JP2004152632A - Lithium secondary cell - Google Patents

Lithium secondary cell Download PDF

Info

Publication number
JP2004152632A
JP2004152632A JP2002316736A JP2002316736A JP2004152632A JP 2004152632 A JP2004152632 A JP 2004152632A JP 2002316736 A JP2002316736 A JP 2002316736A JP 2002316736 A JP2002316736 A JP 2002316736A JP 2004152632 A JP2004152632 A JP 2004152632A
Authority
JP
Japan
Prior art keywords
battery
aluminum
positive electrode
lithium
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002316736A
Other languages
Japanese (ja)
Inventor
Seiji Yoshimura
精司 吉村
Shiori Nakamizo
紫織 中溝
Masanobu Takeuchi
正信 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002316736A priority Critical patent/JP2004152632A/en
Publication of JP2004152632A publication Critical patent/JP2004152632A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem of a preservation property being degraded by reacting of a negative electrode active material and electrolyte solution at a cell preservation when a lithium metal, a lithium alloy, and a carbon material or the like are used as a negative electrode active material, and a clad material of aluminum/stainless steel or aluminum/iron with its inner surface in aluminum is used as a positive electrode can. <P>SOLUTION: The lithium secondary cell uses silicon as a negative electrode active material, and a clad material of aluminum/stainless steel or aluminum/iron as a positive electrode can with its inner surface in aluminum. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、保存特性を向上させたリチウム二次電池に関するものである。
【0002】
【従来の技術】
リチウム二次電池は、高い電圧を有し、携帯機器用電源をはじめ、種々の用途に使用されている。この種電池の正極活物質としては、コバルト酸リチウム、ニッケル酸リチウム、スピネル構造のマンガン酸リチウム等が使用されている。また、負極活物質としては、リチウム金属、リチウム合金、リチウムイオンの吸蔵・放出が可能な炭素材料等が使用されている。
【0003】
ところで、負極活物質として上記のリチウム金属、リチウム合金、リチウムイオンの吸蔵・放出が可能な炭素材料等を用い、また、正極缶として、内面をアルミニウムとするアルミニウム−ステンレス、アルミニウム−鉄のクラッド材を使用した二次電池が提案されている(特許文献1)。
【0004】
かかる構成を用いた場合には、過充電の際、正極缶のアルミニウムが溶解してイオン化することが殆どなく、このため、正極缶から電解液に溶解したアルミニウムイオンが負極表面に不活性な生成物となって析出することが殆どなかった。また、アルミニウム製の正極缶は殆ど充電中にイオンとなって溶解しないため、正極缶に腐食孔があくこともなかった。
【0005】
しかしながら、この種の電池においては、電池保存時に負極活物質と電解液とが反応し、保存特性が低下するという問題があった。
【0006】
ところで、リチウムを含有するケイ素を負極活物質として用いた非水電解質二次電池が提案されている(特許文献2)。
【0007】
ケイ素を負極に用いた場合には、高電圧・高エネルギー密度で且つ大電流での充放電特性が優れると共に、過充電過放電による不可逆物質の生成等が殆どみられず、サイクル寿命の長い二次電池を得ることができる。
【0008】
しかしながら、この種の電池においても、電池保存時に負極活物質と電解液が反応し、保存特性が低下するという問題があった。
【0009】
【特許文献1】
特開平5−174873
【特許文献2】
特開平7−29602
【0010】
【発明が解決しようとする課題】
本発明の目的は、保存特性に優れたリチウム二次電池を提供することにある。
【0011】
【課題を解決するための手段】
本発明のリチウム二次電池は、正極と、ケイ素を活物質とする負極と、非水電解液と、正極缶及び負極缶を有するリチウム二次電池において、前記正極缶が内面をアルミニウムとするアルミニウム−ステンレス鋼のクラッド材からなることを特徴とする。
【0012】
上記構成とした場合には、保存中に正極缶材料であるアルミニウムの一部が溶解して、負極であるケイ素表面にアルミニウム−ケイ素合金からなるリチウムイオン伝導性の良好な被膜が生じる。このため、非水電解液と負極活物質であるケイ素との反応が抑制され、保存特性が向上する。
【0013】
本発明においては、特に、負極がリチウムを貼り付けたケイ素であることが望ましい。この理由は、ケイ素表面と緊密に密着したアルミニウム−ケイ素合金からなるリチウムイオン伝導性の良好な被膜が負極表面に生じるためである。
【0014】
また、本発明においては、非水電解液の溶媒が炭酸ジメチルを含むことが好ましい。さらに、非水電解液の溶媒が炭酸ジメチルとエチレンカーボネートとの混合溶媒からなり、炭酸ジメチルを30体積%以上含むことがより好ましい。この理由は、非水電解液の溶媒として炭酸ジメチルを用いた場合、ケイ素表面に生じるアルミニウム−ケイ素合金からなるリチウムイオン伝導性の良好な被膜が、負極表面に緊密に密着するためである。
【0015】
また、本発明における正極活物質は、マンガン酸化物、特に、スピネルマンガン(LiMn)、CDMO(LiMnOとMnOを含む化合物)やLiMnOなどの、リチウムとマンガンを含むリチウム−マンガン複合酸化物が好ましい。この理由は、正極の一部が非水電解液に溶解し、アルミニウムとケイ素とマンガンからなるリチウムイオン伝導性の良好な被膜が負極表面に生じるためである。
【0016】
本発明電池においては、上記のリチウムイオン伝導性の良好な被膜により、非水電解液とケイ素との反応が抑制され、電池の保存特性が向上する。
【0017】
【発明の実施の形態】
以下、本発明を実施例に基づいて詳細に説明する。なお、本発明におけるリチウム二次電池は、以下の実施例に限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することができる。
【0018】
[実験1]
実験1では、正極缶として正極缶の内面をアルミニウムとするアルミニウム−ステンレス鋼のクラッド材を用い、また、負極活物質としてケイ素を使用した場合の電池(実施例1)の保存特性と、負極活物質として炭素またはリチウムーアルミ合金を使用した電池(比較例)の保存特性とを比較した。
【0019】
[実施例1]
以下に正極の作製、負極の作製、非水電解液の調整、電池の組立という順で、本発明電池A1の作製について述べる。
(正極の作製)
水酸化リチウム(LiOH)と二酸化マンガン(MnO)とを、Li:Mnの原子比0.50:1.00で混合し、空気中にて375℃で20時間熱処理してリチウムーマンガン複合酸化物を得た。このリチウム−マンガン複合酸化物をX線回折により測定したところ、X線回折パターンに、LiMnOのピークと、本来のピーク位置からやや低角度側にシフトしたMnOのピークのみが認められた。これは、この化合物がLiMnOとMnOからなることを示している。
上述のリチウム−マンガン複合酸化物(粉末)を85重量部、導電剤としての炭素粉末を10重量部、結着剤としてのポリフッ化ビニリデン粉末を5重量部となるよう混合し、この混合物をN−メチルピロリドン(NMP)溶液と混練してスラリーを調製した。このスラリーを厚さ20μmのアルミニウム製の集電体の片面にドクターブレード法により塗布して活物質層を形成した後、150℃で乾燥して打ち抜き、直径が17mm、厚みが1.0mmの円板状の正極を作製した。
【0020】
〔負極の作製〕
粒径が5μm、純度99%の市販のケイ素粉末を85重量部、導電剤としての炭素粉末を10重量部、結着剤としてのポリフッ化ビニリデン粉末を5重量部となるよう混合し、この混合物をNMP溶液と混練してスラリーを調製した。このスラリーを厚さ20μmの銅箔製の集電体の片面にドクターブレード法により塗布して活物質層を形成した後、150℃で乾燥して打ち抜き、直径が17mm、厚みが1.0mmの円板状にした。これに直径が17mm、厚みが0.13mmの円板状のリチウム(60mAhに相当)を貼り付けることにより、負極とした。
【0021】
〔非水電解液の調製)
エチレンカーボネート(EC)と炭酸ジメチル(DMC)との等体積混合溶媒に、溶質としてのヘキサフルオロリン酸リチウム(LiPF)を1mol/L溶解して非水電解液とした。
【0022】
〔電池の組立〕
上記の正極、負極及び非水電解液を使用して、扁平形の本発明電池A1(リチウム二次電池;電池寸法:外径24mm、厚さ3mm)を組み立てた。負極は、リチウムを貼り付けた面を正極と対向させた。なお、セパレータとしては、ポリプロピレン製の微多孔膜を使用し、これに非水電解液を含浸させている。
正極缶には、厚さ0.05mmのアルミニウム(電池缶の内側)と厚さ0.20mmのSUS316L(電池缶の外側)からなるクラッド材を使用し、SUS316L側に厚さ0.002mmのニッケルメッキした材料を使用した。
負極缶には、電池缶の外側に厚さ0.002mmのニッケルメッキした厚さ0.25mmのSUS316Lを使用した。
図1は作製したリチウム二次電池の断面模式図であり、負極1、正極2、セパレータ3、負極缶4、正極缶5、負極集電体6、正極集電体7及びポリプロピレン製の絶縁パッキング8などからなる。
【0023】
(比較例1−1)
上記実施例1における負極の作製において、炭素粉末を95重量部、結着剤としてのポリフッ化ビニリデン粉末を5重量部となるよう混合し、この混合物をNMP溶液と混練してスラリーを調整したこと以外は、実施例1と同様にして、比較電池X1を組み立てた。
【0024】
(比較例1−2)
上記実施例1における負極の作製において、厚みが1.0mmのアルミニウム板を打ち抜き、直径が17mm、厚みが1.0mmの円板状にしたのち、直径が17mm、厚みが0.13mmの円板状のリチウム(60mAhに相当)を貼り付けることにより負極を作製したこと以外は、前記実施例1と同様にして、比較電池X2を組み立てた。
【0025】
〔容量維持率(保存特性)の測定〕
電池作製直後の各電池(A1、X1、X2)を、25℃において、電流値1mAで2Vまで放電し、電池作製直後の放電容量を測定した。また、各電池を25℃において電流値1mAで3.2Vまで充電した後、60℃で2ヶ月間保存し、その後、電流値1mAで2Vまで放電し、保存後の放電容量を測定した。そして、保存後の容量維持率={(保存後の放電容量)/(電池作製直後の放電容量)} × 100(%)を求めた。
【0026】
【表1】

Figure 2004152632
【0027】
表1に示すとおり、正極缶として内面をアルミニウムとするアルミニウム−ステンレス鋼のクラッド材を使用した電池において、負極活物質としてケイ素を用いた場合には、炭素またはリチウム−アルミニウム合金を用いた場合(比較電池X1、X2)と比較して、保存後の容量維持率が高い。即ち電池保存中には、正極缶材料であるアルミニウムの一部が溶解し、ケイ素表面に、アルミニウム−ケイ素合金からなるリチウムイオン伝導性の良好な被膜が生じる。この被膜により、電解液とケイ素との反応が抑制され、保存特性が向上する。負極活物質として炭素やリチウム−アルミニウム合金を用いた場合には、炭素やリチウム−アルミニウム合金からなる負極上に良好な被膜が形成されず、容量維持率が低くなったものと考えられる。
【0028】
[実験2]
実験2では、正極缶として内面をアルミニウムとするアルミニウム−ステンレス鋼のクラッド材を使用し、負極活物質としてケイ素を使用した電池(本発明電池A1,上記実験1で用いたものと同じもの)の保存特性と、正極缶としてSUS316またはアルミニウムからなる材料を用いた各電池(比較例)の保存特性とを比較した。
【0029】
(比較例2−1)
比較例2−1においては、上記実施例1における正極缶として、厚さ0.25mmのSUS316Lに厚さ0.002mmのニッケルメッキした材料を使用したこと以外は、実施例1と全く同様にして、比較電池Y1を組み立てた。この電池の正極缶にアルミニウムは使用されていない。
【0030】
(比較例2−2)
比較例2−2においては、上記実施例1における正極缶として、厚さ0.25mmのアルミニウムに厚さ0.002mmのニッケルメッキした材料を使用したこと以外は、実施例1と同様にして、比較電池Y2を組み立てた。
そして、これらの電池A1、Y1、Y2を用いて保存後の容量維持率を、実施例1の実験条件と同様にして測定した。
【0031】
【表2】
Figure 2004152632
【0032】
表2に示すとおり、負極活物質としてケイ素を用いた電池の正極缶として、内面をアルミニウムとするアルミニウム−ステンレス鋼のクラッド材を使用した場合には、SUS316L(比較電池Y1)やアルミニウム(比較電池Y2)を用いた場合と比較して、保存後の容量維持率が高くなっている。この理由は、正極缶の内面のアルミニウムの一部が電解液に溶解し、ケイ素表面に、アルミニウム−ケイ素合金からなるリチウムイオン伝導性の良好な被膜が生じるためである。この被膜により、電解液とケイ素との反応が抑制され、保存特性が向上する。正極缶としてSUS316Lを用いた場合にはアルミニウムが電解液に溶解しないため、ケイ素表面に良好な被膜が形成されないものと考えられる。
【0033】
一方、正極缶にアルミニウムを使用した場合は、アルミニウムの機械的強度が弱いために、電池保存中に電解液の蒸発等が起こる。このため、正極缶にアルミニウムを使用した場合の容量維持率は低かったものと考えられる。
【0034】
ところで、実施例1の本発明電池A1では、電池作製直後において、充電された状態の正極活物質を使用しているので、負極も充電状態にしておく必要がある。このため実施例1では、リチウムを貼り付け、充電した状態のケイ素負極としている。しかし、コバルト酸リチウム(LiCoO)のように、電池作製直後において充電されていない状態の正極活物質を使用する場合には、ケイ素負極にリチウムを貼り付ける必要がなく、リチウムを含まないケイ素をそのまま負極活物質として使用できる。そして、充電すればケイ素負極の電位は低下するので、正極缶から電解液中に溶解したアルミニウムイオンにより、ケイ素表面にリチウムイオン伝導性の良好な被膜が生じる。
【0035】
[実験3]
実験3では、本発明電池において、非水電解液溶媒の種類が電池の保存特性に及ぼす影響について検討した。
【0036】
(実施例2−1)
非水電解液として、エチレンカーボネート(EC)と炭酸ジメチル(DMC)との等体積混合溶媒に、ヘキサフルオロリン酸リチウム(LiPF)を1mol/L溶解させて電解液を調整し、本発明電池B1を組み立てた。この電池は、実施例1の本発明電池A1と同一構成のものである。
【0037】
(実施例2−2)
非水電解液として、プロピレンカーボネート(PC)と炭酸ジメチル(DMC)との等体積混合溶媒を使用したこと以外は、上記実施例2−1と同様にして、本発明電池B2を組み立てた。
【0038】
(実施例2−3)
非水電解液として、ブチレンカーボネート(BC)と炭酸ジメチル(DMC)との等体積混合溶媒を使用したこと以外は、上記実施例2−1と同様にして、本発明電池B3を組み立てた。
【0039】
(実施例2−4)
非水電解液として、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)との等体積混合溶媒を使用したこと以外は、上記実施例2−1と同様にして、本発明電池B4を組み立てた。
【0040】
(実施例2−5)
非水電解液として、エチレンカーボネート(EC)とジエチルカーボネート(DEC)との等体積混合溶媒を使用したこと以外は、上記実施例2−1と同様にして、本発明電池B5を組み立てた。
【0041】
上記実施例2−1〜実施例2−5の各電池について、保存後の容量維持率を、実施例1の実験条件と同様にして測定した。
【0042】
【表3】
Figure 2004152632
【0043】
表3から理解されるとおり、非水電解液の溶媒として炭酸ジメチル(DMC)を用いた電池は、DMCを用いなかった電池(本発明電池B4、B5)と比較して、保存後の容量維持率が高いことがわかる。溶媒としてDMCを用いた場合、ケイ素表面に、緊密に密着した、アルミニウム−ケイ素合金からなるリチウムイオン伝導性の良好な被膜が生じるために、保存特性が向上するものと考えられる。また、溶媒としてエチレンカーボネート(EC)と炭酸ジメチル(DMC)との等体積混合溶媒を用いた本発明電池B1の容量維持率が最も高かった。
【0044】
[実験4]
実験4では、本発明電池の非水電解液を構成する溶媒として、エチレンカーボネート(EC)と炭酸ジメチル(DMC)との混合溶媒を用いた場合において、溶媒中に占める炭酸ジメチルの割合が電池の保存特性に与える影響について検討した。
【0045】
(実施例3−1〜実施例3−7)
非水電解液の作製において、エチレンカーボネート(EC)と炭酸ジメチル(DMC)との体積比をそれぞれ、0:100(実施例3−1)、10:90(実施例3−2)、30:70(実施例3−3)、50:50(実施例3−4)、70:30(実施例3−5)、90:10(実施例3−6)、100:0(実施例3−7)とし、ヘキサフルオロリン酸リチウム(LiPF)を1mol/L溶解して電解液を作製したこと以外は、実施例1と同様にして、本発明電池C1〜C7を組み立てた。そして、上記実施例3−1〜3−7の各電池について、保存後の容量維持率を、実施例1の実験条件と同様にして測定した。尚、上記本発明電池C4は、実施例1で用いた本発明電池A1と同一構成のものである。
【0046】
【表4】
Figure 2004152632
【0047】
表4に示すとおり、溶媒中のDMC含有率が30体積%以上のときに容量維持率が特に高いことがわかる。
【0048】
[実験5]
実験5では、本発明電池において、正極活物質の種類が電池の保存特性に与える影響について検討した。
【0049】
(実施例4−1)
正極活物質として、水酸化リチウム(LiOH)と二酸化マンガン(MnO)とを、Li:Mnの原子比0.50:1.00で混合し、空気中にて375℃で20時間熱処理して得たリチウム−マンガン複合酸化物を使用し本発明電池D1を組み立てた。この電池D1は、実施例1で用いた本発明電池A1と同一構成のものである。
【0050】
(実施例4−2)
正極活物質として、水酸化リチウム(LiOH)と酸化ホウ素(B)と二酸化マンガン(MnO)とを、Li:B:Mnの原子比0.53:0.06:1.00で混合し、空気中にて375℃で20時間熱処理して得たホウ素含有リチウム−マンガン複合酸化物を使用したこと以外は、上記実施例4−1と同様にして、本発明電池D2を組み立てた。
【0051】
(実施例4−3)
正極活物質として、スピネルマンガン(LiMn:リチウム−マンガン複合酸化物)を使用したこと以外は上記実施例4−1と同様にして、本発明電池D3を組み立てた。
【0052】
(実施例4−4)
正極活物質として、二酸化マンガン(MnO:マンガン酸化物)を使用したこと以外は上記実施例4−1と同様にして、本発明電池D4を組み立てた。
【0053】
(実施例4−5)
正極活物質として、酸化ニオビウム(Nb)を使用したこと以外は、上記実施例4−1と同様にして、本発明電池D5を組み立てた。
【0054】
(実施例4−6)
正極活物質として、酸化バナジウム(V)を使用したこと以外は、上記実施例4−1と同様にして、本発明電池D6を組み立てた。
【0055】
上記実施例4−1〜4−6の各電池について、保存後の容量維持率を、実施例1の実験条件と同様にして測定した。
【0056】
【表5】
Figure 2004152632
【0057】
表5に示すとおり、本発明電池において、正極活物質が、マンガン酸化物(本発明電池D1〜D4)、特に、リチウム−マンガン複合酸化物である電池(D1、D2、D3)の容量維持率が高いことがわかる。正極活物質がマンガン酸化物からなる場合、正極の一部が溶解し、ケイ素表面に、アルミニウムとケイ素とマンガンからなるリチウムイオン伝導性の良好な被膜が生じる。このため、電解液とケイ素との反応が抑制され、保存特性がさらに向上すると考えられる。
【0058】
[実験6]
実験6では、本発明電池における、正極缶として内面をアルミニウムとするアルミニウム−ステンレス鋼のクラッド材に関し、使用するステンレス(SUS)の種類が電池の保存特性に与える影響について検討した。
【0059】
(実施例5−1)
正極缶として、電池内部から厚さ0.05mmのアルミニウムと厚さ0.20mmのSUS316Lからなるクラッド材のSUS316L側に、厚さ0.002mmのニッケルメッキした材料を使用した、本発明電池E1を組み立てた。この電池E1は、実施例1で用いた本発明電池A1と同一構成のものである。
【0060】
(実施例5−2〜5−4)
実施例5−2〜5−4においては、正極缶に使用するSUS316Lにかえて、それぞれ、SUS316(実施例5−2)、SUS304(実施例5−3)、SUS430(実施例5−4)を使用したこと以外は実施例1と同様にして、本発明電池E2〜E4を組み立てた。
そして、上記実施例5−1〜実施例5−4の各電池について、保存後の容量維持率を、実施例1の実験条件と同様にして測定した。
【0061】
【表6】
Figure 2004152632
【0062】
表6に示すとおり、本発明電池E1〜E4は、内面をアルミニウムとするアルミニウム−ステンレス鋼のクラッド材を用いた正極缶に使用するステンレスの種類によらず、容量維持率が高いことがわかる。内面をアルミニウムとするアルミニウム−ステンレス鋼のクラッド材を正極缶に使用した電池は、保存中に正極缶材料であるアルミニウムの一部が溶解し、負極表面に、アルミニウム−ケイ素合金からなるリチウムイオン伝導性の良好な被膜が生じる。さらに、基板にステンレス鋼を使用していて機械的な強度が強いため、電池保存中に電解液の蒸発等が防止される。以上の理由で容量維持率が高くなると考えられる。
【0063】
【発明の効果】
本発明によれば、正極と、ケイ素を活物質とする負極と、非水電解液と、正極缶及び負極缶を有するリチウム二次電池において、前記正極缶として、正極缶の内面をアルミニウムとするアルミニウム−ステンレス鋼のクラッド材を使用することにより、保存特性が優れたリチウム二次電池を提供することができる。
【図面の簡単な説明】
【図1】リチウム二次電池の断面図
【符号の説明】
1 負極
2 正極
3 セパレータ
4 負極缶
5 正極缶
6 負極集電体
7 正極集電体
8 ポリプロピレン製絶縁パッキング[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a lithium secondary battery with improved storage characteristics.
[0002]
[Prior art]
Lithium secondary batteries have a high voltage and are used for various applications including power supplies for portable devices. As the positive electrode active material of this type of battery, lithium cobaltate, lithium nickelate, lithium manganate having a spinel structure, and the like are used. As the negative electrode active material, a lithium metal, a lithium alloy, a carbon material capable of inserting and extracting lithium ions, and the like are used.
[0003]
By the way, the above-mentioned lithium metal, lithium alloy, a carbon material capable of absorbing and releasing lithium ions and the like are used as the negative electrode active material, and the aluminum-stainless and aluminum-iron clad materials whose inner surface is aluminum are used as the positive electrode can. There has been proposed a secondary battery using the same (Patent Document 1).
[0004]
When such a configuration is used, aluminum in the positive electrode can hardly dissolves and ionizes during overcharging, and therefore, aluminum ions dissolved in the electrolytic solution from the positive electrode can become inactive on the negative electrode surface. It hardly precipitated as a material. Further, since the aluminum positive electrode can hardly dissolves as ions during charging, there was no corrosion hole in the positive electrode can.
[0005]
However, in this type of battery, there is a problem that the negative electrode active material reacts with the electrolyte during storage of the battery, and storage characteristics are deteriorated.
[0006]
By the way, a non-aqueous electrolyte secondary battery using lithium-containing silicon as a negative electrode active material has been proposed (Patent Document 2).
[0007]
When silicon is used for the negative electrode, the charge / discharge characteristics at high voltage / energy density and large current are excellent, irreversible substances are hardly generated due to overcharge and overdischarge, and the cycle life is long. The following battery can be obtained.
[0008]
However, also in this type of battery, there is a problem that the negative electrode active material and the electrolyte react during storage of the battery, and storage characteristics are deteriorated.
[0009]
[Patent Document 1]
JP-A-5-174873
[Patent Document 2]
JP-A-7-29602
[0010]
[Problems to be solved by the invention]
An object of the present invention is to provide a lithium secondary battery having excellent storage characteristics.
[0011]
[Means for Solving the Problems]
The lithium secondary battery of the present invention has a positive electrode, a negative electrode using silicon as an active material, a nonaqueous electrolyte, and a lithium secondary battery having a positive electrode can and a negative electrode can. -It is made of stainless steel clad material.
[0012]
In the case of the above configuration, a part of aluminum as the positive electrode can material is dissolved during storage, and a film having good lithium ion conductivity made of an aluminum-silicon alloy is formed on the silicon surface as the negative electrode. For this reason, the reaction between the nonaqueous electrolyte and silicon as the negative electrode active material is suppressed, and the storage characteristics are improved.
[0013]
In the present invention, it is particularly desirable that the negative electrode is silicon to which lithium is attached. The reason for this is that a film having good lithium ion conductivity formed of an aluminum-silicon alloy closely adhered to the silicon surface is formed on the negative electrode surface.
[0014]
Further, in the present invention, the solvent of the non-aqueous electrolyte preferably contains dimethyl carbonate. Furthermore, it is more preferable that the solvent of the non-aqueous electrolyte is a mixed solvent of dimethyl carbonate and ethylene carbonate, and contains dimethyl carbonate in an amount of 30% by volume or more. The reason for this is that when dimethyl carbonate is used as the solvent of the non-aqueous electrolyte, a film having good lithium ion conductivity formed on the silicon surface and made of an aluminum-silicon alloy adheres tightly to the negative electrode surface.
[0015]
Further, the positive electrode active material in the present invention is a manganese oxide, particularly lithium containing manganese, such as spinel manganese (LiMn 2 O 4 ), CDMO (compound containing Li 2 MnO 3 and MnO 2 ) and LiMnO 2. -Manganese composite oxides are preferred. This is because a part of the positive electrode is dissolved in the non-aqueous electrolyte, and a film having good lithium ion conductivity composed of aluminum, silicon and manganese is formed on the negative electrode surface.
[0016]
In the battery of the present invention, the reaction between the nonaqueous electrolyte and silicon is suppressed by the above-mentioned film having good lithium ion conductivity, and the storage characteristics of the battery are improved.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail based on examples. In addition, the lithium secondary battery in the present invention is not limited to the following examples, and can be implemented by appropriately changing the scope of the invention without changing its gist.
[0018]
[Experiment 1]
In Experiment 1, the storage characteristics of the battery (Example 1) when the aluminum-stainless steel clad material in which the inner surface of the positive electrode can was aluminum was used as the positive electrode can and silicon was used as the negative electrode active material, The storage characteristics of a battery (comparative example) using carbon or a lithium-aluminum alloy as a substance were compared.
[0019]
[Example 1]
Hereinafter, the preparation of the battery A1 of the present invention will be described in the order of preparation of the positive electrode, preparation of the negative electrode, preparation of the non-aqueous electrolyte, and assembly of the battery.
(Preparation of positive electrode)
Lithium hydroxide (LiOH) and manganese dioxide (MnO 2 ) are mixed at an atomic ratio of Li: Mn of 0.50: 1.00 and heat-treated in air at 375 ° C. for 20 hours to produce a lithium-manganese composite oxide. I got something. When this lithium-manganese composite oxide was measured by X-ray diffraction, only the peak of Li 2 MnO 3 and the peak of MnO 2 shifted slightly from the original peak position to the lower angle side were recognized in the X-ray diffraction pattern. Was. This indicates that this compound consists of Li 2 MnO 3 and MnO 2 .
The above-mentioned lithium-manganese composite oxide (powder) was mixed to 85 parts by weight, 10 parts by weight of carbon powder as a conductive agent, and 5 parts by weight of polyvinylidene fluoride powder as a binder. -Methylpyrrolidone (NMP) solution to prepare a slurry. This slurry was coated on one side of a 20 μm-thick aluminum current collector by a doctor blade method to form an active material layer, dried at 150 ° C. and punched out, and was a circle having a diameter of 17 mm and a thickness of 1.0 mm. A plate-shaped positive electrode was produced.
[0020]
(Preparation of negative electrode)
85 parts by weight of a commercially available silicon powder having a particle size of 5 μm and a purity of 99%, 10 parts by weight of a carbon powder as a conductive agent, and 5 parts by weight of a polyvinylidene fluoride powder as a binder are mixed. Was kneaded with an NMP solution to prepare a slurry. This slurry was coated on one side of a copper foil current collector having a thickness of 20 μm by a doctor blade method to form an active material layer, and then dried at 150 ° C. and punched to obtain a 17 mm diameter, 1.0 mm thick. Disc-shaped. A disk-shaped lithium (corresponding to 60 mAh) having a diameter of 17 mm and a thickness of 0.13 mm was attached to this to obtain a negative electrode.
[0021]
[Preparation of non-aqueous electrolyte]
Lithium hexafluorophosphate (LiPF 6 ) as a solute was dissolved at 1 mol / L in an equal volume mixed solvent of ethylene carbonate (EC) and dimethyl carbonate (DMC) to obtain a non-aqueous electrolyte.
[0022]
[Battery assembly]
Using the above positive electrode, negative electrode and non-aqueous electrolyte, a flat battery A1 of the present invention (lithium secondary battery; battery dimensions: outer diameter 24 mm, thickness 3 mm) was assembled. The surface of the negative electrode to which lithium was attached was opposed to the positive electrode. Note that a polypropylene microporous membrane was used as the separator, and this was impregnated with a non-aqueous electrolyte.
For the positive electrode can, use a clad material consisting of 0.05 mm thick aluminum (inside of the battery can) and SUS316L of 0.20 mm in thickness (outside of the battery can), and nickel of 0.002 mm thick on the SUS316L side. Plated material was used.
As the negative electrode can, SUS316L having a thickness of 0.25 mm and a thickness of 0.25 mm nickel-plated on the outside of the battery can was used.
FIG. 1 is a schematic cross-sectional view of the produced lithium secondary battery, and shows a negative electrode 1, a positive electrode 2, a separator 3, a negative electrode can 4, a positive electrode can 5, a negative electrode current collector 6, a positive electrode current collector 7, and an insulating packing made of polypropylene. 8 and so on.
[0023]
(Comparative Example 1-1)
In the preparation of the negative electrode in Example 1, 95 parts by weight of carbon powder and 5 parts by weight of polyvinylidene fluoride powder as a binder were mixed, and this mixture was kneaded with an NMP solution to prepare a slurry. Except for the above, a comparative battery X1 was assembled in the same manner as in Example 1.
[0024]
(Comparative Example 1-2)
In the production of the negative electrode in Example 1, a 1.0 mm thick aluminum plate was punched into a disk having a diameter of 17 mm and a thickness of 1.0 mm, and then a disk having a diameter of 17 mm and a thickness of 0.13 mm. A comparative battery X2 was assembled in the same manner as in Example 1 except that a negative electrode was produced by attaching lithium (equivalent to 60 mAh) in the shape of a negative electrode.
[0025]
[Measurement of capacity retention (storage characteristics)]
Each battery (A1, X1, X2) immediately after the battery production was discharged at 25 ° C. at a current value of 1 mA to 2 V, and the discharge capacity immediately after the battery production was measured. In addition, each battery was charged to 3.2 V at 25 ° C. at a current value of 1 mA, stored at 60 ° C. for 2 months, then discharged to 2 V at a current value of 1 mA, and the discharge capacity after storage was measured. Then, the capacity retention ratio after storage = {(discharge capacity after storage) / (discharge capacity immediately after battery production)} × 100 (%) was determined.
[0026]
[Table 1]
Figure 2004152632
[0027]
As shown in Table 1, in a battery using an aluminum-stainless steel clad material having an aluminum inner surface as a positive electrode can, when silicon was used as a negative electrode active material, carbon or a lithium-aluminum alloy was used ( The capacity retention ratio after storage is higher than that of the comparative batteries X1 and X2). That is, during storage of the battery, part of the aluminum that is the positive electrode can material dissolves, and a film having good lithium ion conductivity formed of an aluminum-silicon alloy is formed on the silicon surface. This coating suppresses the reaction between the electrolytic solution and silicon, and improves the storage characteristics. It is considered that when carbon or a lithium-aluminum alloy was used as the negative electrode active material, a good film was not formed on the negative electrode made of carbon or the lithium-aluminum alloy, and the capacity retention ratio was low.
[0028]
[Experiment 2]
In Experiment 2, a battery using the aluminum-stainless steel clad material having aluminum as the inner surface as the positive electrode can and silicon as the negative electrode active material (Battery A1 of the present invention, the same as that used in Experiment 1 above) was used. The storage characteristics were compared with the storage characteristics of each battery (comparative example) using a material made of SUS316 or aluminum as the positive electrode can.
[0029]
(Comparative Example 2-1)
In Comparative Example 2-1, exactly the same as in Example 1 except that a nickel-plated material having a thickness of 0.002 mm and a thickness of SUS316L of 0.25 mm was used as the positive electrode can in Example 1 described above. The comparative battery Y1 was assembled. Aluminum was not used in the positive electrode can of this battery.
[0030]
(Comparative Example 2-2)
In Comparative Example 2-2, in the same manner as in Example 1 except that a material obtained by plating nickel with a thickness of 0.002 mm on aluminum having a thickness of 0.25 mm was used as the positive electrode can in Example 1 described above, The comparative battery Y2 was assembled.
Then, using these batteries A1, Y1, and Y2, the capacity retention ratio after storage was measured in the same manner as in the experimental conditions of Example 1.
[0031]
[Table 2]
Figure 2004152632
[0032]
As shown in Table 2, when an aluminum-stainless steel clad material having an inner surface of aluminum was used as the positive electrode can of a battery using silicon as the negative electrode active material, SUS316L (comparative battery Y1) and aluminum (comparative battery Y) were used. Compared with the case of using Y2), the capacity retention ratio after storage is higher. The reason for this is that part of the aluminum on the inner surface of the positive electrode can is dissolved in the electrolytic solution, and a film having good lithium ion conductivity made of an aluminum-silicon alloy is formed on the silicon surface. This coating suppresses the reaction between the electrolytic solution and silicon, and improves the storage characteristics. When SUS316L is used as the positive electrode can, aluminum is not dissolved in the electrolytic solution, so it is considered that a good film is not formed on the silicon surface.
[0033]
On the other hand, when aluminum is used for the positive electrode can, evaporation of the electrolytic solution or the like occurs during storage of the battery due to low mechanical strength of aluminum. Therefore, it is considered that the capacity retention rate when aluminum was used for the positive electrode can was low.
[0034]
By the way, in the battery A1 of the present invention of Example 1, since the charged positive electrode active material is used immediately after the battery is manufactured, the negative electrode also needs to be charged. For this reason, in Example 1, lithium is stuck and the charged silicon negative electrode is used. However, when a positive electrode active material that is not charged immediately after the battery is manufactured, such as lithium cobalt oxide (LiCoO 2 ), it is not necessary to attach lithium to the silicon negative electrode. It can be used as it is as a negative electrode active material. When the battery is charged, the potential of the silicon negative electrode decreases, and a film having good lithium ion conductivity is formed on the silicon surface by aluminum ions dissolved in the electrolyte from the positive electrode can.
[0035]
[Experiment 3]
In Experiment 3, the effect of the type of the nonaqueous electrolyte solvent on the storage characteristics of the battery of the present invention was examined.
[0036]
(Example 2-1)
As a non-aqueous electrolyte, lithium hexafluorophosphate (LiPF 6 ) was dissolved at 1 mol / L in an equal volume mixed solvent of ethylene carbonate (EC) and dimethyl carbonate (DMC) to prepare an electrolyte, and the battery of the present invention was prepared. B1 was assembled. This battery has the same configuration as the battery A1 of the present invention in Example 1.
[0037]
(Example 2-2)
Battery B2 of the present invention was assembled in the same manner as in Example 2-1 except that an equal volume mixed solvent of propylene carbonate (PC) and dimethyl carbonate (DMC) was used as the nonaqueous electrolyte.
[0038]
(Example 2-3)
Battery B3 of the present invention was assembled in the same manner as in Example 2-1 except that an equal volume mixed solvent of butylene carbonate (BC) and dimethyl carbonate (DMC) was used as the nonaqueous electrolyte.
[0039]
(Example 2-4)
Battery B4 of the present invention was assembled in the same manner as in Example 2-1 except that an equal volume mixed solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) was used as the nonaqueous electrolyte.
[0040]
(Example 2-5)
Battery B5 of the invention was assembled in the same manner as in Example 2-1 except that an equal volume mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) was used as the nonaqueous electrolyte.
[0041]
For each of the batteries of Examples 2-1 to 2-5, the capacity retention ratio after storage was measured in the same manner as in the experimental conditions of Example 1.
[0042]
[Table 3]
Figure 2004152632
[0043]
As can be understood from Table 3, the battery using dimethyl carbonate (DMC) as the solvent of the nonaqueous electrolyte maintained the capacity after storage compared to the batteries not using DMC (Batteries B4 and B5 of the present invention). It can be seen that the rate is high. When DMC is used as a solvent, it is considered that a storage property is improved because a film having good lithium ion conductivity formed of an aluminum-silicon alloy is tightly adhered to the silicon surface. Further, the capacity retention ratio of the battery B1 of the present invention using an equal volume mixed solvent of ethylene carbonate (EC) and dimethyl carbonate (DMC) as the solvent was the highest.
[0044]
[Experiment 4]
In Experiment 4, when a mixed solvent of ethylene carbonate (EC) and dimethyl carbonate (DMC) was used as a solvent constituting the nonaqueous electrolyte of the battery of the present invention, the proportion of dimethyl carbonate in the solvent was lower than that of the battery. The effect on storage characteristics was studied.
[0045]
(Example 3-1 to Example 3-7)
In the preparation of the non-aqueous electrolyte, the volume ratios of ethylene carbonate (EC) and dimethyl carbonate (DMC) were 0: 100 (Example 3-1), 10:90 (Example 3-2), and 30: 70 (Example 3-3), 50:50 (Example 3-4), 70:30 (Example 3-5), 90:10 (Example 3-6), 100: 0 (Example 3-3) 7), and batteries of the present invention C1 to C7 were assembled in the same manner as in Example 1 except that lithium hexafluorophosphate (LiPF 6 ) was dissolved at 1 mol / L to prepare an electrolytic solution. Then, for each of the batteries of Examples 3-1 to 3-7, the capacity retention ratio after storage was measured in the same manner as in the experimental conditions of Example 1. The battery C4 of the present invention has the same configuration as the battery A1 of the present invention used in Example 1.
[0046]
[Table 4]
Figure 2004152632
[0047]
As shown in Table 4, it is found that the capacity retention ratio is particularly high when the DMC content in the solvent is 30% by volume or more.
[0048]
[Experiment 5]
In Experiment 5, the effect of the type of the positive electrode active material on the storage characteristics of the battery of the present invention was examined.
[0049]
(Example 4-1)
As a positive electrode active material, lithium hydroxide (LiOH) and manganese dioxide (MnO 2 ) are mixed at an atomic ratio of Li: Mn of 0.50: 1.00 and heat-treated in air at 375 ° C. for 20 hours. The battery D1 of the present invention was assembled using the obtained lithium-manganese composite oxide. This battery D1 has the same configuration as the battery A1 of the present invention used in Example 1.
[0050]
(Example 4-2)
As a positive electrode active material, lithium hydroxide (LiOH), boron oxide (B 2 O 3 ), and manganese dioxide (MnO 2 ) were mixed at an atomic ratio of Li: B: Mn of 0.53: 0.06: 1.00. A battery D2 of the present invention was assembled in the same manner as in Example 4-1 except that the boron-containing lithium-manganese composite oxide obtained by mixing and heat-treating at 375 ° C. in air for 20 hours was used. .
[0051]
(Example 4-3)
Battery D3 of the present invention was assembled in the same manner as in Example 4-1 except that spinel manganese (LiMn 2 O 4 : lithium-manganese composite oxide) was used as the positive electrode active material.
[0052]
(Example 4-4)
A battery D4 of the invention was assembled in the same manner as in Example 4-1 except that manganese dioxide (MnO 2 : manganese oxide) was used as the positive electrode active material.
[0053]
(Example 4-5)
A battery D5 of the invention was assembled in the same manner as in Example 4-1 except that niobium oxide (Nb 2 O 5 ) was used as the positive electrode active material.
[0054]
(Example 4-6)
A battery D6 of the invention was assembled in the same manner as in Example 4-1 except that vanadium oxide (V 2 O 5 ) was used as the positive electrode active material.
[0055]
For each of the batteries of Examples 4-1 to 4-6, the capacity retention ratio after storage was measured in the same manner as in the experimental conditions of Example 1.
[0056]
[Table 5]
Figure 2004152632
[0057]
As shown in Table 5, in the battery of the present invention, the positive electrode active material was a manganese oxide (the batteries D1 to D4 of the present invention), and particularly, the capacity retention ratio of the batteries (D1, D2, and D3) in which the lithium-manganese composite oxide was used. Is high. When the positive electrode active material is composed of manganese oxide, a part of the positive electrode is dissolved, and a film having good lithium ion conductivity composed of aluminum, silicon and manganese is formed on the silicon surface. Therefore, it is considered that the reaction between the electrolytic solution and silicon is suppressed, and the storage characteristics are further improved.
[0058]
[Experiment 6]
In Experiment 6, the effect of the type of stainless steel (SUS) used on the storage characteristics of the battery with respect to the aluminum-stainless steel clad material having an aluminum inner surface as the positive electrode can in the battery of the present invention was examined.
[0059]
(Example 5-1)
The battery E1 of the present invention using a nickel-plated material having a thickness of 0.002 mm on the SUS316L side of a cladding material made of aluminum having a thickness of 0.05 mm and SUS316L having a thickness of 0.20 mm from the inside of the battery as a positive electrode can. Assembled. This battery E1 has the same configuration as the battery A1 of the present invention used in Example 1.
[0060]
(Examples 5-2 to 5-4)
In Examples 5-2 to 5-4, SUS316 (Example 5-2), SUS304 (Example 5-3), and SUS430 (Example 5-4) were used instead of SUS316L used for the positive electrode can. The batteries of the present invention E2 to E4 were assembled in the same manner as in Example 1 except that was used.
Then, for each of the batteries of Examples 5-1 to 5-4, the capacity retention ratio after storage was measured in the same manner as in the experimental conditions of Example 1.
[0061]
[Table 6]
Figure 2004152632
[0062]
As shown in Table 6, it is understood that the batteries E1 to E4 of the present invention have a high capacity retention ratio irrespective of the type of stainless steel used for the positive electrode can using the aluminum-stainless steel clad material whose inner surface is aluminum. A battery using an aluminum-stainless steel clad material with aluminum as the inner surface for the positive electrode can has a lithium ion conductive material consisting of an aluminum-silicon alloy on the negative electrode surface, in which part of the aluminum, which is the material of the positive electrode can, is dissolved during storage. A film with good properties results. Furthermore, since stainless steel is used for the substrate and the mechanical strength is strong, evaporation of the electrolytic solution during storage of the battery is prevented. It is considered that the capacity retention ratio is increased for the above reasons.
[0063]
【The invention's effect】
According to the present invention, a positive electrode, a negative electrode containing silicon as an active material, a nonaqueous electrolyte, and a lithium secondary battery having a positive electrode can and a negative electrode can, wherein the positive electrode can has an inner surface of aluminum as the positive electrode can. By using the aluminum-stainless steel clad material, a lithium secondary battery having excellent storage characteristics can be provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a lithium secondary battery.
REFERENCE SIGNS LIST 1 negative electrode 2 positive electrode 3 separator 4 negative electrode can 5 positive electrode can 6 negative electrode current collector 7 positive electrode current collector 8 polypropylene insulating packing

Claims (6)

正極と、ケイ素を活物質とする負極と、非水電解液と、正極缶及び負極缶を有するリチウム二次電池において、前記正極缶が内面をアルミニウムとするアルミニウム−ステンレス鋼のクラッド材からなることを特徴とするリチウム二次電池。A positive electrode, a negative electrode using silicon as an active material, a non-aqueous electrolyte, and a lithium secondary battery having a positive electrode can and a negative electrode can, wherein the positive electrode can is made of an aluminum-stainless steel clad material whose inside surface is aluminum. A lithium secondary battery characterized by the above-mentioned. 前記負極が、リチウムを貼り付けたケイ素であることを特徴とする請求項1記載のリチウム二次電池。2. The lithium secondary battery according to claim 1, wherein the negative electrode is silicon to which lithium is attached. 前記非水電解液の溶媒が、炭酸ジメチルを含むことを特徴とする請求項1記載のリチウム二次電池。The lithium secondary battery according to claim 1, wherein the solvent of the non-aqueous electrolyte contains dimethyl carbonate. 前記非水電解液の溶媒が、炭酸ジメチルとエチレンカーボネートとの混合溶媒からなり、炭酸ジメチルを30体積%以上含むことを特徴とする請求項1または請求項3記載のリチウム二次電池。4. The lithium secondary battery according to claim 1, wherein the solvent of the non-aqueous electrolyte is a mixed solvent of dimethyl carbonate and ethylene carbonate, and contains dimethyl carbonate in an amount of 30% by volume or more. 前記正極の活物質が、マンガン酸化物からなることを特徴とする請求項1記載のリチウム二次電池。The lithium secondary battery according to claim 1, wherein the positive electrode active material is made of manganese oxide. 前記マンガン酸化物が、リチウム−マンガン複合酸化物からなることを特徴とする請求項5記載のリチウム二次電池。The lithium secondary battery according to claim 5, wherein the manganese oxide comprises a lithium-manganese composite oxide.
JP2002316736A 2002-10-30 2002-10-30 Lithium secondary cell Pending JP2004152632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002316736A JP2004152632A (en) 2002-10-30 2002-10-30 Lithium secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002316736A JP2004152632A (en) 2002-10-30 2002-10-30 Lithium secondary cell

Publications (1)

Publication Number Publication Date
JP2004152632A true JP2004152632A (en) 2004-05-27

Family

ID=32460349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002316736A Pending JP2004152632A (en) 2002-10-30 2002-10-30 Lithium secondary cell

Country Status (1)

Country Link
JP (1) JP2004152632A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7896876B2 (en) * 2005-10-31 2011-03-01 Hoya Corporation High frequency incision instrument for endoscope
JP2013084591A (en) * 2011-09-26 2013-05-09 Nippon Shokubai Co Ltd Alkali metal battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002025551A (en) * 2000-07-05 2002-01-25 Sanyo Electric Co Ltd Lithium secondary battery
JP2002245978A (en) * 2001-02-14 2002-08-30 Sanyo Electric Co Ltd Lithium secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002025551A (en) * 2000-07-05 2002-01-25 Sanyo Electric Co Ltd Lithium secondary battery
JP2002245978A (en) * 2001-02-14 2002-08-30 Sanyo Electric Co Ltd Lithium secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7896876B2 (en) * 2005-10-31 2011-03-01 Hoya Corporation High frequency incision instrument for endoscope
JP2013084591A (en) * 2011-09-26 2013-05-09 Nippon Shokubai Co Ltd Alkali metal battery

Similar Documents

Publication Publication Date Title
US7556881B2 (en) Lithium secondary battery
JP2010129471A (en) Cathode active material and nonaqueous electrolyte battery
JP3281819B2 (en) Non-aqueous electrolyte secondary battery
US8673501B2 (en) Anode and battery using same
JP5103961B2 (en) Lithium ion secondary battery
JP2022189954A (en) Nonaqueous electrolyte battery and manufacturing method thereof
JP2004006264A (en) Lithium secondary battery
JP3120789B2 (en) Non-aqueous electrolyte secondary battery
JP5279567B2 (en) Nonaqueous electrolyte secondary battery
JP3717544B2 (en) Lithium secondary battery
JP2002367602A (en) Nonaqueous electrolyte secondary cell
JP2002270245A (en) Nonaqueous secondary cell
JP2012185911A (en) Composite positive electrode active material for lithium ion secondary battery and lithium ion secondary battery using the same
JP5779452B2 (en) Negative electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP7232814B2 (en) Non-aqueous electrolyte secondary battery
JP2007258084A (en) Lithium secondary battery
JP3182296B2 (en) Non-aqueous electrolyte secondary battery
JP2002075460A (en) Lithium secondary cell
JP2004152632A (en) Lithium secondary cell
JP3188108B2 (en) Non-aqueous electrolyte secondary battery
CN111725555A (en) Lithium ion secondary battery
JP5165875B2 (en) Non-aqueous electrolyte battery
JPH07134986A (en) Nonaqueous electrolyte battery
WO2012090804A1 (en) Positive electrode active material, positive electrode, and non-aqueous electrolyte secondary battery
JP4389398B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050701

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090728