JP2004153978A - Control method for direct-current intermediate voltage in power conversion apparatus - Google Patents

Control method for direct-current intermediate voltage in power conversion apparatus Download PDF

Info

Publication number
JP2004153978A
JP2004153978A JP2002319337A JP2002319337A JP2004153978A JP 2004153978 A JP2004153978 A JP 2004153978A JP 2002319337 A JP2002319337 A JP 2002319337A JP 2002319337 A JP2002319337 A JP 2002319337A JP 2004153978 A JP2004153978 A JP 2004153978A
Authority
JP
Japan
Prior art keywords
intermediate voltage
direct
voltage
disturbance
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002319337A
Other languages
Japanese (ja)
Inventor
Naoki Kanazawa
直樹 金沢
Toshihisa Toyoda
敏久 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric FA Components and Systems Co Ltd
Original Assignee
Fuji Electric FA Components and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric FA Components and Systems Co Ltd filed Critical Fuji Electric FA Components and Systems Co Ltd
Priority to JP2002319337A priority Critical patent/JP2004153978A/en
Publication of JP2004153978A publication Critical patent/JP2004153978A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Rectifiers (AREA)
  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To quickly suppress fluctuation in a direct-current intermediate voltage due to disturbance by a feedforward control method which does not require direct current detection. <P>SOLUTION: Control to match the direct-current intermediate voltage V<SB>DC</SB>of an inverter arrangement 10 is carried out. The differential value of the direct-current voltage V<SB>DC</SB>when disturbance is inputted to a direct-current intermediate circuit is determined. The product of the differential value and the estimated capacitance value C<SB>O</SB>of a capacitor is computed by a direct current computation circuit 27. The computed product is added to a control signal for the direct-current intermediate voltage with such polarity that the disturbance is canceled out. At this time, the estimated capacitance value C<SB>O</SB>of the capacitor is calculated from a variation in the direct-current intermediate voltage which takes place when a voltage is applied to the inverter arrangement 10. Alternatively, control to match the direct-current intermediate voltage V<SB>DC</SB>of the inverter arrangement 10 is carried out. A disturbance signal inputted to the direct-current intermediate circuit is added to a signal for controlling the direct-current intermediate voltage V<SB>DC</SB>with such polarity that the disturbance is canceled out. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、電源側変換器と負荷側変換器とコンデンサとでなる電力変換装置の直流中間電圧の外乱による変動を素早く抑制できる電力変換装置の直流中間電圧制御方法に関する。
【0002】
【従来の技術】
図6は電力変換装置の一般的な構成を単線で示した主回路接続図である。この図6において、コンバータ6と平滑コンデンサ7とインバータ8とで構成している電力変換装置としてのインバータ装置10は、交流電源1からの交流電力を可変電圧・可変周波数の交流電力に変換し、負荷である誘導電動機9を所望の回転速度で駆動する。
このインバータ装置10を始動するにあたっては、先ず直流中間回路に接続している平滑コンデンサ7を充電する。そのために、短絡スイッチ5がオフしている状態で電源スイッチ2をオンにして、交流電源1からコンバータ6と充電抵抗4を経て平滑コンデンサ7へ充電電流を流すのであるが、このときの充電電流は充電抵抗4により抑制されている。電源スイッチ2をオンにして平滑コンデンサ7の充電を開始してから所定の時間が経過すれば、短絡スイッチ5をオンにして充電抵抗4を短絡し、平滑コンデンサ7の充電は完了する。充電完了後に当該インバータ装置10は誘導電動機9の可変速運転を開始するのであるが、このときコンバータ6の直流側とインバータ8の直流側とを結合している回路の電圧,すなわち直流中間電圧VDCは一定値に制御される。
【0003】
このインバータ装置10の運転中に、負荷である誘導電動機9の回転速度を急激に変化させると、これに対応して直流中間電圧VDCが変動する。例えば誘導電動機9を急停止させると、この誘導電動機9の運動エネルギーに起因する回生電流が直流中間回路へ流入する。このとき直流中間回路に接続している全平滑コンデンサ7の静電容量をCとし、流入する直流電流をIDCとすると、直流中間電圧VDCは下記の数式1で示す値となる。
【0004】
【数1】

Figure 2004153978
すなわち直流中間電圧VDCはこの回生電流IDCにより急上昇する。このような外乱に対抗して直流中間電圧VDCを一定値に維持する制御方法は、大別すると以下の3つの方法がある。すなわち、
▲1▼自動電圧調整器(以下ではAVRと略記)による比例積分(以下ではPIと略記)制御方法。
▲2▼AVRによるPI制御に、直流中間電流によるフィードフォワード(以下ではFFと略記)制御を付加する方法(例えば、特許文献1参照。)。
【0005】
▲3▼AVRによるPI制御に、オブザーバによるFF制御を付加する方法。
【0006】
【特許文献1】
特開平11−18304号公報
【0007】
【発明が解決しようとする課題】
しかしながら▲1▼の方法では、定常安定と外乱抑制の両者を満足させるような設定をすることは通常は不可能に近いから、どちらか一方のみを対象にした設定になってしまう。また▲2▼の方法は、直流電流を検出するセンサが必要であるが、この直流電流検出センサは複雑で装置の価格を上昇させる欠点がある。更に▲3▼の方法は、制御の状態方程式を解くことで直流電流を推定し、これをFF項にしてAVRの出力に加算するのであるが、外乱抑制の効果を高めるには、パラメータの設定を最適にしなければならないなどの欠点がある。
【0008】
図7は外乱による直流中間電圧VDCの変動を抑制する従来の制御方法を示した制御ブロック図であって、前述の▲2▼の対策を施した場合を示している。
図7において、制御対象部11の符号12は外乱であり、符号13はコンデンサである。またコントローラ部14の符号15はAVRであり、符号16はローパスフィルタ(以下ではLPFと略記)、符号17はFF項である。なおZ−1はディジタル演算の際の1サンプルホールド遅れを示し、1/sはラプラス演算子、Cはコンデンサの静電容量であり、VDC は直流中間電圧指令値である。
この図7の従来例では、外乱である回生電流が流入することにより直流中間電圧VDCが上昇し、この電圧上昇を検知してから制御を開始している。すなわち数式1で明らかなように、流入する電流の積分結果が電圧となる制御の性質から必ず制御遅れが生じる。よってPI制御のみでは、過渡的に直流中間電圧VDCが上昇するのは避けられない。またAVR制御のPI設計値を、外乱抑制のためだけに高応答に設定すると、定常状態では安定性に欠けることになってしまうし、これとは逆に定常状態での安定性を向上させると、外乱抑制の応答性が低下してしまうことになる。
【0009】
結局誘導電動機9に急制動をかけたときの回生電流による直流中間電圧VDCの上昇を抑制できず、過電圧トリップにいたる恐れがある。また、インバータ装置10はパルス幅変調制御が一般的であるから、直流中間電圧VDCにはこれらの制御に起因する各種ノイズが重畳することが多いので、LPF16を通過させることになるが、そのためにAVR15の応答を高められない欠点がある。そこでAVR15の出力段にFF項17を付加するのであるが、前述したように外乱である直流電流を検出するためのセンサを設置する必要があり、回路が複雑・高価になってしまう欠点がある。
【0010】
そこでこの発明の目的は、直流電流の検出が不要なフィードフォワード制御方法により、外乱による直流中間電圧の変動を素早く抑制できるようにすることにある。
【0011】
【課題を解決するための手段】
前記の目的を達成するために、この発明電力変換装置の直流中間電圧制御方法は、
電源側変換器と、負荷側変換器と、これら両変換器の直流側同士を結合している直流中間回路に接続したコンデンサとで構成している電力変換装置の前記直流中間回路電圧の実際値を、その目標値に一致させる制御を行う際に、前記直流中間回路に外乱が入力したときの当該直流中間電圧の微分値または不完全微分値を求め、これと前記コンデンサの静電容量推定値との積を、前記外乱を相殺する極性で前記直流中間電圧の制御信号に加算する。このときの前記コンデンサの静電容量推定値は、前記電力変換装置に電圧を印加したときの前記直流中間電圧の変化から計算する。
【0012】
または、電源側変換器と、負荷側変換器と、これら両変換器の直流側同士を結合している直流中間回路に接続したコンデンサとで構成している電力変換装置の前記直流中間回路電圧の実際値を、その目標値に一致させる制御を行う際に、前記直流中間回路に入力する外乱信号を、当該外乱を相殺する極性で前記直流中間電圧の制御信号に加算する。
【0013】
【発明の実施の形態】
図1は本発明の第1実施例を表した制御ブロック図であるが、制御対象部11を構成する外乱12とコンデンサ13、およびコントローラ部24を構成するAVR15とFF項17も、図7で既述の従来例と同じであるから、同じ部分の説明は省略する。
直流中間回路へ流入する回生電流IDCと直流中間電圧VDCとの関係は、下記の数式2で表されるが、この数式2は前述した数式1から導かれる。但しCはコンデンサの静電容量である。
【0014】
【数2】
Figure 2004153978
すなわち直流中間電圧VDCを微分し、この微分値とコンデンサの静電容量Cとの積が回生電流IDCであるから、図7の従来例におけるFF項17の代わりに数式2の演算値を使用すればよい。図1の第1実施例では、後述の方法で推定するコンデンサの静電容量推定値Cと直流中間電圧VDCの微分値との積をから直流電流IDCを演算する直流電流演算27を設けたコントローラ部24を備えることで、直流電流検出センサを省略している。
【0015】
図2は本発明の第1実施例の応用例を表した制御ブロック図であって、前述した図1に記載の直流電流演算回路27の代わりに、LPF37と減算器38とを組み合わせて使用するコントローラ部34を備えることで、直流中間電圧VDCを不完全微分するところが図1の第1実施例とは異なっているが、これ以外はすべて同じであるから、図2の説明は省略する。
図3は本発明の第2実施例を表した主回路接続図であって、図6で既述のインバータ装置の一部分を三相回路で表している。すなわち、ダイオードと半導体スイッチ素子との逆並列接続でなるスイッチング回路を三相ブリッジ接続してコンバータ46を構成し、交流電源1からの三相交流電力を電源スイッチ42とリアクトル43を介してコンバータ46へ与える。コンバータ46は例えばパルス幅変調制御により交流電力を直流電力に変換して直流中間回路へ出力するが、この直流電力に含まれているリプル分を抑制するために、大容量の平滑コンデンサ47を備えている。このインバータ装置の始動の際に、平滑コンデンサ47に過大な充電電流が流入するのを防ぐために、充電抵抗44とこれを短絡する短絡スイッチ45を、コンバータ46の交流入力側に設置する。更に、交流電源1の電圧Vを検出するための分圧抵抗51,絶縁検出器52,LPF53,A/D変換器54を備えるとともに、直流中間電圧VDCを検出するための絶縁検出器55,LPF56,A/D変換器57を備え、ディジタル量に変換された各電圧信号はCPU58へ入力される。なお、符号59は保護ヒューズである。
【0016】
図3の回路において、短絡スイッチ45がオフの状態,すなわち充電抵抗44が挿入されている状態で電源スイッチ42をオンすると、平滑コンデンサ47へ充電電流が流入するが、このときの平滑コンデンサ47の直流電圧VDCは下記の数式3で表される。但しVは三相交流の線間電圧、Cは平滑コンデンサ47の静電容量で、Rは充電抵抗44の抵抗値であり、tは経過時間である。
【0017】
【数3】
Figure 2004153978
電源スイッチ42をオンにした瞬間の平滑コンデンサ47の電圧(以下では直流電圧と称する)をVDC(0) とすると、VDC(0) =0である。Tをデータのサンプリング周期とすると、各サンプリング時間経過後の直流電圧VDC(1) DC(2) ・・・の値はA/D変換器57から取得できるから、下記の各数式を適用し、CPU58で演算することで、それぞれからexp(−T/CR)の値が得られる。
【0018】
【数4】
Figure 2004153978
【0019】
【数5】
Figure 2004153978
【0020】
【数6】
Figure 2004153978
【0021】
【数7】
Figure 2004153978
各式から得られるexp(−T/CR)の値を移動平均するなどの統計処理を行って時定数を求め、この時定数から平滑コンデンサ47の静電容量推定値Cが得られる。
図4は本発明の第3実施例を表した制御ブロック図であって、図1に記載の直流電流演算回路27の代わりに、あるいは図2に記載のLPF37と減算器18の代わりに、外乱を抑制する極性で当該外乱12の情報をAVR15の出力に加算するコントローラ部64を備えることで外乱抑制を行うところが、図1と図2で既述の実施例とは異なる点であるが、これ以外は図1または図2と同じであるから、その説明は省略する。
【0022】
図5は図4で既述の第3実施例の応用例を表した制御ブロック図であって、制御対象電動機の機械外乱72が、速度調節器(ASR)75から出力されるトルク指令値に付加される。これの回生情報82を取り出してAVR85の出力に付加することでFF制御がなされるが、このときに制御の遅れは発生せず、簡易な構成で高い応答性を有するシステムにすることができる。
【0023】
【発明の効果】
電力変換装置の直流中間電圧を外乱に対抗して高い応答性で制御するにあたって、従来はフィードフォワード制御に直流電流の検出が不可欠であったことから、高価で複雑な直流電流検出器を設置しなければならなかった。あるいは調整が面倒なオブザーバを設置しなければならなかったし、複数台のインバータやコンバータを並列運転する際にはコンデンサの静電容量の計測に手間がかかる不便があった。これに対して本発明では、複数台の電力変換装置を並列にする場合でも、これを始動する際にコンデンサの静電容量を演算できるし、この静電容量を使った微分回路を構成しているので、装置の複雑化や高価格化を回避しつつ、外乱を素早く抑制できる効果も得られる。
【図面の簡単な説明】
【図1】本発明の第1実施例を表した制御ブロック図
【図2】本発明の第1実施例の応用例を表した制御ブロック図
【図3】本発明の第2実施例を表した主回路接続図
【図4】本発明の第3実施例を表した制御ブロック図
【図5】図4で既述の第3実施例の応用例を表した制御ブロック図
【図6】電力変換装置の一般的な構成を単線で示した主回路接続図
【図7】外乱による直流中間電圧VDCの変動を抑制する従来の制御方法を示した制御ブロック図
【符号の説明】
1 交流電源
2,42 電源スイッチ
3,43 リアクトル
4,44 充電抵抗
5,45 短絡スイッチ
6,46 コンバータ
7,47 平滑コンデンサ
8 インバータ
9 誘導電動機
10 インバータ装置
11 制御対象部
12 外乱
13,83 コンデンサ
14,24,34,64 コントローラ部
15,85 AVR
16,37,53 LPF
17 FF項
27 直流電流演算回路
38 減算器
51 分圧抵抗
52,55 絶縁検出器
54,57 A/D変換器
56,76,86 LPF
58 CPU
72 機械外乱
75 ASR
82 回生[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a DC intermediate voltage control method for a power converter, which can quickly suppress a fluctuation due to disturbance of a DC intermediate voltage of a power converter including a power supply converter, a load converter, and a capacitor.
[0002]
[Prior art]
FIG. 6 is a main circuit connection diagram showing a general configuration of the power conversion device by a single line. In FIG. 6, an inverter device 10 as a power conversion device including a converter 6, a smoothing capacitor 7, and an inverter 8 converts AC power from the AC power supply 1 into AC power having a variable voltage and a variable frequency. The induction motor 9 as a load is driven at a desired rotation speed.
When starting the inverter device 10, first, the smoothing capacitor 7 connected to the DC intermediate circuit is charged. For this purpose, the power switch 2 is turned on while the short-circuit switch 5 is turned off, and a charging current flows from the AC power supply 1 to the smoothing capacitor 7 through the converter 6 and the charging resistor 4. Are suppressed by the charging resistor 4. When a predetermined time has elapsed since the power switch 2 was turned on to start charging the smoothing capacitor 7, the short-circuit switch 5 was turned on to short-circuit the charging resistor 4, and the charging of the smoothing capacitor 7 was completed. After the charging is completed, the inverter device 10 starts the variable speed operation of the induction motor 9. At this time, the voltage of the circuit connecting the DC side of the converter 6 and the DC side of the inverter 8, that is, the DC intermediate voltage V DC is controlled to a constant value.
[0003]
When the rotational speed of the induction motor 9 as a load is rapidly changed during the operation of the inverter device 10, the DC intermediate voltage VDC fluctuates correspondingly. For example, when the induction motor 9 is suddenly stopped, a regenerative current resulting from the kinetic energy of the induction motor 9 flows into the DC intermediate circuit. At this time, assuming that the capacitance of all the smoothing capacitors 7 connected to the DC intermediate circuit is Cn and the flowing DC current is I DC , the DC intermediate voltage VDC has a value represented by the following Expression 1.
[0004]
(Equation 1)
Figure 2004153978
That DC intermediate voltage V DC increases rapidly by the regenerative current I DC. Control methods for maintaining the DC intermediate voltage VDC at a constant value against such disturbances are roughly classified into the following three methods. That is,
(1) Proportional integration (hereinafter abbreviated as PI) control method using an automatic voltage regulator (hereinafter abbreviated as AVR).
(2) A method in which feedforward (hereinafter abbreviated as FF) control using a DC intermediate current is added to PI control by AVR (for example, see Patent Document 1).
[0005]
(3) A method of adding FF control by an observer to PI control by AVR.
[0006]
[Patent Document 1]
JP-A-11-18304
[Problems to be solved by the invention]
However, in the method (1), it is usually almost impossible to make a setting that satisfies both the steady state stability and the disturbance suppression. Therefore, the setting is made for only one of them. In the method (2), a sensor for detecting a direct current is required. However, this direct current detection sensor has a drawback that it is complicated and increases the price of the apparatus. Further, in the method (3), the DC current is estimated by solving the state equation of control, and this is converted to an FF term and added to the output of the AVR. There are drawbacks such as the need to optimize
[0008]
FIG. 7 is a control block diagram showing a conventional control method for suppressing the fluctuation of the DC intermediate voltage VDC due to a disturbance, and shows a case where the above-mentioned measure (2) is taken.
In FIG. 7, reference numeral 12 of the control target unit 11 is a disturbance, and reference numeral 13 is a capacitor. Reference numeral 15 of the controller 14 denotes an AVR, reference numeral 16 denotes a low-pass filter (hereinafter abbreviated as LPF), and reference numeral 17 denotes an FF term. Here, Z -1 indicates one sample hold delay in digital operation, 1 / s is a Laplace operator, C is a capacitance of a capacitor, and V DC * is a DC intermediate voltage command value.
In the conventional example of FIG. 7, the DC intermediate voltage VDC rises due to the flow of the regenerative current which is a disturbance, and the control is started after detecting this rise in voltage. That is, as is apparent from Equation 1, a control delay always occurs due to the nature of the control in which the integration result of the inflowing current becomes a voltage. Therefore, it is inevitable that the DC intermediate voltage VDC transiently increases only by the PI control. Also, if the PI design value of the AVR control is set to a high response only for disturbance suppression, the stability will be lacking in the steady state, and conversely, if the stability in the steady state is improved, In this case, the responsiveness of disturbance suppression is reduced.
[0009]
Eventually, an increase in the DC intermediate voltage VDC due to the regenerative current when the induction motor 9 is suddenly braked cannot be suppressed, and an overvoltage trip may occur. In addition, since the inverter device 10 generally performs pulse width modulation control, various noises resulting from these controls are often superimposed on the DC intermediate voltage VDC , so that the DC voltage is passed through the LPF 16. Has the disadvantage that the response of AVR15 cannot be increased. Therefore, the FF term 17 is added to the output stage of the AVR 15, but as described above, it is necessary to install a sensor for detecting a direct current, which is a disturbance, and there is a disadvantage that the circuit becomes complicated and expensive. .
[0010]
SUMMARY OF THE INVENTION It is an object of the present invention to provide a feedforward control method that does not require the detection of a DC current, so that a change in DC intermediate voltage due to disturbance can be quickly suppressed.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, a DC intermediate voltage control method for a power conversion device according to the present invention includes:
The actual value of the DC intermediate circuit voltage of the power converter comprising a power supply converter, a load converter, and a capacitor connected to a DC intermediate circuit that couples the DC sides of both converters. When performing control to match the target value, the differential value or incomplete differential value of the DC intermediate voltage when a disturbance is input to the DC intermediate circuit is obtained, and this and the estimated capacitance value of the capacitor are obtained. Is added to the control signal of the DC intermediate voltage with a polarity that cancels the disturbance. The estimated capacitance value of the capacitor at this time is calculated from the change in the DC intermediate voltage when a voltage is applied to the power converter.
[0012]
Alternatively, the power supply-side converter, the load-side converter, and a capacitor connected to a DC intermediate circuit that couples the DC side of both these converters, the DC intermediate circuit voltage of the power conversion device comprising When performing control to make the actual value coincide with the target value, a disturbance signal input to the DC intermediate circuit is added to the DC intermediate voltage control signal with a polarity that cancels the disturbance.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a control block diagram showing a first embodiment of the present invention. The disturbance 12 and the capacitor 13 constituting the control target unit 11, and the AVR 15 and the FF item 17 constituting the controller unit 24 are also shown in FIG. Since it is the same as the above-described conventional example, the description of the same part is omitted.
The relationship between the regenerative current I DC flowing into the DC intermediate circuit and the DC intermediate voltage VDC is represented by the following Expression 2, which is derived from Expression 1 described above. Here, C is the capacitance of the capacitor.
[0014]
(Equation 2)
Figure 2004153978
That differentiates the DC intermediate voltage V DC, from the product of the capacitance C of the differential value and the capacitor is regenerated current I DC, the calculated value of Equation 2 instead of the FF term 17 in the conventional example of FIG. 7 Just use it. In the first embodiment of FIG. 1, a direct current operation 27 for calculating the direct current I DC from the product of the differential value of the capacitance estimate C 0 and the DC intermediate voltage V DC of the capacitor to be estimated by the method described below The provision of the provided controller unit 24 omits the DC current detection sensor.
[0015]
FIG. 2 is a control block diagram showing an application example of the first embodiment of the present invention, in which an LPF 37 and a subtractor 38 are used in combination instead of the DC current operation circuit 27 shown in FIG. 1 is different from the first embodiment of FIG. 1 in that the DC intermediate voltage VDC is incompletely differentiated by the provision of the controller unit 34, but all other points are the same, and the description of FIG. 2 is omitted.
FIG. 3 is a main circuit connection diagram showing a second embodiment of the present invention, and a part of the inverter device described above with reference to FIG. 6 is represented by a three-phase circuit. That is, a switching circuit composed of an anti-parallel connection of a diode and a semiconductor switch element is connected in a three-phase bridge to form a converter 46, and the three-phase AC power from the AC power supply 1 is supplied to the converter 46 Give to. The converter 46 converts AC power into DC power by, for example, pulse width modulation control, and outputs the DC power to the DC intermediate circuit. In order to suppress a ripple component included in the DC power, the converter 46 includes a large-capacity smoothing capacitor 47. ing. In order to prevent an excessive charging current from flowing into the smoothing capacitor 47 when starting the inverter device, a charging resistor 44 and a short-circuit switch 45 for short-circuiting the charging resistor 44 are provided on the AC input side of the converter 46. Furthermore, dividing resistors 51 for detecting a voltage V S of the AC power supply 1, insulating the detector 52, LPF 53, A / D converter 54 provided with a insulation detector 55 for detecting the DC intermediate voltage V DC , LPF 56, and A / D converter 57, and each voltage signal converted into a digital quantity is input to the CPU 58. Reference numeral 59 denotes a protection fuse.
[0016]
In the circuit of FIG. 3, when the power switch 42 is turned on with the short-circuit switch 45 turned off, that is, with the charging resistor 44 inserted, the charging current flows into the smoothing capacitor 47. The DC voltage VDC is represented by the following Equation 3. However line voltages V S is a three-phase alternating current, C is the electrostatic capacitance of the smoothing capacitor 47, R is the resistance of the charging resistor 44, t is the elapsed time.
[0017]
[Equation 3]
Figure 2004153978
Assuming that the voltage of the smoothing capacitor 47 (hereinafter referred to as DC voltage) at the moment when the power switch 42 is turned on is V DC (0), V DC (0) = 0. When the T S and the sampling period of the data, the DC voltage V DC after a lapse of the sampling time (1), since the value of V DC (2) · · · can be obtained from the A / D converter 57, the following equation Is applied, and the calculation is performed by the CPU 58, so that the value of exp (−T S / CR) is obtained from each.
[0018]
(Equation 4)
Figure 2004153978
[0019]
(Equation 5)
Figure 2004153978
[0020]
(Equation 6)
Figure 2004153978
[0021]
(Equation 7)
Figure 2004153978
Seek time constant by performing statistical processing such as moving average values of exp obtained from the formulas (-T S / CR), capacitance estimate C 0 of the smoothing capacitor 47 from the time constant is obtained.
FIG. 4 is a control block diagram showing a third embodiment of the present invention. In place of the DC current operation circuit 27 shown in FIG. 1 or the LPF 37 and the subtractor 18 shown in FIG. 1 and 2 in that the controller unit 64 that adds the information of the disturbance 12 to the output of the AVR 15 with the polarity that suppresses the disturbance suppresses the disturbance. Except for the above, it is the same as FIG. 1 or FIG.
[0022]
FIG. 5 is a control block diagram showing an application example of the third embodiment described above with reference to FIG. 4, in which a mechanical disturbance 72 of a motor to be controlled changes a torque command value output from a speed controller (ASR) 75. Will be added. The FF control is performed by extracting the regenerative information 82 and adding it to the output of the AVR 85. At this time, there is no delay in control, and a system having a simple configuration and high responsiveness can be provided.
[0023]
【The invention's effect】
In order to control the DC intermediate voltage of the power converter with high responsiveness against external disturbances, detection of DC current was conventionally indispensable for feedforward control, so an expensive and complicated DC current detector was installed. I had to. Alternatively, an observer whose adjustment is troublesome had to be installed, and when multiple inverters and converters were operated in parallel, it was inconvenient to measure the capacitance of the capacitor. On the other hand, in the present invention, even when a plurality of power converters are arranged in parallel, the capacitance of the capacitor can be calculated when starting the power converters, and a differentiating circuit using the capacitance can be configured. Therefore, it is possible to obtain an effect that disturbance can be suppressed quickly while avoiding complexity and high price of the device.
[Brief description of the drawings]
FIG. 1 is a control block diagram showing a first embodiment of the present invention; FIG. 2 is a control block diagram showing an application example of the first embodiment of the present invention; FIG. 3 is a diagram showing a second embodiment of the present invention; FIG. 4 is a control block diagram showing a third embodiment of the present invention. FIG. 5 is a control block diagram showing an application example of the third embodiment described above with reference to FIG. FIG. 7 is a main circuit connection diagram showing a general configuration of a conversion device by a single line. FIG. 7 is a control block diagram showing a conventional control method for suppressing fluctuation of DC intermediate voltage V DC due to disturbance.
DESCRIPTION OF SYMBOLS 1 AC power supply 2, 42 Power switch 3, 43 Reactor 4, 44 Charging resistance 5, 45 Short circuit switch 6, 46 Converter 7, 47 Smoothing capacitor 8 Inverter 9 Induction motor 10 Inverter device 11 Control target part 12 Disturbance 13, 83 Capacitor 14 , 24, 34, 64 Controller 15, 85 AVR
16, 37, 53 LPF
17 FF term 27 DC current operation circuit 38 Subtractor 51 Voltage divider 52, 55 Insulation detector 54, 57 A / D converter 56, 76, 86 LPF
58 CPU
72 Mechanical disturbance 75 ASR
82 regeneration

Claims (3)

電源側変換器と、負荷側変換器と、これら両変換器の直流側同士を結合している直流中間回路に接続したコンデンサとで構成している電力変換装置の前記直流中間回路電圧の実際値を、その目標値に一致させる制御を行っている電力変換装置の直流中間電圧制御方法において、
前記直流中間回路に外乱が入力したときの当該直流中間電圧の微分値または不完全微分値を求め、これと前記コンデンサの静電容量推定値との積を、前記外乱を相殺する極性で前記直流中間電圧の制御信号に加算することを特徴とする電力変換装置の直流中間電圧制御方法。
The actual value of the DC intermediate circuit voltage of the power converter comprising a power supply converter, a load converter, and a capacitor connected to a DC intermediate circuit that couples the DC sides of both converters. In the DC intermediate voltage control method of the power conversion device performing control to match the target value,
A differential value or an incomplete differential value of the DC intermediate voltage when a disturbance is input to the DC intermediate circuit is obtained. A DC intermediate voltage control method for a power converter, wherein the method is added to a control signal of an intermediate voltage.
請求項1に記載の電力変換装置の直流中間電圧の制御方法において、
前記コンデンサの静電容量推定値は、前記電力変換装置に電圧を印加したときの前記直流中間電圧の変化から計算することを特徴とする電力変換装置の直流中間電圧制御方法。
A method for controlling a DC intermediate voltage of a power converter according to claim 1,
A DC intermediate voltage control method for a power converter, wherein the capacitance estimated value of the capacitor is calculated from a change in the DC intermediate voltage when a voltage is applied to the power converter.
電源側変換器と、負荷側変換器と、これら両変換器の直流側同士を結合している直流中間回路に接続したコンデンサとで構成している電力変換装置の前記直流中間回路電圧の実際値を、その目標値に一致させる制御を行っている電力変換装置の直流中間電圧制御方法において、
前記直流中間回路に入力する外乱信号を、当該外乱を相殺する極性で前記直流中間電圧の制御信号に加算することを特徴とする電力変換装置の直流中間電圧制御方法。
The actual value of the DC intermediate circuit voltage of the power converter comprising a power supply converter, a load converter, and a capacitor connected to a DC intermediate circuit that couples the DC sides of both converters. In the DC intermediate voltage control method of the power conversion device performing control to match the target value,
A DC intermediate voltage control method for a power converter, wherein a disturbance signal input to the DC intermediate circuit is added to a control signal of the DC intermediate voltage with a polarity that cancels the disturbance.
JP2002319337A 2002-11-01 2002-11-01 Control method for direct-current intermediate voltage in power conversion apparatus Withdrawn JP2004153978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002319337A JP2004153978A (en) 2002-11-01 2002-11-01 Control method for direct-current intermediate voltage in power conversion apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002319337A JP2004153978A (en) 2002-11-01 2002-11-01 Control method for direct-current intermediate voltage in power conversion apparatus

Publications (1)

Publication Number Publication Date
JP2004153978A true JP2004153978A (en) 2004-05-27

Family

ID=32462210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002319337A Withdrawn JP2004153978A (en) 2002-11-01 2002-11-01 Control method for direct-current intermediate voltage in power conversion apparatus

Country Status (1)

Country Link
JP (1) JP2004153978A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006074879A (en) * 2004-09-01 2006-03-16 Muscle Corp Power regeneration method and power regeneration device
WO2013125320A1 (en) * 2012-02-22 2013-08-29 株式会社明電舎 Voltage control device and voltage control method for power conversion device
JP2019161810A (en) * 2018-03-12 2019-09-19 ファナック株式会社 Power conversion device and control method therefor
JP7505944B2 (en) 2020-09-09 2024-06-25 株式会社日本製鋼所 Power supply device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006074879A (en) * 2004-09-01 2006-03-16 Muscle Corp Power regeneration method and power regeneration device
JP4719847B2 (en) * 2004-09-01 2011-07-06 マッスル株式会社 Power regeneration method and power regeneration device
WO2013125320A1 (en) * 2012-02-22 2013-08-29 株式会社明電舎 Voltage control device and voltage control method for power conversion device
JP2013172578A (en) * 2012-02-22 2013-09-02 Meidensha Corp Voltage control device and voltage control method for electric power conversion device
CN104137409A (en) * 2012-02-22 2014-11-05 株式会社明电舍 Voltage control device and voltage control method for power conversion device
KR101734975B1 (en) 2012-02-22 2017-05-12 메이덴샤 코포레이션 Voltage control device and voltage control method for power conversion device
JP2019161810A (en) * 2018-03-12 2019-09-19 ファナック株式会社 Power conversion device and control method therefor
US10439504B2 (en) 2018-03-12 2019-10-08 Fanuc Corporation Power converter device and control method thereof
JP7505944B2 (en) 2020-09-09 2024-06-25 株式会社日本製鋼所 Power supply device

Similar Documents

Publication Publication Date Title
US7791911B2 (en) Inverter device which maintains voltage during input voltage drop
WO2006114843A1 (en) Servo motor controller
JP5923365B2 (en) Electric motor output control device
WO2010055556A1 (en) Capacitor capacitance estimating device and capacitor capacitance estimating method for power converter
JP2012175891A (en) Motor control apparatus for performing overload protection
JP6681162B2 (en) Power conditioner and method for controlling power conditioner
US9641120B2 (en) Motor control apparatus and method for controlling motor
JP2004153978A (en) Control method for direct-current intermediate voltage in power conversion apparatus
JP2003294543A (en) Temperature detection device
JP3350439B2 (en) Elevator control device
JPH10225158A (en) Controller for induction machine
JP4536272B2 (en) Elevator control device
JP2861418B2 (en) Torque limiting method and control method for induction motor
JP2007151359A (en) Electric power conversion system
JP3764433B2 (en) Induction motor rotation speed detection apparatus and method
JPH0670660B2 (en) Inverter device
JPH07322626A (en) Pwm converter device
WO2022149214A1 (en) Power conversion device, air conditioner, and refrigeration cycle application device
JP2005045914A (en) Inverter device
JP5631200B2 (en) Synchronous motor control device and synchronous generator control device
JP2011217473A (en) Motor drive circuit having function of detecting failure in rush current suppression circuit and motor control device
JP3057332B2 (en) Instantaneous interruption power switching method and instantaneous interruption uninterruptible power supply
US9742340B2 (en) Apparatus for controlling inverter
JPH0847279A (en) Power supply regeneration circuit
CN112470388B (en) Power conversion device and motor braking method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051017

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080919

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090330