JP2004153976A - Drive device for brushless motor - Google Patents

Drive device for brushless motor Download PDF

Info

Publication number
JP2004153976A
JP2004153976A JP2002319220A JP2002319220A JP2004153976A JP 2004153976 A JP2004153976 A JP 2004153976A JP 2002319220 A JP2002319220 A JP 2002319220A JP 2002319220 A JP2002319220 A JP 2002319220A JP 2004153976 A JP2004153976 A JP 2004153976A
Authority
JP
Japan
Prior art keywords
denotes
circuit
brushless motor
rotation speed
bridge inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002319220A
Other languages
Japanese (ja)
Inventor
Shigeru Kishi
繁 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Home and Life Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Home and Life Solutions Inc filed Critical Hitachi Home and Life Solutions Inc
Priority to JP2002319220A priority Critical patent/JP2004153976A/en
Publication of JP2004153976A publication Critical patent/JP2004153976A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a drive device for a brushless motor wherein with a heavy load, the switching loss is reduced to reduce heat generation and a large radiator is obviated. <P>SOLUTION: Numeral 1 denotes an alternating-current power supply, 2 denotes diodes for rectification, 3 denotes a capacitor for smoothing, 4 denotes a bridge inverter, 6 denotes a position detection circuit, 7 denotes an energization control circuit, 8 denotes a rotational speed measurement circuit, 9 denotes a rotational speed command, 10 denotes a rotational speed control circuit, 11 denotes a triangular wave generation circuit, 12 denotes a modulation circuit, 13 denotes a synthesis circuit, 14 denotes a period switching circuit, and 15 denotes a temperature detection circuit. The driving device for brushless motor is constituted of these elements. Numeral 5 denotes a brushless motor. The driving device for brushless motor produces pulse strings using triangular waves and varying the width of pulses to control the rotational speed. The period of the triangular waves is switched between a period shorter than the interval of commutation of the bridge inverter and a period substantially equal thereto, and thereby the switching loss is reduced. Thus, even if a heavy load is connected, the motor can be operated with a small radiator. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は無刷子電動機の駆動装置に係り、特にスイッチング損失による発熱を低減する無刷子電動機の駆動装置の制御に関する。
【0002】
【従来の技術】
従来技術による無刷子電動機の駆動装置について説明する。図5は従来技術による無刷子電動機の駆動装置の全体構成図である。1は交流電源、2は整流用のダイオード、3は平滑用のコンデンサ、4はブリッジインバータ、6は位置検出回路、7は通電制御回路、8は回転速度測定回路、9は回転速度指令、10は回転速度制御回路、11は三角波発生回路、12は変調回路、13は合成回路であり、以上で無刷子電動機の駆動装置を構成している。5は無刷子電動機である。位置検出回路6は無刷子電動機5の回転子磁極位置を検出し回転子位置信号を発生する。冷蔵庫等の圧縮機電動機は高温高圧の冷媒雰囲気中に置かれるためホール素子等のセンサが使えない。このため電動機巻線の逆起電力等から回転子位置を検出するセンサレス方式が用いられる。通電制御回路7は回転子位置信号に基づきブリッジインバータ4の通電相を決定する。無刷子電動機は回転子の磁石の位置に対応した固定子巻線に通電し、通電相を順に切り替えて回転を維持する。回転速度測定回路8は回転子位置信号から無刷子電動機5の回転速度を測定する。回転速度制御回路10は回転速度司令9と回転速度測定回路8が測定した無刷子電動機5の回転速度を比較して速度制御信号を発生する。変調回路12は速度制御信号を三角波発生回路11の三角波で変調して該ブリッジインバータの出力電圧を制御するパルス列を作成する。無刷子電動機5の回転速度が回転速度指令9より小さい場合はパルスの幅を大きくする。無刷子電動機5の回転速度が回転速度指令9より大きい場合はパルスの幅を小さくする。これにより無刷子電動機5の回転速度を回転速度指令9に一致させる。合成回路13はパルス列と通電信号を合成してブリッジインバータ4の駆動信号を作成する。以上の動作により無刷子電動機5が駆動される。
【0003】
従来技術による電動機の駆動装置として、下記する特許文献1および2がある。
【0004】
【特許文献1】
特公昭61−27990号公報
【特許文献2】
特開平6−62596号公報
【0005】
【発明が解決しようとする課題】
上記従来技術における無刷子電動機の駆動装置において、三角波発生回路11の三角波の周期が一定であるため無刷子電動機5の負荷が大きい場合ブリッジインバータ4の電流も大きくなり、従ってスイッチング損失も増大する。この結果、ブリッジインバータ4の放熱のために大きな放熱器を必要とする。
【0006】
本発明の目的は、負荷が大きい場合においてスイッチング損失を低減し発熱を少なくして大きな放熱器を要さない無刷子電動機の駆動装置を提供することにある。
【0007】
【課題を解決するための手段】
上記課題は、三角波発生回路が発生する三角波の周期を切り替えることにより解決される。
【0008】
【発明の実施の形態】
本発明の一実施例を図1により説明する。図1は本発明による無刷子電動機の駆動装置の全体構成図である。1は交流電源、2は整流用のダイオード、3は平滑用のコンデンサ、4はブリッジインバータ、6は位置検出回路、7は通電制御回路、8は回転速度測定回路、9は回転速度指令、10は回転速度制御回路、11は三角波発生回路、12は変調回路、13は合成回路、14は周期切替回路、15は温度検出回路であり、以上で無刷子電動機の駆動装置を構成している。5は無刷子電動機である。無刷子電動機の駆動制御については従来技術と同じであるので説明は省略する。
【0009】
図2は変調回路12において速度制御信号を三角波で変調してブリッジインバータの出力電圧を制御するパルス列を作成する動作の説明図である。一定の振幅の三角波と速度制御信号を比較して、三角波より速度制御信号の電圧が高い部分にパルスを発生させる。無刷子電動機の回転速度が回転速度指令より小さい場合は、速度制御信号を徐々に大きくしてパルスの幅を大きくする。パルスの幅が大きくなると無刷子電動機の印加電圧が大きくなり回転速度が増大する。逆に、回転速度が大きい場合は徐々に小さくしてパルスの幅を小さくする。このようにして、無刷子電動機の回転速度は回転速度指令と等しくなる。
【0010】
パルス列は合成回路13でブリッジインバータ4の駆動信号と合成される。図3は合成されたブリッジインバータの駆動信号の例である。パルス列に従ってブリッジインバータのスイッチング素子がスイッチングを行う。このオンおよびオフの動作時にスイッチング損失が発生する。このスイッチング周波数は高いほど電動機の効率は高くなるがブリッジインバータのスイッチング損失が増大する。パルス列の周期すなわち三角波の周期は周波数に表すと通常数kHzにすることが多い。電動機の効率をスイッチング損失を考慮してスイッチング周波数は決定される。
【0011】
冷蔵庫の圧縮機をインバータで駆動する場合、通常の運転においてはインバータの発熱は問題にはならない。しかしながら、冷蔵庫を据え付けた時の運転時は、庫内が周囲温度と同じで冷えていないため負荷状態となっている。このため庫内が冷えるまでの間は負荷が大きくインバータの発熱も大きい。この据え付け時の負荷が大きな状態での運転においても放熱できる放熱器を使用しなければならない。本発明の目的は負荷が大きな時にスイッチング損失を低減し放熱器を小さくする手段を提供することにある。
【0012】
据え付け時の庫内が冷えるまでの運転は、通常早く庫内を冷やすために圧縮機の回転速度を大きくして運転する。しかしながらこの時も通常の運転と同様に数kHzでスイッチングを行っている。本発明は、据え付け時の運転は電動機の効率低下や騒音の増大等の若干の性能低下は問題視されないことに着目し、スイッチング損失を低減する手段を提供するものである。
【0013】
図4は本発明による合成されたブリッジインバータの駆動信号の例である。三角波の周期をブリッジインバータの転流間隔と略等しくすることにより通電中のスイッチングをなくしスイッチング損失を低減するものである。この場合においても、三角波と速度制御信号を比較してパルス列を作成して無刷子電動機の回転速度を制御するので冷蔵庫の運転については何ら問題ない。
【0014】
本実施例では温度検出回路15の作用によりブリッジインバータの温度を検出し、予め設定した温度より高くなった場合に三角波の周期をブリッジインバータの転流間隔と略等しくする。これよりスイッチング損失が低減される。三角波の周期が頻繁に切り替わることによる不具合を回避するためには、切り替える温度にヒステリシスを付ければ良い。
【0015】
次に、本発明の他の実施例について説明する。第1の実施例ではブリッジインバータ4の温度により三角波の周期を切り替えているが、温度の他に電流の大きさで切り替えても良い。また、冷蔵庫の負荷は据え付け運転時に庫内の温度が冷えるまで間が特に大きくなる。従って、据え付け運転に予め設定した時間だけ三角波の周期を切り替えても良い。
【0016】
【発明の効果】
本発明によれば、負荷が大きい場合においてスイッチング損失を低減し発熱を少なくして大きな放熱器を要さない無刷子電動機の駆動装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施例の全体構成図である。
【図2】変調回路によるパルス列作成の説明図である。
【図3】三角波の周期が通電時間より短い場合の説明図である。
【図4】三角波の周期が通電時間と略等しい場合の説明図である。
【図5】従来技術による無刷子電動機の駆動装置の全体構成図である。
【符号の説明】
1…交流電源、2…整流用のダイオード、3…平滑用のコンデンサ、4…ブリッジインバータ、5…無刷子電動機、6…位置検出回路、7…通電制御回路、8…回転速度測定回路、9…回転速度指令、10…回転速度制御回路、11…三角波発生回路、12…変調回路、13…合成回路、14…周期切替回路、15…温度検出回路。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a drive device for a brushless motor, and more particularly to control of a drive device for a brushless motor that reduces heat generated by switching loss.
[0002]
[Prior art]
A driving device for a brushless motor according to the related art will be described. FIG. 5 is an overall configuration diagram of a driving device for a brushless motor according to the related art. 1 is an AC power supply, 2 is a diode for rectification, 3 is a capacitor for smoothing, 4 is a bridge inverter, 6 is a position detection circuit, 7 is an energization control circuit, 8 is a rotation speed measurement circuit, 9 is a rotation speed command, 10 Denotes a rotation speed control circuit, 11 denotes a triangular wave generation circuit, 12 denotes a modulation circuit, and 13 denotes a synthesizing circuit. 5 is a brushless motor. The position detection circuit 6 detects a rotor magnetic pole position of the brushless motor 5 and generates a rotor position signal. Since a compressor motor such as a refrigerator is placed in a high-temperature and high-pressure refrigerant atmosphere, a sensor such as a Hall element cannot be used. For this reason, a sensorless method for detecting the rotor position from the back electromotive force of the motor winding or the like is used. The energization control circuit 7 determines the energization phase of the bridge inverter 4 based on the rotor position signal. The brushless motor energizes the stator winding corresponding to the position of the rotor magnet, and switches the energized phase in order to maintain rotation. The rotation speed measuring circuit 8 measures the rotation speed of the brushless motor 5 from the rotor position signal. The rotation speed control circuit 10 compares the rotation speed of the brushless motor 5 measured by the rotation speed command 9 with the rotation speed measurement circuit 8 to generate a speed control signal. The modulation circuit 12 modulates the speed control signal with the triangular wave of the triangular wave generation circuit 11 to create a pulse train for controlling the output voltage of the bridge inverter. If the rotation speed of the brushless motor 5 is smaller than the rotation speed command 9, the pulse width is increased. If the rotation speed of the brushless motor 5 is higher than the rotation speed command 9, the pulse width is reduced. Thereby, the rotation speed of the brushless motor 5 is made to match the rotation speed command 9. The synthesizing circuit 13 synthesizes the pulse train and the energizing signal to create a drive signal for the bridge inverter 4. The brushless motor 5 is driven by the above operation.
[0003]
There are Patent Documents 1 and 2 described below as motor driving devices according to the related art.
[0004]
[Patent Document 1]
JP-B-61-27990 [Patent Document 2]
JP-A-6-62596 [0005]
[Problems to be solved by the invention]
In the conventional brushless motor driving device, the cycle of the triangular wave of the triangular wave generation circuit 11 is constant, so that when the load of the brushless motor 5 is large, the current of the bridge inverter 4 also increases, and the switching loss also increases. As a result, a large radiator is required for the bridge inverter 4 to radiate heat.
[0006]
An object of the present invention is to provide a drive device for a brushless motor that reduces switching loss and reduces heat generation when a load is large and does not require a large radiator.
[0007]
[Means for Solving the Problems]
The above problem is solved by switching the cycle of the triangular wave generated by the triangular wave generating circuit.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
One embodiment of the present invention will be described with reference to FIG. FIG. 1 is an overall configuration diagram of a drive device for a brushless motor according to the present invention. 1 is an AC power supply, 2 is a diode for rectification, 3 is a capacitor for smoothing, 4 is a bridge inverter, 6 is a position detection circuit, 7 is an energization control circuit, 8 is a rotation speed measurement circuit, 9 is a rotation speed command, 10 Denotes a rotation speed control circuit, 11 denotes a triangular wave generation circuit, 12 denotes a modulation circuit, 13 denotes a synthesizing circuit, 14 denotes a cycle switching circuit, and 15 denotes a temperature detection circuit. The above constitutes a driving device for a brushless motor. 5 is a brushless motor. The drive control of the brushless motor is the same as that of the prior art, and a description thereof will be omitted.
[0009]
FIG. 2 is an explanatory diagram showing an operation of modulating the speed control signal with a triangular wave in the modulation circuit 12 to create a pulse train for controlling the output voltage of the bridge inverter. A pulse is generated at a portion where the voltage of the speed control signal is higher than that of the triangle wave by comparing the triangle wave with a constant amplitude with the speed control signal. If the rotation speed of the brushless motor is smaller than the rotation speed command, the speed control signal is gradually increased to increase the pulse width. As the pulse width increases, the applied voltage of the brushless motor increases, and the rotation speed increases. Conversely, when the rotation speed is high, the width is gradually reduced to reduce the pulse width. Thus, the rotation speed of the brushless motor becomes equal to the rotation speed command.
[0010]
The pulse train is combined with the drive signal of the bridge inverter 4 by the combining circuit 13. FIG. 3 is an example of the drive signal of the combined bridge inverter. The switching element of the bridge inverter performs switching according to the pulse train. Switching loss occurs during the on and off operations. The higher the switching frequency, the higher the motor efficiency, but the higher the switching loss of the bridge inverter. The cycle of the pulse train, that is, the cycle of the triangular wave, is often set to several kHz in frequency. The switching frequency is determined in consideration of the efficiency of the motor and the switching loss.
[0011]
When the compressor of the refrigerator is driven by the inverter, the heat generated by the inverter does not matter in normal operation. However, during operation when the refrigerator is installed, the inside of the refrigerator is at the same temperature as the ambient temperature and is not cooled, so that the refrigerator is in a load state. Therefore, the load is large and the inverter generates a large amount of heat until the inside of the refrigerator cools. It is necessary to use a radiator capable of dissipating heat even in an operation with a large load at the time of installation. SUMMARY OF THE INVENTION It is an object of the present invention to provide a means for reducing a switching loss and reducing a radiator when a load is large.
[0012]
The operation until the inside of the refrigerator cools during installation is usually performed by increasing the rotation speed of the compressor in order to cool the inside of the refrigerator quickly. However, also at this time, switching is performed at several kHz as in normal operation. The present invention provides a means for reducing switching loss, noting that slight deterioration in performance such as reduction in efficiency of the motor or increase in noise is not considered a problem during installation.
[0013]
FIG. 4 is an example of the driving signal of the synthesized bridge inverter according to the present invention. By making the cycle of the triangular wave substantially equal to the commutation interval of the bridge inverter, switching during energization is eliminated and switching loss is reduced. Also in this case, there is no problem in the operation of the refrigerator since the pulse train is created by comparing the triangular wave with the speed control signal to control the rotation speed of the brushless motor.
[0014]
In this embodiment, the temperature of the bridge inverter is detected by the operation of the temperature detection circuit 15, and when the temperature becomes higher than a preset temperature, the cycle of the triangular wave is made substantially equal to the commutation interval of the bridge inverter. Thereby, switching loss is reduced. In order to avoid a problem caused by frequent switching of the cycle of the triangular wave, hysteresis may be added to the switching temperature.
[0015]
Next, another embodiment of the present invention will be described. In the first embodiment, the cycle of the triangular wave is switched according to the temperature of the bridge inverter 4, but may be switched according to the magnitude of the current in addition to the temperature. In addition, the load on the refrigerator is particularly large during the installation operation until the temperature in the refrigerator is cooled. Therefore, the cycle of the triangular wave may be switched for a preset time for the installation operation.
[0016]
【The invention's effect】
According to the present invention, it is possible to provide a drive device for a brushless motor that reduces switching loss and reduces heat generation when a load is large and does not require a large radiator.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of an embodiment of the present invention.
FIG. 2 is an explanatory diagram of pulse train generation by a modulation circuit.
FIG. 3 is an explanatory diagram in a case where a cycle of a triangular wave is shorter than an energizing time.
FIG. 4 is an explanatory diagram in a case where a cycle of a triangular wave is substantially equal to an energizing time.
FIG. 5 is an overall configuration diagram of a driving device for a brushless motor according to the related art.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... AC power supply, 2 ... Rectifier diode, 3 ... Smoothing capacitor, 4 ... Bridge inverter, 5 ... Brushless motor, 6 ... Position detection circuit, 7 ... Electrification control circuit, 8 ... Rotation speed measurement circuit, 9 ... Rotation speed command, 10 ... Rotation speed control circuit, 11 ... Triangle wave generation circuit, 12 ... Modulation circuit, 13 ... Synthesis circuit, 14 ... Period switching circuit, 15 ... Temperature detection circuit.

Claims (2)

交流電源、該交流電源に接続された整流回路、該整流回路の出力端子に接続された平滑用コンデンサ、該平滑用コンデンサに接続されたブリッジインバータ、該ブリッジインバータに接続された無刷子電動機、該無刷子電動機の回転子位置を検出して回転子位置信号を発生する位置検出回路、回転子位置信号に基づいて前記ブリッジインバータの通電相を決定する通電制御回路、無刷子電動機の回転速度を測定する回転速度測定回路、無刷子電動機の回転速度と回転速度司令を比較して速度制御信号を発生する回転速度制御回路、三角波発生回路、速度制御信号を三角波で変調して該ブリッジインバータの出力電圧を制御するパルス列を作成する変調回路、該パルス列と通電信号を合成する合成回路より成る無刷子電動機の駆動装置において、上記三角波発生回路が発生する三角波の周期を該ブリッジインバータの転流間隔より短い周期と略等しい周期とに切り替えることを特徴とする無刷子電動機の駆動装置。An AC power supply, a rectifier circuit connected to the AC power supply, a smoothing capacitor connected to an output terminal of the rectifier circuit, a bridge inverter connected to the smoothing capacitor, a brushless motor connected to the bridge inverter, A position detection circuit that detects a rotor position of the brushless motor and generates a rotor position signal, an energization control circuit that determines an energized phase of the bridge inverter based on the rotor position signal, and measures a rotation speed of the brushless motor. Rotation speed measurement circuit, a rotation speed control circuit that compares the rotation speed of the brushless motor with the rotation speed command, generates a speed control signal, a triangular wave generation circuit, modulates the speed control signal with a triangular wave, and outputs the output voltage of the bridge inverter. A driving circuit for a brushless motor, comprising a modulation circuit for creating a pulse train for controlling Driving device for brushless motor and switches the cycle of triangular wave in which the triangular wave generating circuit generates a substantially equal period shorter period than the commutation interval of the bridge inverter. 請求項1に記載の無刷子電動機の駆動装置を具備した冷蔵庫。A refrigerator comprising the drive device for a brushless motor according to claim 1.
JP2002319220A 2002-11-01 2002-11-01 Drive device for brushless motor Pending JP2004153976A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002319220A JP2004153976A (en) 2002-11-01 2002-11-01 Drive device for brushless motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002319220A JP2004153976A (en) 2002-11-01 2002-11-01 Drive device for brushless motor

Publications (1)

Publication Number Publication Date
JP2004153976A true JP2004153976A (en) 2004-05-27

Family

ID=32462124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002319220A Pending JP2004153976A (en) 2002-11-01 2002-11-01 Drive device for brushless motor

Country Status (1)

Country Link
JP (1) JP2004153976A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2410139A (en) * 2004-01-15 2005-07-20 Pektron Group Ltd Motor speed control
CN102664570A (en) * 2012-04-27 2012-09-12 海尔集团公司 Range hood
JP2016142423A (en) * 2015-01-30 2016-08-08 パナソニックIpマネジメント株式会社 refrigerator
CN112994503A (en) * 2021-04-30 2021-06-18 石家庄通合电子科技股份有限公司 SPWM (sinusoidal pulse Width modulation) method and terminal equipment of single-phase full-bridge inverter
DE112014000364B4 (en) 2013-01-23 2024-02-29 Trane International Inc. Operating method and variable frequency drive system to avoid overheating

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2410139A (en) * 2004-01-15 2005-07-20 Pektron Group Ltd Motor speed control
CN102664570A (en) * 2012-04-27 2012-09-12 海尔集团公司 Range hood
DE112014000364B4 (en) 2013-01-23 2024-02-29 Trane International Inc. Operating method and variable frequency drive system to avoid overheating
JP2016142423A (en) * 2015-01-30 2016-08-08 パナソニックIpマネジメント株式会社 refrigerator
CN112994503A (en) * 2021-04-30 2021-06-18 石家庄通合电子科技股份有限公司 SPWM (sinusoidal pulse Width modulation) method and terminal equipment of single-phase full-bridge inverter

Similar Documents

Publication Publication Date Title
JP4053968B2 (en) Synchronous motor driving device, refrigerator and air conditioner
JP3888082B2 (en) Motor device and control method thereof
JP2006296194A (en) Sensorless and brushless dc motor drive using speed control by pulse width modulation at motor frequency
JP2002252996A (en) Method and apparatus for controlling start of synchronous motor
KR100799009B1 (en) Driving method and driver of brushless dc motor
JP2010011727A (en) Permanent magnet generator
JP4226224B2 (en) Inverter device
JP2004153976A (en) Drive device for brushless motor
WO2002097955A1 (en) Motor driving device and apparatus including the same device
JP2007282367A (en) Motor driving controller
JP2004242432A (en) Direct-current motor drive
JP2010226842A (en) Control method and control apparatus for brushless dc motor
CN108075690B (en) Motor driving system and operation recovery method thereof
JP2002010675A (en) Dc brushless-motor unit
KR20080090714A (en) Drive apparatus and method for compressor
JP2003111481A (en) Motor drive and driving method thereof
JP2000316298A (en) Starter generator
JP2005323414A (en) Motor drive and electric compressor and air conditioner for vehicle mounted with motor drive
JP2005094925A (en) Control method for brushless dc motor
US8324850B2 (en) Motor driver
KR100848157B1 (en) Controlling method of bldc motor and air conditioner useing the same of
JP2006246667A (en) Motor driving device
JP3755009B2 (en) Brushless motor drive circuit
JP4392351B2 (en) Inverter for generator
JP2007236090A (en) Method and apparatus for controlling brushless motor