JP2004152733A - Planar warmer - Google Patents

Planar warmer Download PDF

Info

Publication number
JP2004152733A
JP2004152733A JP2002319735A JP2002319735A JP2004152733A JP 2004152733 A JP2004152733 A JP 2004152733A JP 2002319735 A JP2002319735 A JP 2002319735A JP 2002319735 A JP2002319735 A JP 2002319735A JP 2004152733 A JP2004152733 A JP 2004152733A
Authority
JP
Japan
Prior art keywords
power supply
current
emitter
transistor
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002319735A
Other languages
Japanese (ja)
Other versions
JP4165186B2 (en
Inventor
Hisayasu Katayama
尚保 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002319735A priority Critical patent/JP4165186B2/en
Publication of JP2004152733A publication Critical patent/JP2004152733A/en
Application granted granted Critical
Publication of JP4165186B2 publication Critical patent/JP4165186B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Carpets (AREA)
  • Control Of Resistance Heating (AREA)
  • Central Heating Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a planar warmer having a controller which is cost-effective and effective in terms of mounting by making it easier to integrate a circuit in which a temperature sensor is used to show impedance characteristics composed of capacity component and resistance component integrally constituted with heaters such as an electric carpet and an electric blanket. <P>SOLUTION: The base is connected to the grounding point side of the alternate current power supply 6 and a direct current power source part 8, and an emitter is connected to a detection electrode wire 4, and by providing a current prevention part 21 wherein the signal current of a temperature sensor 3 is not flown during a positive cycle side period of an alternate current power supply 6 at an emitter of a transistor 9 in which the current determined by impedance of the temperature sensor 3 is flown in the collector, the emitter potential of the transistor 9 is prevented from turning into a negative potential during the positive cycle period of the alternate current power supply 6. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、電気カーペット、電気毛布などのヒータと一体に構成した容量分や抵抗分からなるインピーダンス特性を示す温度センサを使用する面状採暖具に関するものである。
【0002】
【従来の技術】
従来この種の面状採暖具としては、例えば、図7〜図10に示すものがあった。図7は温度センサ、検知電極線と一体構成にあるヒータの構造図を示したもので、1は芯線であり、その上にヒータ2を巻回し、その上にプラスチックサーミスタによる温度センサ3を被覆し、その上に検知電極線4を巻回し、更にその上に絶縁用外被5を被覆している。図8は温度センサ3の特性を示したもので、縦軸がインピーダンスZ、横軸が温度TでLが低い側、Hが高い側をあらわす。インピーダンスZは容量分から決まるインピーダンスZCと抵抗分から決まるインピーダンスZRの合成値となり、高温側になるほど容量分のインピーダンスZCのウエイトが高くなる。
【0003】
図9にこの温度センサ3を用いた従来例の構成図を示す。図において、6は交流電源、7はヒータ2へ交流電源6を供給制御する電力制御素子、8は直流電源部で各部に直流電圧を供給する。9はベース接地したトランジスタで、エミッタは検知電極線4に接続される(例えば、特許文献1参照)。10は温度信号部でトランジスタ9のコレクタに流れる電流を電圧変換して信号VTを出力する。11は温度設定部でヒータ2の温度設定信号Vsを出力する。12は温度制御部で温度信号部10の信号VTと温度設定部11の信号Vsを比較処理して、ヒータ2の温度が設定より低い時、すなわち、VT>Vsの時はHi出力となって電力制御素子7を駆動する。温度信号部10の信号VTは、ヒータ2の温度が低くて温度センサ3のインピーダンスが大きい時は、トランジスタ9のコレクタに流れる電流が小さいため、高い値を示す。逆にヒータ2の温度が高くなり温度センサ3のインピーダンスが小さくなると、トランジスタ9のコレクタに流れる電流が多くなるため、低い値を示すことになる。この温度信号部10の信号VTを検出することによってヒータ2の温度を、ある設定した温度に制御している。13はダイオードでトランジスタ9のエミッタベース間の耐圧保証、及び、交流電源6の正サイクル側における温度センサ3の電流を流している。
【0004】
【特許文献1】
特開平08−145388号公報(図1)
【0005】
【発明が解決しようとする課題】
しかしながら、前記従来の構成では、回路を1チップの集積回路にする場合、寄生動作を発生させてしまう。その動作を図10とともに説明する。図において、温度センサ3に流れる信号電流Isは、温度センサ3のインピーダンスが容量分で構成され、特に高温側においては殆どが容量分となるため、交流電源6(Vac)に対して、位相が90°近く進むことになる。温度信号部10は信号電流Isの負サイクル側の電流を検出している。従って、温度信号部10の検出電流は交流電源6(Vac)のb側、トランジスタ9のベースからエミッタ、検知電極線4、温度センサ3、ヒータ2、交流電源6(Vac)のa側へと流れて、トランジスタ9がオンすると、検出電流の殆どはトランジスタ9のコレクタを流れることになる。そうすると温度検出部10の抵抗14とコンデンサ15によって直流電圧の信号VTに変換される。この時トランジスタ9のエミッタ電位Vbは、回路の基準電圧GNDよりも負の電圧となってしまう。
【0006】
そして回路を1チップの集積回路で構成すると、この負の電圧となることで集積回路内部において異常な回路ができる寄生動作が発生してしまう。この寄生動作で発生した回路が影響して温度制御部12の出力がHi出力となってしまい電力制御素子7のアノードとカソード間の電圧Vscrに示すように、電力制御素子7が交流電源6(Vac)の正サイクル時、且つ、信号電流Isの負サイクル時において連続的にオンしてしまう異常動作が発生する。この異常動作によりヒータ2の温度が上昇し続け、非常に危険な状態となってしまう。
【0007】
本発明は、前記従来の課題を解決するもので、電気カーペット、電気毛布などのヒータと一体に構成した容量分や抵抗分からなるインピーダンス特性を示す温度センサを使用する回路の集積回路化を容易にして、コスト面や実装面で有効な制御コントローラを有する面状採暖具の提供を目的とする。
【0008】
【課題を解決するための手段】
前記従来の課題を解決するために、本発明の面状採暖具は、交流電源と直流電源部の接地点側にベースを接続、エミッタを検知電極線側に接続し、温度センサのインピーダンスから決まる電流をコレクタに流すトランジスタのエミッタに、交流電源の正サイクル側期間中は、温度センサの信号電流を流さない電流阻止部を備えたものである。この電流阻止部によってトランジスタのエミッタ電位を、交流電源の正サイクル期間において常に正電位とするものである。
【0009】
【発明の実施の形態】
請求項1に記載の発明は、交流電源と直流電源部の接地点側にベースを接続、エミッタを検知電極線側に接続し、温度センサのインピーダンスから決まる電流をコレクタに流すトランジスタのエミッタに、交流電源の正サイクル側期間中は、エミッタに流れる電流を打ち消す方向に電流を流す電流阻止部を構成することにより、エミッタ電位を、交流電源の正サイクル期間において常に正電位とすることができる。
【0010】
請求項2に記載の発明は、特に、交流電源の正サイクル側期間中は、検知電極線とトランジスタのエミッタとの間のインピーダンスを大きくする電流阻止部を構成することにより、エミッタ電位が、交流電源の正サイクル期間において負電位になることを防止することができる。
【0011】
請求項3に記載の発明は、特に、交流電源の正サイクル側期間中は、トランジスタのベースとエミッタを短絡する電流阻止部を構成することにより、エミッタ電位が、交流電源の正サイクル期間において負電位になることを防止することができる。
【0012】
【実施例】
以下、本発明の実施例について、図1〜図6を参照しながら説明する。尚、従来例と同一部については、同一番号を付与し、従って、その動作も同じであるので説明を省略する。
【0013】
(実施例1)
図1は、本発明の第1の実施例における面状採暖具の構成図を示すものである。図1において、21は電流阻止部で、ダイオード22、抵抗23で構成し、交流電源6(Vac)のa側がプラス電位の期間である正サイクル期間中において、トランジスタ9のエミッタに流れる電流を打ち消す方向に電流を流す。次に、図2の特性図において、各部の電流と電圧の関係を交流電源6(Vac)の波形を基準に説明する。
【0014】
まず、温度センサ3に流れる信号電流Isは、温度センサ3のインピーダンスが容量分で構成され、特に高温側においては殆どが容量分となるため、交流電源6(Vac)に対して、位相が90°近く進んだ電流となる。そして、電流阻止部21に流れる電流Iaは、交流電源6(Vac)と同位相で、交流電源6(Vac)のa側がプラス電位の期間である正サイクルの期間中のみに流れる。従って、トランジスタ9のエミッタに流れる電流Itは、温度センサ3に流れる信号電流Isと電流阻止部21に流れる電流Iaの合成電流となる。
【0015】
ここで電流阻止部21に流れる電流Iaの値を温度センサ3に流れる信号電流Isの値よりも大きく設定することで、交流電源6(Vac)のa側がプラス電位の期間である正サイクルの期間中において、トランジスタ9のエミッタに流れる電流Itの負側の電流を打ち消すことができ、電流Itは、交流電源6(Vac)のa側がプラス電位の期間である正サイクルの期間中は正側の電流となる。ゆえに、トランジスタ9のエミッタ電位Vbも交流電源6(Vac)のa側がプラス電位の期間である正サイクルの期間中は常に正電位となる。よって、集積回路化した時においても寄生動作の発生がなくなり、電力制御素子7のアノードとカソード間波形Vscrに示すように、オフすべき時には確実にオフさせることができる。
【0016】
(実施例2)
図3、図4は、本発明の第2の実施例における面状採暖具の構成図および特性図を示すものである。図3において、31は電流阻止部でフォトトライアックカプラ32と抵抗33で構成する。次に動作を図4とともに説明する。電流阻止部31のフォトトライアックカプラ32のLED部34には、交流電源6(Vac)のa側がプラス電位の期間である正サイクル期間中においては電流が流れず、従って発光しないためにフォトトライアックカプラ32のトライアック部35はオフとなる。そして交流電源6(Vac)のa側がマイナス電位の期間である負サイクル期間中においてはLED部34に電流が流れ、発光してトライアック部35をオン状態とする。ゆえに、温度センサ3に流れる信号電流Isは交流電源6(Vac)の正サイクル期間中は負の電流が流れず、トランジスタ9のエミッタ電流Itは交流電源6(Vac)のa側がマイナス電位の期間である負サイクル期間中においてのみ流れることになる。よって、トランジスタ9のエミッタ電位Vbも交流電源6(Vac)のa側がマイナス電位の期間である負サイクルの期間中のみ負電位となり、正サイクル期間中は負電位を防止できるので、集積回路化した時においても寄生動作の発生がなくなり、電力制御素子7のアノードとカソード間波形Vscrに示すように、オフすべき時には確実にオフさせることができる。
【0017】
(実施例3)
図5、図6は、本発明の第3の実施例における面状採暖具の構成図および特性図を示すものである。図5において、41は電流阻止部でフォトトランジスタカプラ42と抵抗43で構成する。次に動作を図6とともに説明する。電流阻止部41のフォトトランジスタカプラ42のLED部44には、交流電源6(Vac)のa側がプラス電位の期間である正サイクル期間中において電流が流れ、従ってLED部44は発光してフォトトランジスタカプラ42のトランジスタ部45はオンとなる。
【0018】
そして交流電源6(Vac)のa側がマイナス電位の期間である負サイクル期間中においてはLED部44には電流が流れず、発光しないのでトランジスタ部45はオフ状態となる。ゆえに、温度センサ3に流れる信号電流Isの負サイクル側の電流で交流電源6(Vac)の正サイクル期間中の電流は、トランジスタ部45の電流Icとして流れ、従って、温度センサ3に流れる信号電流Isの負サイクル側の電流で、交流電源6(Vac)の負サイクル期間中の電流だけがトランジスタ9のエミッタ電流Itとして流れることになる。よって、トランジスタ9のエミッタ電位Vbも交流電源6(Vac)のa側がマイナス電位の期間である負サイクルの期間中のみ負電位となり、正サイクル期間中は負電位を防止できるので、集積回路化した時においても寄生動作の発生がなくなり、電力制御素子7のアノードとカソード間波形Vscrに示すように、オフすべき時には確実にオフさせることができる。
【0019】
【発明の効果】
以上のように、本発明によれば、交流電源と直流電源部の接地点側にベースを接続、エミッタを検知電極線側に接続し、温度センサのインピーダンスから決まる電流をコレクタに流すトランジスタのエミッタに、交流電源の正サイクル側期間中は、温度センサの信号電流を流さない電流阻止部を備えることにより、トランジスタのエミッタ電位を、交流電源の正サイクル期間においては負電位とならない回路構成とできるものであり、寄生動作が発生しないので回路の集積回路化が容易になり、ゆえに部品点数が少なくなってコストが安く、また、実装スペースが小さい制御コントローラを有する面状採暖具を提供することができるものである。
【図面の簡単な説明】
【図1】本発明の実施例1における面状採暖具の構成図
【図2】本発明の第1の実施例における面状採暖具の特性図
【図3】本発明の第2の実施例における面状採暖具の構成図
【図4】本発明の第2の実施例における面状採暖具の特性図
【図5】本発明の第3の実施例における面状採暖具の構成図
【図6】本発明の第3の実施例における面状採暖具の特性図
【図7】温度センサ、検知電極線と一体構成にあるヒータの構造図
【図8】温度センサの特性図
【図9】従来の面状採暖具の構成図
【図10】従来の面状採暖具の特性図
【符号の説明】
2 ヒータ
3 温度センサ
4 検知電極線
6 交流電源
7 電力制御素子
8 直流電源部
9 トランジスタ
10 温度信号部
11 温度設定部
12 温度制御部
13 ダイオード
21、31、41 電流阻止部
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a planar heating device using a temperature sensor exhibiting impedance characteristics composed of a capacitance component and a resistance component integrated with a heater such as an electric carpet or an electric blanket.
[0002]
[Prior art]
Conventionally, as this type of planar heating device, for example, there has been one shown in FIGS. FIG. 7 shows a structural diagram of a heater integrated with a temperature sensor and a detection electrode wire, wherein 1 is a core wire, on which a heater 2 is wound, and on which a plastic thermistor-covered temperature sensor 3 is provided. Then, the detection electrode wire 4 is wound thereon, and the insulating jacket 5 is further coated thereon. FIG. 8 shows the characteristics of the temperature sensor 3, in which the vertical axis represents the impedance Z, and the horizontal axis represents the temperature T and the side where L is low and the side where H is high. The impedance Z is a composite value of the impedance ZC determined by the capacitance and the impedance ZR determined by the resistance, and the higher the temperature, the higher the weight of the impedance ZC by the capacitance.
[0003]
FIG. 9 shows a configuration diagram of a conventional example using the temperature sensor 3. In the figure, 6 is an AC power supply, 7 is a power control element for controlling the supply of the AC power supply 6 to the heater 2, and 8 is a DC power supply unit for supplying a DC voltage to each unit. Reference numeral 9 denotes a transistor whose base is grounded, and the emitter is connected to the detection electrode line 4 (for example, see Patent Document 1). Reference numeral 10 denotes a temperature signal unit which converts a current flowing through the collector of the transistor 9 into a voltage and outputs a signal VT. A temperature setting unit 11 outputs a temperature setting signal Vs for the heater 2. Reference numeral 12 denotes a temperature control unit that compares the signal VT of the temperature signal unit 10 with the signal Vs of the temperature setting unit 11, and outputs a Hi output when the temperature of the heater 2 is lower than the setting, that is, when VT> Vs. The power control element 7 is driven. The signal VT of the temperature signal section 10 shows a high value when the temperature of the heater 2 is low and the impedance of the temperature sensor 3 is large because the current flowing through the collector of the transistor 9 is small. Conversely, when the temperature of the heater 2 increases and the impedance of the temperature sensor 3 decreases, the current flowing through the collector of the transistor 9 increases, and thus the value becomes low. By detecting the signal VT of the temperature signal section 10, the temperature of the heater 2 is controlled to a certain set temperature. Reference numeral 13 denotes a diode for guaranteeing the breakdown voltage between the emitter and the base of the transistor 9 and for flowing the current of the temperature sensor 3 on the positive cycle side of the AC power supply 6.
[0004]
[Patent Document 1]
JP-A-08-145388 (FIG. 1)
[0005]
[Problems to be solved by the invention]
However, in the conventional configuration, when the circuit is a one-chip integrated circuit, a parasitic operation occurs. The operation will be described with reference to FIG. In the figure, the signal current Is flowing through the temperature sensor 3 has a phase corresponding to the capacitance of the impedance of the temperature sensor 3, and most of the signal current Is at the high temperature side, with respect to the AC power supply 6 (Vac). You will be traveling close to 90 °. The temperature signal section 10 detects the current on the negative cycle side of the signal current Is. Therefore, the detection current of the temperature signal unit 10 is from the b side of the AC power supply 6 (Vac), from the base of the transistor 9 to the emitter, the detection electrode wire 4, the temperature sensor 3, the heater 2, and the a side of the AC power supply 6 (Vac). When the transistor 9 turns on, most of the detection current flows through the collector of the transistor 9. Then, the voltage is converted into a DC voltage signal VT by the resistor 14 and the capacitor 15 of the temperature detecting unit 10. At this time, the emitter potential Vb of the transistor 9 becomes more negative than the reference voltage GND of the circuit.
[0006]
When the circuit is configured by a one-chip integrated circuit, the negative voltage causes a parasitic operation that causes an abnormal circuit inside the integrated circuit. The output of the temperature control unit 12 becomes Hi output due to the influence of the circuit generated by the parasitic operation, and as shown by the voltage Vscr between the anode and the cathode of the power control element 7, the power control element 7 In the positive cycle of Vac), and in the negative cycle of the signal current Is, an abnormal operation of turning on continuously occurs. Due to this abnormal operation, the temperature of the heater 2 continues to rise, resulting in a very dangerous state.
[0007]
The present invention solves the above-mentioned conventional problems, and facilitates integration of a circuit using a temperature sensor exhibiting an impedance characteristic composed of a capacitance component and a resistance component integrally formed with a heater such as an electric carpet and an electric blanket. Accordingly, an object of the present invention is to provide a planar heating device having a control controller effective in terms of cost and mounting.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned conventional problems, the planar heating device of the present invention connects the base to the ground point side of the AC power supply and the DC power supply unit, connects the emitter to the detection electrode wire side, and is determined by the impedance of the temperature sensor. An emitter of a transistor that allows a current to flow to a collector is provided with a current blocking portion that does not allow a signal current of a temperature sensor to flow during a positive cycle side of an AC power supply. The current blocking section always sets the emitter potential of the transistor to a positive potential during the positive cycle of the AC power supply.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
According to the first aspect of the present invention, the base of the AC power supply and the DC power supply unit is connected to the ground point side, the emitter is connected to the detection electrode line side, and the emitter of the transistor that flows the current determined by the impedance of the temperature sensor to the collector is By configuring the current blocking portion for flowing a current in a direction for canceling the current flowing through the emitter during the positive cycle side of the AC power supply, the emitter potential can be always kept positive during the positive cycle period of the AC power supply.
[0010]
The invention according to claim 2 provides a current blocking section that increases the impedance between the sensing electrode line and the emitter of the transistor, particularly during the positive cycle side of the AC power supply, so that the emitter potential is reduced. It is possible to prevent the potential from becoming a negative potential during the positive cycle period of the power supply.
[0011]
According to the third aspect of the present invention, in particular, during the positive cycle side of the AC power supply, a current blocking portion for short-circuiting the base and the emitter of the transistor is formed, so that the emitter potential becomes negative during the positive cycle period of the AC power supply. The potential can be prevented.
[0012]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to FIGS. The same parts as those in the conventional example are given the same numbers, and the operations are the same, so that the description will be omitted.
[0013]
(Example 1)
FIG. 1 shows a configuration diagram of a planar heating device according to a first embodiment of the present invention. In FIG. 1, reference numeral 21 denotes a current blocking unit which includes a diode 22 and a resistor 23, and cancels a current flowing through the emitter of the transistor 9 during a positive cycle in which the a side of the AC power supply 6 (Vac) has a positive potential. Apply current in the direction. Next, in the characteristic diagram of FIG. 2, the relationship between the current and the voltage of each section will be described with reference to the waveform of the AC power supply 6 (Vac).
[0014]
First, the signal current Is flowing through the temperature sensor 3 has the phase of 90 degrees with respect to the AC power supply 6 (Vac) because the impedance of the temperature sensor 3 is constituted by the capacitance, and especially on the high temperature side, almost becomes the capacitance. ° The current has advanced near. The current Ia flowing through the current blocking unit 21 has the same phase as that of the AC power supply 6 (Vac), and flows only during the positive cycle in which the a side of the AC power supply 6 (Vac) has a positive potential. Therefore, the current It flowing to the emitter of the transistor 9 is a combined current of the signal current Is flowing to the temperature sensor 3 and the current Ia flowing to the current blocking unit 21.
[0015]
Here, by setting the value of the current Ia flowing through the current blocking unit 21 to be larger than the value of the signal current Is flowing through the temperature sensor 3, a period of the positive cycle in which the a side of the AC power supply 6 (Vac) has a positive potential period. In this case, the current on the negative side of the current It flowing to the emitter of the transistor 9 can be canceled, and the current It becomes positive during the positive cycle in which the a side of the AC power supply 6 (Vac) has a positive potential. It becomes a current. Therefore, the emitter potential Vb of the transistor 9 is also always positive during the positive cycle in which the a side of the AC power supply 6 (Vac) has a positive potential. Therefore, even when an integrated circuit is formed, no parasitic operation occurs, and as shown by the waveform Vscr between the anode and the cathode of the power control element 7, the power control element 7 can be reliably turned off when it should be turned off.
[0016]
(Example 2)
FIG. 3 and FIG. 4 show a configuration diagram and a characteristic diagram of a planar heating device according to a second embodiment of the present invention. In FIG. 3, reference numeral 31 denotes a current blocking unit, which comprises a phototriac coupler 32 and a resistor 33. Next, the operation will be described with reference to FIG. No current flows to the LED section 34 of the phototriac coupler 32 of the current blocking section 31 during the positive cycle period in which the a-side of the AC power supply 6 (Vac) has a positive potential, and thus the phototriac coupler does not emit light. The triac unit 32 is turned off. Then, during a negative cycle period in which the a side of the AC power supply 6 (Vac) has a negative potential, a current flows through the LED unit 34 to emit light, and the triac unit 35 is turned on. Therefore, the signal current Is flowing through the temperature sensor 3 does not flow as a negative current during the positive cycle of the AC power supply 6 (Vac), and the emitter current It of the transistor 9 has a negative potential on the a side of the AC power supply 6 (Vac). Will flow only during the negative cycle. Therefore, the emitter potential Vb of the transistor 9 becomes negative only during the negative cycle in which the a side of the AC power supply 6 (Vac) is negative, and the negative potential can be prevented during the positive cycle. At this time, no parasitic operation occurs, and as shown by the waveform Vscr between the anode and the cathode of the power control element 7, it can be surely turned off when it should be turned off.
[0017]
(Example 3)
FIGS. 5 and 6 show a configuration diagram and a characteristic diagram of the planar warming device in the third embodiment of the present invention. In FIG. 5, reference numeral 41 denotes a current blocking unit, which comprises a phototransistor coupler 42 and a resistor 43. Next, the operation will be described with reference to FIG. A current flows through the LED section 44 of the phototransistor coupler 42 of the current blocking section 41 during the positive cycle period in which the a side of the AC power supply 6 (Vac) has a positive potential, so that the LED section 44 emits light and emits a phototransistor. The transistor section 45 of the coupler 42 is turned on.
[0018]
During a negative cycle period in which the a side of the AC power supply 6 (Vac) has a negative potential, no current flows to the LED unit 44 and no light is emitted, so the transistor unit 45 is turned off. Therefore, the current in the negative cycle side of the signal current Is flowing through the temperature sensor 3 during the positive cycle of the AC power supply 6 (Vac) flows as the current Ic of the transistor unit 45, and therefore, the signal current flowing through the temperature sensor 3 With the current on the negative cycle side of Is, only the current during the negative cycle of the AC power supply 6 (Vac) flows as the emitter current It of the transistor 9. Therefore, the emitter potential Vb of the transistor 9 becomes negative only during the negative cycle in which the a side of the AC power supply 6 (Vac) is negative, and the negative potential can be prevented during the positive cycle. At this time, no parasitic operation occurs, and as shown by the waveform Vscr between the anode and the cathode of the power control element 7, it can be surely turned off when it should be turned off.
[0019]
【The invention's effect】
As described above, according to the present invention, the base of the AC power supply and the DC power supply unit are connected to the ground point side, the emitter is connected to the detection electrode line side, and the emitter of the transistor that allows the current determined by the impedance of the temperature sensor to flow to the collector. In addition, by providing a current blocking portion that does not allow the signal current of the temperature sensor to flow during the positive cycle side of the AC power supply, a circuit configuration can be provided in which the emitter potential of the transistor does not become a negative potential during the positive cycle period of the AC power supply. Therefore, it is possible to provide a planar heating device having a control controller having a small number of components and a low cost, and having a small mounting space, since a parasitic operation does not occur and the circuit is easily integrated into a circuit. You can do it.
[Brief description of the drawings]
1 is a configuration diagram of a planar warming device according to a first embodiment of the present invention; FIG. 2 is a characteristic diagram of the planar warming device according to a first embodiment of the present invention; FIG. 3 is a second embodiment of the present invention; FIG. 4 is a configuration diagram of a planar warming device according to a second embodiment of the present invention. FIG. 5 is a configuration diagram of a planar warming device according to a third embodiment of the present invention. 6 is a characteristic diagram of a planar warming device according to a third embodiment of the present invention. FIG. 7 is a structural diagram of a heater integrated with a temperature sensor and a detection electrode wire. FIG. 8 is a characteristic diagram of a temperature sensor. Configuration diagram of conventional planar heating device [FIG. 10] Characteristic diagram of conventional planar heating device [Description of symbols]
2 Heater 3 Temperature sensor 4 Detection electrode wire 6 AC power supply 7 Power control element 8 DC power supply 9 Transistor 10 Temperature signal unit 11 Temperature setting unit 12 Temperature control unit 13 Diodes 21, 31, 41 Current blocking unit

Claims (3)

交流電源と、採暖具本体に配設したヒータと、前記ヒータと一体構成にある検知電極線と、前記ヒータと前記検知電極線の間に設けた容量分や抵抗分からなるインピーダンス特性を示す温度センサと、前記交流電源の正サイクル側の電力を前記ヒータに供給する電力制御素子と、前記交流電源を整流して直流電圧を得る直流電源部と、前記交流電源と前記直流電源部の接地点側にベースを接続しエミッタを前記検知電極線側に接続したトランジスタと、前記トランジスタのコレクタに流れる前記温度センサのインピーダンスから決まる電流を直流電圧に変換して温度信号とする温度信号部と、前記ヒータの温度を設定する温度設定部と、前記温度検出部の信号と前記温度設定部の信号を比較処理して、前記電力制御素子へ制御信号を出力する温度制御部と、前記トランジスタのベース、エミッタと並列かつ逆方向に接続したダイオードと、前記交流電源の正サイクル側期間に前記トランジスタのエミッタに流れる電流を打ち消す方向に電流を流す電流阻止部を備えてなる面状採暖具。An AC power supply, a heater disposed on the heater body, a detection electrode line integrally formed with the heater, and a temperature sensor exhibiting impedance characteristics including a capacitance component and a resistance component provided between the heater and the detection electrode line. A power control element that supplies power on the positive cycle side of the AC power supply to the heater; a DC power supply unit that rectifies the AC power supply to obtain a DC voltage; and a ground point side of the AC power supply and the DC power supply unit. A transistor having a base connected thereto and an emitter connected to the sensing electrode line side, a temperature signal section which converts a current determined by the impedance of the temperature sensor flowing through the collector of the transistor into a DC voltage to obtain a temperature signal, and the heater A temperature setting unit that sets the temperature of the temperature control unit, a signal from the temperature detection unit and a signal from the temperature setting unit are compared, and a control signal is output to the power control element. A diode connected in parallel with and opposite to the base and the emitter of the transistor, and a current blocking unit for flowing a current in a direction to cancel a current flowing to the emitter of the transistor during a positive cycle side of the AC power supply. Planar heating device. 交流電源の正サイクル側期間は、検知電極線とトランジスタのエミッタとの間のインピーダンスを大きくする電流阻止部を備えてなる請求項1に記載の面状採暖具。The planar heater according to claim 1, further comprising a current blocking portion for increasing an impedance between the sensing electrode line and the emitter of the transistor during a positive cycle side period of the AC power supply. 交流電源の正サイクル側期間は、トランジスタのベースとエミッタを短絡する電流阻止部を備えてなる請求項1に記載の面状採暖具。The planar heater according to claim 1, further comprising a current blocking portion for short-circuiting the base and the emitter of the transistor during the positive cycle side of the AC power supply.
JP2002319735A 2002-11-01 2002-11-01 Surface heating device Expired - Fee Related JP4165186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002319735A JP4165186B2 (en) 2002-11-01 2002-11-01 Surface heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002319735A JP4165186B2 (en) 2002-11-01 2002-11-01 Surface heating device

Publications (2)

Publication Number Publication Date
JP2004152733A true JP2004152733A (en) 2004-05-27
JP4165186B2 JP4165186B2 (en) 2008-10-15

Family

ID=32462506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002319735A Expired - Fee Related JP4165186B2 (en) 2002-11-01 2002-11-01 Surface heating device

Country Status (1)

Country Link
JP (1) JP4165186B2 (en)

Also Published As

Publication number Publication date
JP4165186B2 (en) 2008-10-15

Similar Documents

Publication Publication Date Title
TWI434604B (en) LED lights and lighting devices that contain the LED lights
US10308273B2 (en) Steering wheel heater and steering wheel
JP4147424B2 (en) Overheat protection device
JP6421047B2 (en) Switching power supply
KR102307768B1 (en) A power supply unit for an aerosol inhaler
JPWO2004068686A1 (en) Power supply
JP7004139B2 (en) Vehicle door handle device
JP2004152733A (en) Planar warmer
KR100458830B1 (en) A none electromagnetic wave heat controler for an electric heating bedding
JP2007174575A (en) Two-wire electronic switch
JP4552849B2 (en) 2-wire electronic switch
JP4552850B2 (en) 2-wire electronic switch
WO2022239383A1 (en) Power supply unit for aerosol generation device
JP7467769B2 (en) Aerosol generator power supply unit
WO2022239367A1 (en) Power supply unit of aerosol generation device
WO2022239368A1 (en) Power supply unit for aerosol generation device
WO2022239360A1 (en) Power supply unit for aerosol generation device
WO2022239385A1 (en) Power supply unit for aerosol generation device
JPH0336071Y2 (en)
KR100762296B1 (en) Electric heating device
JP4085853B2 (en) Electronics
JP3227745B2 (en) Temperature control device
KR200275207Y1 (en) A none electromagnetic wave heat controler for an electric heating bedding
KR200246354Y1 (en) temperature controller for electric mat
KR20230162033A (en) Power unit of aerosol generating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051101

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080721

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140808

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees