JP2004154699A - Metal carrier for catalyst - Google Patents

Metal carrier for catalyst Download PDF

Info

Publication number
JP2004154699A
JP2004154699A JP2002323531A JP2002323531A JP2004154699A JP 2004154699 A JP2004154699 A JP 2004154699A JP 2002323531 A JP2002323531 A JP 2002323531A JP 2002323531 A JP2002323531 A JP 2002323531A JP 2004154699 A JP2004154699 A JP 2004154699A
Authority
JP
Japan
Prior art keywords
core
plate
corrugated
flat plate
outer cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002323531A
Other languages
Japanese (ja)
Inventor
Akio Sano
明男 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2002323531A priority Critical patent/JP2004154699A/en
Publication of JP2004154699A publication Critical patent/JP2004154699A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the damage to a core occurring when the core is force-fitted to an outer cylinder, to maintain the joining strength between the core and the outer cylinder by a brazing foil metal, to prevent the clogging of cell passages caused by the brazing filler metal, also to increase purification efficiency by widening a range in which an exhaust gas flow becomes turbulent within the cell passages to the maximum while securing the fixed strength by spot welding of the brazing foil metal to the core. <P>SOLUTION: Alternatively stacked wavy sheets 11 and flat sheets 12 are wound so that the flat sheets 12 are located on the outside to form a core 1. A plurality of holes 11a are formed at optional intervals on the wavy sheets 11. A plurality of holes 12a are formed at optional intervals on the flat sheets 12 excepting the parts composing the outer circumferential faces. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関等の排気系に装着する金属製触媒担体に関する。
【0002】
【従来の技術】
従来の、金属製薄板の波板と平板を交互に重ねて多重に巻回して形成したコアの一部外周にロー箔材を巻回し、これらを金属製の外筒内に圧入して熱処理することにより前記波板と平板とを拡散接合させると共に、前記外筒をロー箔材で接合した金属製触媒担体において、交互に重ねた前記波板と平板のうち平板が外側になるように巻回して前記コアを形成し、前記波板のみもしくは波板と平板の両方に任意間隔のもとに複数の孔が形成された構造のものがある(例えば、特許文献1参照。)。
【0003】
【特許文献1】
特開2002−143693号公報 (第2頁、図1、2)
【0004】
【発明が解決しようとする課題】
しかしながら、従来例の金属製薄板のうち、波板と平板の両方に任意間隔のもとに複数の孔が形成された構造のものにあっては、以下に述べるような問題がある。
【0005】
即ち、コアの外周面を構成する平板に複数の孔が存在することになると共に、ロー箔材はコア外周面全体ではなく中途部の一部に巻回されるものであるため、コアを外筒に圧入する際に、ロー箔材が巻回されていない部分のコア外表面に露出する平板部分に形成された各孔の開口縁部が外筒の開口縁部に引っかかって圧入を困難にしたり、無理に圧入しようとすると孔部分から平板に亀裂を生じさせる虞がある。
【0006】
また、コアの外周にロー箔材を巻回し、これを外筒に圧入した状態で熱処理する際に、液状化したロー材が平板に形成された孔に流れ込むことにより、コアと外筒との接合強度を確保できなくなる虞があると共に、孔から流れ込んだロー材がセル通路を塞ぐ虞がある。
【0007】
また、コアの外周に巻回されたロー箔材をスポット溶接によりコアに固定する際に、ロー箔材側から行われるスポット溶接位置とその裏面に隠れた平板の孔の位置とが一致する虞があり、その結果コアに対するロー箔材の固定強度を低下させることになるため、外筒に圧入する際に、コアに対するロー箔材の固定状態を維持させることができなくなる虞がある。なお、孔の位置を確認しながらスポット溶接を行うことは、作業効率を低下させることになる。
る。
【0008】
次に、従来例の金属製薄板のうち、波板側にのみ任意間隔のもとに複数の孔が形成された構造のものにあっては、セル通路内で乱流化する範囲が波板を挟んで対面する両平板相互間に限られるため、波板と平板の両方に孔を形成したものに比べ、排気浄化性能が劣るという問題点がある。
【0009】
なお、上述のように、ロー箔材をコア外周面全体ではなく中途部の一部にのみ巻回するのは、以下のような理由による。
即ち、外筒とコアの接合部位は、担体の耐久性と関係が深くその内容を一般的な担体破壊メカニズムから説明すると、車両に適用された触媒担体には、エンジンスタートと共に、入口から高温のガスが流入してくる。その際、触媒担体の中心により多くのガスが流れ、中心程温度が高くなる。また、入口に近い程早く温度が高くなる。やがてこの温度の高い領域はガス出口方向に広がり、触媒全体が高温になる。しかし、均一な温度にはならず、外筒周辺は冷却、放熱等により内部に比較し温度が低くなっている。このような現象はエンジンスタートのみならず運転中の加速時においてもより高温のガスが流入し、同様な触媒温度プロフィルを生じる。
【0010】
一方、減速時においては、空気に近い排気組成の低温ガスが流入してくる。そのガス流れ分布は、エンジンスタート時および加速時と同様に中心部より多く流れる。即ち、中心部、入口部が早く冷却されることになる。このような温度履歴を受けている触媒担体内部に発生する応力は、特に外筒と接合されている部位に集中する。その理由は、外筒温度に比べ、内部温度が高く触媒担体中心部から外筒に向かって膨張しようとするコアが外筒に拘束され外周部が圧縮されると共に、冷却時にはコア中心部分から縮小し、外筒と接合している即ち拘束されている外周部が引き伸ばされることになる。このように外筒とコアの接合部位は圧縮、引っ張りの繰り返し応力を受けるため、熱疲労破損が発生し易い部位となる。
【0011】
このような外筒とコアを接合する構造の触媒担体においては、接合部位の位置に係らず熱応力を受けることになる。このような触媒担体においては、耐久性の観点からその応力発生が小さくなるように設計することが必要であり、特に、コアの両端部、特に、熱履歴の大きい排気ガスの流入側が外筒に接合されてしまうと、熱収縮に追従できずに破断されるおそれがあるため、上述のように、ロー箔材をコア外周面全体ではなく中途部の一部にのみ巻回することにより、特に、排ガス流入側においてコアと外筒が接合されることがないようにしている。
【0012】
本発明の解決しようとする課題は、外筒にコアを圧入する際におけるコアの損傷を防止し、ロー箔材によるコアと外筒との接合強度を維持させると共にロー材によるセル通路の閉塞を防止し、かつ、コアに対するロー箔材のスポット溶接による固定強度を確保しつつ、セル通路内で乱流化する範囲を最大限に広げて浄化効率を高めることができる金属製触媒担体を提供することにある。
【0013】
【課題を解決するための手段】
上記課題を解決するため請求項1記載の発明は、金属製薄板の大波板と小波板または小波板または平板を交互に重ねて多重に巻回して形成したコアの一部外周にロー箔材を巻回し、これらを金属製の外筒内に圧入して熱処理することにより前記大波板と小波板または平板とを拡散接合させると共に、前記外筒をロー箔材で接合した金属製触媒担体において、交互に重ねた前記大波板と小波板または平板のうち小波板または平板が外側になるように巻回して前記コアが形成され、前記大波板には任意間隔のもとに複数の孔が形成され、前記小波板または平板には前記コアの外周面を構成する部分を除いて任意間隔のもとに複数の孔が形成されていることを特徴とする手段とした。
【0014】
請求項2記載の金属製触媒単体は、金属製薄板の大波板と小波板または平板を交互に重ねて多重に巻回して形成したコアの一部外周にロー箔材を巻回し、これらを金属製の外筒内に圧入して熱処理することにより前記大波板と小波板または小波板または平板とを拡散接合させると共に、前記外筒をロー箔材で接合した金属製触媒担体において、交互に重ねた前記大波板と小波板または平板のうち大波板が外側になるように巻回して前記コアが形成され、
前記小波板または平板には任意間隔のもとに複数の孔が形成され、前記大波板には前記コアの外周面を構成する部分を除いて任意間隔のもとに複数の孔が形成されていることを特徴とする手段とした。
【0015】
【作用および効果】
請求項1記載の発明では、上述のように、コアの外周面を構成する小波板または小波板または平板部分には孔が形成されていないため、コア外周を損傷させることなしに外筒に対するコアの圧入をスムーズに行なうことができる。
【0016】
また、ロー箔材により外筒と接合されるコアの外周面が孔のない小波板または小波板または平板で構成されているため、熱処理の際に液状化したロー材が小波板または小波板または平板の内側に流れ込むことがなく、これにより、ロー箔材によるコアと外筒との接合強度を維持させることができると共に、ロー材の流れ込みによるセル通路の閉塞を防止することができる。
【0017】
また、ロー箔材がスポット溶接により固定されるコアの外周面が、孔のない小波板または小波板または平板で構成されているため、コアの外周に巻回されたロー箔材をスポット溶接によりコアに固定する際に、スポット溶接位置を確認することなしにロー箔材の固定作業を行うことができ、これにより、作業効率を低下させることなしに、コアに対するロー箔材のスポット溶接による固定強度を確保することができる。
【0018】
また、大波板のみならず、小波板または平板におけるコアの外周面を除く部分にも孔が形成されているため、セル通路内で乱流化する範囲が大波板を挟んで対面する両小波板または平板相互間に限られることなしに、セル通路内で乱流化する範囲を最大限に広げて浄化効率を高めることができるようになる。
【0019】
請求項2記載の発明では、上述のように、コアの外周面を構成する大波板部分には孔が形成されていないため、コア外周を損傷させることなしに外筒に対するコアの圧入をスムーズに行なうことができる。
【0020】
また、ロー箔材により外筒と接合されるコアの外周面が孔のない大波板で構成されているため、熱処理の際に液状化したロー材が大波板より内側に流れ込むことがなく、これにより、ロー箔材によるコアと外筒との接合強度を維持させることができると共に、ロー材の流れ込みによるセル通路の閉塞を防止することができる。
【0021】
また、ロー箔材がスポット溶接により固定されるコアの外周面が、孔のない大大波板で構成されているため、コアの外周に巻回されたロー箔材をスポット溶接によりコアに固定する際に、ロー箔材の外面側からでも大波板における突条位置の確認が容易に行えるため、作業効率を低下させることなしに、コアに対するロー箔材のスポット溶接による固定強度を確保することができる。
【0022】
また、小波板または平板のみならず、大波板におけるコアの外周面を除く部分にも孔が形成されているため、セル通路内で乱流化する範囲が小波板または平板を挟んで対面する両大波板相互間に限られることなしに、セル通路内で乱流化する範囲を最大限に広げて浄化効率を高めることができるようになる。
【0023】
【発明の実施の形態】
以下にこの発明の実施の形態を図面に基づいて説明する。
(発明の実施の形態1)
なお、この発明の実施の形態1は、請求項1に記載の発明に対応するものである。
まず、この発明の実施の形態1の金属製触媒担体を図面に基づいて説明する。図1はこの発明の実施の形態1の金属製触媒担体を示す一部切欠斜視図、図2は大波板と平板を重ねて巻回する途中の状態を示す斜視図であり、両図において、1はコア、2は外筒、3はロー箔材を示す。
【0024】
前記コア1は、数十ミクロンの金属製薄板の波板(大波板)11と平板(小波板または平板)12を交互に重ね、平板12を外側にして多重に巻回したハニカム状に形成されたもので、このハニカム通路(セル通路)表面には、アルミナ等からなる触媒担持体層が形成され、この触媒担体層に触媒金属が担持されることにより、排ガス浄化触媒とされ、内燃機関の排気経路に配置されることにより、排気ガス中のHC、CO、NOx等を浄化させる働きをする。
【0025】
前記波板11には波状に成形する前に予め所定間隔のもとに複数の孔11aが形成される一方、前記平板12にはコア1の外周面を構成する部分を除いて所定間隔のもとに複数の孔12aが形成されている。
即ち、金属製触媒単体において、排気ガス浄化性能を向上させるためには、コア1内を通過する排気ガスに対し乱流を積極的に起こさせて、排気ガスが触媒に接触する機会をできるだけ増やすことが有効であり、このため、波板1および平板12に多数の孔11a、12aを開けて波板1と平板12で仕切られたセル通路相互間の流通を可能とし、コア1内における排気ガスの流れを幅方向により多く乱流化させることにより、排気ガス浄化性能を向上させるようになっている。
【0026】
前記外筒2は、1〜2mmの板厚のSUS430のフェライト系ステンレス板材等で円筒形状に形成され、この円筒の内径として、これに圧入される前記コア1の外形より小径に形成されている。
【0027】
前記ロー箔材3は、前記コア1を前記外筒に圧入する前に、波板11で構成されるコア1の外周面に巻回しておくもので、この発明の実施の形態1では、このロー箔材3が、コア1における排ガス流出側(図面右側)端部寄りの中途部に部分的に巻回されることにより、コア1の両端部分にはロー箔材3が巻回されていない非巻回部分1a、1bが形成され、この非巻回部分1a、1bは、特に排ガス流入側の非巻回部分1aが十分に長く形成されている。
【0028】
次に、この発明の実施の形態1の作用・効果を説明する。
この発明の実施の形態1の金属製触媒担体では、上述のように、コア1の外周面を構成する平板12部分には孔12aが形成されていないため、コア1の外周を損傷させることなしに外筒2に対するコア1の圧入をスムーズに行なうことができるようになる。
【0029】
また、ロー箔材3により外筒2と接合されるコア1の外周面が孔12aのない平板12で構成されているため、熱処理の際に液状化したロー材が平板12の内側に流れ込むことがなく、これにより、ロー箔材3によるコア1と外筒2との接合強度を維持させることができると共に、平板12の内側までロー材が流れ込むことによって生じるセル通路の閉塞を防止することができるようになる。
【0030】
また、ロー箔材3がスポット溶接により固定されるコア1の外周面が、孔12aのない平板12で構成されているため、コア1の外周に巻回されたロー箔材3をスポット溶接によりコア1に固定する際に、スポット溶接位置を確認することなしにロー箔材3の固定作業を行うことができ、これにより、作業効率を低下させることなしに、コア1に対するロー箔材3のスポット溶接による固定強度を確保することができる。
【0031】
また、波板11のみならず、平板12におけるコア1の外周面を除く部分にも孔12aが形成されているため、セル通路内で乱流化する範囲が波板11を挟んで対面する両平板12、12相互間に限られることがなく、これにより、セル通路内で乱流化する範囲を最大限に広げて浄化効率を高めることができるようになる。
【0032】
次に、他の発明の実施の形態について説明する。この他の発明の実施の形態の説明にあたっては、前記発明の実施の形態1と同様の構成部分については同一の符号を付けてその説明を省略し、相違点についてのみ説明する。
【0033】
(発明の実施の形態2)
この発明の実施の形態2の金属製触媒担体は、請求項2に記載の発明に対応したものである。
図3はこの発明の実施の形態2の金属製触媒担体を示す一部切欠斜視図、図4は波板と平板を重ねて巻回する途中の状態を示す斜視図である。
【0034】
即ち、この発明の実施の形態2の金属製触媒担体は、両図に示すように、交互に重ねた波板11と平板12のうち波板11が外側になるように巻回して前記コア1が形成されている点と、平板12には任意間隔のもとに複数の孔12aが形成されると共に波板11にはコア1の外周面を構成する部分を除いて任意間隔のもとに複数の孔11aが形成されている点において、前記発明の実施の形態1とは相違したのものであり、その他点は前記発明の実施の形態1と同様である。
【0035】
従って、この発明の実施の形態2の金属製触媒担体によれば、上述のように、コア1の外周面を構成する波板11部分には孔11aが形成されていないため、コア1の外周を損傷させることなしに外筒2に対するコア1の圧入をスムーズに行なうことができるようになる。
【0036】
また、ロー箔材3により外筒2と接合されるコア1の外周面が孔11aのない波板11で構成されているため、熱処理の際に液状化したロー材が少なくとも波板11より内側に流れ込むことがなく、これにより、ロー箔材3によるコア1と外筒2との接合強度を維持させることができると共に、波板11の内側までロー材が流れ込むことによって生じるセル通路の閉塞を防止することができるようになる。
【0037】
また、ロー箔材3がスポット溶接により固定されるコア1の外周面が、孔11aのない波板11で構成されているため、コア1の外周に巻回されたロー箔材3をスポット溶接によりコア1に固定する際に、ロー箔材3の外面側からでも波板11における突条位置の確認が容易に行えるため、作業効率を低下させることなしに確実に接合することが可能で、コア1に対するロー箔材3のスポット溶接による固定強度を確保することができるようになる。
【0038】
また、平板12のみならず、波板11におけるコア1の外周面を除く部分にも孔11aが形成されているため、セル通路内で乱流化する範囲が平板12を挟んで対面する両波板12、12相互間に限られることがなく、これにより、セル通路内で乱流化する範囲を最大限に広げて浄化効率を高めることができるようになる。
【0039】
また、交互に重ねた波板11と平板12が波板11が外側になるように巻回されることで、熱処理の際に液状化したロー材が毛細管現象により所定外の位置まで広範囲に浸透流出することを抑制することができる。
【0040】
また、波板11は平板12に比べて伸縮の自由度が高いため、この波板11をコア1の外周側に配置することにより、外筒2内に圧入する際の圧縮作用によってハニカム構造のコア1が座屈することを外周の波板11の伸縮作用により抑制することができるようになる。
【0041】
以上本発明の実施の形態を説明してきたが、本発明は上述の発明の実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等があっても、本発明に含まれる。
例えば、発明の実施の形態では、ロー箔材3を、コア1における排ガス流出側端部寄りの位置に巻回したが、中途部に形成するようにしてもよい。
【0042】
また、発明の実施の形態では、孔11a、12aを排ガスの流れ方向に長い長孔状に形成したが、その形状や配置は任意である。
また、発明の実施の形態では、平板12を用いた例を示したが、小さな波形状の小波板を用いても、同様の効果が獲られる。
【図面の簡単な説明】
【図1】発明の実施の形態1の金属製触媒担体を示す一部切欠斜視図である。
【図2】発明の実施の形態1の金属製触媒担体における波板と平板を重ねて巻回する途中の状態を示す斜視図である。
【図3】発明の実施の形態2の金属製触媒担体を示す一部切欠斜視図である。
【図4】発明の実施の形態2の金属製触媒担体における波板と平板を重ねて巻回する途中の状態を示す斜視図である。
【符号の説明】
1 コア
1a 非巻回部分
1b 非巻回部分
11 波板(大波板)
11a 孔
12 平板(小波板または平板)
12a 孔
2 外筒
3 ロー箔材
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a metal catalyst carrier mounted on an exhaust system such as an internal combustion engine.
[0002]
[Prior art]
Conventionally, a low foil material is wound around a part of the outer periphery of a core formed by alternately laminating a corrugated sheet and a flat plate made of a thin metal plate, and press-fitting them into a metal outer cylinder to perform heat treatment. By diffusion bonding the corrugated sheet and the flat plate thereby, and in a metal catalyst carrier in which the outer cylinder is bonded with a raw foil material, the corrugated sheet and the flat plate are wound so that the flat plate out of the alternately stacked corrugated plate and the flat plate is outside. There is a structure in which a plurality of holes are formed at arbitrary intervals only in the corrugated plate or in both the corrugated plate and the flat plate (for example, see Patent Document 1).
[0003]
[Patent Document 1]
JP-A-2002-143693 (Page 2, FIGS. 1 and 2)
[0004]
[Problems to be solved by the invention]
However, among the conventional metal thin plates having a structure in which a plurality of holes are formed at arbitrary intervals in both the corrugated plate and the flat plate, there are the following problems.
[0005]
In other words, there are a plurality of holes in the flat plate constituting the outer peripheral surface of the core, and the low foil material is wound around a part of the core outer peripheral surface instead of the entire outer peripheral surface. When press-fitting into the cylinder, the opening edge of each hole formed in the flat plate portion exposed on the outer surface of the core where the raw foil material is not wound is caught by the opening edge of the outer cylinder, making press-fitting difficult. Otherwise, there is a concern that cracks may be generated in the flat plate from the hole portion when the press-fitting is attempted.
[0006]
In addition, when the raw foil material is wound around the outer periphery of the core and heat-treated while being pressed into the outer cylinder, the liquefied brazing material flows into the hole formed in the flat plate, so that the core and the outer cylinder are separated from each other. There is a possibility that the joining strength may not be ensured, and there is a possibility that the brazing material flowing from the hole may block the cell passage.
[0007]
Further, when fixing the low foil material wound around the outer periphery of the core to the core by spot welding, there is a possibility that the spot welding position performed from the low foil material side coincides with the position of the hole of the flat plate hidden behind the back surface. As a result, since the fixing strength of the raw foil material to the core is reduced, there is a possibility that the pressed state of the raw foil material to the core may not be maintained when press-fitting into the outer cylinder. In addition, performing spot welding while confirming the position of the hole reduces the working efficiency.
You.
[0008]
Next, among the conventional metal thin plates having a structure in which a plurality of holes are formed at arbitrary intervals only on the corrugated sheet side, the range of turbulence in the cell passage is corrugated. Therefore, there is a problem in that the exhaust gas purification performance is inferior to that in which holes are formed in both the corrugated plate and the flat plate.
[0009]
In addition, as described above, the reason why the raw foil material is wound only on a part of the core, not on the entire outer peripheral surface of the core, is as follows.
In other words, the joint portion between the outer cylinder and the core is closely related to the durability of the carrier, and its contents will be explained from a general carrier breaking mechanism. Gas flows in. At that time, more gas flows to the center of the catalyst carrier, and the temperature becomes higher toward the center. Also, the temperature rises faster nearer the entrance. Eventually, the high-temperature region spreads toward the gas outlet, and the temperature of the entire catalyst becomes high. However, the temperature does not become uniform, and the temperature around the outer cylinder is lower than that inside due to cooling, heat radiation, and the like. Such a phenomenon causes a higher temperature gas to flow in not only at the time of engine start but also during acceleration during operation, resulting in a similar catalyst temperature profile.
[0010]
On the other hand, at the time of deceleration, low-temperature gas having an exhaust composition close to air flows in. The gas flow distribution flows more at the center than at the time of engine start and acceleration. That is, the central part and the inlet part are cooled quickly. The stress generated inside the catalyst carrier which has received such a temperature history is concentrated particularly at a portion joined to the outer cylinder. The reason is that the inner temperature is higher than the outer cylinder temperature, and the core that is expanding from the center of the catalyst carrier toward the outer cylinder is constrained by the outer cylinder, the outer peripheral part is compressed, and the core shrinks from the central part during cooling. Then, the outer peripheral portion that is joined to, that is, constrained with, the outer cylinder is elongated. As described above, since the joint between the outer cylinder and the core is subjected to repeated stresses of compression and tension, the joint is likely to be damaged by thermal fatigue.
[0011]
Such a catalyst carrier having a structure in which the outer cylinder and the core are joined receives thermal stress regardless of the position of the joining portion. In such a catalyst carrier, it is necessary to design such that the stress generation is small from the viewpoint of durability.In particular, both ends of the core, particularly, the inflow side of the exhaust gas having a large heat history is connected to the outer cylinder. If joined, there is a risk of breaking without being able to follow the heat shrinkage, so as described above, by winding the low foil material only on a part of the core outer peripheral surface instead of the entire outer peripheral surface, especially In addition, the core and the outer cylinder are prevented from being joined on the exhaust gas inflow side.
[0012]
The problem to be solved by the present invention is to prevent the core from being damaged when the core is pressed into the outer cylinder, to maintain the bonding strength between the core and the outer cylinder by the brazing foil material, and to block the cell passage by the brazing material. Provided is a metal catalyst carrier that can prevent and improve the purification efficiency by maximizing the range of turbulence in a cell passage while securing the fixing strength of a low foil material to a core by spot welding. It is in.
[0013]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the invention according to claim 1 is to provide a low foil material on a part of the outer periphery of a core formed by alternately laminating large corrugated plates and small corrugated plates or small corrugated plates or flat plates of a metal thin plate and winding them. Winding, diffusion-bonding the large corrugated plate and the small corrugated plate or flat plate by press-fitting them into a metal outer cylinder and performing heat treatment, and in a metal catalyst carrier in which the outer cylinder is joined with a low foil material, The core is formed by winding the large corrugated plate and the small corrugated plate or the flat plate out of the alternately laminated large corrugated plate or the flat plate so that the core is formed, and the large corrugated plate is formed with a plurality of holes at arbitrary intervals. A plurality of holes are formed in the small corrugated plate or flat plate at arbitrary intervals except for a portion constituting the outer peripheral surface of the core.
[0014]
The metal catalyst unit according to claim 2 is obtained by winding a low foil material around a part of the outer periphery of a core formed by alternately laminating large corrugated plates and small corrugated plates or flat plates made of thin metal plates and winding them. The large corrugated sheet and the small corrugated sheet or the small corrugated sheet or the flat plate are diffused and joined by press-fitting into a metal outer cylinder and heat-treated, and are alternately stacked on a metal catalyst carrier in which the outer cylinder is joined with a low foil material. The core is formed by winding the large corrugated plate and the small corrugated plate or the flat plate so that the large corrugated plate is on the outside,
A plurality of holes are formed at arbitrary intervals in the small corrugated plate or the flat plate, and a plurality of holes are formed at arbitrary intervals in the large corrugated plate except for a portion constituting an outer peripheral surface of the core. Means.
[0015]
[Action and effect]
According to the first aspect of the present invention, as described above, the corrugated plate or the corrugated plate or the flat plate portion that forms the outer peripheral surface of the core has no hole, so that the core with respect to the outer cylinder is not damaged without damaging the outer periphery of the core. Press-fitting can be performed smoothly.
[0016]
In addition, since the outer peripheral surface of the core joined to the outer cylinder by the braided foil material is formed of a small corrugated plate, a small corrugated plate or a flat plate without holes, the braid material liquefied during the heat treatment is a small corrugated plate or a small corrugated plate or It does not flow into the inside of the flat plate, whereby it is possible to maintain the bonding strength between the core and the outer cylinder by the brazing foil material, and to prevent the cell passage from being blocked by the flowing of the brazing material.
[0017]
In addition, since the outer peripheral surface of the core to which the low foil material is fixed by spot welding is composed of a small corrugated plate or a small corrugated plate or a flat plate without holes, the low foil material wound around the core is spot-welded. When fixing to the core, the work of fixing the low foil material can be performed without confirming the spot welding position, thereby fixing the low foil material to the core by spot welding without reducing the work efficiency. Strength can be ensured.
[0018]
In addition, since holes are formed not only in the large corrugated sheet but also in the small corrugated sheet or the flat plate except for the outer peripheral surface of the core, the range of turbulence in the cell passage is limited to both small corrugated sheets facing the large corrugated sheet. Alternatively, the purification efficiency can be increased by maximizing the range of turbulence in the cell passage without being limited to between the flat plates.
[0019]
According to the second aspect of the present invention, as described above, since the large corrugated plate portion forming the outer peripheral surface of the core is not formed with a hole, the press fit of the core into the outer cylinder can be smoothly performed without damaging the outer periphery of the core. Can do it.
[0020]
Also, since the outer peripheral surface of the core joined to the outer cylinder by the low foil material is formed of a large corrugated sheet without holes, the liquefied brazing material does not flow inside the large corrugated sheet during the heat treatment, Thereby, the joining strength between the core and the outer cylinder by the brazing foil material can be maintained, and the blockage of the cell passage due to the inflow of the brazing material can be prevented.
[0021]
Further, since the outer peripheral surface of the core to which the low foil material is fixed by spot welding is formed of a large corrugated plate without holes, the low foil material wound around the outer periphery of the core is fixed to the core by spot welding. At this time, the position of the ridge on the large corrugated sheet can be easily confirmed even from the outer surface side of the raw foil material, so that it is possible to secure the fixing strength by spot welding of the raw foil material to the core without lowering the work efficiency. it can.
[0022]
Further, since holes are formed not only in the small corrugated sheet or flat plate but also in a portion of the large corrugated sheet other than the outer peripheral surface of the core, the range of turbulent flow in the cell passage is limited to both faces facing the small corrugated sheet or flat plate. Without being limited to between the large corrugated sheets, the range of turbulence in the cell passage can be maximized to increase the purification efficiency.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
(Embodiment 1)
The first embodiment of the present invention corresponds to the first aspect of the present invention.
First, a metal catalyst carrier according to a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a partially cutaway perspective view showing a metal catalyst carrier according to Embodiment 1 of the present invention, and FIG. 2 is a perspective view showing a state in which a large corrugated sheet and a flat plate are being wound while being overlapped. 1 is a core, 2 is an outer cylinder, 3 is a raw foil material.
[0024]
The core 1 is formed in a honeycomb shape in which corrugated plates (large corrugated plates) 11 and flat plates (small corrugated plates or flat plates) 12 of metal thin plates having a thickness of several tens of microns are alternately stacked, and the flat plates 12 are arranged outside and wound in multiple layers. A catalyst carrier layer made of alumina or the like is formed on the surface of the honeycomb passage (cell passage), and a catalyst metal is carried on the catalyst carrier layer to form an exhaust gas purifying catalyst. By being disposed in the exhaust path, it functions to purify HC, CO, NOx, and the like in the exhaust gas.
[0025]
A plurality of holes 11a are previously formed in the corrugated plate 11 at predetermined intervals before being formed into a corrugated shape, while the flat plate 12 has a predetermined interval except for a portion constituting the outer peripheral surface of the core 1. Are formed with a plurality of holes 12a.
That is, in order to improve the exhaust gas purifying performance of the metal catalyst alone, turbulent flow is actively generated in the exhaust gas passing through the core 1, so that the chance of the exhaust gas contacting the catalyst is increased as much as possible. Therefore, a large number of holes 11a, 12a are formed in the corrugated sheet 1 and the flat plate 12 to allow the passage between the cell passages partitioned by the corrugated plate 1 and the flat plate 12, and exhaust in the core 1 is performed. By making the gas flow more turbulent in the width direction, the exhaust gas purification performance is improved.
[0026]
The outer cylinder 2 is formed of a SUS430 ferritic stainless steel plate having a thickness of 1 to 2 mm in a cylindrical shape, and has an inner diameter smaller than the outer diameter of the core 1 which is press-fitted into the outer cylinder. .
[0027]
The low foil material 3 is wound around the outer peripheral surface of the core 1 composed of the corrugated plate 11 before the core 1 is pressed into the outer cylinder. In the first embodiment of the present invention, Since the low foil material 3 is partially wound in the middle of the core 1 near the end on the exhaust gas outflow side (right side in the drawing), the low foil material 3 is not wound on both ends of the core 1. The non-rolled portions 1a and 1b are formed, and the non-rolled portions 1a and 1b are particularly formed so that the non-rolled portion 1a on the exhaust gas inflow side is sufficiently long.
[0028]
Next, the operation and effect of the first embodiment of the present invention will be described.
In the metal catalyst carrier according to the first embodiment of the present invention, since the hole 12a is not formed in the flat plate 12 constituting the outer peripheral surface of the core 1 as described above, the outer periphery of the core 1 is not damaged. The press-fitting of the core 1 into the outer cylinder 2 can be performed smoothly.
[0029]
Also, since the outer peripheral surface of the core 1 joined to the outer cylinder 2 by the braided foil material 3 is constituted by the flat plate 12 having no hole 12a, the liquefied brazing material flows into the flat plate 12 during the heat treatment. Accordingly, the bonding strength between the core 1 and the outer cylinder 2 by the raw foil material 3 can be maintained, and the blockage of the cell passage caused by the flow of the raw material to the inside of the flat plate 12 can be prevented. become able to.
[0030]
Further, since the outer peripheral surface of the core 1 to which the raw foil material 3 is fixed by spot welding is constituted by the flat plate 12 having no hole 12a, the raw foil material 3 wound around the outer periphery of the core 1 is spot-welded. At the time of fixing to the core 1, the fixing work of the raw foil material 3 can be performed without confirming the spot welding position, whereby the raw foil material 3 can be fixed to the core 1 without lowering the work efficiency. The fixing strength by spot welding can be secured.
[0031]
Further, since holes 12a are formed not only in the corrugated sheet 11 but also in a portion of the flat plate 12 excluding the outer peripheral surface of the core 1, the turbulent flow in the cell passage is limited to both faces facing the corrugated sheet 11 therebetween. It is not limited to between the flat plates 12, 12, thereby making it possible to maximize the range of turbulence in the cell passage and increase the purification efficiency.
[0032]
Next, another embodiment of the invention will be described. In the description of the other embodiments of the present invention, the same components as those of the first embodiment of the present invention are denoted by the same reference numerals, and the description thereof will be omitted. Only the differences will be described.
[0033]
(Embodiment 2)
A metal catalyst carrier according to a second embodiment of the present invention corresponds to the second aspect of the present invention.
FIG. 3 is a partially cutaway perspective view showing a metal catalyst carrier according to Embodiment 2 of the present invention, and FIG. 4 is a perspective view showing a state in which a corrugated plate and a flat plate are being wound while being overlapped.
[0034]
That is, as shown in both figures, the metal catalyst carrier of Embodiment 2 of the present invention is wound so that the corrugated plate 11 of the alternately laminated corrugated plate 11 and the flat plate 12 is on the outside, and the core 1 Are formed, and a plurality of holes 12a are formed in the flat plate 12 at arbitrary intervals, and the corrugated plate 11 is formed at arbitrary intervals except for a portion constituting the outer peripheral surface of the core 1. This embodiment differs from the first embodiment in that a plurality of holes 11a are formed, and the other points are the same as those in the first embodiment.
[0035]
Therefore, according to the metal catalyst carrier of Embodiment 2 of the present invention, as described above, since the hole 11a is not formed in the corrugated plate 11 constituting the outer peripheral surface of the core 1, the outer periphery of the core 1 is not formed. Can be smoothly pressed into the outer cylinder 2 without damaging the core.
[0036]
Further, since the outer peripheral surface of the core 1 joined to the outer cylinder 2 by the brazing foil material 3 is constituted by the corrugated sheet 11 having no hole 11a, the brazing material liquefied during the heat treatment is at least inside the corrugated sheet 11. Accordingly, the bonding strength between the core 1 and the outer cylinder 2 by the raw foil material 3 can be maintained, and the blockage of the cell passage caused by the flow of the raw material to the inside of the corrugated sheet 11 can be prevented. Can be prevented.
[0037]
Further, since the outer peripheral surface of the core 1 to which the raw foil material 3 is fixed by spot welding is constituted by the corrugated plate 11 having no hole 11a, the raw foil material 3 wound around the outer periphery of the core 1 is spot-welded. When fixing to the core 1, the position of the ridge on the corrugated sheet 11 can be easily confirmed even from the outer surface side of the raw foil material 3, so that it is possible to securely join without lowering the working efficiency, The fixing strength by spot welding of the low foil material 3 to the core 1 can be secured.
[0038]
Further, since the holes 11a are formed not only in the flat plate 12 but also in a portion of the corrugated plate 11 other than the outer peripheral surface of the core 1, the range of turbulence in the cell passage is limited to the two waves facing each other across the flat plate 12. It is not limited to between the plates 12, 12, which makes it possible to maximize the range of turbulence in the cell passage and increase the purification efficiency.
[0039]
In addition, since the corrugated sheet 11 and the flat sheet 12 that are alternately stacked are wound so that the corrugated sheet 11 is located outside, the brazing material liquefied during the heat treatment permeates a wide range to a position outside a predetermined range due to a capillary phenomenon. Outflow can be suppressed.
[0040]
Further, since the corrugated plate 11 has a higher degree of freedom of expansion and contraction than the flat plate 12, by arranging the corrugated plate 11 on the outer peripheral side of the core 1, a honeycomb structure having a honeycomb structure is formed by a compression action when the corrugated plate 11 is pressed into the outer cylinder 2. The buckling of the core 1 can be suppressed by the expansion and contraction of the corrugated sheet 11 on the outer periphery.
[0041]
Although the embodiment of the present invention has been described above, the present invention is not limited to the above-described embodiment of the present invention, and even if there is a design change or the like without departing from the gist of the present invention, the present invention is not limited to the embodiment. included.
For example, in the embodiment of the invention, the raw foil material 3 is wound at a position near the end on the exhaust gas outflow side of the core 1, but may be formed in an intermediate portion.
[0042]
Further, in the embodiment of the present invention, the holes 11a and 12a are formed as long holes in the flow direction of the exhaust gas, but the shape and arrangement are arbitrary.
Further, in the embodiment of the present invention, an example in which the flat plate 12 is used has been described. However, a similar effect can be obtained by using a small corrugated plate.
[Brief description of the drawings]
FIG. 1 is a partially cutaway perspective view showing a metal catalyst carrier according to Embodiment 1 of the present invention.
FIG. 2 is a perspective view showing a state in which a corrugated plate and a flat plate are being wound on the metal catalyst carrier according to Embodiment 1 of the present invention.
FIG. 3 is a partially cutaway perspective view showing a metal catalyst carrier according to Embodiment 2 of the present invention.
FIG. 4 is a perspective view showing a state in which a corrugated plate and a flat plate are being wound on a metal catalyst carrier according to Embodiment 2 of the present invention.
[Explanation of symbols]
Reference Signs List 1 core 1a unwound portion 1b unwound portion 11 corrugated sheet (large corrugated sheet)
11a hole 12 flat plate (small corrugated plate or flat plate)
12a hole 2 outer cylinder 3 raw foil material

Claims (2)

金属製薄板の大波板と小波板または平板を交互に重ねて多重に巻回して形成したコアの一部外周にロー箔材を巻回し、これらを金属製の外筒内に圧入して熱処理することにより前記大波板と小波板または平板とを拡散接合させると共に、前記外筒をロー箔材で接合した金属製触媒担体において、
交互に重ねた前記大波板と小波板または平板のうち小波板または平板が外側になるように巻回して前記コアが形成され、
前記大波板には任意間隔のもとに複数の孔が形成され、
前記小波板または平板には前記コアの外周面を構成する部分を除いて任意間隔のもとに複数の孔が形成されていることを特徴とする金属製触媒担体。
A low foil material is wound around a part of a core formed by alternately laminating large corrugated and small corrugated plates or flat plates made of a thin metal plate, and press-fitting these into a metal outer cylinder for heat treatment. By diffusion bonding the large corrugated sheet and the small corrugated sheet or flat plate by doing, in the metal catalyst carrier that the outer cylinder is joined with a low foil material,
The core is formed by winding such that the large corrugated sheet and the small corrugated sheet or the flat plate are alternately stacked so that the small corrugated sheet or the flat plate is on the outside,
A plurality of holes are formed at arbitrary intervals in the large corrugated sheet,
A metal catalyst carrier, wherein a plurality of holes are formed in the small corrugated plate or the flat plate at arbitrary intervals except for a portion constituting an outer peripheral surface of the core.
金属製薄板の大波板と小波板または平板を交互に重ねて多重に巻回して形成したコアの一部外周にロー箔材を巻回し、これらを金属製の外筒内に圧入して熱処理することにより前記大波板と小波板または平板とを拡散接合させると共に、前記外筒をロー箔材で接合した金属製触媒担体において、
交互に重ねた前記大波板と小波板または平板のうち大波板が外側になるように巻回して前記コアが形成され、
前記小波板または平板には任意間隔のもとに複数の孔が形成され、
前記大波板には前記コアの外周面を構成する部分を除いて任意間隔のもとに複数の孔が形成されていることを特徴とする金属製触媒担体。
A low foil material is wound around a part of a core formed by alternately laminating large corrugated and small corrugated plates or flat plates made of a thin metal plate, and press-fitting these into a metal outer cylinder for heat treatment. By diffusion bonding the large corrugated sheet and the small corrugated sheet or flat plate by doing, in the metal catalyst carrier that the outer cylinder is joined with a low foil material,
The core is formed by winding such that the large corrugated plate and the small corrugated plate or the flat plate are alternately stacked such that the large corrugated plate is on the outside,
A plurality of holes are formed at arbitrary intervals in the wave plate or flat plate,
A metal catalyst carrier, wherein a plurality of holes are formed in the large corrugated plate at arbitrary intervals except for a portion constituting an outer peripheral surface of the core.
JP2002323531A 2002-11-07 2002-11-07 Metal carrier for catalyst Pending JP2004154699A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002323531A JP2004154699A (en) 2002-11-07 2002-11-07 Metal carrier for catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002323531A JP2004154699A (en) 2002-11-07 2002-11-07 Metal carrier for catalyst

Publications (1)

Publication Number Publication Date
JP2004154699A true JP2004154699A (en) 2004-06-03

Family

ID=32803373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002323531A Pending JP2004154699A (en) 2002-11-07 2002-11-07 Metal carrier for catalyst

Country Status (1)

Country Link
JP (1) JP2004154699A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2088292A2 (en) 2008-02-05 2009-08-12 Calsonic Kansei Corporation Method and jig for manufacturing metallic catalyst carrier
CN113382802A (en) * 2019-02-05 2021-09-10 株式会社科特拉 Metal base material for exhaust gas purification and exhaust gas purification device using same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2088292A2 (en) 2008-02-05 2009-08-12 Calsonic Kansei Corporation Method and jig for manufacturing metallic catalyst carrier
EP2088292A3 (en) * 2008-02-05 2010-09-01 Calsonic Kansei Corporation Method and jig for manufacturing metallic catalyst carrier
CN113382802A (en) * 2019-02-05 2021-09-10 株式会社科特拉 Metal base material for exhaust gas purification and exhaust gas purification device using same

Similar Documents

Publication Publication Date Title
JPH06320014A (en) Metallic carrier
JP5199291B2 (en) Catalyst carrier
EP0687806B1 (en) A metal carrier for a catalytic converter
JP6935614B1 (en) Honeycomb unit used for exhaust gas purification and method for manufacturing honeycomb unit
JP2007038140A (en) Catalytic carrier for cleaning exhaust gas
JP2004154699A (en) Metal carrier for catalyst
JP2005313083A (en) Catalyst carrier made of metal
US6660401B2 (en) Disposition of solder for heat resistant structure
JP3782596B2 (en) Insulated metal carrier for exhaust gas purification
JP2005163621A (en) Catalytic converter
JP3716031B2 (en) Metal carrier for catalyst equipment
JP2005081306A (en) Catalyst carrier made of metal
JP2004202281A (en) Metallic catalyst carrier
JP2005313084A (en) Catalyst carrier made of metal
JP3510590B2 (en) Wound metal carrier
WO1990003842A1 (en) Metal carrier having thermal fatigue resistance for automobile exhaust gas cleaning catalysts
JPH08986Y2 (en) Metal carrier for exhaust gas purification catalyst
JP3217597B2 (en) Metal carrier for catalyst device
JP2004154701A (en) Metal catalyst carrier
JPH04150948A (en) Metal carrier supporting exhaust gas purifying catalyst having intermittently bonded honeycomb part and preparation thereof
JP3308052B2 (en) Metal carrier for catalyst device and method for producing the same
JP2005177736A (en) Metal carrier
JP2005313082A (en) Catalyst carrier made of metal
JPH04235717A (en) Metal carrier for exhaust gas purification catalyst
JP2001207837A (en) Metal carrier for catalytic converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050621

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080715