが、SrOの含有量が本発明の請求項2の規定値を満たしているので、シュリンケージキャビティの発生は抑制されて良好であった。比較例No.40はBaOの含有量が本発明の上限規制値(0.9質量%)を超えているため、ビード形状が不良で、シュリンケージキャビティが発生した。
【0054】
【発明の効果】
以上詳述したように本発明によれば、サブマージアーク溶接による高速溶接において、シュリンケージキャビティの発生が抑制され、良好な溶接作業性が得られると共に、溶接金属の酸素含有量が抑制されて溶接部の衝撃特性が向上する。従って、本発明は、サブマージアーク溶接による高速溶接化に多大の貢献をなす。
【図面の簡単な説明】
【図1】実施例及び比較例において使用した供試鋼板の開先形状を示す板幅方向断面図である。
【符号の説明】
1;供試鋼板
2;V型開先[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a molten flux for submerged arc welding, which has excellent low-temperature toughness of a weld metal and excellent welding workability in high-speed welding.
[0002]
[Prior art]
Generally, submerged arc welding is widely used for welding low carbon steel, high strength steel, and the like. On the other hand, as the use environment of a welded structure becomes severe, a demand for improvement in toughness of a weld metal is increasing. In addition, the demand for high-speed welding has been further increased for higher efficiency than ever before, and a flux for submerged arc welding that achieves both high-speed welding and improved impact characteristics of welds, including improved toughness of the weld metal, is required. Have been.
[0003]
In submerged arc welding, it is effective to lower the oxygen content of the weld metal in order to increase the toughness of the weld metal. Incidentally, the flux used in the submerged arc welding includes a bond flux and a molten flux. Since a deoxidizing agent such as metal Si and / or metal Mn can be added to the flux itself in the bond flux, the oxygen content of the weld metal can be reduced relatively easily. However, when high-speed welding is performed using a bond flux, a pock mark and / or a blow hole is easily generated in the weld metal, which is not practical. Therefore, a molten flux is widely used for high-speed submerged arc welding.
[0004]
On the other hand, it is not possible to add a deoxidizer in advance to the molten flux due to the restriction of the manufacturing process, unlike the case of the bond flux. However, as in the case of the bond flux, the basicity of the flux is reduced. Since the composition can be increased, the oxygen content of the weld metal can be reduced. Furthermore, if a molten flux is used, a uniform bead free of blowholes and slag during high-speed welding can be obtained. However, in submerged arc welding, if the welding speed is further increased, welding defects such as undercut, poor bead shape, and slag entrapment are likely to occur. Necessary for both improvement of characteristics and high-speed welding.
[0005]
Therefore, various fluxes for submerged arc welding for solving the above problems have been proposed. For example, JP-A-6-31481 (Patent Document 1) discloses that the amounts of CaO and CaF 2 added to a flux are CaO + CaF 2 ≧ 35 mass%, and (CaF 2 content) / (CaO content). ) ≧ 1.0, the content of Al 2 O 3 and MgO having a high melting point as a simple substance is kept low, and the softening temperature of the flux is set to 1100 ° C. or less to prevent slag entrainment in particular, and further, BaO ≦ A flux for improving a bead shape or the like containing 5% by mass, Na 2 O + K 2 O ≦ 2% by mass, and B 2 O 3 ≦ 1% by mass is disclosed. Japanese Patent Application Laid-Open No. Hei 7-256488 (Patent Document 2) discloses that the ratio of the following metal fluoride and metal oxide in the flux is (CaF 2 + MgF 2 + BaF 2 ) / (CaO + MgO + BaO) ≧ 1.4. (However, the metal fluoride is one or more of the above compounds) and the total F content is adjusted to 25% by mass or less, and these are added as a mixed salt to improve the fluidity of the slag to improve the slag flow. A technique has been disclosed that reduces entrainment and reduces the oxygen content of the weld metal as a highly basic flux. Further, the Japanese Patent 9-262692 discloses (referred to as Patent Document 3), BaO and TiO 2 content is unavoidable impurities in the flux is regulated to respectively 1 and 0.5 mass% or less the viscosity of the slag In addition to preventing slag entrainment, the MgO content / (SiO 2 content + CaF 2 content) is adjusted to 0.20 to 0.60 to prevent the occurrence of undercut, and to reduce the oxygen content of the weld metal. A technique is disclosed in which the increase in the amount is suppressed, the bead shape is improved by setting the Al 2 O 3 content to 8% by mass or more, and the slag removability is improved by suppressing the content to 18% by mass or less.
[0006]
As described above, Patent Documents 1, 2, and 3 disclose that in submerged arc welding, occurrence of welding defects such as undercut, poor bead shape, and slag entrainment, and to ensure good workability in high-speed welding. Meanwhile, a flux for improving the toughness of a weld metal is described.
[0007]
[Patent Document 1]
JP-A-6-31481 (paragraph numbers 0008 to 0009 on page 2 of this publication, paragraph numbers 0016 to 0020 on page 3).
[Patent Document 2]
JP-A-7-256488 (paragraphs 0005 to 0012 on pages 2 and 3 of this publication).
[Patent Document 3]
JP-A-9-262892 (paragraphs 0009 to 0024 on pages 2 to 4 of this publication).
[0008]
[Problems to be solved by the invention]
However, Patent Documents 1 to 3 do not disclose a method for preventing the occurrence of shrinkage cavities (shrinkage holes) generated in high-speed welding in submerged arc welding. The shrinkage cavities are considered to be shrinkage holes formed in the final solidified portion of the bead, and may be scattered in the form of islands inside the weld metal along the bead or may occur over the entire length of the bead. Shrinkage cavities do not directly affect the mechanical properties such as the strength of the weld metal itself, but the quality characteristics of the weld at the location where the shrinkage cavities exist are degraded, causing defects in the quality of the welded structure. There is a problem that becomes. For example, shrinkage cavities generated in the seam weld metal of a UOE steel pipe may cause air bubbles in the resin coated on the surface of the UOE steel pipe after welding, or may significantly increase the variation in resin film thickness. Variations in quality occur, which significantly degrade the product quality of the steel pipe.
[0009]
The present invention has been made in view of such problems, and does not generate shrinkage cavities even when high-speed welding is performed, does not generate welding defects such as slag entrainment and undercut, and has a bead shape or the like. It is an object of the present invention to provide a molten flux for submerged arc welding that is excellent in welding workability and excellent in toughness of a weld metal.
[0010]
[Means for Solving the Problems]
The molten flux for submerged arc welding according to the present invention is composed of 23 to 33% by mass of SiO 2 , 25 to 35% by mass of CaO, 15 to 25% by mass of CaF 2 , and 2 to 8% by mass of MgO based on the total weight of the flux. %, Al 2 O 3 : 2 to 8% by mass, MnO: 2 to 8% by mass, TiO 2 : 4 to 10% by mass, FeO: 0.5 to 4.0% by mass, and BaO: 0.9% by mass or less It is characterized by containing. In the present invention, it is preferable to further contain 0.3 to 3.0% by mass of SrO.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a molten flux for submerged arc welding according to an embodiment of the present invention will be described. In order to achieve the above object, the inventors of the present application have conducted intensive experiments and researches. As a result, by appropriately defining the composition of the molten flux for submerged arc welding, the occurrence of welding defects such as slag entrainment and undercut is suppressed. However, they have found that high-speed welding can be performed with good workability while suppressing the generation of shrinkage cavities, and the oxygen content of the weld metal can be kept low. In addition, below, the findings obtained particularly on the prevention of shrinkage cavity generation will be described.
[0012]
As the welding speed is increased in submerged arc welding, the shape of the molten pool tends to be a teardrop shape, and the teardrop becomes elongated, so that the molten steel becomes difficult to flow backward in the welding progress direction of the molten pool, and the molten steel is shrunk at the center of the bead. Linkage cavities (shrinkage holes) are likely to occur. The present inventors have prototyped molten fluxes of various component compositions and investigated the relationship between the basicity of slag and the state of occurrence of shrinkage cavities.As a result, the higher the basicity of slag, the more likely shrinkage cavities are generated. I learned that The mechanism of occurrence of this phenomenon is that when the basicity of the slag increases, factors such as the solidification temperature range, viscosity, and shape of the molten slag, which are related to the basicity, increase the fluidity of the surface molten steel of the bead immediately below the molten slag. It is presumed that this is because the solidification condition of molten steel that satisfies the condition is satisfied and the shrinkage cavity easily forms. Then, as a result of investigating the relationship between the main component system of the flux and the generation of shrinkage cavities, each of the ternary components of SiO 2 —CaO—CaF 2 was found to contain MgO, Al 2 O 3 , MnO, TiO 2 and FeO. By adding the contents in a well-balanced combination and regulating the upper limit of the BaO content, it has been found that even with a high basicity flux, the occurrence of shrinkage cavities during high-speed welding can be prevented. In particular, among the above components, it has been found that the addition of an appropriate amount of FeO is effective in preventing shrinkage cavities, and that limiting the content of BaO is effective in preventing shrinkage cavities.
[0013]
Hereinafter, the reasons for limiting the component composition of the molten flux for submerged arc welding according to the present invention will be described.
[0014]
"SiO 2 : 23 to 33% by mass"
SiO 2 is an acidic component, which is an effective component for adjusting the viscosity of the molten slag and the melting point of the slag, and affects the occurrence of undercut during high-speed welding. When the content of SiO 2 is less than 23% by mass, the viscosity of the molten slag is insufficient and causes undercut, and the molten slag rapidly solidifies to cause slag entrainment. On the other hand, if the content of SiO 2 exceeds 33% by mass, the viscosity of the molten slag becomes too high, and the bead shape is likely to be convex, and it becomes impossible to secure high basicity of the slag, and the oxygen content of the weld metal is reduced. As a result, the toughness deteriorates, so that it is difficult to achieve both high basicity and welding workability. Therefore, the content of SiO 2 is set to 23 to 33% by mass.
[0015]
"CaO: 25 to 35% by mass"
CaO is a basic component and is an effective component for increasing the viscosity and solidification temperature of molten slag. If the content of CaO is less than 25% by mass, the viscosity of the molten slag is insufficient, which causes the generation of bead meandering. On the other hand, when the content of CaO exceeds 35% by mass, slag entrapment is likely to occur, and slag removability is deteriorated, and shrinkage cavities are likely to occur. Therefore, the content of CaO is set to 25 to 35% by mass.
[0016]
"CaF 2 : 15 to 25% by mass"
CaF 2 is also a basic component, and is an effective component for increasing the fluidity of the molten slag and adjusting the melting point of the slag. When the content of CaF 2 is less than 15% by mass, the effect of increasing the fluidity of the molten slag and the effect of adjusting the melting point of the slag are small. On the other hand, if the content of CaF 2 exceeds 25% by mass, slag entrapment is liable to occur, and furthermore, slag releasability deteriorates, slag seizure at the time of bead increases, and further generation of shrinkage cavities occurs. Encourage. Therefore, the content of CaF 2 is set to 15 to 25% by mass.
[0017]
"MgO: 2 to 8% by mass"
MgO is a basic component, and is an effective component for increasing the viscosity of the molten slag and adjusting the melting point of the slag. When the content of MgO is less than 2% by mass, the effect of increasing the viscosity of the molten slag and the effect of adjusting the melting point of the slag are small. On the other hand, if the content of MgO exceeds 8% by mass, the melting point of the slag becomes too high, causing slag entrainment and pock marks, and the bead shape becomes unstable. Therefore, the content of MgO is set to 2 to 8% by mass.
[0018]
“Al 2 O 3 : 2 to 8% by mass”
Since Al 2 O 3 is a component that does not belong to any of the basic and acidic oxides, it is an effective component for increasing the viscosity of the molten slag and the melting point of the slag without greatly reducing the basicity. When the content of Al 2 O 3 is less than 2% by mass, the viscosity of the molten slag is slightly insufficient, and the melting point of the slag is lowered, which causes undercut and defective bead shape. On the other hand, when the content of Al 2 O 3 exceeds 8% by mass, the viscosity of the molten slag and the melting point of the slag become too high, so that the slag is likely to be entrained and the bead shape is likely to be convex. Therefore, the content of Al 2 O 3 is set to 2 to 8% by mass.
[0019]
"MnO: 2 to 8% by mass"
MnO is a basic component, and is an effective component for increasing the fluidity of the molten slag, smoothing the bead, and adjusting the melting point of the slag. When the content of MnO is less than 2% by mass, slag is easily seized and undercuts are easily generated. On the other hand, if the content of MnO exceeds 8% by mass, the bead tends to meander. Therefore, the content of MnO is set to 2 to 8% by mass.
[0020]
"TiO 2 : 4 to 10% by mass"
TiO 2 is an acidic component, and is an effective component for adjusting the melting point of the slag without greatly increasing the viscosity of the molten slag, and for further suppressing the generation of shrinkage cavities by smoothing the bead shape. When the content of TiO 2 is less than 4% by mass, all of the above effects are small, so that a bead shape defect and a shrinkage cavity occur. On the other hand, when the content of TiO 2 exceeds 10% by mass, the slag removability is significantly deteriorated, and slag seizure frequently occurs. Therefore, the content of TiO 2 is set to 4 to 10% by mass.
[0021]
"FeO: 0.5 to 4.0 mass%"
FeO is a basic component, and is an effective component for adjusting the viscosity of the molten slag and the melting point of the slag. It suppresses the formation of ripples on the bead surface, and the final solidified portion of the molten metal is formed at the center of the bead. It is possible to improve the solidification form so as not to be unevenly distributed and prevent the formation of the shrinkage cavity. However, when the content of FeO is less than 0.5% by mass, the bead shape is unstable and tends to be partially convex, and a shrinkage cavity is generated. On the other hand, when the content of FeO exceeds 4.0% by mass, the fluidity of the molten slag becomes excessive, so that undercut easily occurs and the bead shape becomes uneven. Therefore, the content of FeO is set to 0.5 to 4.0% by mass.
[0022]
"BaO: 0.9% by mass or less"
Since BaO is a basic component, it has an effect of reducing the oxygen content of the weld metal. However, if the content of BaO exceeds 0.9% by mass, the bead shape becomes poor, ripples are more remarkably generated, and shrinkage cavities are generated at the center of the bead. Therefore, the content of BaO is set to 0.9% by mass or less.
[0023]
As described above, by defining the range of the component composition of the flux, the occurrence of shrinkage cavities is suppressed even when performing high-speed welding by submerged arc welding, and welding defects such as slag entrainment and undercut do not occur, Good bead shape, etc., excellent welding workability, and excellent weld metal toughness.
[0024]
Further, the flux according to the present invention preferably contains 0.5 to 3.0% by mass of SrO.
[0025]
"SrO: 0.3 to 3.0% by mass"
SrO is an effective component for increasing the viscosity of the molten slag, improving the bead shape, stabilizing the arc, and suppressing the shrinkage cavity. However, when the SrO content is less than 0.3% by mass, the above effect is small. On the other hand, if the content of SrO exceeds 3.0% by mass, the viscosity of the molten slag becomes excessive, and the bead shape is likely to be convex. Therefore, the content of SrO is preferably set to 0.3 to 3.0% by mass.
[0026]
The composition of the components other than the above, such as Na 2 O, K 2 O, and B 2 O 3 , is not particularly defined, but can be appropriately added as needed.
[0027]
【Example】
Next, the effects of the molten flux for submerged arc welding of the examples falling within the scope of the present invention will be described in comparison with comparative examples that fall outside the scope of the present invention.
[0028]
A high-speed welding test by submerged arc welding was performed using a molten flux having a component composition shown in Tables 1 and 2 below, and welding workability (slag peelability, slag seizure, bead appearance, bead shape, undercut, slag) The entrainment and shrinkage cavities) and the oxygen content of the weld metal were evaluated. Note that “Others” in Tables 1 and 2 is an alkali metal oxide, B 2 O 3, and the like. FIG. 1 is a cross-sectional view in the width direction showing the groove shape of the test steel sheet used for the welding test. As shown in FIG. 1, a V-shaped groove 2 having a groove angle of 90 ° and a groove depth of 6 mm was formed on the upper surface side of one test steel sheet 1. The test steel plate 1 has a plate thickness of 20 mm, a plate width of 150 mm, a plate length in the welding direction of 1200 mm, and a steel type of SM490A. The test wire has a diameter of 4.0 mm, and the main component composition is as shown in Table 3. The welding machine used was a tandem type three-electrode submerged arc welding machine, and the welding conditions are shown in Table 4.
[0029]
Tables 5 and 6 show the test results of the welding workability and the analysis results of the oxygen content of the weld metal. The criteria for each item in Tables 5 and 6 will be described. The test welding length of each test steel sheet 1 (see FIG. 1) is 1200 mm.
[0030]
Regarding the slag removability, one that can remove slag by one light strike with a slag hammer ◎ one that can remove slag with two or less strikes ○ One that can remove slag by three to five strikes Are shown as Δ, and those capable of removing slag by six or more hits are indicated by x.
[0031]
Regarding slag seizure, ◎ those with dot-like seizures at both ends in the width direction of the bead, ○ those with continuous seizure at both ends in the width direction of the bead, ○, both ends in the width direction of the bead Those with substantially continuous seizure in the part were marked with △, and those with many seizures on the bead were marked with x.
[0032]
Regarding the bead appearance, ◎ indicates that the number of pock marks is 1 or less per 1 m of welding length, を indicates that the number of pock marks is 2 to 3 per 1 m of welding length, and 4 to 5 indicates the number of pock marks per 1 m of welding length. , And those with 6 or more pock marks per 1 m of welding length were indicated by x.
[0033]
Regarding the bead shape, ◎ indicates that the unevenness is 2 mm or less and the meandering is 3 mm or less per 1 m of welding length, を indicates that the unevenness is 3.5 mm or less and the meandering is more than 3 and 6 mm or less per 1 m of the welding length. When the unevenness per m is more than 3.5 and 5 mm or less and the meandering is more than 6 and 10 mm or less, △ is shown, and when the unevenness is more than 5 mm and the meandering is more than 10 mm per 1 m of welding length, it is indicated with ×.
[0034]
Regarding the undercut, when the depth per 1 m of the welding length is 0.5 mm or less, ◎, when the depth per 1 m of the welding length is more than 0.5 and 1 mm or less, 、, and when the depth per 1 m of the welding length is 1 The case where the depth is more than 1.5 mm or less is denoted by Δ, and the case where the depth per 1.5 m of the welding length is more than 1.5 mm is denoted by ×.
[0035]
Regarding the shrinkage cavity, ◎ indicates that the welding length is 20 mm or less per 1 m, ○ indicates that the welding length is more than 20 and 50 mm or less, 1 indicates that the welding length is more than 50 and 80 mm or less, and 1 indicates the welding length. When it is more than 80 mm per unit, it is indicated by x.
[0036]
In each of the above test items relating to welding workability, ◎ indicates very good, ○ indicates good, △ indicates average, and × indicates poor.
[0037]
Regarding the oxygen content of the weld metal, those with 300 ppm or less were rated as ○ (good), and those with more than 300 ppm were rated as x (bad). Regarding slag entrainment, the presence or absence of slag entrapment was determined by an X-ray transmission test. The 150 mm welding start part and the crater part were excluded from the judgment.
[0038]
[Table 1]
Figure 2004154840
[0039]
[Table 2]
Figure 2004154840
[0040]
[Table 3]
Figure 2004154840
[0041]
[Table 4]
Figure 2004154840
[0042]
[Table 5]
Figure 2004154840
[0043]
[Table 6]
Figure 2004154840
[0044]
As shown in Tables 5 and 6 above, Example Nos. Nos. 1 to 14 and Example Nos. Each of Nos. 16 to 22 satisfies the requirements of the molten flux for submerged arc welding according to the present invention, has good welding workability, and suppresses the oxygen content of the weld metal to a low level. Example No. In No. 15, since the SrO content of the impurity component was abnormally high at 3.4% by mass, the bead shape became slightly convex, and the bead shape evaluation result was acceptable but not good but average. In addition, in Example No. The embodiments Nos. 9, 12, 16 and 22 satisfy the second aspect of the present invention, and therefore the embodiments No. 9 deviated from the second aspect. As compared with 1, 3, 6, 17, 19 and 20, the evaluation result of the shrinkage cavity was even better. Also, in Example No. Embodiments Nos. 9, 12, and 16 also satisfy claim 2 of the present invention. Compared with 2, 5, 8, 10, 11, 13 to 15, 18, and 20, the evaluation results of the bead shape were even better.
[0045]
On the other hand, in Comparative Example No. In No. 25, since the content of SiO 2 was less than the lower limit (23% by mass) of the present invention, the viscosity of the molten slag was insufficient and undercut occurred. Comparative Example No. In the case of No. 33, the content of SiO 2 exceeds the upper limit (33% by mass) of the present invention, the viscosity of the molten slag becomes too high, the bead shape becomes convex, and the high basicity of the slag cannot be secured, The oxygen content of the weld metal was as high as 340 ppm, greatly exceeding the target value (300 ppm or less).
[0046]
Comparative Example No. In No. 38, since the CaO content was less than the lower limit (25% by mass) of the present invention, the viscosity of the molten slag was insufficient, and bead meandering occurred. Comparative Example No. In No. 23, the content of CaO exceeded the upper limit (35% by mass) of the present invention, and the viscosity and melting point of the molten slag became too high, so that the slag removability was poor and shrinkage cavities occurred.
[0047]
Comparative Example No. In No. 29, since the content of CaF 2 was less than the lower limit (15% by mass) of the present invention, the fluidity of the molten slag was poor, the melting point was not lowered, and the bead shape became convex, resulting in failure. Comparative Example No. No. 39 has a CaF 2 content exceeding the upper limit (25% by mass) of the present invention, the fluidity of the molten slag is excessive, the melting point is too low, the slag peeling property is poor, and slag seizure at the time of a bead is caused. And shrinkage cavities also occurred.
[0048]
Comparative Example No. In No. 34, since the content of MgO was less than the lower limit (2% by mass) of the present invention, the viscosity of the molten slag was insufficient, so that bead meandering occurred and the bead shape was poor. Comparative Example No. In No. 24, the MgO content exceeded the upper limit (8% by mass) of the present invention, the melting point of the slag was too high, the bead shape was unstable and the bead shape was poor, and a pock mark was generated and the bead appearance. Became defective.
[0049]
Comparative Example No. In No. 36, since the content of Al 2 O 3 is less than the lower limit (2% by mass) of the present invention, the viscosity of the molten slag is insufficient, the melting point of the slag is lowered, undercut occurs, and the bead shape is generated. Was unstable and the bead shape was poor. Comparative Example No. In No. 31, the content of Al 2 O 3 exceeds the upper limit (8% by mass) of the present invention, the viscosity of the molten slag and the melting point of the slag become too high, and the bead shape becomes convex and the bead shape is poor. became.
[0050]
Comparative Example No. In No. 27, since the MnO content was less than the lower limit (2% by mass) of the present invention, the fluidity and melting point of the molten slag were too low, slag seizure occurred, and undercut occurred. Comparative Example No. In No. 32, the MnO content exceeded the upper limit (8% by mass) of the present invention, and the fluidity of the molten slag was too high to cause bead meandering, resulting in poor bead shape.
[0051]
Comparative Example No. In No. 30, since the content of TiO 2 was less than the lower limit (4% by mass) of the present invention, the melting point of the slag could not be lowered, so that shrinkage cavities occurred frequently and the bead shape was poor. Comparative Example No. In No. 26, the content of TiO 2 exceeds the upper limit (10% by mass) of the present invention, the fluidity of the molten slag becomes excessive, the melting point becomes too low, the slag removability is poor, and slag seizure frequently occurs. did.
[0052]
Comparative Example No. In No. 35, since the FeO content was less than the lower limit (0.5% by mass) of the present invention, the viscosity and melting point of the slag did not decrease, the bead shape was poor, and shrinkage cavities occurred frequently. Comparative Example No. In No. 28, the content of FeO exceeds the upper limit (4.0% by mass) of the present invention, the fluidity of the molten slag becomes excessive, the bead shape becomes irregular, the bead shape becomes poor, and undercut occurs. Occurred.
[0053]
Comparative Example No. In No. 37, since the BaO content exceeded the upper limit value (0.9% by mass) of the present invention, the bead shape was poor. Although the content of BaO is out of the upper limit value (0.9% by mass) of the present invention, the content of SrO satisfies the value specified in claim 2 of the present invention. The occurrence was suppressed and good. Comparative Example No. In No. 40, since the content of BaO exceeded the upper limit value (0.9% by mass) of the present invention, the bead shape was poor and shrinkage cavities occurred.
[0054]
【The invention's effect】
As described in detail above, according to the present invention, in high-speed welding by submerged arc welding, the occurrence of shrinkage cavities is suppressed, good welding workability is obtained, and the oxygen content of the weld metal is suppressed, thus making welding possible. The impact characteristics of the part are improved. Therefore, the present invention greatly contributes to high-speed welding by submerged arc welding.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view in the width direction showing a groove shape of a test steel sheet used in Examples and Comparative Examples.
[Explanation of symbols]
1: Test steel plate 2: V-shaped groove

Claims (2)

フラックス全重量当たり、SiO:23乃至33質量%、CaO:25乃至35質量%、CaF:15乃至25質量%、MgO:2乃至8質量%、Al:2乃至8質量%、MnO:2乃至8質量%、TiO:4乃至10質量%、FeO:0.5乃至4.0質量%及びBaO:0.9質量%以下を含有することを特徴とするサブマージアーク溶接用溶融型フラックス。SiO 2 : 23 to 33% by mass, CaO: 25 to 35% by mass, CaF 2 : 15 to 25% by mass, MgO: 2 to 8% by mass, Al 2 O 3 : 2 to 8% by mass, based on the total weight of the flux, MnO: 2 to 8 wt%, TiO 2: 4 to 10 wt%, FeO: 0.5 to 4.0% by weight and BaO: melt for submerged arc welding, characterized in that it contains 0.9 wt% or less Mold flux. 更に、SrOを0.3乃至3.0質量%含有することを特徴とする請求項1に記載のサブマージアーク溶接用溶融型フラックス。The molten flux for submerged arc welding according to claim 1, further comprising 0.3 to 3.0% by mass of SrO.
JP2002324472A 2002-11-07 2002-11-07 Fused flux for submerged arc welding Expired - Lifetime JP3759100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002324472A JP3759100B2 (en) 2002-11-07 2002-11-07 Fused flux for submerged arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002324472A JP3759100B2 (en) 2002-11-07 2002-11-07 Fused flux for submerged arc welding

Publications (2)

Publication Number Publication Date
JP2004154840A true JP2004154840A (en) 2004-06-03
JP3759100B2 JP3759100B2 (en) 2006-03-22

Family

ID=32804041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002324472A Expired - Lifetime JP3759100B2 (en) 2002-11-07 2002-11-07 Fused flux for submerged arc welding

Country Status (1)

Country Link
JP (1) JP3759100B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117206820A (en) * 2022-11-28 2023-12-12 贵阳铝镁设计研究院有限公司 Vertical welding repair production system and method for anode steel claw

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117206820A (en) * 2022-11-28 2023-12-12 贵阳铝镁设计研究院有限公司 Vertical welding repair production system and method for anode steel claw
CN117206820B (en) * 2022-11-28 2024-02-06 贵阳铝镁设计研究院有限公司 Vertical welding repair production system and method for anode steel claw

Also Published As

Publication number Publication date
JP3759100B2 (en) 2006-03-22

Similar Documents

Publication Publication Date Title
JP2008183570A (en) Flux for electroslag build-up welding
US9102013B2 (en) Flux-cored welding wire for carbon steel and process for arc welding
JP3765771B2 (en) Stainless steel arc welding flux cored wire
JPH09239587A (en) Flux cored wire for gas shielded arc welding
JP2006272348A (en) Bonded flux for submerged arc welding
JP4531586B2 (en) Flux-cored wire for gas shielded arc fillet welding
JP2004154840A (en) Fusible flux for submerged-arc welding
JP3027312B2 (en) Flux for submerged arc welding
JP4993933B2 (en) Backing flux for single-sided submerged arc welding
JP2002331384A (en) Metal based-flux-cored wire for gas shielded arc welding
JP2001205483A (en) Flux-containing wire for gas shield arc welding
JP3889897B2 (en) Two-electrode vertical electrogas arc welding method with excellent welding workability and back bead appearance
JP6071798B2 (en) Flux for single-sided submerged arc welding
JP3124439B2 (en) High speed horizontal fillet gas shielded arc welding method
JP3836071B2 (en) Single electrode single-sided submerged arc welding method
JPH09314383A (en) High-speed horizontal fillet gas shielded metal arc welding method
KR100467761B1 (en) Submerged arc welding flux for excellent fillet welding workability
JP3815600B2 (en) One side horizontal fillet gas shielded arc welding method
JPH03275294A (en) Low-hydrogen type coated arc welding electrode
JP2005254284A (en) Gas shielded arc welding method
JP5669684B2 (en) Flux-cored wire for horizontal fillet gas shielded arc welding
JP2667636B2 (en) Molten flux for submerged arc welding
JPH09277089A (en) Large leg length horizontal fillet gas shielded arc welding method
KR100550334B1 (en) Submerged arc welding flux
JPH0630819B2 (en) High-speed submerged arc welding method for spiral steel pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3759100

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

EXPY Cancellation because of completion of term