【0001】
【発明の属する技術分野】
本発明は、磁気共鳴イメージング装置(以下、MRI装置という)の頭部用受信コイルに係り、特に被検体の視野が広がり、被検体の精神的圧迫感を軽減するMRI装置の頭部用受信コイルに関する。
【0002】
【従来の技術】
MRI装置は、静磁場中に置かれた被検体に対し高周波パルスを照射することで、被検体中の原子核の核スピンが励起され核磁気共鳴信号を発生させる。このとき、傾斜磁場を所定のシーケンスで印加することにより、核磁気共鳴信号に位置的な情報が与えられ、この核磁気共鳴信号を画像再構成することにより被検体内の断層像を得ることができる。MRI装置では、X線等による被曝がなく、また傾斜磁場の印加の仕方により任意の断面像を得ることができ、さらには内臓や脳等の軟部組織の分解能に優れているため、現在様々な用途に用いられている。
【0003】
MRI装置で頭部を撮影するために用いる頭部用受信コイルは通常、患者テーブルに横たわらせた被検体の頭部の全体を囲えるような、円筒形状のものが一般的である(例えば、特許文献1、特許文献2参照)。
【0004】
【特許文献1】
特開平5−49613号公報(第4頁、第1図)。
【特許文献2】
特開平9−266893号公報(第9頁、第6図)。
【0005】
【発明が解決しようとする課題】
しかしながら、このような頭部用受信コイルを用いてMRI撮影を行う場合、被検体は撮影の最中に頭部を円筒形状の受信コイルで囲われていたため、視野が悪く精神的圧迫感を長時間感じなければならなかった。これを防ぐために、円筒形状の受信コイルの側面に空隙を設け視野を開放し、精神的圧迫感を緩和する受信コイルが多様に商品化されていたが、被検体の視野を完全に開放するものではなく十分とはいえなかった。
【0006】
本発明の目的は、被検体の視野を画期的に広げ、そのことにより被検体の精神的圧迫感を軽減することのできるMRI装置の頭部用受信コイルを提供することにある。
【0007】
【課題を解決するための手段】
上記目的は、導電部と上記導電部を保護するカバーから成り、被検体より発生する核磁気共鳴信号を検出するための磁気共鳴イメージング装置の頭部用受信コイルにおいて、上記導電部は光透過性と導電性をあわせ持つ材質から成り、上記カバーは光透過性を持つ材質から成ることを特徴とする磁気共鳴イメージング装置の頭部用受信コイルによって達成される。
【0008】
また、導電部と上記導電部を保護するカバーから成り、被検体の頭部を下側から囲う下側受信コイルと、導電部と上記導電部を保護するカバーから成り、被検体の頭部を上側から囲う上側受信コイルとを備え、上記下側受信コイルと上記上側受信コイルを組み合わせてループを形成する頭部用受信コイルにおいて、上側受信コイルの導電部が光透過性と導電性をあわせ持つ材質から成り、上側受信コイルのカバーが光透過性を持つ材質から成ることを特徴とする磁気共鳴イメージング装置の頭部用受信コイルによって達成される。
【0009】
【発明の実施の形態】
以下、本発明の実施形態を図面により詳細に説明する。
まず、本発明において適用されるMRI装置の構成を図1に示す。磁気共鳴イメージング装置は大別して、中央処理装置(以下、CPUと略称する)1と、シーケンサ2と、送信系3と、静磁場発生用磁石4と、傾斜磁場発生系21と、受信系5と、信号処理系6とから構成されている。
【0010】
CPU1は、予め定められたプログラムに従って、シーケンサ2、送信系3、受信系5、信号処理系6を制御する。シーケンサ2は、CPU1からの制御指令に基づいて動作し、被検体7の断層面の画像データ収集に必要な種々の命令を送信系3、傾斜磁場発生系21、受信系5に送る。
【0011】
送信系3は、高周波発振器8と、変調器9と、照射コイル11とを備え、シーケンサ2の指令により高周波発振器8からの基準高周波パルスを変調器9で振幅変調し、この振幅変調された高周波パルスを高周波増幅器10を介して増幅して照射コイル11に供給することにより、所定のパルス状の電磁波を被検体に照射する。
【0012】
静磁場発生用磁石4は、被検体7の周りの所定の方向に均一な静磁場を発生させる。この静磁場発生用磁石4の内部には、照射コイル11と、傾斜磁場コイル13と、受信コイル14とが配置されている。傾斜磁場コイル13は傾斜磁場発生系21に含まれ、傾斜磁場電源12より電気の供給を受け、シーケンサ2の指令のもとに傾斜磁場を発生させる。受信系5は、受信コイル14と、受信コイル14に接続された増幅器15と、検波回路16と、アナログ・ディジタル変換器(以下、ADCという)17とを備え、被検体7からのNMR信号を検出する。そして、そのNMR信号を増幅器15、検波回路16、ADC17を介してディジタル量に変換すると共に、シーケンサ2からの指令によるタイミングでADC17によってサンプリングされた収集データに変換して、CPU1に送る。
【0013】
信号処理系6は、磁気ディスク20、光ディスク19のような外部記憶装置と、CRTなどからなるディスプレイ18とを備え、CPU1が信号処理、画像再構成などの処理を実行し、被検体7の所望の断層面の画像をディスプレイ18で表示すると共に、外部記憶装置の磁気ディスク20などに記憶する。
【0014】
次に、本発明において適用されるMRI装置の断面図を図2に示す。4は静磁場発生用磁石であり、被検体7の周囲に静磁場を発生させる。オープンMRI装置の場合、被検体の体軸に対して垂直方向に静磁場を発生させる方式となっている。13は被検体7の周囲に傾斜磁場を発生する傾斜磁場コイル、11は被検体7の周囲に高周波磁場を発生させるRF照射コイル、14は受信コイル、21は寝台である。
【0015】
本発明おいて、受信コイル14は上側が図のように透明な材質から成っている。このため、従来は図3(a)に示すように3方向に限られていた視野が、本発明では図3(b)に示すように全方向となった。
【0016】
受信コイル14の概観図を図4に示す。受信コイル14は上側と下側からなり、上側は ループの一部を形成する導電部14aと、そのカバー14bより構成されている。
【0017】
導電部14aは、光透過性があり導電性を持つ材質より構成されている。
第一の実施形態では、導電部14aの材質として水溶性導電性ポリマーを用いた。水溶性導電性ポリマーは、有機ポリマーであるにもかかわらず電気が流れ、透明性の高い薄膜を形成できる物質である。また、水溶性導電性ポリマーの表面抵抗は湿度は依存しない。
【0018】
第二の実施形態では、導電部14aの材質として透明導電性フィルムを用いた。透明導電性フィルムの製法には物理的成膜法によるものが主流であるが、超微粒子分散塗料をフィルム表面に塗布する方法もある。このうち物理的成膜法は、主にポリエステルフィルムの表面に真空蒸着、スパッタリング、イオンプレーティングなどの方法により酸化インジウム、ヨウ化銅、金、パラジウム、クロム、ニッケル、アルミニウムなどの導電性薄膜を形成するもので、高い透明性とかなり低い表面抵抗を持った導電部14aを作成できるのが特徴である。また、ポリエステルフィルムに酸化インジウム錫薄膜を被覆しても良い。
【0019】
上記第一及び第二の実施形態の場合において、カバー14bは上側を光透過性がある光透過性プラスチックやビニール等の材質で構成されている。
【0020】
以上のように、導電部14aおよびカバー14bを構成することにより、被検体は視野が広がり、精神的圧迫感を軽減することができる。
【0021】
本発明は上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種種に変形して実施できるものである。例えば、導電部14aは光透過性があり導電性を持つ材質であれば水溶性導電性ポリマーや透明導電性フィルム以外でも良い。また、カバー14bは光透過性がある材質であれば光透過性プラスチックやビニールのようなもの以外でも良い。また、本発明は受信コイルの下側も光透過性のある材質より構成しても良い。また、頭部用の受信コイルの形状に関してもいろいろな変形が考えられる。
【0022】
【発明の効果】
以上説明した如く、本発明による磁気共鳴イメージング装置の頭部用受信コイルによれば、被検体の視野が画期的に広がり、このことにより被検体の精神的圧迫感を軽減することができる。
【図面の簡単な説明】
【図1】本発明において適用されるMRI装置の構成図。
【図2】本発明において適用されるMRI装置の断面図。
【図3】本発明(a)と従来例(b)において適用されるMRI装置の頭部用受信コイルの断面図。
【図4】本発明において適用されるMRI装置の頭部用受信コイルの概観図。
【符号の説明】
14a…導電部
14b…カバー[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a receiving coil for a head of a magnetic resonance imaging apparatus (hereinafter, referred to as an MRI apparatus), and more particularly, to a receiving coil for a head of an MRI apparatus that widens the field of view of the subject and reduces the mental pressure of the subject. About.
[0002]
[Prior art]
An MRI apparatus irradiates a subject placed in a static magnetic field with a high-frequency pulse, thereby exciting nuclear spins of nuclei in the subject and generating a nuclear magnetic resonance signal. At this time, positional information is given to the nuclear magnetic resonance signal by applying the gradient magnetic field in a predetermined sequence, and a tomographic image in the subject can be obtained by reconstructing an image of the nuclear magnetic resonance signal. it can. The MRI apparatus is free from exposure to X-rays or the like, can obtain an arbitrary cross-sectional image by applying a gradient magnetic field, and has excellent resolution of soft tissues such as internal organs and brain. Used for applications.
[0003]
The head receiving coil used for imaging the head with the MRI apparatus is generally cylindrical in shape so as to surround the entire head of the subject lying on the patient table ( For example, see Patent Documents 1 and 2.
[0004]
[Patent Document 1]
JP-A-5-49613 (page 4, FIG. 1).
[Patent Document 2]
JP-A-9-26693 (page 9, FIG. 6).
[0005]
[Problems to be solved by the invention]
However, when performing MRI imaging using such a head receiving coil, the subject has a poor field of view and a long period of mental oppression because the subject is surrounded by a cylindrical receiving coil during the imaging. Time had to feel. In order to prevent this, various types of receiving coils have been commercialized to open the field of view by providing a gap on the side of the cylindrical receiving coil and relieve the feeling of mental pressure, but completely open the field of view of the subject But not enough.
[0006]
SUMMARY OF THE INVENTION An object of the present invention is to provide a head receiving coil of an MRI apparatus that can dramatically widen the field of view of a subject and thereby reduce the mental feeling of the subject.
[0007]
[Means for Solving the Problems]
The object is to provide a receiving coil for a head of a magnetic resonance imaging apparatus for detecting a nuclear magnetic resonance signal generated from a subject, comprising a conductive portion and a cover for protecting the conductive portion, wherein the conductive portion has optical transparency. The cover is made of a material having both light and conductivity, and the cover is made of a material having optical transparency, which is achieved by the receiving coil for the head of the magnetic resonance imaging apparatus.
[0008]
Further, a lower receiving coil surrounding the head of the subject from below, comprising a conductive portion and a cover for protecting the conductive portion, and a cover for protecting the conductive portion and the conductive portion. An upper receiving coil that surrounds from above and includes a lower receiving coil and the upper receiving coil that combine to form a loop, wherein the conductive portion of the upper receiving coil has both light transmittance and conductivity. This is achieved by a receiving coil for the head of a magnetic resonance imaging apparatus, wherein the receiving coil is made of a material, and a cover of the upper receiving coil is made of a material having optical transparency.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
First, the configuration of an MRI apparatus applied in the present invention is shown in FIG. The magnetic resonance imaging apparatus is roughly divided into a central processing unit (hereinafter abbreviated as CPU) 1, a sequencer 2, a transmission system 3, a static magnetic field generation magnet 4, a gradient magnetic field generation system 21, and a reception system 5. , And a signal processing system 6.
[0010]
The CPU 1 controls the sequencer 2, the transmission system 3, the reception system 5, and the signal processing system 6 according to a predetermined program. The sequencer 2 operates based on a control command from the CPU 1 and sends various commands necessary for collecting image data of the tomographic plane of the subject 7 to the transmission system 3, the gradient magnetic field generation system 21, and the reception system 5.
[0011]
The transmission system 3 includes a high-frequency oscillator 8, a modulator 9, and an irradiation coil 11, and modulates a reference high-frequency pulse from the high-frequency oscillator 8 with a modulator 9 in accordance with a command from the sequencer 2. The pulse is amplified through the high-frequency amplifier 10 and supplied to the irradiation coil 11, thereby irradiating the subject with a predetermined pulsed electromagnetic wave.
[0012]
The static magnetic field generating magnet 4 generates a uniform static magnetic field in a predetermined direction around the subject 7. An irradiation coil 11, a gradient magnetic field coil 13, and a receiving coil 14 are arranged inside the static magnetic field generating magnet 4. The gradient magnetic field coil 13 is included in the gradient magnetic field generation system 21, receives electric power from the gradient magnetic field power supply 12, and generates a gradient magnetic field under a command from the sequencer 2. The receiving system 5 includes a receiving coil 14, an amplifier 15 connected to the receiving coil 14, a detection circuit 16, and an analog / digital converter (hereinafter, referred to as ADC) 17, and converts an NMR signal from the subject 7. To detect. Then, the NMR signal is converted into a digital value via the amplifier 15, the detection circuit 16 and the ADC 17, and is converted into collected data sampled by the ADC 17 at a timing according to a command from the sequencer 2, and is sent to the CPU 1.
[0013]
The signal processing system 6 includes an external storage device such as a magnetic disk 20 and an optical disk 19, and a display 18 such as a CRT. The CPU 1 executes processing such as signal processing and image reconstruction, and The image of the tomographic plane is displayed on the display 18 and stored in the magnetic disk 20 of the external storage device.
[0014]
Next, FIG. 2 is a sectional view of an MRI apparatus applied in the present invention. Reference numeral 4 denotes a static magnetic field generating magnet that generates a static magnetic field around the subject 7. In the case of an open MRI apparatus, a static magnetic field is generated in a direction perpendicular to the body axis of the subject. Reference numeral 13 denotes a gradient magnetic field coil that generates a gradient magnetic field around the subject 7, 11 denotes an RF irradiation coil that generates a high-frequency magnetic field around the subject 7, 14 denotes a receiving coil, and 21 denotes a bed.
[0015]
In the present invention, the upper side of the receiving coil 14 is made of a transparent material as shown in the figure. For this reason, the field of view, which was conventionally limited to three directions as shown in FIG. 3A, is now changed to all directions as shown in FIG. 3B.
[0016]
FIG. 4 shows an overview of the receiving coil 14. The receiving coil 14 has an upper side and a lower side, and the upper side is composed of a conductive portion 14a forming a part of a loop and a cover 14b thereof.
[0017]
The conductive portion 14a is made of a material having light transmittance and conductivity.
In the first embodiment, a water-soluble conductive polymer is used as the material of the conductive portion 14a. The water-soluble conductive polymer is a substance that can conduct electricity and form a highly transparent thin film despite being an organic polymer. The surface resistance of the water-soluble conductive polymer does not depend on the humidity.
[0018]
In the second embodiment, a transparent conductive film is used as the material of the conductive portion 14a. The method of producing a transparent conductive film is mainly a physical film forming method, but there is also a method of applying an ultrafine particle-dispersed paint to the film surface. Of these, the physical film formation method mainly uses a method such as vacuum evaporation, sputtering, or ion plating on the surface of a polyester film to form a conductive thin film such as indium oxide, copper iodide, gold, palladium, chromium, nickel, or aluminum. It is characterized in that the conductive portion 14a having high transparency and considerably low surface resistance can be formed. Further, a polyester film may be coated with an indium tin oxide thin film.
[0019]
In the first and second embodiments, the upper side of the cover 14b is made of a material such as light-transmissive plastic or vinyl having light transmissivity.
[0020]
As described above, by configuring the conductive portion 14a and the cover 14b, the subject can have a wide field of view and can reduce a feeling of mental pressure.
[0021]
The present invention is not limited to the above-described embodiment, and can be variously modified and implemented without departing from the gist of the present invention. For example, the conductive portion 14a may be made of a material other than a water-soluble conductive polymer or a transparent conductive film as long as the material is light-transmissive and conductive. The cover 14b may be made of a material other than light-transmitting plastic or vinyl as long as the material has light-transmitting properties. Further, in the present invention, the lower side of the receiving coil may be made of a material having optical transparency. Also, various modifications can be considered for the shape of the receiving coil for the head.
[0022]
【The invention's effect】
As described above, according to the receiving coil for the head of the magnetic resonance imaging apparatus according to the present invention, the field of view of the subject can be dramatically expanded, thereby reducing the feeling of mental oppression of the subject.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an MRI apparatus applied in the present invention.
FIG. 2 is a sectional view of an MRI apparatus applied in the present invention.
FIG. 3 is a sectional view of a head receiving coil of an MRI apparatus applied in the present invention (a) and the conventional example (b).
FIG. 4 is a schematic view of a receiving coil for a head of an MRI apparatus applied in the present invention.
[Explanation of symbols]
14a: conductive portion 14b: cover