JP2004152913A - Wafer heating device and its manufacturing method - Google Patents

Wafer heating device and its manufacturing method Download PDF

Info

Publication number
JP2004152913A
JP2004152913A JP2002314991A JP2002314991A JP2004152913A JP 2004152913 A JP2004152913 A JP 2004152913A JP 2002314991 A JP2002314991 A JP 2002314991A JP 2002314991 A JP2002314991 A JP 2002314991A JP 2004152913 A JP2004152913 A JP 2004152913A
Authority
JP
Japan
Prior art keywords
wafer
heating element
conductor pattern
resistance heating
heat conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002314991A
Other languages
Japanese (ja)
Other versions
JP3924524B2 (en
Inventor
Yasushi Uda
靖 右田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002314991A priority Critical patent/JP3924524B2/en
Publication of JP2004152913A publication Critical patent/JP2004152913A/en
Application granted granted Critical
Publication of JP3924524B2 publication Critical patent/JP3924524B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Surface Heating Bodies (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a trouble in a wafer heating device that the temperature distribution on the surface of a wafer becomes uneven since a resistance heat generating body cannot be embedded until the outer rim of a plate type ceramics body, and, when a variance is generated in the thickness of a dielectric body layer between a mounting surface and the resistance heat generating body in the manufacturing process of the wafer heating device, a variance is generated in the uniformity of heating, and the rear surface of the wafer W cannot be heated uniformly across the whole surface thereof, thereby, the temperature distribution on the surface of the wafer becomes uneven. <P>SOLUTION: A mounting surface 3 for retaining the wafer on the surface of the plate type ceramics body 2 and a resistance heat generating body 4 is provided in the ceramics body while an isolated annular heat conductive body pattern 5 is provided at the outside of the resistance heat generating body 4. The temperature distribution of an outer peripheral part can be uniformed. Further, the heat conductivity of the heat conductive body pattern 5 is preferably made larger than that of the plate type ceramics body 2. Further, when a distance between the resistance heat generating body 4 and the isolated annular electrode is 0.1mm-5mm, the wafer can be heated more uniformly. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、PVD、CVD、プラズマCVD等の成膜装置や、プラズマエッチング、光励起エッチング等のエッチング装置に使用されるウエハ加熱装置に関するものである。
【0002】
【従来の技術】
従来、半導体装置の製造工程で使用されるプラズマCVD、減圧CVD、光CVD、PVDなどの成膜装置や、プラズマエッチング、光エッチングなどのエッチング装置においては、デポジッション用ガスやエッチング用ガス、あるいはクリーニング用ガスとして塩素系やフッ素系の腐食性ガスが使用されていた。
【0003】
そして、これらのガス雰囲気中で半導体ウエハ(以下、ウエハと略称する。)を保持しつつ加工温度に加熱するためのウエハ加熱装置として、抵抗発熱体を内蔵したステンレスヒーターが使用されていた。
【0004】
しかしながら、ステンレスヒーターは、上記腐食性ガスに曝されると腐食摩耗し、パーティクルが発生するといった問題点があった。
【0005】
一方、腐食性ガスに対して比較的優れた耐蝕性を有するグラファイトによりウエハ加熱装置を形成し、このウエハ加熱装置をチャンバー外に設置された赤外線ランプによって間接的に加熱することも行われているが、直接加熱のものに比べて熱効率が悪いといった問題点があった。しかも、成膜装置においては膜がチャンバーの壁面に堆積し、この膜での熱吸収が発生することから、ウエハ加熱装置を加熱できなくなるといった不都合もあった。
【0006】
そこで、このような問題点を解消するウエハ加熱装置として、特許文献1には、図6に示すような円盤状をした緻密質のセラミック基体の内部に抵抗発熱体を埋設し、セラミック基体の上面をウェハを載せる載置面3としたウエハ加熱装置が提案されており、このウエハ加熱装置内に内蔵する抵抗発熱体として図7に示すような渦巻き状に構成したものがあった。
【0007】
また、上記のウェハ加熱装置を改善する方法として特許文献2には、帯状の抵抗発熱体を埋設し抵抗発熱体の形状を改善しウェハ面内の温度差を小さくする方法が考案されている。
【0008】
また、特許文献3には、厚さのバラツキが−10〜+10%の範囲のグリーンシートに吸着用電極として導体ペーストを印刷し、前記グリーンシートに他のグリーンシートを積層して積層体を作製した後、焼結させることにより、抵抗発熱体と載置面との厚みのバラツキが小さく、均熱のバラツキを低減したセラミックヒーターが開示されている。
【0009】
【特許文献1】
特開平6−76924号公報
【特許文献2】
特開平11−191535号公報
【特許文献3】
特開2001−274229号公報
【0010】
【発明が解決しようとする課題】
しかしながら、特許文献1に記載されたウエハ加熱装置は抵抗発熱体が渦巻き状であり、モリブデンやタングステンのコイルを埋設していることから、板状セラミックス体2に位置精度良正確な位置に埋設することが困難であり、載置面3に載せたウエハWを均一に加熱することができないとの問題点があった。
【0011】
即ち、渦巻き状の抵抗発熱体は、抵抗発熱体の一方端8が板状セラミックス体の周縁部で大きく途切れた構造となることからウエハ加熱装置の周縁部における均熱性が悪く、その結果、載置面3に温度差が生じ、ウエハWを均一に加熱することができなかった。その為、このようなウエハ加熱装置を用いて成膜加工を施しても、ウエハW上に膜厚みが均一な膜を形成することができず、また、エッチング加工では加工精度のバラツキが大きくなるなどの問題点があった。
【0012】
また、特許文献3に記載された、グリーンシートの平均の厚さに対し、厚さのバラツキが−10〜+10%の範囲にあるグリーンシートに電極用の導体ペーストを印刷し、前記グリーンシートに他のグリーンシートを積層して成形体を作製した後、焼結させるウエハ加熱装置の製法では、載置面3と抵抗発熱体204との間の誘電体層の厚みが20%もバラツク虞があった。その結果、載置面3の面内の温度にバラツキが生じ、ウエハWの全面に渡って均一に加熱できないとの課題があった。
【0013】
また、特許文献2に記載のウェハ加熱装置においても上記と同様にウェハWの面内の温度差が大きくなる虞があった。
【0014】
【課題を解決するための手段】
そこで上記課題に鑑み、本発明のウエハ加熱装置は、板状セラミックス体の表面にウエハを保持する載置面を備え、内部に抵抗発熱体を備えるとともに、該抵抗発熱体の外側に孤立した円環状の熱伝導体パターンを備えていることを特徴とする。
【0015】
また、前記円環状の熱伝導体パターンが金属を主成分とし、前記熱伝導体パターンの熱伝導率が前記板状セラミックス体の熱伝導率より大きいことを特徴とする。
【0016】
また、前記円環状の熱伝導体パターンが金属を主成分とし、前記抵抗発熱体と前記円環状の熱伝導体パターンとの距離が0.1mm〜5mmであることを特徴とする。
【0017】
更に、板状セラミックス体の表面にウェハを保持する載置面と、前記板状セラミックス体の内部に抵抗発熱体を備えたウエハ加熱装置の製造工程において、所定形状に切断した複数のセラミックグリーンシートを、その成形方向が互いに異なるように積層し、焼成して上記板状セラミックス体を形成することを特徴とする。
【0018】
【発明の実施の形態】
以下、本発明の実施形態について説明する。
【0019】
図1は本発明の一例であるウエハ加熱装置1を示す図で、図1(a)は平面図であり、図1(b)は図1(a)のX−X線の断面図である。さらに、図2はウエハ加熱装置1の内部に配置された抵抗発熱体4を模式的に示す図である。
【0020】
このウエハ加熱装置1は、ウエハWと略同等乃至2割程大きな円板状をした板状セラミックス体2の上面にウエハWを保持する載置面3を備え、内部に抵抗発熱体4を備えるとともに、前記載置面3の方向から見て前記抵抗発熱体4の外側に孤立した円環状の熱伝導体パターン5を形成している。
【0021】
尚、孤立した円環状の熱伝導体パターン5とは、抵抗発熱体4からの熱を板状セラミックス体2の周辺に効率良く伝える熱伝導体であり、この熱伝導体パターン5は板状セラミックス体2に埋設されていても、熱伝導体パターン5の周辺が露出していてもよい。
【0022】
板状セラミックス体2には、前記の抵抗発熱体4を備え、抵抗発熱体4と電気的に接続された給電端子6を取り出すための電極取り出し孔7を設け、給電端子6は抵抗発熱体4とチタンや銀を含むロウ材で接合し固定してある。また、前記ロウ材の替わりに導電性接着剤で接合固定することもできる。
【0023】
このような構造のウエハ加熱装置1は上記抵抗発熱体4の間に給電端子6を介して通電させると、抵抗発熱体4が発熱し、載置面3上のウエハWを所定の温度に加熱することができる。このとき、抵抗発熱体4に通電すると発熱した熱が孤立した円環状の熱伝導体パターン5に伝わり、円環状の熱伝導体パターン5が加熱されることで、ウエハWの外周部まで均一に加熱することができることを見いだした。
【0024】
円環状の熱伝導体パターン5とウエハWの間の温度分布を均一にするには、円環状の熱伝導体パターン5と前記抵抗発熱体4とが、板状セラミックス体2の載置面3から同じ距離に配設することが好ましい。また、孤立した円環状の熱伝導体パターン5は、幅が2mm以上で厚みが15μm以上であり、板状セラミックス体の熱伝導率が抵抗発熱体4の熱伝導率より大きな材質からなることが好ましい。
【0025】
さらに好ましくは、孤立した円環状の熱伝導体パターン5は、幅が2〜10mmであり、厚みが15〜30μmであることが好ましい。これは、幅が10mmを越えると孤立した円環状の熱伝導体パターン5により載置面を均一な温度に加熱するまでの時間が長くなり、かつ外周への熱引けが大きくなるため均熱を維持することができなくなるためである。また、円環状の熱伝導体パターン5の厚みが30μm以上となると、積層時の密着性が悪くなり板状セラミック体内に欠陥が生じ、部分的に均熱が阻害される恐れがあるためである。
【0026】
特に、熱伝導体パターン5は熱伝導率が140W/(m・K)以上のタングステンやモリブデン等からなる高融点金属を主成分とし板状セラミックス体成分を副成分とする材質からなるセラミックを円環状の熱伝導体パターン5とすると、ウェハW表面の温度差が小さくなり好ましい。
【0027】
更に、上記のウエハ加熱装置において、高熱伝導率を有する熱伝導体パターン5が高融点金属等からなり導電性を示す場合には、抵抗発熱体4と孤立した円環状の熱伝導体パターン5との距離Lは0.1mm〜5mmが好ましく、孤立した円環状の熱伝導体パターン5は板状セラミックス体2に完全に埋設されるか、或いは板状セラミックス体2の外周側面に一部分露出してもよい。また、孤立した円環状の熱伝導体パターン5は必ずしも繋がっている必要が無く、0.1mm〜5mmの距離を保った状態で2分割以上で円環状に配置してあればウェハWを均一に加熱する効果がある。
【0028】
抵抗発熱体4と孤立した円環状の熱伝導体パターン5との距離Lが0.1mm未満であると、抵抗発熱体4に電圧を印加した際に、抵抗発熱体4から円環状の熱伝導体パターン5を通じ漏れ電流が生じやすくなり、漏れ電流により抵抗発熱体4と熱伝導体パターン5の間で異常発熱しウェハW面内の温度差が大きくなる虞れがある。
【0029】
また、抵抗発熱体4と孤立した円環状の熱伝導体パターン5との距離Lが5mmを越えると、抵抗発熱体4で発生した熱が孤立した円環状の熱伝導体パターン5に伝わる量が小さくなるとともに、温度分布が均一になるまでの時間がかかるため、ウエハを均一に加熱することができない。
【0030】
尚、距離Lは上記理由から0.5mm〜3mmとすると更に好ましい。
【0031】
以上のように、円環状の熱伝導体パターンを埋設することでウェハWの面内温度差が大きいという課題を解決することができる。次に、同じ課題を解決するために、以下のような製造方法とすることもできる。
【0032】
図3(a)はグリーンシート12に切断する前のテープ10を示す斜視図であり、図3(b)は上記テープ10を切断したグリーンシート12の斜視図である。
【0033】
図4(a)は、成形体10の製造工程の一部であるグリーンシート12の積層順を示す斜視図であり、図4(b)は積層した成形体9を示す斜視図である。
【0034】
グリーンシート12はできるだけ厚みを均一に作製することが望ましいが、グリーンシート12となるテープ10を作製するセラミックス原料スラリーの粘度やテープ成形時の乾燥条件等により、厚みの均一なテープは得難く、厚みを均一にするために上記条件を整えるには、管理が複雑で且つ高度な制御技術が必要であり、大型の設備投資も必要となる。しかし、そのようにして調整されたセラミックス原料スラリーであっても、ドクターブレード法等によりテープ10を成形する際に、テープ厚みを決める成形用のブレードとベースの間の平行度の微妙な狂いによって、テープ10の成形方向に対し直角な方向で厚みが変化する。また、テープ10を成形する初期と終わりではセラミックス原料スラリーの微妙な性状も変化し、厚みにバラツキが生じる原因となっている。
【0035】
このように、テープ10の厚みにバラツキが生じても、セラミックからなるテープ10を切断したグリーンシート12を、その成形方向が互いに異なるように積層することで、成形体9の厚みのバラツキを緩和することができるとともに、成形体9を焼成して前記板状セラミックス体2を形成することで抵抗発熱体4と載置面3の間のセラミックス層の厚みを一定とすることができる。
【0036】
先ず、テープ10を成形した時の成形方向が確認できる様に、成形したテープの周辺にマーキング11を施しておく。例えば、ドクターブレード法により作製したテープ10の成形方向に対して、左右どちらか一方にマーキング11を施す。そうすると、テープ10を所定の大きさのグリーンシート12にカットしても、テープ10の成形方向を確認できると共に厚みのバラツキの方向を確認できる。
【0037】
このようにして作製したグリーンシート12は、他のグリーンシート12を積層する際に、個々のマーキング11を目印に成形方向が互いに異なるように積層することができる。例えば、複数枚のグリーンシート12を積層した積層単位を考えると、1積層単位あたり2枚でグリーンシート12を積層する場合は、成形方向が互いに異なるように1枚目のグリーンシート12に対し2枚目のグリーンシート12を180度回転させて積層する。1積層単位あたり3枚のグリーンシート12を積層する場合は、120度回転させて積層する。さらに、4枚以上の積層単位でグリーンシート12を積層する場合は、90度回転させて積層する。より好ましくは、積層単位あたり4枚以上の積層の場合、360度を積層枚数で除して求めた回転角をもってグリーンシート12を積層することで、テープ10の成形方向と直角な方向の厚みのバラツキを互いに補うことができ、成形体9の厚みのバラツキを小さくすることができる。また、各積層単位で積層したグリーンシート12をそれぞれ積層し、より厚い成形体9を得る事ができる。
【0038】
尚、要求されるウエハ加熱装置の厚みとグリーンシート12の平均厚みおよび成形体9の焼結時の収縮や加工による研磨代等を考慮して、あらかじめグリーンシート12の積層枚数は、決定することができる。
【0039】
このようにして積層することで、グリーンシート12の厚みのバラツキが大きいにもかかわらず、成形体9の厚みのバラツキを緩和することができる。
【0040】
また、本発明のウエハ加熱装置1の抵抗発熱体4および孤立した円環状の熱伝導体パターン5をスクリーン印刷したグリーンシート12を埋設した成形体9において、上記の積層方法を適用することにより、厚みバラツキの小さい成形体9が得られると共に、厚みバラツキにより生じる焼結時の反りの発生を防止することができる。
【0041】
本発明のウエハ加熱装置1を作製する際に使用するグリーンシート12の厚みバラツキは、グリーンシート12の平均の厚みに対して−15%〜+15%の範囲であっても、得られた成形体9の厚みのバラツキは、成形体9の平均の厚みに対して−5%〜+5%の範囲となり、厚みバラツキの小さい成形体9を得ることができる。
【0042】
上記のテープ10はセラミック粉末に対して必要に応じて所定の助剤成分を添加するとともに、溶媒とバインダーを添加混練してセラミックス原料スラリーを作製した後、ドクターブレード法、ロールコンパクション法、ペーパキャスティング法等のグリーンシート用のテープ成形法により作製することができる。
【0043】
また、上記のグリーンシート12の積層方法により、グリーンシート12の厚みのバラツキが大きいにもかわらず、成形体9や載置面3と抵抗発熱体4の間のセラミックス層の厚みのバラツキが小さくなり、厚みバラツキの大きなグリーンシート12をも使用できることから、テープ10の歩留まりを上げることができる。更に、歩留まりが大きいことからテープ10のコスト低減にも寄与することができ安価なウエハ加熱装置1を提供できる。
【0044】
かくして、本発明のウエハ加熱装置1によれば、製造工程における板状セラミックス体2のウエハWと抵抗発熱体4や熱伝導体パターン5との厚みのバラツキが小さくなり、ウエハW面内の温度分布の均一性を高めることができるウエハ加熱装置1を提供することができる。
【0045】
図5(a)は板状セラミックス体2を製作する工程の一部でグリーンシート12の積層順を模式的に示す断面図であり、図5(b)は積層した板状セラミックス体2の成形体の断面を示す。
【0046】
抵抗発熱体4と熱伝導体パターン5を印刷したグリーンシート12eと、他のグリーンシート12a〜12d、12f〜12hを積層し、加圧密着させて成形体得る。これは、グリーンシート12を積層した後、加圧し密着する工程において成形体9の上下より圧力を加えたとき、抵抗発熱体4および孤立した円環状の熱伝導体パターン5は成形体9の厚み方向に対して中央部にあると、成形体9の加圧方向に対して厚み方向の中間部に上下の圧力が最も均等にかかることからスクリーン印刷された抵抗発熱体4および孤立した円環状の熱伝導体パターン5の変形が少なく、焼結後の抵抗発熱体4および孤立した円環状の熱伝導体パターン5の形状変化に及ぼす影響が少ないからである。
【0047】
従って、本発明のウエハ加熱装置1において、抵抗発熱体4および孤立した円環状の熱伝導体パターン5は成形体10の厚み方向に対して中央部に埋設した方が好ましい。
【0048】
抵抗発熱体4および孤立した円環状の熱伝導体パターン5が成形体9の厚み方向に対して中央部より載置面3側ないしは載置面3と対向する面14側にずらして積層した場合、加圧し密着する際の上下の圧力差によって、電極を形成したグリーンシート12の伸びが大きくなり、抵抗発熱体4および孤立した円環状の熱伝導体パターン5の形状や埋設位置が変化する虞があるからである。
【0049】
また、抵抗発熱体4および孤立した円環状の熱伝導体パターン5を成形体9の厚み方向に対して中央部に配することで、焼結時の反りの発生を防ぐことができる。これは、焼結時のグリーンシート12と抵抗発熱体4および孤立した円環状の熱伝導体パターン5との収縮差の影響を小さくできるためである。
【0050】
抵抗発熱体4および孤立した円環状の熱伝導体パターン5が成形体9の厚み方向に対して中央部より載置面3側ないしは載置面3と対向する面13側にずらして配置した場合、抵抗発熱体4および孤立した円環状の熱伝導体パターン5を境に両側のグリーンシートの積層厚みに差が生じるため、それぞれの収縮速度が異なり、焼結後の板状セラミックス体2に反りが生じる虞がある。例えば、成形体9の抵抗発熱体4および孤立した円環状の熱伝導体パターン5を境に、その上下のグリーンシート12の積層した厚みが小さい方が凹になるように反りが発生することが分かった。
【0051】
尚、板状セラミックス体2を窒化アルミニウムで作製した成形体10は400℃で脱脂し、1900℃で焼結した後、板状セラミックス体2を得た。その後、板状セラミックス体2をロータリー加工機や平面研削盤、万能研削盤、マシニングセンター等の研削加工機を用い、所定の形状に加工しウエハ加熱装置を作製することができる。
【0052】
このとき、孤立した円環状の熱伝導体パターン5は板状セラミックス体2に埋設して焼成し、その後外周部を研削加工し板状セラミックス体2の外周部に露出させることもできる。
【0053】
このようにして得られた板状セラミックス体2は、研削加工にて厚みを決め、抵抗発熱体4を板状セラミックス体2の厚み方向に対して任意の位置に配置することができる。この様に抵抗発熱体4を成形体9の中央に積層し作製することにより、抵抗発熱体4に反りが少ないウエハ加熱装置を得ることができる。
【0054】
尚、上記板状セラミックス体2の表面は、ウエハWを載置するための載置面3が形成されており、研削加工やラッピング、ポリッシング等で平滑な面に形成してある。この時の平面度は三次元測定器により測定され10μm以下に調整されており、好ましくは5μm以下とすることが良い。
【0055】
板状セラミックス体2を形成する材質としては、アルミナ質焼結体、窒化珪素質焼結体、窒化アルミニウム質焼結体、イットリウム−アルミニウム−ガーネット質焼結体(以下、YAG質焼結体という)を用いることができ、これらの中でも窒化アルミニウム質焼結体は成膜装置やエッチング装置で使用されるハロゲン系腐食性ガス下において優れた耐プラズマ性を有するとともに、熱伝達率が50W/(m・K)以上、更に大きなものでは熱伝達率100W/(m・K)以上を有し、熱伝導性に優れることから、ウエハWの均熱性を高める点で好適である。
【0056】
また、抵抗発熱体4を構成する材料としては、タングステン(W)、モリブデン(Mo)等の周期律表第6a族やTi等の周期律表第4a族の高融点金属、或いはこれらの合金、さらにはWC、MoC、TiN等の導電性セラミックを用いることができる。これらの金属、合金、導電性セラミックは後述する板状セラミックス体2と同程度の熱膨張係数を有することから、制作時や発熱時における熱膨張差に起因する反りや破損を防ぐことができる。
【0057】
さらに、上記の抵抗発熱体4へ通電するための給電端子6としては、タングステン(W)、モリブデン(Mo)、ニッケル(Ni)等の金属や、鉄(Fe)−コバルト(Co)−ニッケル(Ni)合金を用いることができ、特に耐酸化性が要求されるようなときには、ニッケル(Ni)あるいは鉄(Fe)−コバルト(Co)−ニッケル(Ni)合金を用いることが好ましい。
【0058】
なお、本実施形態では、製膜装置やエッチング装置に使用されるウエハ加熱装置の例をもって説明したが、本発明の他に、静電チャックに高周波電極を埋設した製品やヒータ電極を埋設した静電チャックに適用できることは言うまでもない。
【0059】
また、本発明は前述した実施形態だけに限定されるものではなく、本発明の要旨を逸脱しない範囲で、改良や変更したものでも良いことは言う迄もない。
【0060】
【実施例】
(実施例1)
本実施例では、孤立した円環状の熱伝導体パターン5を備えることによる効果を検証するために、図1に示すようなウエハ加熱装置と図1のウェハ加熱装置で孤立した円環状の熱伝導体パターン5を除いたウエハ加熱装置(試料No.1)を作製し評価した。
【0061】
先ず、窒化アルミニウム粉末に対し重量換算で0.1重量%の酸化イットリウム粉末を添加した原料に、さらにイソプロピルアルコールとウレタンボールを用いてボールミルにより48時間混練することにより窒化アルミニウムのスラリーを製作した。そして、ドクターブレード法によりテープを成形した。
【0062】
そして、1枚の窒化アルミニウムグリーンシート12eにタングステンカーバイトからなる抵抗発熱体4とタングステンカーバイトに窒化アルミニウムを1〜10重量%加え熱伝導率が異なる孤立した円環状の熱伝導体パターン5をスクリーン印刷により印刷し、他の新たなグリーンシート13とともに積層し、抵抗発熱体4を埋設した成形体9を作製した。その後、加圧密着させた後、脱脂、焼成工程を経て板状セラミックス体とした。尚、抵抗発熱体4と孤立した円環状の熱伝導体パターン5を印刷したグリーンシート12eは、成形体9の中央に積層されるように配置した。
【0063】
その後、研削加工により板状セラミックス体2の直径を200mm、厚み4mmとし、抵抗発熱体4と孤立した円環状の熱伝導体パターン5が載置面3から厚み方向に2mmの位置に配設するように加工を施した。
【0064】
また、載置面3はウエハWが載置できるように研削およびラッピングにより平面度5μm以下の平滑な面に仕上げた。
【0065】
抵抗発熱体4の位置は予めグリーンシート12の積層枚数と板状セラミックス体2の厚みから焼結後の抵抗発熱体の位置を計算できる。そのため、板状セラミックス体2の表面から研削加工することで、載置面3から厚み方向に任意の位置に抵抗発熱体4を配置することができる。本実施例では抵抗発熱体4の位置を載置面3の上面から2mmの位置に配置するように加工した。また、板状セラミックス体2には抵抗発熱体4に通電させるための給電端子6を接続するための電極取出孔7をマシニング加工により設けた、そしてロウ付けにて給電端子6を接合固定した。
【0066】
また、同様のテープ製造工程で窒化アルミニウムに酸化イットリウムを0.1重量%添加したテープも作製し同様にウェハ加熱装置を作製した。
【0067】
また、このようにして作製したウエハ加熱装置1と、同様の工程で、孤立した円環状の熱伝導体パターン5の無いウエハ加熱装置を作製した。そして抵抗発熱体4と孤立した円環状の熱伝導体パターン5の距離を変えてウェハ加熱装置を作製した。
【0068】
このとき、孤立した円環状の熱伝導体パターン5の幅を2mm一定とし、板状セラミックス体2の外周部に露出するようにして配置した。
【0069】
本実施例では、孤立した円環状の熱伝導体パターン5の有無と、抵抗発熱体4と孤立した円環状の熱伝導体パターン5との距離Lを0.05mmから7mmまで異ならせ、大気中で抵抗発熱体4に150Vの電圧をかけることで、抵抗発熱体4を発熱させ、ウエハ表面をサーモビュアーで測定することでウエハ表面の温度差を測定した。このとき、温度差(ΔT)はウエハ表面の中心部が600℃になったときのウエハ表面上の最高温度から最低温度を引いた値として評価した。
【0070】
その結果を表1に示す。
【0071】
【表1】

Figure 2004152913
【0072】
表1の結果より、孤立した円環状の熱伝導体パターン5の無い試料No.1の温度分布(ΔT)は21.5℃に対し、孤立した円環状の熱伝導体パターン5を配置した試料No.2〜No.15は12℃以下と温度分布が良好であった。従って、孤立した円環状の熱伝導体パターン5を配置した方がウエハW表面上の温度分布が良いことが分かった。
【0073】
また、試料No.2〜6から、板状セラミックス体の熱伝導率より孤立した円環状の熱伝導体パターンの熱伝導率が大きな試料No.2〜4、6のウェハ表面の温度差は小さく好ましいことが分った。
【0074】
更に、抵抗発熱体4と孤立した円環状の熱伝導体パターンとの距離Lを異ならせた試料No.7〜15の中でも距離Lが0.1mmから5mmの試料No.8〜14は温度差(ΔT)が8.3℃以下と更に良好であることが分った。
【0075】
また、孤立した円環状の熱伝導体パターンと抵抗発熱体との距離が0.05mmの試料No.7は熱伝導体パターンと抵抗発熱体の間で漏れ電流が流れ、この部分の温度が上昇してウェハの面内温度差が12.1℃とやや大きくなったと考えられる。
【0076】
また、孤立した円環状の熱伝導体パターンと抵抗発熱体との距離が7mmの試料No.15は熱伝導体パターンと抵抗発熱体の間で熱の伝達が悪く、ウェハ表面の温度差が11.3℃とやや大きくなったと考えられる。
【0077】
従って、抵抗発熱体4と円環状の熱伝導体パターン5との距離Lが0.1〜5mmである試料No.8〜14で温度差が8.3℃以下と良好で更に好ましいことが分った。
【0078】
(実施例2)
次に、成形体9を得る方法として、窒化アルミニウムを原料とする粉末に溶媒とバインダーを添加し混練してセラミックス原料スラリーを作製し、ドクターブレード法によりテープを成形した。このとき、テープの成形方向に平行に、右端に油性のマジックにてマーキング11ラインを施した。その後、テープを350mm角に裁断し、厚み400μmの窒化アルミニウム製のグリーンシート12を得た。
【0079】
このとき、グリーンシート12の厚みの平均に対する厚みのバラツキを測定したところ、−15%〜+15%の範囲であった。グリーンシート12の厚みのバラツキの測定方法は、グリーンシート12をマイクロメータで任意の点を数点測定し、その平均値を出すとともに、その平均値に対し厚みの最大値と最小値の差を平均値で除した値をバラツキとした。
【0080】
このようにして得られたグリーンシート12を28枚積層し、上から15枚目のグリーンシートに抵抗発熱体4を印刷したグリーンシートを使用し、厚み11.2mmの成形体9を作製した。このとき、積層する方法を変えたときの成形体9の厚みバラツキを測定した。積層して得られた成形体9の厚みのバラツキもグリーンシート12の厚みのバラツキを測定した方法と同様に、マイクロメータで任意の点を数点測定し、その平均値を出すとともに、その平均値に対し厚みの最大値と最小値の差を平均値で除して厚みバラツキを算出した。
【0081】
積層方法は、テープの成形方向に沿って右端に施したマーキング12に対し一定方向に回転させて積層した。回転した角度は45度、90度、180度、そして、比較例として回転した角度が0度の成形体9を作製し、厚みのバラツキを測定する実験をおこなった。
【0082】
また、上記の方法で積層した成形体9を400℃で脱脂し、1900℃で焼結して板状セラミックス体2を得た後、研削加工によりウエハ加熱装置を作製した。このとき、板状セラミックス体2の厚みを3mmとし、抵抗発熱体4および孤立した円環状の熱伝導体パターン5を載置面3から厚み方向に2mmの位置に配設するように作製した。
【0083】
このようにして作製したウエハ加熱装置でウエハ表面の温度分布を測定した。
【0084】
尚、ウエハ表面の温度分布は、(実施例1)と同様に大気中で抵抗発熱体4に150Vの電圧をかけることで、抵抗発熱体4を発熱させ、ウエハ表面をサーモビュアーで測定することでウエハ表面の温度分布を測定した。このとき、温度差(ΔT)はウエハ表面の中心部が600℃になったときのウエハ表面上の最高温度から最低温度を引いた値として評価した。その結果を表2に示す。
【0085】
【表2】
Figure 2004152913
【0086】
表2の結果より、マーキングに対し45度で回転させて積層した試料No.21は成形体9の厚みのバラツキが3.1%と最も小さく、しかも温度分布は2.4℃と小さかった。また、回転角を90度、180度として積層した試料No.22、23は、成形体10の厚みの平均に対する厚みのバラツキが5%以下で、温度分布が3.1℃以下と好ましいことがわかった。
【0087】
このことから、グリーンシート12の厚みのバラツキにかかわらず、積層時にグリーンシート12を成形方向に対し相互に位相角を持ち積層することで、得られた成形体9の厚みのバラツキを小さくすることができることが分った。
【0088】
【発明の効果】
以上のように、本発明のウエハ加熱装置は、板状セラミックス体の内部に抵抗発熱体を備えるとともに、抵抗発熱体の外側に孤立した円環状の熱伝導体パターン5を備えていることで、外周部の温度分布を均一にすることができる。更に、熱伝導体パターンを板状セラミックス体の熱伝導率より大きくすると更に好ましい。また、抵抗発熱体と孤立した円環状の電極との距離は0.1mm〜5mmであると更にウェハを均一に加熱でき好ましい。
【0089】
また、板状セラミックス体の表面にウエハを保持する載置面を備え、前記板状セラミックス体の内部に抵抗発熱体を備えた静電チャックの製造工程において、所定形状に切断した複数のセラミックグリーンシートを、その成形方向が互いに異なるように積層することで、グリーンシートの厚みのバラツキにかかわらず、厚みバラツキを小さくした積層体を得ることができるとともに、ウエハ表面の温度分布を向上することができる。
【図面の簡単な説明】
【図1】(a)は本発明の一例であるウエハ加熱装置を示す平面図で、(b)はそのX−X断面図である。
【図2】本発明のウエハ加熱装置の内部に配置される抵抗発熱体を示す図である。
【図3】(a)は本発明のウエハ加熱装置を製作するテープを示す斜視図、(b)は上記テープを切断したグリーンシートを示す斜視図である。
【図4】(a)は、グリーンシートを積層する順番を模式的に示す斜視図、(b)は成形体を示す斜視図である。
【図5】(a)は本発明の成形体を製作するグリーンシートの積層順を示す断面図、(b)は成形体の断面図である。
【図6】(a)は従来のウエハ加熱装置を模式的に示す平面図、(b)はそのY−Y断面図である。
【図7】従来のウエハ加熱装置の内部に配置される抵抗発熱体を示す図である。
【符号の説明】
1、201:ウエハ加熱装置
2:板状セラミックス体
3:載置面
4、204:抵抗発熱体
5:熱伝導体パターン
6:給電端子
7:電極取り出し孔
8:抵抗発熱体の一方端
9:成形体
10:テープ状のグリーンシート
11:マーキング
12、12a、12b、・・・:グリーンシート
13:載置面と対向する面
W:ウエハ
L:抵抗発熱体と熱伝導体パターンとの距離[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a wafer heating apparatus used for a film forming apparatus such as PVD, CVD, and plasma CVD, and an etching apparatus such as plasma etching and photoexcited etching.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in a film forming apparatus such as plasma CVD, low pressure CVD, optical CVD, or PVD used in a semiconductor device manufacturing process, or an etching apparatus such as plasma etching or optical etching, a deposition gas or an etching gas, or A chlorine-based or fluorine-based corrosive gas has been used as a cleaning gas.
[0003]
As a wafer heating device for heating a semiconductor wafer (hereinafter, abbreviated as a wafer) to a processing temperature in these gas atmospheres, a stainless steel heater having a built-in resistance heating element has been used.
[0004]
However, the stainless steel heater has a problem in that when it is exposed to the corrosive gas, it is corroded and worn, and particles are generated.
[0005]
On the other hand, a wafer heating device is formed of graphite having relatively excellent corrosion resistance to corrosive gas, and the wafer heating device is indirectly heated by an infrared lamp installed outside the chamber. However, there was a problem that the thermal efficiency was lower than that of direct heating. In addition, in the film forming apparatus, the film is deposited on the wall surface of the chamber, and heat absorption occurs in the film, so that the wafer heating apparatus cannot be heated.
[0006]
In order to solve such a problem, Patent Document 1 discloses a wafer heating apparatus in which a resistive heating element is embedded in a disk-shaped dense ceramic base as shown in FIG. There has been proposed a wafer heating apparatus having a wafer mounting surface 3 on which a wafer is placed, and a resistance heating element built in the wafer heating apparatus in a spiral shape as shown in FIG.
[0007]
As a method for improving the above-described wafer heating device, Patent Literature 2 proposes a method of burying a band-shaped resistance heating element, improving the shape of the resistance heating element, and reducing a temperature difference in a wafer surface.
[0008]
Further, in Patent Document 3, a conductor paste is printed as a suction electrode on a green sheet having a thickness variation in a range of −10 to + 10%, and another green sheet is laminated on the green sheet to produce a laminate. After that, by sintering, a ceramic heater in which the variation in thickness between the resistance heating element and the mounting surface is small and the variation in uniform temperature is reduced is disclosed.
[0009]
[Patent Document 1]
JP-A-6-76924
[Patent Document 2]
JP-A-11-191535
[Patent Document 3]
JP 2001-274229 A
[0010]
[Problems to be solved by the invention]
However, in the wafer heating device described in Patent Document 1, since the resistance heating element has a spiral shape and a coil of molybdenum or tungsten is embedded, the wafer heating device is embedded in the plate-shaped ceramic body 2 at an accurate position with high accuracy. This makes it difficult to uniformly heat the wafer W mounted on the mounting surface 3.
[0011]
In other words, the spiral resistance heating element has a structure in which one end 8 of the resistance heating element is largely interrupted at the peripheral edge of the plate-shaped ceramic body, and thus has poor heat uniformity at the peripheral edge of the wafer heating device. A temperature difference occurred on the mounting surface 3, and the wafer W could not be heated uniformly. For this reason, even if the film forming process is performed using such a wafer heating device, a film having a uniform film thickness cannot be formed on the wafer W, and the processing accuracy varies greatly in the etching process. There were problems such as.
[0012]
In addition, a conductor paste for an electrode is printed on a green sheet having a thickness variation in a range of -10 to + 10% with respect to an average thickness of the green sheet described in Patent Document 3, and the green sheet is formed on the green sheet. In the method of manufacturing a wafer heating apparatus in which a green body is formed by laminating other green sheets and then sintering, the thickness of the dielectric layer between the mounting surface 3 and the resistance heating element 204 may vary by as much as 20%. there were. As a result, the in-plane temperature of the mounting surface 3 varies, and there is a problem that the wafer W cannot be heated uniformly over the entire surface.
[0013]
Also, in the wafer heating device described in Patent Literature 2, there is a possibility that the temperature difference in the plane of the wafer W becomes large similarly to the above.
[0014]
[Means for Solving the Problems]
In view of the above problem, a wafer heating apparatus of the present invention includes a mounting surface for holding a wafer on the surface of a plate-shaped ceramic body, a resistance heating element inside, and a circle isolated outside the resistance heating element. It is characterized by having an annular heat conductor pattern.
[0015]
Further, the annular heat conductor pattern has a metal as a main component, and a heat conductivity of the heat conductor pattern is larger than a heat conductivity of the plate-shaped ceramic body.
[0016]
The annular heat conductor pattern is mainly composed of a metal, and a distance between the resistance heating element and the annular heat conductor pattern is 0.1 mm to 5 mm.
[0017]
Further, in a manufacturing process of a wafer heating device having a mounting surface for holding a wafer on the surface of the plate-shaped ceramic body and a resistance heating element inside the plate-shaped ceramic body, a plurality of ceramic green sheets cut into a predetermined shape are provided. Are laminated so that their forming directions are different from each other, and fired to form the plate-shaped ceramic body.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
[0019]
FIG. 1 is a view showing a wafer heating apparatus 1 as an example of the present invention. FIG. 1 (a) is a plan view, and FIG. 1 (b) is a cross-sectional view taken along line XX of FIG. 1 (a). . FIG. 2 is a view schematically showing the resistance heating element 4 arranged inside the wafer heating apparatus 1.
[0020]
The wafer heating apparatus 1 includes a mounting surface 3 for holding a wafer W on an upper surface of a disk-shaped plate-shaped ceramic body 2 which is substantially equal to or about 20% larger than the wafer W, and includes a resistance heating element 4 therein. At the same time, an isolated annular heat conductor pattern 5 is formed outside the resistance heating element 4 when viewed from the direction of the mounting surface 3.
[0021]
The isolated annular heat conductor pattern 5 is a heat conductor that efficiently transmits heat from the resistance heating element 4 to the periphery of the plate-shaped ceramic body 2, and the heat conductor pattern 5 is a plate-shaped ceramic conductor. It may be embedded in the body 2 or the periphery of the heat conductor pattern 5 may be exposed.
[0022]
The plate-shaped ceramic body 2 is provided with the above-described resistance heating element 4, and is provided with an electrode extraction hole 7 for extracting a power supply terminal 6 electrically connected to the resistance heating element 4. And a brazing material containing titanium and silver. Further, instead of the brazing material, it is also possible to join and fix with a conductive adhesive.
[0023]
When the wafer heating apparatus 1 having such a structure is energized through the power supply terminal 6 between the resistance heating elements 4, the resistance heating elements 4 generate heat and heat the wafer W on the mounting surface 3 to a predetermined temperature. can do. At this time, when the resistance heating element 4 is energized, the generated heat is transmitted to the isolated annular heat conductor pattern 5, and the annular heat conductor pattern 5 is heated, so that the heat is uniformly distributed to the outer peripheral portion of the wafer W. It has been found that it can be heated.
[0024]
In order to make the temperature distribution between the annular heat conductor pattern 5 and the wafer W uniform, the annular heat conductor pattern 5 and the resistance heating element 4 are placed on the mounting surface 3 of the plate-shaped ceramic body 2. It is preferable to dispose them at the same distance from. In addition, the isolated annular heat conductor pattern 5 may be made of a material having a width of 2 mm or more and a thickness of 15 μm or more, and a thermal conductivity of the plate-shaped ceramic body is larger than that of the resistance heating element 4. preferable.
[0025]
More preferably, the isolated annular heat conductor pattern 5 has a width of 2 to 10 mm and a thickness of 15 to 30 μm. This is because when the width exceeds 10 mm, the time until the mounting surface is heated to a uniform temperature by the isolated annular heat conductor pattern 5 becomes longer, and the heat spread to the outer periphery becomes large, so that the uniform heat is applied. This is because it cannot be maintained. Further, when the thickness of the annular heat conductor pattern 5 is 30 μm or more, the adhesion at the time of lamination is deteriorated, a defect occurs in the plate-shaped ceramic body, and there is a possibility that the uniform heating may be partially inhibited. .
[0026]
In particular, the heat conductor pattern 5 is made of a ceramic made of a material whose main component is a high melting point metal such as tungsten or molybdenum having a thermal conductivity of 140 W / (m · K) or more and whose main component is a plate-shaped ceramic component. The annular thermal conductor pattern 5 is preferable because the temperature difference on the surface of the wafer W is small.
[0027]
Further, in the above-described wafer heating apparatus, when the heat conductor pattern 5 having a high heat conductivity is made of a high melting point metal or the like and has conductivity, the heat conductor pattern 5 having an annular heat conductor pattern isolated from the resistance heating element 4 is formed. Is preferably 0.1 mm to 5 mm, and the isolated annular heat conductor pattern 5 is completely embedded in the plate-shaped ceramic body 2 or partially exposed on the outer peripheral side surface of the plate-shaped ceramic body 2. Is also good. In addition, the isolated annular heat conductor patterns 5 do not necessarily have to be connected to each other, and the wafer W can be uniformly distributed if the thermal conductive patterns 5 are arranged in an annular shape with two or more divisions while maintaining a distance of 0.1 mm to 5 mm. Has the effect of heating.
[0028]
If the distance L between the resistance heating element 4 and the isolated annular heat conductor pattern 5 is less than 0.1 mm, when a voltage is applied to the resistance heating element 4, the annular heat conduction from the resistance heating element 4 will occur. Leakage current is likely to occur through the body pattern 5, and the leakage current may cause abnormal heat generation between the resistance heating element 4 and the heat conductor pattern 5 to increase the temperature difference in the wafer W surface.
[0029]
When the distance L between the resistance heating element 4 and the isolated annular heat conductor pattern 5 exceeds 5 mm, the amount of heat generated by the resistance heating element 4 transmitted to the isolated annular heat conductor pattern 5 is reduced. As the size becomes smaller, it takes time until the temperature distribution becomes uniform, so that the wafer cannot be heated uniformly.
[0030]
Note that the distance L is more preferably 0.5 mm to 3 mm for the above reason.
[0031]
As described above, the problem that the in-plane temperature difference of the wafer W is large can be solved by embedding the annular heat conductor pattern. Next, in order to solve the same problem, the following manufacturing method can be adopted.
[0032]
FIG. 3A is a perspective view showing the tape 10 before cutting the green sheet 12, and FIG. 3B is a perspective view of the green sheet 12 cutting the tape 10.
[0033]
FIG. 4A is a perspective view showing a stacking order of the green sheets 12 which is a part of the manufacturing process of the molded body 10, and FIG. 4B is a perspective view showing the laminated molded body 9.
[0034]
It is desirable that the green sheet 12 be made as uniform as possible. However, it is difficult to obtain a tape having a uniform thickness due to the viscosity of the ceramic raw material slurry for producing the tape 10 to be the green sheet 12 and the drying conditions during tape forming. In order to adjust the above conditions to make the thickness uniform, management is complicated, sophisticated control technology is required, and large-scale capital investment is also required. However, even when the ceramic raw material slurry is adjusted in such a manner, when forming the tape 10 by the doctor blade method or the like, a slight deviation of the parallelism between the forming blade and the base for determining the tape thickness due to the slight deviation. The thickness changes in a direction perpendicular to the forming direction of the tape 10. In addition, the delicate properties of the ceramic raw material slurry also change between the initial stage and the final stage of forming the tape 10, causing variations in thickness.
[0035]
As described above, even if the thickness of the tape 10 varies, the green sheet 12 obtained by cutting the ceramic tape 10 is laminated so that the molding directions thereof are different from each other, thereby reducing the variation in the thickness of the molded body 9. The thickness of the ceramic layer between the resistance heating element 4 and the mounting surface 3 can be made constant by firing the molded body 9 to form the plate-shaped ceramic body 2.
[0036]
First, a marking 11 is provided around the formed tape so that the forming direction when the tape 10 is formed can be confirmed. For example, the marking 11 is provided on one of the left and right sides with respect to the molding direction of the tape 10 produced by the doctor blade method. Then, even if the tape 10 is cut into a green sheet 12 having a predetermined size, the forming direction of the tape 10 can be confirmed and the direction of the thickness variation can be confirmed.
[0037]
When stacking other green sheets 12, the green sheets 12 thus manufactured can be stacked so that the molding directions are different from each other with the individual markings 11 as a mark. For example, considering a stacking unit in which a plurality of green sheets 12 are stacked, if two green sheets 12 are stacked per stacking unit, two green sheets 12 are stacked on the first green sheet 12 so that the molding directions are different from each other. The second green sheet 12 is rotated by 180 degrees and stacked. When three green sheets 12 are laminated per one lamination unit, they are rotated by 120 degrees and laminated. Furthermore, when laminating the green sheets 12 in units of four or more laminations, they are rotated by 90 degrees and laminated. More preferably, in the case of four or more laminations per lamination unit, the green sheet 12 is laminated with a rotation angle obtained by dividing 360 degrees by the number of laminations, so that the thickness of the green sheet 12 in the direction perpendicular to the forming direction of the tape 10 is reduced. Variations can be compensated for each other, and variations in the thickness of the molded body 9 can be reduced. Further, the green sheets 12 laminated in each lamination unit are laminated respectively, and a thicker molded body 9 can be obtained.
[0038]
In consideration of the required thickness of the wafer heating device, the average thickness of the green sheet 12, the shrinkage of the compact 9 during sintering, the polishing allowance due to the processing, and the like, the number of stacked green sheets 12 should be determined in advance. Can be.
[0039]
By laminating in this way, it is possible to reduce the variation in the thickness of the molded body 9 even though the variation in the thickness of the green sheet 12 is large.
[0040]
Further, the above-described laminating method is applied to the molded body 9 in which the green sheet 12 on which the resistance heating element 4 and the isolated annular thermal conductor pattern 5 of the wafer heating apparatus 1 of the present invention are screen-printed is embedded. The compact 9 having small thickness variation can be obtained, and the occurrence of warpage during sintering caused by the thickness variation can be prevented.
[0041]
Even if the thickness variation of the green sheet 12 used when manufacturing the wafer heating apparatus 1 of the present invention is in the range of −15% to + 15% with respect to the average thickness of the green sheet 12, the obtained molded body is obtained. The thickness variation of 9 is in the range of −5% to + 5% with respect to the average thickness of the molded body 9, and the molded body 9 with small thickness variation can be obtained.
[0042]
The above-mentioned tape 10 is prepared by adding a predetermined auxiliary component to the ceramic powder as needed, and adding and kneading a solvent and a binder to prepare a ceramic raw material slurry. Then, a doctor blade method, a roll compaction method, and a paper casting method are used. It can be produced by a green sheet tape forming method such as a method.
[0043]
Further, due to the above-described method of laminating the green sheets 12, despite the large variation in the thickness of the green sheet 12, the variation in the thickness of the ceramic layer between the molded body 9 and the mounting surface 3 and the resistance heating element 4 is small. Since the green sheet 12 having a large thickness variation can be used, the yield of the tape 10 can be increased. Furthermore, since the yield is large, it is possible to contribute to the reduction of the cost of the tape 10, and it is possible to provide the inexpensive wafer heating apparatus 1.
[0044]
Thus, according to the wafer heating apparatus 1 of the present invention, the variation in thickness between the wafer W of the plate-shaped ceramic body 2 and the resistance heating element 4 or the heat conductor pattern 5 in the manufacturing process is reduced, and the temperature in the plane of the wafer W is reduced. It is possible to provide the wafer heating device 1 that can improve the uniformity of the distribution.
[0045]
FIG. 5A is a cross-sectional view schematically showing a stacking order of the green sheets 12 in a part of a process of manufacturing the plate-shaped ceramic body 2, and FIG. 1 shows a cross section of a body.
[0046]
The green sheet 12e on which the resistance heating element 4 and the heat conductor pattern 5 are printed and the other green sheets 12a to 12d and 12f to 12h are laminated and pressed and adhered to obtain a molded body. This is because when the green sheet 12 is laminated and then pressure is applied from above and below the molded body 9 in the step of pressing and adhering, the resistance heating element 4 and the isolated annular heat conductor pattern 5 become thicker than the molded body 9. When it is located at the center with respect to the direction, the upper and lower pressures are applied evenly to the middle part in the thickness direction with respect to the pressing direction of the molded body 9, so that the screen-printed resistance heating element 4 and the isolated annular This is because the deformation of the heat conductor pattern 5 is small and the influence on the shape change of the resistance heating element 4 and the isolated annular heat conductor pattern 5 after sintering is small.
[0047]
Therefore, in the wafer heating apparatus 1 of the present invention, it is preferable that the resistance heating element 4 and the isolated annular heat conductor pattern 5 be embedded in the center of the molded body 10 in the thickness direction.
[0048]
When the resistance heating element 4 and the isolated annular heat conductor pattern 5 are laminated while being shifted from the center in the thickness direction of the molded body 9 toward the mounting surface 3 or the surface 14 facing the mounting surface 3. Due to the difference in pressure between the upper and lower pressures when pressing and adhering, the elongation of the green sheet 12 on which the electrodes are formed increases, and the shapes and the buried positions of the resistance heating element 4 and the isolated annular heat conductor pattern 5 may change. Because there is.
[0049]
In addition, by arranging the resistance heating element 4 and the isolated annular heat conductor pattern 5 at the center with respect to the thickness direction of the molded body 9, it is possible to prevent warpage during sintering. This is because the influence of the difference in contraction between the green sheet 12 and the resistance heating element 4 and the isolated annular heat conductor pattern 5 during sintering can be reduced.
[0050]
In the case where the resistance heating element 4 and the isolated annular heat conductor pattern 5 are displaced from the center in the thickness direction of the molded body 9 toward the mounting surface 3 or the surface 13 facing the mounting surface 3. Since there is a difference in the lamination thickness of the green sheets on both sides at the boundary between the resistance heating element 4 and the isolated annular heat conductor pattern 5, the respective shrinking speeds are different, and the sheet ceramic body 2 after sintering is warped. May occur. For example, warpage may occur such that the laminated upper and lower green sheets 12 having a smaller thickness become concave with respect to the resistance heating element 4 and the isolated annular heat conductor pattern 5 of the molded body 9. Do you get it.
[0051]
The molded body 10 in which the plate-shaped ceramic body 2 was made of aluminum nitride was degreased at 400 ° C. and sintered at 1900 ° C. to obtain the plate-shaped ceramic body 2. Thereafter, the plate-shaped ceramic body 2 is processed into a predetermined shape using a rotary processing machine, a surface grinder, a universal grinder, a grinding machine such as a machining center, and a wafer heating device can be manufactured.
[0052]
At this time, the isolated annular heat conductor pattern 5 can be embedded in the plate-shaped ceramic body 2 and fired, and then the outer peripheral portion can be ground and exposed to the outer peripheral portion of the plate-shaped ceramic body 2.
[0053]
The thickness of the plate-shaped ceramic body 2 thus obtained can be determined by grinding, and the resistance heating element 4 can be arranged at an arbitrary position in the thickness direction of the plate-shaped ceramic body 2. By laminating and manufacturing the resistance heating element 4 at the center of the molded body 9 in this manner, it is possible to obtain a wafer heating apparatus in which the resistance heating element 4 is less warped.
[0054]
The mounting surface 3 on which the wafer W is mounted is formed on the surface of the plate-shaped ceramic body 2, and is formed into a smooth surface by grinding, lapping, polishing, or the like. The flatness at this time is measured by a three-dimensional measuring device and adjusted to 10 μm or less, and preferably 5 μm or less.
[0055]
The material forming the plate-shaped ceramic body 2 includes an alumina-based sintered body, a silicon nitride-based sintered body, an aluminum nitride-based sintered body, an yttrium-aluminum-garnet-based sintered body (hereinafter referred to as a YAG-based sintered body). Among these, the aluminum nitride sintered body has excellent plasma resistance under a halogen-based corrosive gas used in a film forming apparatus or an etching apparatus, and has a heat transfer coefficient of 50 W / ( m · K) or more, and even larger ones have a heat transfer coefficient of 100 W / (m · K) or more and are excellent in thermal conductivity, and thus are suitable in terms of increasing the uniformity of the wafer W.
[0056]
Examples of the material constituting the resistance heating element 4 include high melting point metals of the 6a group of the periodic table such as tungsten (W) and molybdenum (Mo) and the 4a group of the periodic table such as Ti, or alloys thereof. Further, conductive ceramics such as WC, MoC, and TiN can be used. Since these metals, alloys, and conductive ceramics have a thermal expansion coefficient similar to that of the plate-shaped ceramic body 2 described later, warpage and breakage due to a difference in thermal expansion during production or heat generation can be prevented.
[0057]
Further, as the power supply terminal 6 for energizing the resistance heating element 4, a metal such as tungsten (W), molybdenum (Mo), nickel (Ni), iron (Fe) -cobalt (Co) -nickel ( An Ni) alloy can be used. In particular, when oxidation resistance is required, it is preferable to use nickel (Ni) or an iron (Fe) -cobalt (Co) -nickel (Ni) alloy.
[0058]
In this embodiment, an example of a wafer heating apparatus used for a film forming apparatus or an etching apparatus has been described. However, in addition to the present invention, a product in which a high-frequency electrode is embedded in an electrostatic chuck or a static electricity in which a heater electrode is embedded is used. It goes without saying that the present invention can be applied to an electric chuck.
[0059]
Further, it is needless to say that the present invention is not limited to the above-described embodiment, and may be improved or modified without departing from the gist of the present invention.
[0060]
【Example】
(Example 1)
In the present embodiment, in order to verify the effect of providing the isolated annular heat conductor pattern 5, a wafer heating apparatus as shown in FIG. A wafer heating apparatus (sample No. 1) from which the body pattern 5 was removed was prepared and evaluated.
[0061]
First, a slurry of aluminum nitride was manufactured by kneading a raw material obtained by adding 0.1% by weight of yttrium oxide powder in terms of weight to aluminum nitride powder with a ball mill using isopropyl alcohol and urethane balls for 48 hours. Then, a tape was formed by a doctor blade method.
[0062]
Then, a resistance heating element 4 made of tungsten carbide is added to one aluminum nitride green sheet 12e and an isolated annular heat conductor pattern 5 having a different thermal conductivity by adding aluminum nitride to the tungsten carbide at 1 to 10% by weight. It was printed by screen printing, laminated with another new green sheet 13, and a molded body 9 in which the resistance heating element 4 was embedded was produced. Then, after being pressed and adhered, a plate-shaped ceramic body was obtained through a degreasing and firing process. The green sheet 12e on which the resistance heating element 4 and the isolated annular heat conductor pattern 5 were printed was disposed so as to be laminated at the center of the molded body 9.
[0063]
After that, the diameter of the plate-shaped ceramic body 2 is set to 200 mm and the thickness to 4 mm by grinding, and the ring-shaped heat conductor pattern 5 isolated from the resistance heating element 4 is disposed at a position 2 mm from the mounting surface 3 in the thickness direction. Processing was performed as follows.
[0064]
The mounting surface 3 was finished by grinding and lapping into a smooth surface with a flatness of 5 μm or less so that the wafer W could be mounted.
[0065]
As for the position of the resistance heating element 4, the position of the resistance heating element after sintering can be calculated in advance from the number of laminated green sheets 12 and the thickness of the plate-shaped ceramic body 2. Therefore, by grinding from the surface of the plate-shaped ceramic body 2, the resistance heating element 4 can be arranged at an arbitrary position in the thickness direction from the mounting surface 3. In this embodiment, the resistance heating element 4 was processed so as to be located at a position 2 mm from the upper surface of the mounting surface 3. The plate-shaped ceramic body 2 was provided with an electrode extraction hole 7 for connecting a power supply terminal 6 for supplying a current to the resistance heating element 4 by machining, and the power supply terminal 6 was joined and fixed by brazing.
[0066]
In the same tape manufacturing process, a tape in which 0.1% by weight of yttrium oxide was added to aluminum nitride was also manufactured, and a wafer heating device was similarly manufactured.
[0067]
Further, a wafer heating apparatus without the isolated annular heat conductor pattern 5 was manufactured in the same process as the wafer heating apparatus 1 manufactured in this manner. Then, the distance between the resistance heating element 4 and the isolated annular heat conductor pattern 5 was changed to manufacture a wafer heating apparatus.
[0068]
At this time, the width of the isolated annular heat conductor pattern 5 was fixed at 2 mm, and the heat conductor pattern 5 was arranged so as to be exposed on the outer peripheral portion of the plate-shaped ceramic body 2.
[0069]
In this embodiment, the presence / absence of the isolated annular heat conductor pattern 5 and the distance L between the resistance heating element 4 and the isolated annular heat conductor pattern 5 are varied from 0.05 mm to 7 mm, and the distance L By applying a voltage of 150 V to the resistance heating element 4, the resistance heating element 4 was heated, and the temperature difference on the wafer surface was measured by measuring the wafer surface with a thermoviewer. At this time, the temperature difference (ΔT) was evaluated as a value obtained by subtracting the lowest temperature from the highest temperature on the wafer surface when the center of the wafer surface reached 600 ° C.
[0070]
Table 1 shows the results.
[0071]
[Table 1]
Figure 2004152913
[0072]
From the results in Table 1, it is found that the sample No. without the isolated annular heat conductor pattern 5 has the same shape. The temperature distribution (ΔT) of Sample No. 1 was 21.5 ° C., and Sample No. 1 in which an isolated annular heat conductor pattern 5 was arranged. 2-No. No. 15 had a good temperature distribution of 12 ° C. or less. Therefore, it was found that the temperature distribution on the surface of the wafer W was better when the isolated annular heat conductor pattern 5 was arranged.
[0073]
Further, the sample No. From Sample Nos. 2 to 6, Sample No. 2 in which the thermal conductivity of the ring-shaped thermal conductor pattern isolated from the thermal conductivity of the plate-shaped ceramic body was large. It has been found that the temperature difference between the wafer surfaces 2 to 4 and 6 is small and preferable.
[0074]
Further, in Sample No. 2 in which the distance L between the resistance heating element 4 and the isolated annular heat conductor pattern was changed. Sample No. 7 having a distance L of 0.1 mm to 5 mm among the samples Nos. 7 to 15. 8 to 14, it was found that the temperature difference ([Delta] T) was even better at 8.3 [deg.] C. or less.
[0075]
Further, the sample No. having a distance of 0.05 mm between the isolated annular heat conductor pattern and the resistance heating element was used. In No. 7, it is considered that a leakage current flowed between the heat conductor pattern and the resistance heating element, the temperature of this portion increased, and the in-plane temperature difference of the wafer slightly increased to 12.1 ° C.
[0076]
In addition, in the case of Sample No. in which the distance between the isolated annular heat conductor pattern and the resistance heating element was 7 mm. In No. 15, it is considered that the heat transfer between the heat conductor pattern and the resistance heating element was poor, and the temperature difference on the wafer surface was slightly increased to 11.3 ° C.
[0077]
Therefore, the sample No. in which the distance L between the resistance heating element 4 and the annular heat conductor pattern 5 is 0.1 to 5 mm. From 8 to 14, it was found that the temperature difference was good and more preferably 8.3 ° C or less.
[0078]
(Example 2)
Next, as a method of obtaining the molded body 9, a ceramic raw material slurry was prepared by adding a solvent and a binder to powder made of aluminum nitride as a raw material and kneading the resultant, and a tape was formed by a doctor blade method. At this time, 11 lines of markings were made on the right end with oily magic in parallel with the tape forming direction. Thereafter, the tape was cut into a 350 mm square to obtain a green sheet 12 made of aluminum nitride and having a thickness of 400 μm.
[0079]
At this time, when the variation of the thickness of the green sheet 12 with respect to the average thickness was measured, it was in the range of −15% to + 15%. The method for measuring the variation in the thickness of the green sheet 12 is to measure several points on the green sheet 12 with a micrometer, obtain an average value, and calculate a difference between the maximum value and the minimum value of the thickness with respect to the average value. The value divided by the average value was regarded as variation.
[0080]
28 green sheets 12 thus obtained were laminated, and a green body 9 having a thickness of 11.2 mm was produced using a green sheet obtained by printing the resistance heating element 4 on the fifteenth green sheet from the top. At this time, the thickness variation of the molded body 9 when the lamination method was changed was measured. Similar to the method of measuring the variation in the thickness of the green sheet 12, the variation in the thickness of the molded body 9 obtained by laminating is measured at several arbitrary points with a micrometer, and the average value is calculated. The thickness variation was calculated by dividing the difference between the maximum value and the minimum value of the thickness by the average value.
[0081]
In the laminating method, the lamination was performed by rotating in a certain direction with respect to the marking 12 provided on the right end along the forming direction of the tape. Rotated angles were 45 degrees, 90 degrees, and 180 degrees, and a molded body 9 having a rotated angle of 0 degrees was produced as a comparative example, and an experiment was performed to measure thickness variations.
[0082]
Further, the molded body 9 laminated by the above method was degreased at 400 ° C. and sintered at 1900 ° C. to obtain the plate-shaped ceramic body 2, and a wafer heating device was manufactured by grinding. At this time, the thickness of the plate-shaped ceramic body 2 was set to 3 mm, and the resistance heating element 4 and the isolated annular heat conductor pattern 5 were formed so as to be disposed at a position of 2 mm from the mounting surface 3 in the thickness direction.
[0083]
The temperature distribution on the wafer surface was measured with the wafer heating device manufactured in this manner.
[0084]
The temperature distribution on the wafer surface is measured by applying a voltage of 150 V to the resistance heating element 4 in the atmosphere in the same manner as in (Example 1) to cause the resistance heating element 4 to generate heat and measure the wafer surface with a thermoviewer. Was used to measure the temperature distribution on the wafer surface. At this time, the temperature difference (ΔT) was evaluated as a value obtained by subtracting the lowest temperature from the highest temperature on the wafer surface when the center of the wafer surface reached 600 ° C. Table 2 shows the results.
[0085]
[Table 2]
Figure 2004152913
[0086]
From the results in Table 2, it was found that the sample No. laminated by rotating at 45 degrees to the marking. In No. 21, the variation in the thickness of the molded body 9 was the smallest at 3.1%, and the temperature distribution was as small as 2.4 ° C. The sample Nos. Laminated with the rotation angles of 90 degrees and 180 degrees were used. 22 and 23 showed that the variation in thickness with respect to the average of the thickness of the molded body 10 was 5% or less and the temperature distribution was preferably 3.1 ° C. or less.
[0087]
Accordingly, regardless of the thickness variation of the green sheet 12, the thickness variation of the obtained molded body 9 can be reduced by laminating the green sheets 12 with a mutual phase angle with respect to the molding direction at the time of lamination. I can do it.
[0088]
【The invention's effect】
As described above, the wafer heating apparatus of the present invention includes the resistance heating element inside the plate-shaped ceramic body and the isolated annular heat conductor pattern 5 outside the resistance heating element, The temperature distribution in the outer peripheral portion can be made uniform. Further, it is more preferable that the thermal conductor pattern is larger than the thermal conductivity of the plate-shaped ceramic body. Further, it is preferable that the distance between the resistance heating element and the isolated annular electrode is 0.1 mm to 5 mm because the wafer can be more uniformly heated.
[0089]
Further, in a manufacturing process of the electrostatic chuck having a mounting surface for holding a wafer on the surface of the plate-shaped ceramic body and having a resistance heating element inside the plate-shaped ceramic body, a plurality of ceramic greens cut into a predetermined shape are provided. By laminating the sheets so that their forming directions are different from each other, it is possible to obtain a laminated body having reduced thickness variation regardless of the thickness variation of the green sheet, and to improve the temperature distribution on the wafer surface. it can.
[Brief description of the drawings]
FIG. 1A is a plan view showing a wafer heating apparatus as an example of the present invention, and FIG. 1B is a sectional view taken along line XX.
FIG. 2 is a view showing a resistance heating element disposed inside the wafer heating apparatus of the present invention.
3A is a perspective view showing a tape for manufacturing the wafer heating apparatus of the present invention, and FIG. 3B is a perspective view showing a green sheet obtained by cutting the tape.
FIG. 4A is a perspective view schematically showing the order of laminating green sheets, and FIG. 4B is a perspective view showing a molded body.
FIG. 5A is a cross-sectional view showing a stacking order of green sheets for producing a molded article of the present invention, and FIG. 5B is a cross-sectional view of the molded article.
FIG. 6A is a plan view schematically showing a conventional wafer heating apparatus, and FIG. 6B is a sectional view taken along line YY.
FIG. 7 is a view showing a resistance heating element arranged inside a conventional wafer heating apparatus.
[Explanation of symbols]
1, 201: Wafer heating device
2: Plate-shaped ceramic body
3: Mounting surface
4, 204: resistance heating element
5: Thermal conductor pattern
6: Power supply terminal
7: Electrode take-out hole
8: One end of resistance heating element
9: molded body
10: Green sheet in tape form
11: Marking
12, 12a, 12b, ...: Green sheet
13: Surface opposite to the mounting surface
W: Wafer
L: distance between the resistance heating element and the heat conductor pattern

Claims (4)

板状セラミックス体の表面にウエハを保持する載置面を備え、内部に抵抗発熱体を備えるとともに、該抵抗発熱体の外側に孤立した円環状の熱伝導体パターンを備えていることを特徴とするウエハ加熱装置。A mounting surface for holding a wafer is provided on the surface of the plate-shaped ceramic body, a resistance heating element is provided inside, and an isolated annular heat conductor pattern is provided outside the resistance heating element. Wafer heating device. 前記円環状の熱伝導体パターンが金属を主成分とし、前記熱伝導体パターンの熱伝導率が前記板状セラミックス体の熱伝導率より大きいことを特徴とする請求項1に記載のウエハ加熱装置。2. The wafer heating apparatus according to claim 1, wherein the annular heat conductor pattern has a metal as a main component, and a heat conductivity of the heat conductor pattern is larger than a heat conductivity of the plate-shaped ceramic body. 3. . 前記円環状の熱伝導体パターンが金属を主成分とし、前記抵抗発熱体と前記円環状の熱伝導体パターンとの距離が0.1mm〜5mmであることを特徴とする請求項1または2に記載のウエハ加熱装置。The annular heat conductor pattern is mainly composed of a metal, and a distance between the resistance heating element and the annular heat conductor pattern is 0.1 mm to 5 mm. The wafer heating apparatus as described in the above. 板状セラミックス体の表面にウェハを保持する載置面を備え、内部に抵抗発熱体を備えたウエハ加熱装置の製造工程において、所定形状に切断した複数のセラミックグリーンシートを、その成形方向が互いに異なるように積層し、焼成して上記板状セラミックス体を形成することを特徴とするウエハ加熱装置の製造方法。In the manufacturing process of the wafer heating device having the mounting surface for holding the wafer on the surface of the plate-shaped ceramic body and having the resistance heating element therein, a plurality of ceramic green sheets cut into a predetermined shape can be molded in the same direction. A method for manufacturing a wafer heating device, comprising laminating differently and firing to form the plate-shaped ceramic body.
JP2002314991A 2002-10-29 2002-10-29 Wafer heating apparatus and manufacturing method thereof Expired - Fee Related JP3924524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002314991A JP3924524B2 (en) 2002-10-29 2002-10-29 Wafer heating apparatus and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002314991A JP3924524B2 (en) 2002-10-29 2002-10-29 Wafer heating apparatus and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004152913A true JP2004152913A (en) 2004-05-27
JP3924524B2 JP3924524B2 (en) 2007-06-06

Family

ID=32459156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002314991A Expired - Fee Related JP3924524B2 (en) 2002-10-29 2002-10-29 Wafer heating apparatus and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3924524B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009211997A (en) * 2008-03-05 2009-09-17 Denso Corp Ceramic heater, gas sensor element with built-in ceramic heater, and method of manufacturing ceramic heater
JP2013545310A (en) * 2010-11-10 2013-12-19 ラム リサーチ コーポレーション Heating plate with planar heater zone for semiconductor processing
US9646861B2 (en) 2009-10-21 2017-05-09 Lam Research Corporation Heating plate with heating zones for substrate processing and method of use thereof
US9713200B2 (en) 2011-08-17 2017-07-18 Lam Research Corporation System and method for monitoring temperatures of and controlling multiplexed heater array
US9775194B2 (en) 2012-02-28 2017-09-26 Lam Research Corporation Multiplexed heater array using AC drive for semiconductor processing
US10049948B2 (en) 2012-11-30 2018-08-14 Lam Research Corporation Power switching system for ESC with array of thermal control elements
US10056225B2 (en) 2009-12-15 2018-08-21 Lam Research Corporation Adjusting substrate temperature to improve CD uniformity
US10217615B2 (en) 2013-12-16 2019-02-26 Lam Research Corporation Plasma processing apparatus and component thereof including an optical fiber for determining a temperature thereof
US10388493B2 (en) 2011-09-16 2019-08-20 Lam Research Corporation Component of a substrate support assembly producing localized magnetic fields
US10568163B2 (en) 2010-10-22 2020-02-18 Lam Research Corporation Methods of fault detection for multiplexed heater array
US10718053B2 (en) 2017-12-07 2020-07-21 Samsung Electronics Co., Ltd. Wafer loading apparatus and film forming apparatus
CN112750692A (en) * 2019-10-30 2021-05-04 日本碍子株式会社 Composite sintered body and method for producing composite sintered body

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009211997A (en) * 2008-03-05 2009-09-17 Denso Corp Ceramic heater, gas sensor element with built-in ceramic heater, and method of manufacturing ceramic heater
US9646861B2 (en) 2009-10-21 2017-05-09 Lam Research Corporation Heating plate with heating zones for substrate processing and method of use thereof
US10720346B2 (en) 2009-10-21 2020-07-21 Lam Research Corporation Substrate support with thermal zones for semiconductor processing
US10236193B2 (en) 2009-10-21 2019-03-19 Lam Research Corporation Substrate supports with multi-layer structure including independent operated heater zones
US10056225B2 (en) 2009-12-15 2018-08-21 Lam Research Corporation Adjusting substrate temperature to improve CD uniformity
US10568163B2 (en) 2010-10-22 2020-02-18 Lam Research Corporation Methods of fault detection for multiplexed heater array
JP2013545310A (en) * 2010-11-10 2013-12-19 ラム リサーチ コーポレーション Heating plate with planar heater zone for semiconductor processing
KR101861940B1 (en) * 2010-11-10 2018-05-28 램 리써치 코포레이션 Heating plate with planar heater zones for semiconductor processing
US9713200B2 (en) 2011-08-17 2017-07-18 Lam Research Corporation System and method for monitoring temperatures of and controlling multiplexed heater array
US10388493B2 (en) 2011-09-16 2019-08-20 Lam Research Corporation Component of a substrate support assembly producing localized magnetic fields
US10872748B2 (en) 2011-09-16 2020-12-22 Lam Research Corporation Systems and methods for correcting non-uniformities in plasma processing of substrates
US9775194B2 (en) 2012-02-28 2017-09-26 Lam Research Corporation Multiplexed heater array using AC drive for semiconductor processing
US10049948B2 (en) 2012-11-30 2018-08-14 Lam Research Corporation Power switching system for ESC with array of thermal control elements
US10770363B2 (en) 2012-11-30 2020-09-08 Lam Research Corporation Power switching system for ESC with array of thermal control elements
US10217615B2 (en) 2013-12-16 2019-02-26 Lam Research Corporation Plasma processing apparatus and component thereof including an optical fiber for determining a temperature thereof
US10718053B2 (en) 2017-12-07 2020-07-21 Samsung Electronics Co., Ltd. Wafer loading apparatus and film forming apparatus
CN112750692A (en) * 2019-10-30 2021-05-04 日本碍子株式会社 Composite sintered body and method for producing composite sintered body
CN112750692B (en) * 2019-10-30 2024-03-08 日本碍子株式会社 Composite sintered body and method for producing composite sintered body

Also Published As

Publication number Publication date
JP3924524B2 (en) 2007-06-06

Similar Documents

Publication Publication Date Title
JP3477062B2 (en) Wafer heating device
JP4495539B2 (en) Manufacturing method of heating element with built-in electrode
US7068489B2 (en) Electrostatic chuck for holding wafer
KR101800337B1 (en) Electrostatic chuck device
JP5841329B2 (en) Manufacturing method of ceramic joined body
JP3582518B2 (en) Resistance heating element circuit pattern and substrate processing apparatus using the same
JP2002057207A (en) Wafer holder for semiconductor-manufacturing apparatus, manufacturing method of the same and the semiconductor-manufacturing apparatus
JP4942364B2 (en) Electrostatic chuck, wafer holding member, and wafer processing method
WO2006001425A1 (en) Electrostatic chuck
JP3924524B2 (en) Wafer heating apparatus and manufacturing method thereof
WO2001043184A2 (en) Electrostatic chucks with flat film electrode
JPH11339939A (en) Ceramic heater
JP2006332068A (en) Ceramic heater and apparatus mounted the same for manufacturing semiconductor or liquid crystal
WO2014163785A1 (en) Heated electrostatic chuck and semiconductor wafer heater and methods for manufacturing same
US12046502B2 (en) Electrostatic puck and method of manufacture
JP2006127900A (en) Annular heater
JP4545896B2 (en) Heater unit and manufacturing method thereof
JP2004031594A (en) Electrostatic chuck and its manufacturing method
JPH11162620A (en) Ceramic heater and its temperature equalizing method
JP4744016B2 (en) Manufacturing method of ceramic heater
JP2003045765A (en) Wafer-supporting member
JP5279455B2 (en) Electrostatic chuck
JP4529690B2 (en) Wafer holder for semiconductor manufacturing apparatus, manufacturing method thereof, and semiconductor manufacturing apparatus
JP2005072286A (en) Electrostatic chuck
JPH11163112A (en) Electrostatic chuck

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070226

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees