JP2004152523A - Plasma generating apparatus in liquid and method for forming thin film - Google Patents

Plasma generating apparatus in liquid and method for forming thin film Download PDF

Info

Publication number
JP2004152523A
JP2004152523A JP2002313979A JP2002313979A JP2004152523A JP 2004152523 A JP2004152523 A JP 2004152523A JP 2002313979 A JP2002313979 A JP 2002313979A JP 2002313979 A JP2002313979 A JP 2002313979A JP 2004152523 A JP2004152523 A JP 2004152523A
Authority
JP
Japan
Prior art keywords
liquid
bubbles
plasma
film
generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002313979A
Other languages
Japanese (ja)
Other versions
JP3624239B2 (en
JP2004152523A5 (en
Inventor
Hiromichi Toyoda
洋通 豊田
Nobufuku Nomura
信福 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Techno Network Shikoku Co Ltd
Original Assignee
Techno Network Shikoku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002313979A priority Critical patent/JP3624239B2/en
Application filed by Techno Network Shikoku Co Ltd filed Critical Techno Network Shikoku Co Ltd
Priority to AU2003221072A priority patent/AU2003221072A1/en
Priority to PCT/JP2003/004139 priority patent/WO2003086615A1/en
Priority to CNB038074613A priority patent/CN100336586C/en
Priority to US10/507,919 priority patent/US7067204B2/en
Priority to KR1020047015057A priority patent/KR100709923B1/en
Priority to EP03715684A priority patent/EP1504813A4/en
Publication of JP2004152523A publication Critical patent/JP2004152523A/en
Publication of JP2004152523A5 publication Critical patent/JP2004152523A5/ja
Application granted granted Critical
Publication of JP3624239B2 publication Critical patent/JP3624239B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)
  • Plasma Technology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and apparatus for easily and securely generating high energy plasma in liquid. <P>SOLUTION: In the plasma generating apparatus, bubbles 4 are generated in liquid 2 such as dodecane using a heating means and/or a vacuum apparatus and positions where the bubbles 4 occur in the liquid are irradiated with electromagnetic wave by an electrode 3 to be an electromagnetic wave generating apparatus and thus high energy plasma is generated within the bubbles. As a result, an amorphous diamond-like carbon film can be formed at a high speed on the surface of a base material 5 such as a silicon substrate. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】本発明は、液体中においてプラズマを発生させるための装置および液体中においてプラズマを発生させて薄膜を形成する技術に関するものである。
【0002】
【従来の技術】従来より、プラズマを用いた蒸着技術として気相プラズマによる蒸着技術が幅広く利用されている。たとえば特開平10−81589号公開特許公報にはプラズマCVD法によってシリコンまたは立方晶シリコンカーバイトの表面にダイヤモンド膜を形成することが記載されている。また、第4回愛媛大学全学シンポジウムの予稿集第56頁には超音波キャビテーションと局所電磁場の重畳による液中プラズマの生成に関する研究が記載されている。
【0003】
【特許文献1】特開平10−81589号公報
【非特許文献】野村 信福、豊田 洋通、「第4回愛媛大学全学シンポジウム予稿集」、愛媛大学全学シンポジウム実施準備委員会、平成13年11月12日、p.56
【0004】
【発明が解決しようとする課題】
【0005】特開平10−81589号公報に記載の方法等プラズマCVD法では蒸着物質を大量に合成することは困難である。従って、ある程度厚みのある膜を形成しようとすれば、長時間を要する。あえて蒸着速度を上げるために、メタン等の原材料物質を急速に供給することは危険を招くことにもなりかねない。また、気相で高エネルギーのプラズマを発生させると高温になり、熱に弱い基板材料へ蒸着することはできない。一方、第4回愛媛大学全学シンポジウムの予稿集第56頁に記載の超音波キャビテーションと局所電磁場の重畳による液中プラズマの生成は、液体中でプラズマを発生させようとする極めて有望な考え方ではあるが、当該文献および発表は、この研究を開始するに当たっての方針を発表したものでありその詳細は全く記載されておらず、同発表者であり本願発明者によってなされた特願2002−98193に係る発明において具体的なものとして完成されている。これにより、液中プラズマが始めて実現されるが、プラズマ発生装置には超音波発生装置が必要である。本発明の目的は、液体中において高エネルギーのプラズマを発生する簡易な方法、装置および液体中において高エネルギーのプラズマを発生させてアモルファス状炭素膜形成を行う方法を提供することである。
【課題を解決するための手段】
【0006】上記の課題を解決するために、本発明に係る液中プラズマ発生装置は、液体中で気泡を発生させるための加熱手段または真空装置、或いはその両者と、液中に電磁波を放射するための電磁波プローブを有するものである。加熱手段として、膜を形成する対象の基材を加熱する手段を設けることもできる。本発明に係る薄膜形成方法は、有機物を含む液中で気泡を発生させるとともに、電磁波を照射し、気泡中にプラズマを発生させ、気泡を基材に接触させることにより、基材上にアモルファス状炭素の膜を形成するものである。また、シリコンを含む液中で気泡を発生させるとともに、電磁波を照射し、気泡中にプラズマを発生させ、気泡を基材に接触させることにより、基材上にシリコンカーバイトの膜を形成するものでもよい。
【発明の実施の形態】
【0007】本発明に係る液中プラズマ発生装置および薄膜形成方法の実施の形態について、実施例に基づいて詳細に説明する。
【0008】
【実施例1】図1は本発明の第1の実施例を示す説明図である。容器1の内部には液体2が入れられている。液体2は発生するプラズマの用途に応じて様々なものが選択できる。表面蒸着を行う場合には、蒸着物質の原料となる液体や蒸着物質の原料を含む溶液等を使用する。また、ダイヤモンド膜やアモルファス炭素膜を形成するために、膜の原料となる炭素を含む液体が使用できる。特に水素を含む炭化水素を使用すると蒸着時にダイヤモンド層中に発生するグラファイトを還元して排除するため純粋なダイヤモンド膜の蒸着に有利である。特にドデカン(C1226)は室温でも液体でありかつ粘性が小さく電磁波が減衰しにくいので有効である。本実施例においてもドデカンを使用する。液体2の中には電極3が設けられている。電極3には図示しない発振回路が接続されており、高周波が供給される。電極3上では電磁波が発生するが、本実施例では電磁波を電極先端に集中させるようにしている。このため電極先端は電磁波により誘導加熱される。ここで発生した熱により、電極3と接する液体2は加熱され、沸騰して気泡4が発生する。すなわち、本実施例においては、電極3は気泡を発生させるための加熱手段としても作用する。また、電極3は電磁波プローブとして作用し、電極3に集中された電磁波は液体2に放射される。気泡4の内部はプラズマが発生しやすい状態になっているが、ここに強力な電磁波を照射することによりプラズマが形成される。本実施例においては、液体容器1を覆うようにさらに大きな容器6が設けられており、真空ポンプにより容器6内を減圧できるようにしてある。減圧することは必ずしも必要ではないが、気泡の発生およびプラズマの生成を容易にするという利点がある。ここでは、容器1の内部の気圧を10Pa程度に減圧した。このようにして、高温・高エネルギーのプラズマが得られるが、プラズマの発生は気泡内やその周辺に限られるため、マクロには低温な液体であり、安全かつ容易に取り扱うことができる。また、液中で発生するプラズマであるため、液体を保持できる程度の簡易な容器であれば、容器内にプラズマを閉じ込めることができ、気相プラズマのようなプラズマを閉じ込めるための困難さはない。
【0009】放射する電磁波は13MHz〜2.5GHz程度の周波数から用途に応じて選択すればよいが、本例においてはダイヤモンド状膜の形成に効果的であるとともに、加熱により気泡を発生させるのに有利なように2.5GHzの周波数で100Wの出力の電磁波を使用した。
【0010】気泡中に発生したプラズマは気泡と共に上昇し、基材5に接触する。これにより、高エネルギーのプラズマとなった炭素が基材5の表面に膜を形成する。図2に形成された膜を表面粗さ計で測定したグラフを示す。3分間の膜形成時間でシリコン基板の基材5の表面には450μmという厚い膜が形成された。すなわち、膜の形成速度は9mm/hに達しており、従来の気相プラズマによるダイヤモンド状膜の形成速度が低圧力型で10μm/h、高圧力型で300μm/h程度であるのに比べて、格段に高速の膜形成速度が実現されている。
【0011】図3に形成された膜のラマンスペクトルを示す。1335cm−1あたりと1560cm−1あたりに2つの山をもつ広がった形のスペクトルとなっており、膜の構造がアモルファスであることがわかる。膜の硬度はビッカース硬さでHv=1500程度であり、摩擦抵抗が低い。本実施例で形成される膜は、刃物などの硬度を高めて耐久性を向上させたり、化学的に不活性であることを利用して耐腐食性を向上させたり、接触する部分に適用して潤滑性を向上させたりする用途に使用することができる。
【0012】本実施例においては、電極3は気泡発生手段と電磁波発生手段(電磁波プローブ)の機能を兼ね備え、電磁波供給回路も1組で済むので構成が簡素となる利点がある。また、膜形成を行う対象の基材5を直接通電加熱しないので、木材や紙等の導電性のない素材や合成樹脂・生体材料等の熱に弱い素材に対しても表面に膜を形成することができる。
【0013】
【実施例2】本発明の第2の実施例を図4に示す。本実施例においては、基材5を加熱するための電源8が設けられており、基材5へ通電して加熱するようになっている。本実施例では基材5としてシリコン基板を用いる。このように電磁波放射手段(電磁波プローブ)とは別に加熱手段を設けることにより、気泡の発生を容易にし、ひいてはプラズマの発生を容易にできるという利点がある。例えばシリコン基板に通電し、700℃程度に加熱することにより、表面にダイヤモンド膜を形成することができる。本実施例でも電磁波を液中に放射する電極3は基材5の下に設けているが、これにより基材5の下側に発生する気泡に対して集中的に電磁波を照射することができる。基材5の上側で発生する気泡は上昇してすぐに基材5から遠ざかってしまうが、下側で発生する気泡は基材5に接しながらしばらくとどまるので、気泡内で発生したプラズマを効果的に基板に接触されることができる。
【0014】本実施例においては、液体2としてドデカンとシリコンオイルを1:1に混合したものを用い、シリコン板の基材5にシリコンカーバイトの膜を生成した。電磁波は周波数が2.5GHzで出力が100Wであり、3分間照射したところ、基材5上に厚さ1.2mmのシリコンカーバイト膜を生成することができた。従って、膜の形成速度は0.4mm/minに達する。本実施例においても、真空ポンプを作動させて、容器1内を10Pa程度に減圧した。このようにして生成したシリコンカーバイト膜は硬度が高く、切削工具の硬度を向上させて寿命や切れ味を向上させること等に適用することができる。
【0015】以上、アモルファス炭素膜やシリコンカーバイト膜等の薄膜形成の実施例により本発明に係るプラズマ発生装置の実施の形態を説明した。説明したとおり、本発明に係るプラズマ発生装置は膜形成に特に有用なものであるが、適用範囲はこれにとどまらない。液中で局所的には高密度・高温の高エネルギーのプラズマを簡易かつ安全に発生することができ、有機物を含む液体に適用することによりカーボンナノチューブやフラーレン等のニューカーボンの生成をすることができる。この場合、生成されたフラーレン等はベンゼン等に溶かして抽出し、ベンゼンを気化する等により回収する。また、フロン、ハロン、ダイオキシン等の有害な難分解物質を分解し無害化するための高速化学反応装置として適用することもできる。
【0016】
【発明の効果】本発明に係るプラズマ発生装置は、気泡を発生させるとともに気泡へ電磁波を照射することにより、液中で高エネルギーのプラズマを簡易かつ安全に発生することができる。これは、ダイヤモンド状のアモルファス炭素膜等に生成するのに効果的である。
【図面の簡単な説明】
【図1】本発明の第1の実施例を示す断面図である。
【図2】形成されたアモルファス炭素膜の表面形状を示すグラフである。
【図3】形成されたアモルファス炭素膜のラマンスペクトルを示すグラフである。
【図4】本発明の第2の実施例を示す断面図である。
【符号の説明】
1.液体容器
2.液体
3.電極
4.気泡
5.基材
6.容器
7.真空ポンプ
8.電源
[0001]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for generating plasma in a liquid and a technique for generating a plasma in the liquid to form a thin film.
[0002]
2. Description of the Related Art Conventionally, a vapor deposition technique using a gas phase plasma has been widely used as a deposition technique using a plasma. For example, Japanese Patent Application Laid-Open No. Hei 10-81589 discloses that a diamond film is formed on the surface of silicon or cubic silicon carbide by a plasma CVD method. On page 56 of the proceedings of the 4th Ehime University Symposium, a study on the generation of plasma in liquid by superposition of ultrasonic cavitation and local electromagnetic field is described.
[0003]
[Patent Document 1] Japanese Patent Application Laid-Open No. Hei 10-81589 [Non-Patent Document] Shinfuku Nomura and Hiromichi Toyoda, "Preprints of the 4th Ehime University Symposium", Ehime University Symposium Preparatory Committee, November 2001 March 12, p. 56
[0004]
[Problems to be solved by the invention]
[0005] It is difficult to synthesize a large amount of deposition materials by the plasma CVD method such as the method described in JP-A-10-81589. Therefore, it takes a long time to form a film having a certain thickness. Rapidly supplying a raw material such as methane to increase the deposition rate can be dangerous. In addition, when high-energy plasma is generated in the gas phase, the temperature becomes high, and it cannot be deposited on a heat-sensitive substrate material. On the other hand, the generation of plasma in liquid by superposition of ultrasonic cavitation and local electromagnetic field described on page 56 of the proceedings of the 4th Ehime University Symposium is a very promising idea to generate plasma in liquid. However, the publication and the publication described the policy for starting this research, the details of which were not described at all, and were described in Japanese Patent Application No. 2002-98193 made by the presenter and the present inventor. The invention has been completed as a concrete one. Thus, the in-liquid plasma is realized for the first time, but the plasma generator requires an ultrasonic generator. It is an object of the present invention to provide a simple method and apparatus for generating high-energy plasma in a liquid and a method for forming an amorphous carbon film by generating high-energy plasma in a liquid.
[Means for Solving the Problems]
[0006] In order to solve the above-mentioned problems, a submerged plasma generating apparatus according to the present invention emits an electromagnetic wave into a liquid together with a heating means and / or a vacuum device for generating bubbles in the liquid. Having an electromagnetic wave probe. As a heating means, a means for heating a substrate on which a film is formed may be provided. The method for forming a thin film according to the present invention includes generating bubbles in a liquid containing an organic substance, irradiating an electromagnetic wave, generating plasma in the bubbles, and bringing the bubbles into contact with the base material, thereby forming an amorphous state on the base material. It forms a carbon film. In addition, while generating bubbles in a liquid containing silicon, irradiating electromagnetic waves, generating plasma in the bubbles, and contacting the bubbles with the base material, forming a silicon carbide film on the base material May be.
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of a submerged plasma generating apparatus and a thin film forming method according to the present invention will be described in detail based on examples.
[0008]
Embodiment 1 FIG. 1 is an explanatory view showing a first embodiment of the present invention. A liquid 2 is contained in the container 1. Various kinds of liquid 2 can be selected depending on the use of the generated plasma. In the case of performing surface deposition, a liquid serving as a raw material of a deposition material, a solution containing a raw material of a deposition material, or the like is used. Further, in order to form a diamond film or an amorphous carbon film, a liquid containing carbon as a raw material of the film can be used. In particular, when a hydrocarbon containing hydrogen is used, graphite generated in the diamond layer during the deposition is reduced and eliminated, which is advantageous for the deposition of a pure diamond film. In particular, dodecane (C 12 H 26 ) is effective because it is liquid even at room temperature, has low viscosity, and hardly attenuates electromagnetic waves. Also in this embodiment, dodecane is used. An electrode 3 is provided in the liquid 2. An oscillation circuit (not shown) is connected to the electrode 3 to supply a high frequency. Although an electromagnetic wave is generated on the electrode 3, in the present embodiment, the electromagnetic wave is concentrated on the tip of the electrode. For this reason, the electrode tip is induction-heated by the electromagnetic wave. The liquid 2 in contact with the electrode 3 is heated by the generated heat and boiled to generate bubbles 4. That is, in the present embodiment, the electrode 3 also functions as a heating unit for generating bubbles. Further, the electrode 3 functions as an electromagnetic wave probe, and the electromagnetic wave concentrated on the electrode 3 is radiated to the liquid 2. The inside of the bubble 4 is in a state where plasma is easily generated, and plasma is formed by irradiating a strong electromagnetic wave there. In this embodiment, a larger container 6 is provided so as to cover the liquid container 1, and the inside of the container 6 can be depressurized by a vacuum pump. Although it is not always necessary to reduce the pressure, there is an advantage that generation of bubbles and generation of plasma are facilitated. Here, the internal pressure of the container 1 was reduced to about 10 4 Pa. In this way, high-temperature, high-energy plasma is obtained. However, since the generation of plasma is limited to the inside and around the bubble, it is a low-temperature liquid for macro and can be handled safely and easily. In addition, since the plasma is generated in the liquid, if the container is simple enough to hold the liquid, the plasma can be confined in the container, and there is no difficulty in confining plasma such as gas-phase plasma. .
The radiated electromagnetic wave may be selected from frequencies of about 13 MHz to 2.5 GHz depending on the application. In this example, the electromagnetic wave is effective for forming a diamond-like film and is effective for generating bubbles by heating. Advantageously, an electromagnetic wave with a frequency of 2.5 GHz and an output of 100 W was used.
The plasma generated in the bubbles rises together with the bubbles and comes into contact with the substrate 5. As a result, the high-energy plasma carbon forms a film on the surface of the substrate 5. FIG. 2 shows a graph obtained by measuring the formed film with a surface roughness meter. With a film formation time of 3 minutes, a thick film of 450 μm was formed on the surface of the substrate 5 of the silicon substrate. That is, the film formation rate has reached 9 mm / h, which is about 10 μm / h for the low-pressure type and about 300 μm / h for the high-pressure type by the conventional gas-phase plasma. A remarkably high film formation speed has been realized.
FIG. 3 shows a Raman spectrum of the formed film. 1335cm per -1 per the 1560 cm -1 has a spectrum spread form with two peaks, it can be seen that the structure of the film is amorphous. The film has a Vickers hardness of about Hv = 1500 and low friction resistance. The film formed in the present embodiment increases the hardness of a blade or the like to improve the durability, or improves the corrosion resistance by utilizing the fact that it is chemically inert, or is applied to a contact portion. Can be used to improve lubricity.
In this embodiment, the electrode 3 has the functions of both a bubble generating means and an electromagnetic wave generating means (electromagnetic wave probe), and has a merit that the structure is simplified since only one set of the electromagnetic wave supply circuit is required. In addition, since the substrate 5 on which a film is to be formed is not directly energized and heated, a film is formed on the surface even of a non-conductive material such as wood or paper, or a heat-sensitive material such as a synthetic resin or a biomaterial. be able to.
[0013]
Embodiment 2 FIG. 4 shows a second embodiment of the present invention. In the present embodiment, a power source 8 for heating the substrate 5 is provided, and the substrate 5 is energized and heated. In this embodiment, a silicon substrate is used as the base material 5. Providing the heating means separately from the electromagnetic wave emitting means (electromagnetic wave probe) as described above has an advantage that the generation of bubbles and the generation of plasma can be facilitated. For example, by energizing a silicon substrate and heating it to about 700 ° C., a diamond film can be formed on the surface. Also in this embodiment, the electrode 3 for radiating the electromagnetic wave into the liquid is provided under the base member 5, so that the electromagnetic wave can be intensively applied to bubbles generated below the base member 5. . The bubbles generated on the upper side of the base material 5 rise and move away from the base material 5 immediately, but the bubbles generated on the lower side stay for a while while being in contact with the base material 5, so that the plasma generated in the bubbles can be effectively removed. Can be contacted with the substrate.
In this embodiment, a liquid of dodecane and silicone oil mixed at a ratio of 1: 1 is used as the liquid 2, and a silicon carbide film is formed on the substrate 5 of the silicon plate. The electromagnetic wave had a frequency of 2.5 GHz and an output of 100 W, and when irradiated for 3 minutes, a silicon carbide film having a thickness of 1.2 mm could be formed on the base material 5. Therefore, the film formation speed reaches 0.4 mm / min. Also in this example, the pressure inside the container 1 was reduced to about 10 4 Pa by operating the vacuum pump. The silicon carbide film thus formed has a high hardness, and can be applied to, for example, improving the hardness of a cutting tool to improve the life and sharpness.
The embodiment of the plasma generator according to the present invention has been described above with reference to the embodiment of forming a thin film such as an amorphous carbon film or a silicon carbide film. As described above, the plasma generator according to the present invention is particularly useful for forming a film, but the scope of application is not limited to this. A high-density, high-temperature, high-energy plasma can be easily and safely generated locally in liquid, and new carbon such as carbon nanotubes and fullerenes can be generated by applying it to liquids containing organic substances. it can. In this case, the generated fullerene or the like is dissolved in benzene or the like, extracted, and recovered by vaporizing benzene or the like. Further, the present invention can also be applied as a high-speed chemical reaction device for decomposing and rendering harmful hardly decomposable substances such as chlorofluorocarbon, halon and dioxin.
[0016]
The plasma generator according to the present invention can easily and safely generate high-energy plasma in a liquid by generating bubbles and irradiating the bubbles with electromagnetic waves. This is effective for forming a diamond-like amorphous carbon film or the like.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a first embodiment of the present invention.
FIG. 2 is a graph showing a surface shape of a formed amorphous carbon film.
FIG. 3 is a graph showing a Raman spectrum of a formed amorphous carbon film.
FIG. 4 is a sectional view showing a second embodiment of the present invention.
[Explanation of symbols]
1. Liquid container 2. Liquid3. Electrode4. Air bubbles5. Substrate 6. Container 7. Vacuum pump8. Power supply

Claims (6)

液体中で気泡を発生させるための加熱手段と、液中に電磁波を放射するための電磁波プローブを有する液中プラズマ発生装置。An in-liquid plasma generator having a heating means for generating bubbles in a liquid and an electromagnetic wave probe for emitting an electromagnetic wave into the liquid. 液体中で気泡を発生させるための真空装置と、液中に電磁波を放射するための電磁波プローブを有する液中プラズマ発生装置。An in-liquid plasma generator having a vacuum device for generating bubbles in a liquid and an electromagnetic probe for emitting electromagnetic waves into the liquid. 液体中で気泡を発生させるための加熱手段を有する請求項2に記載の液中プラズマ発生装置。3. The in-liquid plasma generator according to claim 2, further comprising a heating unit for generating bubbles in the liquid. 膜を形成する対象の基材を加熱する手段を有する請求項1または請求項3に記載の液中プラズマ発生装置。The in-liquid plasma generator according to claim 1 or 3, further comprising means for heating a substrate on which a film is formed. 有機物を含む液中で気泡を発生させるとともに、電磁波を照射し、気泡中にプラズマを発生させ、気泡を基材に接触させることにより、基材上にアモルファス状炭素の膜を形成する薄膜形成方法。A thin film forming method for forming an amorphous carbon film on a substrate by generating bubbles in a liquid containing an organic substance, irradiating electromagnetic waves, generating plasma in the bubbles, and bringing the bubbles into contact with the substrate. . シリコンを含む液中で気泡を発生させるとともに、電磁波を照射し、気泡中にプラズマを発生させ、気泡を基材に接触させることにより、基材上にシリコンカーバイトの膜を形成する薄膜形成方法。A method of forming a silicon carbide film on a substrate by generating bubbles in a liquid containing silicon, irradiating electromagnetic waves, generating plasma in the bubbles, and bringing the bubbles into contact with the substrate. .
JP2002313979A 2002-04-01 2002-10-29 Liquid plasma generator, thin film forming method, and silicon carbide film Expired - Lifetime JP3624239B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2002313979A JP3624239B2 (en) 2002-10-29 2002-10-29 Liquid plasma generator, thin film forming method, and silicon carbide film
PCT/JP2003/004139 WO2003086615A1 (en) 2002-04-01 2003-03-31 Submerged plasma generator, method of generating plasma in liquid and method of decomposing toxic substance with plasma in liquid
CNB038074613A CN100336586C (en) 2002-04-01 2003-03-31 Submerged plasma generator, method of generating plasma in liquid and method of decomposing toxic substance with plasma in liquid
US10/507,919 US7067204B2 (en) 2002-04-01 2003-03-31 Submerged plasma generator, method of generating plasma in liquid and method of decomposing toxic substance with plasma in liquid
AU2003221072A AU2003221072A1 (en) 2002-04-01 2003-03-31 Submerged plasma generator, method of generating plasma in liquid and method of decomposing toxic substance with plasma in liquid
KR1020047015057A KR100709923B1 (en) 2002-04-01 2003-03-31 Submerged plasma generator, method of generating plasma in liquid and method of decomposing toxic substance with plasma in liquid
EP03715684A EP1504813A4 (en) 2002-04-01 2003-03-31 Submerged plasma generator, method of generating plasma in liquid and method of decomposing toxic substance with plasma in liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002313979A JP3624239B2 (en) 2002-10-29 2002-10-29 Liquid plasma generator, thin film forming method, and silicon carbide film

Publications (3)

Publication Number Publication Date
JP2004152523A true JP2004152523A (en) 2004-05-27
JP2004152523A5 JP2004152523A5 (en) 2005-02-10
JP3624239B2 JP3624239B2 (en) 2005-03-02

Family

ID=32458427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002313979A Expired - Lifetime JP3624239B2 (en) 2002-04-01 2002-10-29 Liquid plasma generator, thin film forming method, and silicon carbide film

Country Status (1)

Country Link
JP (1) JP3624239B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004306029A (en) * 2003-03-27 2004-11-04 Techno Network Shikoku Co Ltd Chemical reactor and decomposing method of toxic substance
JP2006253056A (en) * 2005-03-14 2006-09-21 Univ Nagoya Plasma generator
JP2006274426A (en) * 2005-03-30 2006-10-12 Toyota Industries Corp Production method of silicon oxide film
WO2007063987A1 (en) * 2005-12-02 2007-06-07 Osaka University Method for processing/washing with ultra-pure water plasma foams and apparatus for the method
JP2007207540A (en) * 2006-02-01 2007-08-16 Kurita Seisakusho:Kk In-liquid plasma generation method, in-liquid plasma generation apparatus, apparatus for purifying liquid to be treated, and ionic liquid supplying apparatus
JP2008041578A (en) * 2006-08-09 2008-02-21 Honda Electronic Co Ltd Plasma processing device and plasma processing method
JPWO2006059808A1 (en) * 2004-12-03 2008-06-05 株式会社豊田自動織機 Electrode for submerged plasma, submerged plasma generator and submerged plasma generating method
JP2008150246A (en) * 2006-12-18 2008-07-03 Ehime Univ Method for producing diamond
JP2008308730A (en) * 2007-06-14 2008-12-25 Toyota Industries Corp Film-forming method using plasma in liquid, and film-forming apparatus using plasma in liquid
JP2010070782A (en) * 2008-09-16 2010-04-02 Toyota Industries Corp In-liquid plasma film deposition method, coating film formed by the same, and in-liquid plasma film deposition apparatus
JP2011000504A (en) * 2009-06-16 2011-01-06 Toyota Industries Corp Method and apparatus for forming film using plasma in liquid
DE112009000734T5 (en) 2008-03-07 2011-04-14 Kabushiki Kaisha Toyota Jidoshokki Liquid-based plasma layer forming apparatus, electrode for liquid-based plasma, and film forming method using liquid-based plasma
WO2011027973A3 (en) * 2009-09-02 2011-04-28 한국기초과학지원연구원 Liquid medium plasma discharge generating apparatus
JP4871860B2 (en) * 2005-03-30 2012-02-08 株式会社豊田自動織機 Method for producing amorphous carbon film
JP2013031842A (en) * 2005-03-25 2013-02-14 Mitsubishi Rayon Co Ltd Method of surface treatment and surface-treated article
US8685360B2 (en) 2008-02-07 2014-04-01 Kabushiki Kaisya Toyota Jidosyokki Method for the production of diamond
US11541361B2 (en) 2015-02-13 2023-01-03 Nihon Spindle Manufacturing Co., Ltd. Dispersion method and dispersion apparatus for material to be processed and method for producing mixed liquid of material to be processed and dispersion medium produced thereby

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004306029A (en) * 2003-03-27 2004-11-04 Techno Network Shikoku Co Ltd Chemical reactor and decomposing method of toxic substance
DE112005003029B4 (en) * 2004-12-03 2012-10-04 Kabushiki Kaisha Toyota Jidoshokki In-liquid plasma electrode, in-liquid plasma generating device, and in-liquid plasma generating method
US8653404B2 (en) 2004-12-03 2014-02-18 Kabushiki Kaisha Toyota Jidoshokki In-liquid plasma electrode, in-liquid plasma generating apparatus and in-liquid plasma generating method
JPWO2006059808A1 (en) * 2004-12-03 2008-06-05 株式会社豊田自動織機 Electrode for submerged plasma, submerged plasma generator and submerged plasma generating method
KR100934139B1 (en) * 2004-12-03 2009-12-29 가부시키가이샤 도요다 지도숏키 Submerged plasma electrode, submerged plasma generating apparatus and submerged plasma generating method
JP4678718B2 (en) * 2005-03-14 2011-04-27 国立大学法人名古屋大学 Plasma generator
JP2006253056A (en) * 2005-03-14 2006-09-21 Univ Nagoya Plasma generator
JP2013031842A (en) * 2005-03-25 2013-02-14 Mitsubishi Rayon Co Ltd Method of surface treatment and surface-treated article
US8541068B2 (en) 2005-03-30 2013-09-24 Kabushiki Kaisha Toyota Jidoshokki Process for producing an amorphous carbon film
JP4871860B2 (en) * 2005-03-30 2012-02-08 株式会社豊田自動織機 Method for producing amorphous carbon film
JP4665111B2 (en) * 2005-03-30 2011-04-06 株式会社豊田自動織機 Method for manufacturing silicon oxide film
JP2006274426A (en) * 2005-03-30 2006-10-12 Toyota Industries Corp Production method of silicon oxide film
WO2007063987A1 (en) * 2005-12-02 2007-06-07 Osaka University Method for processing/washing with ultra-pure water plasma foams and apparatus for the method
JPWO2007063987A1 (en) * 2005-12-02 2009-05-07 勝義 遠藤 Processing and cleaning method and apparatus using ultrapure water plasma bubbles
JP2007207540A (en) * 2006-02-01 2007-08-16 Kurita Seisakusho:Kk In-liquid plasma generation method, in-liquid plasma generation apparatus, apparatus for purifying liquid to be treated, and ionic liquid supplying apparatus
JP2008041578A (en) * 2006-08-09 2008-02-21 Honda Electronic Co Ltd Plasma processing device and plasma processing method
JP2008150246A (en) * 2006-12-18 2008-07-03 Ehime Univ Method for producing diamond
JP2008308730A (en) * 2007-06-14 2008-12-25 Toyota Industries Corp Film-forming method using plasma in liquid, and film-forming apparatus using plasma in liquid
US8685360B2 (en) 2008-02-07 2014-04-01 Kabushiki Kaisya Toyota Jidosyokki Method for the production of diamond
DE112009000734T5 (en) 2008-03-07 2011-04-14 Kabushiki Kaisha Toyota Jidoshokki Liquid-based plasma layer forming apparatus, electrode for liquid-based plasma, and film forming method using liquid-based plasma
US8607732B2 (en) 2008-03-07 2013-12-17 Kabushiki Kaisha Toyota Jidoshokki In-liquid plasma film-forming apparatus, electrode for in-liquid plasma, and film-forming method using in-liquid plasma
JP2010070782A (en) * 2008-09-16 2010-04-02 Toyota Industries Corp In-liquid plasma film deposition method, coating film formed by the same, and in-liquid plasma film deposition apparatus
JP2011000504A (en) * 2009-06-16 2011-01-06 Toyota Industries Corp Method and apparatus for forming film using plasma in liquid
WO2011027973A3 (en) * 2009-09-02 2011-04-28 한국기초과학지원연구원 Liquid medium plasma discharge generating apparatus
US8926914B2 (en) 2009-09-02 2015-01-06 Korea Basic Science Institute Liquid medium plasma discharge generating apparatus
US11541361B2 (en) 2015-02-13 2023-01-03 Nihon Spindle Manufacturing Co., Ltd. Dispersion method and dispersion apparatus for material to be processed and method for producing mixed liquid of material to be processed and dispersion medium produced thereby

Also Published As

Publication number Publication date
JP3624239B2 (en) 2005-03-02

Similar Documents

Publication Publication Date Title
JP3624239B2 (en) Liquid plasma generator, thin film forming method, and silicon carbide film
JP5182989B2 (en) Liquid plasma film forming apparatus, liquid plasma electrode, and film forming method using liquid plasma
US7067204B2 (en) Submerged plasma generator, method of generating plasma in liquid and method of decomposing toxic substance with plasma in liquid
JP3624238B2 (en) Method and apparatus for generating plasma
JP4909741B2 (en) Electrode for submerged plasma, submerged plasma generator and submerged plasma generating method
NO20160755A1 (en) Apparatus for large scale producing 3D graphene and method describing the same
KR100883940B1 (en) Process for producing amorphous carbon film
JPWO2007063987A1 (en) Processing and cleaning method and apparatus using ultrapure water plasma bubbles
JP2004152523A5 (en)
JP4446030B2 (en) Liquid plasma generator and liquid plasma generation method
JP2006035174A (en) Hydrogen occlusion material and manufacture and utilization of the same
JP6969743B2 (en) Diamond manufacturing method
JP4930918B2 (en) Diamond manufacturing method
JP4560606B2 (en) Submerged plasma reactor and crystal synthesis method
JP4370378B2 (en) Porous membrane, production apparatus and production method thereof
Molian et al. CO2 laser deposition of diamond thin films on electronic materials
JPS60122796A (en) Vapor phase synthesis method of diamond
EP0477585A2 (en) Diamond coated ultrasonic probe tips
JPH01167211A (en) Diamond-like carbon film and production thereof
JP2005235662A (en) Plasma device in liquid, and plasma generating method in liquid
JPH0481552B2 (en)
Biswas Carbonization of Polyimide using CO2 laser and Femtosecond laser for Sensor Applications
Al Rafi et al. Effects of Argon (Ar) on Synthesis and Photocatalytic Activities of Graphene
JP5247323B2 (en) Submerged plasma film forming method, coating film formed by the method, and submerged plasma film forming apparatus
JPH0369878B2 (en)

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040303

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040303

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20040303

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040317

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20040408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040422

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041101

R150 Certificate of patent or registration of utility model

Ref document number: 3624239

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees
EXPY Cancellation because of completion of term