JP2004152029A - 機能予測支援方法、機能予測支援プログラムおよび機能予測支援装置 - Google Patents

機能予測支援方法、機能予測支援プログラムおよび機能予測支援装置 Download PDF

Info

Publication number
JP2004152029A
JP2004152029A JP2002316757A JP2002316757A JP2004152029A JP 2004152029 A JP2004152029 A JP 2004152029A JP 2002316757 A JP2002316757 A JP 2002316757A JP 2002316757 A JP2002316757 A JP 2002316757A JP 2004152029 A JP2004152029 A JP 2004152029A
Authority
JP
Japan
Prior art keywords
information
compound
docking
input
protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002316757A
Other languages
English (en)
Inventor
Makoto Ogura
誠 小倉
Atsushi Tomonaga
惇 朝永
Atsuya Takahashi
篤也 高橋
Noriyuki Shiobara
紀行 塩原
Itaru Sako
格 佐甲
Kota Sakai
広太 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2002316757A priority Critical patent/JP2004152029A/ja
Publication of JP2004152029A publication Critical patent/JP2004152029A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

【課題】化合物の発見以降の新薬開発の工程を効率的におこなうようにすることで、効果的な新薬開発を支援すること。
【解決手段】既知または未知の、化合物または生体高分子の構造情報の入力を受け付ける化合物/生体高分子構造情報入力部201と、複数のタンパク質の活性部位に関する情報を含む構造情報をタンパク質情報DB200から入力するタンパク質情報入力部202と、それらの構造情報に基づいて、化合物または生体高分子とタンパク質とのドッキングに関する情報を、タンパク質ごとに算出するタンパク質−化合物/高分子ドッキング評価部203と、算出されたドッキングに関する情報を出力するドッキング情報出力部204と、を備える。
【選択図】 図2

Description

【0001】
【発明の属する技術分野】
この発明は、製薬業の新薬開発部門において、新規薬物候補となる化合物(リード化合物と呼ばれることがある)を発見した際に、化合物あるいは化合物の誘導体の薬効、作用機序および副作用を予測するための情報を生成する機能予測支援方法、機能予測支援プログラム、および機能予測支援装置に関する。
【0002】
【従来の技術】
近年の遺伝子工学の進歩に伴い、ゲノム情報によって、創薬標的物質が発見される速度が速くなってきている。製薬企業はそれらの標的物質と結合して反応を速める物質や阻止する物質をより早く見つけるために、タンパク質の立体構造に注目している。
【0003】
従来、新規薬物の候補となるような化合物を発見した場合は、当該化合物の薬理活性試験、あるいは標的タンパク質の立体構造がわかっている場合は、当該タンパク質とのドッキングスタディをおこない、その効果を確認し、以降の工程に進んでいた。
【0004】
【発明が解決しようとする課題】
しかしながら、上記の従来技術にあっては、化合物が標的とすると考えられる生体分子(主にタンパク質)との作用の解析のみに限局され、標的タンパク質以外のタンパク質に作用することが看過されるおそれがある。そのため、新薬の開発工程が進み、非臨床あるいは臨床試験に臨んで重篤な副作用が発見され、その結果それまで投入した開発コストがすべて無駄になってしまうという問題点があった。また、タンパク質の種類が膨大にあるため、それらの膨大な種類のタンパク質との作用を確認するには、多くの時間と労力が必要であった。
【0005】
また、化合物が標的タンパク質に特異性を持っていたとしても、その作用部位が当該タンパク質にいくつかある活性部位の一つであり、必ずしも最適な活性を発揮する部位であるとは限らない場合がある。そのため、より効果の高い薬物開発の機会を逃してしまうという問題点があった。
【0006】
この発明は上記問題を解決するため、化合物の発見以降の新薬開発の工程を効率的におこなうようにすることで、効果的な新薬開発を支援することが可能な機能予測支援方法、機能予測支援プログラム、機能予測支援装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上述した課題を解決し、目的を達成するため、この発明にかかる機能予測支援方法、機能予測支援プログラムおよび機能予測支援装置は、既知または未知の、化合物または生体高分子の構造情報を入力し、複数のタンパク質の活性部位に関する情報を含む構造情報を入力し、入力された化合物または生体高分子の構造情報と、タンパク質の構造情報とに基づいて、前記化合物または生体高分子と前記タンパク質とのドッキングに関する評価値を、前記タンパク質ごとに算出し、算出されたドッキングに関する評価値を含むドッキング情報を出力することを特徴とする。
【0008】
これらの発明によれば、従来の化合物の評価に当たって問題となる、タンパク質間の特異性およびタンパク質内の活性部位の特異性(機能に対応して複数ありうる)を迅速かつ効率的に検証することができる。
【0009】
【発明の実施の形態】
以下に添付図面を参照して、この発明にかかる機能予測支援方法、機能予測支援プログラムおよび機能予測支援装置の好適な実施の形態を詳細に説明する。
【0010】
(機能予測支援装置のハードウエア構成)
まず、この発明の本実施の形態にかかる機能予測支援装置のハードウエア構成について説明する。図1は、この発明の本実施の形態にかかる機能予測支援装置のハードウエア構成の一例を示すブロック図である。
【0011】
図1において、機能予測支援装置は、CPU101と、ROM102と、RAM103と、HDD104と、HD105と、FDD(フレキシブルディスクドライブ)106と、着脱可能な記録媒体の一例としてのFD(フレキシブルディスク)107と、ディスプレイ108と、I/F(インタフェース)109と、キーボード111と、マウス112と、スキャナ113と、プリンタ114と、を備えている。また、各構成部はバス100によってそれぞれ接続されている。
【0012】
ここで、CPU101は、機能予測支援装置の全体の制御を司る。ROM102は、ブートプログラムなどのプログラムを記憶している。RAM103は、CPU101のワークエリアとして使用される。HDD104は、CPU101の制御にしたがってHD105に対するデータのリード/ライトを制御する。HD105は、HDD104の制御で書き込まれたデータを記憶する。
【0013】
FDD106は、CPU101の制御にしたがってFD107に対するデータのリード/ライトを制御する。FD107は、FDD106の制御で書き込まれたデータを記憶したり、FD107に記録されたデータを情報処理装置へ読み取らせたりする。着脱可能な記録媒体として、FD107のほか、CD−ROM(CD−R、CD−RW)、MO、DVD(Digital VersatileDisk)、メモリーカードなどであってもよい。ディスプレイ108は、カーソル、アイコンあるいはツールボックスをはじめ、文書、画像、機能情報などのデータを表示する。たとえば、CRT、TFT液晶ディスプレイ、プラズマディスプレイなどである。
【0014】
I/F(インタフェース)109は、通信回線を通じてLANやインターネットなどのネットワーク110に接続され、ネットワーク110を介して、データベースなどを備えた他のサーバーや情報処理装置に接続される。そして、I/F109は、ネットワーク110と内部とのインタフェースを司り、他のサーバーや情報端末装置からのデータの入出力を制御する。I/F109は、たとえばモデムなどである。
【0015】
キーボード111は、文字、数字、各種指示などの入力のためのキーを備え、データの入力をおこなう。タッチパネル式の入力パッドやテンキーなどであってもよい。マウス112は、カーソルの移動や範囲選択、あるいはウインドウの移動やサイズの変更などをおこなう。ポインティングデバイスとして同様の機能を備えるものであれば、トラックボール、ジョイスティックなどであってもよい。
【0016】
スキャナ113は、ドライバ画像などの画像を光学的に読み取り、情報処理装置内に画像データを取り込む。さらにOCR機能も備えており、OCR機能によって、印刷された情報を読み取ってデータ化することもできる。また、プリンタ114は、画像データや文書データを印刷する。たとえば、レーザプリンタ、インクジェットプリンタなどである。
【0017】
(機能予測支援装置の機能的構成)
つぎに、この発明の本実施の形態にかかる機能予測支援装置の機能的構成について説明する。図2および図3は、この発明の本実施の形態にかかる機能予測支援装置の機能的構成を示す説明図である。
【0018】
図2において、200はタンパク質情報データベース(DB)であり、201は、化合物/生体高分子構造情報入力部であり、202はタンパク質情報入力部であり、203はタンパク質−化合物/高分子ドッキング評価部であり、204はドッキング情報出力部である。
【0019】
ここで、タンパク質情報DB200は、ドッキングの対象となる多数のタンパク質に関する情報(タンパク質立体構造およびその活性部位の情報を含む)が格納されている。格納対象のタンパク質としては、創薬ターゲットあるいは毒性・副作用にかかわるものを中心にできる限り広範囲なものとする。また、ドッキングに必要な情報として、活性部位のタンパク質上の領域の情報があり、さらに、静電ポテンシャルおよび疎水性領域があってもよい。なお、タンパク質情報DB200の詳細については、図7、図8を用いて後述する。
【0020】
また、化合物/生体高分子構造情報入力部201は、ドッキングの対象となる、既知または未知の、化合物または生体高分子の立体構造に関する情報を入力する。すなわち、未知の化合物でもよく、また既知の化合物でもよい。未知の化合物の場合は、それをドッキングさせることによって、その未知の化合物の機能予測をすることができる。また、既知の化合物の場合は、それをドッキングさせることによって、既知・未知の生体高分子の機能予測をすることができるようになる。また、化合物の代わりに生体高分子でもよい。そして、その生体高分子も、既知の生体高分子、未知の生体高分子のいずれであってもよい。
【0021】
化合物/生体高分子構造情報入力部201は、具体的には、たとえば図1に示したI/F109あるいは、キーボード111、マウス112、スキャナ113などによってその機能を実現することができる。
【0022】
また、タンパク質情報入力部202は、タンパク質情報DB200に格納された複数のタンパク質の活性部位に関する情報を含む立体構造を所定数ごとに順次入力する。タンパク質情報入力部202は、タンパク質情報DB200がネットワーク110を介して接続されている場合に、I/F109によってその機能を実現する。
【0023】
また、タンパク質−化合物/高分子ドッキング評価部203は、化合物/生体高分子構造情報入力部201によって入力された化合物または生体高分子の立体構造に関する情報と、タンパク質情報入力部202によって入力されたタンパク質の立体構造および活性部位に関する情報を含むタンパク質情報とに基づいて、化合物または生体高分子とタンパク質とのドッキングに関する評価値を、タンパク質ごとに算出する。評価値を計算するに当たり、たとえば、各種エネルギー計算をし、それらの計算結果に基づいて評価値を算出する。そして、適合性評価関数を用いて、評価値を算出する。
【0024】
具体的な算出方法としては、たとえば、分子力学計算を用いておこなわれる。すなわち、基準となる結合長、結合角、ねじれ角および非結合相互作用からのひずみとして、分子の全立体エネルギーを算出することができる。タンパク質−化合物/高分子ドッキング評価部203は、具体的には、たとえば、図1に示すROM102、RAM103、HD105あるいはFD107に記憶されたプログラムをCPU101が実行することによってそれらの機能を実現する。
【0025】
また、ドッキング情報出力部204は、タンパク質−化合物/高分子ドッキング評価部203によって算出されたドッキングに関する評価値を含むドッキング情報を出力する。また、ドッキング情報出力部204は、タンパク質−化合物/高分子ドッキング評価部203によって算出された評価値に基づいて、化合物または生体高分子と結合する候補となるタンパク質のドッキング情報を、たとえば、図4に示すように、一覧出力する。すなわち、評価関数を基にスコア付けし、対象となる化合物と結合する候補と考えられるタンパク質およびその活性部位の一覧を出力する。
【0026】
図4において、各タンパク質には、「Binding domain」という化合物との結合部位があり、たとえば、No.6とNo.7では、同じタンパク質であるが、結合部位が異なるので、別々に評価して一覧表示する。化合物の作用予測用の評価値として、「Evaluation Value」を用いる。ただし、ここでは実際の結合エネルギーの値ではなく、結合エネルギー値を考慮して算出した値である。
【0027】
さらに、ドッキング情報出力部204は、上記ドッキング情報とともに、対象となる化合物が結合する候補となったタンパク質が化合物と結合することによって、どのような作用を発生するかを利用者が判断するために、付帯情報を出力する。付帯情報とは、タンパク質の毒性または副作用に関する情報を含むアノテーション情報、既知結合化合物情報、パスウエイ情報、文献情報などである。
【0028】
出力の具体例としては、たとえば、「薬理作用DおよびKにかかわるタンパク質、また代謝物Qに関係するタンパク質と結合する可能性あり」との内容からなる。
【0029】
ドッキング情報出力部204は、具体的にはたとえば図1に示したFD107およびFDD106、I/F109などによって外部へ出力することができる。また、プリンタ114などによって印刷させることもでき、さらに、ディスプレイ108などによって表示させるようにすることもできる。
【0030】
また、図3において、300は代謝反応情報データベース(DB)であり、301は代謝生成物予測部である。なお、その他の構成部は図2と同じであり、同一の符号を付しているため、それらの説明は省略する。
【0031】
ここで、代謝反応情報DB300は、化合物/生体高分子構造情報入力部201によって入力された化合物/生体高分子の代謝反応に関する情報を格納する。
【0032】
また、代謝生成物予測部301は、化合物/生体高分子構造情報入力部201によって入力された化合物/生体高分子が代謝された場合の構造を、代謝反応情報DB300に格納された情報に基づいて予測する。すなわち、化合物が生物個体に投与された場合、体内での代謝作用により構造が変化する場合があり、そのため、対象となる化合物が代謝された場合の構造を予測する。そして、化合物/生体高分子構造情報入力部201は、化合物または生体高分子の構造情報として、代謝生成物予測部301によって予測された構造に関する情報を入力する。
【0033】
代謝生成物予測部301は、具体的には、たとえば、図1に示すROM102、RAM103、HD105あるいはFD107に記憶されたプログラムをCPU101が実行することによってそれらの機能を実現する。
【0034】
(機能予測支援装置の処理手順)
つぎに、機能予測支援装置の処理の手順について説明する。図5は、この発明の本実施の形態にかかる機能予測支援装置の処理の手順を示すフローチャートである。
【0035】
図5のフローチャートにおいて、まず、化合物あるいは生体高分子の三次元立体構造に関する情報を機能予測支援装置に入力する(ステップS501)。つぎに、タンパク質情報DB200に複数格納されているタンパク質に関する情報のうち、最初のタンパク質に関する情報をタンパク質情報DB200から抽出し、入力する(ステップS502)。つぎに、入力された情報の中から、最初の活性部位に関する情報を抽出する(ステップS503)。そして、抽出された活性部位に関する情報に基づいて、ステップS501において入力された情報とのドッキング評価の処理をおこなう(ステップS504)。
【0036】
つぎに、ドッキング評価の処理の結果、結合候補であるか否かを判断する(ステップS505)。そして、結合候補である場合(ステップS505:Yes)は、その評価値を記憶し(ステップS506)、ステップS507へ移行する。一方、結合候補でない場合(ステップS505:No)は、何もせずに、ステップS507へ移行する。ただし、このステップS505の処理はおこなわなくてもよい。したがって、その場合は、ドッキング評価処理をおこなったすべてのタンパク質を、結合候補であるか否かにかかわらず、その評価値を記憶する。
【0037】
つぎに、ステップS507において、評価された活性部位情報が、当該タンパク質において最後の活性部位情報であるか否かを判断する(ステップS507)。そして、最後の活性部位情報でない場合(ステップS507:No)は、上記入力された情報の中から、未だ評価されていない、つぎの活性部位に関する情報を抽出し(ステップS508)、ステップS504に戻る。以後、すべての活性部位情報に対して同様の処理を繰り返しおこない、最後の活性部位情報である場合(ステップS507:Yes)は、つぎに、入力された当該タンパク質情報がタンパク質情報DB200に格納されたタンパク質情報のうちの最後のタンパク質情報であるか否かを判断する(ステップS509)。
【0038】
そして、最後のタンパク質情報でない場合(ステップS509:No)は、つぎのタンパク質情報を入力し(ステップS510)、ステップS503へ戻る。そして、ステップS503〜ステップS509までの各処理を、タンパク質情報DB200に格納されたすべてのタンパク質に対して繰り返しおこない、最後のタンパク質情報であると判断された場合(ステップS509:Yes)は、評価値を一覧表示し(ステップS511)、一連の処理を終了する。
【0039】
また図6は、代謝生成物予測処理に関するフローチャートである。図6のフローチャートにおいて、まず、化合物あるいは生体高分子の三次元立体構造に関する情報を機能予測支援装置に入力する(ステップS601)。つぎに、代謝反応情報DB300に格納されている代謝反応に関する情報のうち、化合物あるいは生体高分子に関連する代謝反応に関する情報を抽出する(ステップS602)。
【0040】
つぎに、抽出された代謝反応に関する情報に基づいて、代謝生成物の予測処理をおこなう(ステップS603)。ここで、代謝生成物が存在するか否かを判断し(ステップS604)、代謝生成物が存在する場合(ステップS604:Yes)は、その代謝生成物の構造情報を抽出し(ステップS605)、その後、抽出した代謝生物構造情報を機能予測支援装置に入力する(ステップS606)。一方、代謝生成物が存在しない場合(ステップS604:No)は、何もしない。そして、いずれも図5に示したステップS502へ移行する。
【0041】
(タンパク質情報DBの内容)
つぎに、タンパク質情報DB200の内容について説明する。図7は、この発明の本実施の形態にかかる機能予測支援装置に接続されるタンパク質情報データベースの概要を示す説明図である。図7において、タンパク質情報DB200は、既知文献情報701および追加しておこなった追加実験情報702の全部または一部の情報と、活性部位情報抽出部703によって、既知文献情報701および追加実験情報702から抽出された活性部位に関する情報をそれぞれか格納している。活性部位に関する情報には、後述する、活性部位ごとのドッキングに必要な情報も含まれる。
【0042】
ここで、既知文献情報701、追加実験情報702には、たとえば、タンパク質三次元構造情報、アミノ酸配列情報、タンパク質機能情報、物理化学的性質に関する情報、化合物との相互作用に関する情報、パスウエイ情報などが含まれる。
【0043】
このようにして構築されたタンパク質情報DB200には、予測に十分な数のタンパク質の情報が格納されている。その中には、既知の創薬、ターゲットタンパク質、毒性、副作用に関するタンパク質などが広範囲に収集されることになる。
【0044】
図8は、タンパク質情報データベースの生成の処理の手順を示すフローチャートである。図8のフローチャートにおいて、タンパク質の各種情報(既知文献情報701、追加実験情報702)を入力する(ステップS801)。その後、各タンパク質の活性部位あるいは活性部位候補を抽出する(ステップS802)。つぎに、抽出された活性部位あるいは活性部位候補ごとにそれぞれ役割・機能情報を収集して付加する(ステップS803)。
【0045】
さらに、ドッキングに必要な情報、たとえば、活性部位の形状、静電ポテンシャル、疎水性領域などを創出する(ステップS804)。そして、それぞれの各情報をタンパク質情報DB200に格納し(ステップS805)、一連の処理を終了する。新たなタンパク質情報が得られた場合に、上記ステップS801〜S805を繰り返しおこなう。
【0046】
以上説明したように、本実施の形態によれば、タンパク質の構造と機能情報、ドッキング用データを収録したDBコンテンツを得ることができる。また、化合物を各タンパク質にドッキングさせ、どのタンパク質と結合する可能性があるかについての情報提供をすることができる。薬効、副作用、毒性などの可能性を事前に評価する際にこの情報を活用することができる。
【0047】
さらに類似するタンパク質への結合可能性についての情報提供をすることができる。選択性・特異性の事前評価をする際にこの情報を活用することができる。
【0048】
このように、新薬開発の初期の工程で、化合物が作用するタンパク質および当該タンパク質の機能を予測することで、直接的な副作用の効果を推測でき、さらに当該タンパク質がパスウエイ上のどこに存在するかを知ることで、間接的な副作用の効果も推測することが可能である。また、化合物そのものの生体内での変化(代謝反応)を考慮に入れることで、さらに予測精度の向上が可能となる。
【0049】
したがって、本実施の形態によって、製薬業の新薬開発に極めて大きな貢献をすることができる。また、今後、ヒトのすべてのタンパクの機能と構造の解析が進展することは明らかであり、その成果を取り込むことで、さらに本発明の価値を増大させることができる。
【0050】
本実施の形態においては、創薬について説明したが、本実施の形態を創薬以外でも用いることができ、診断・医療等生体高分子/化合物間の相互作用を予測する必要のある分野での活用も可能である。
【0051】
なお、本実施の形態における機能予測支援方法は、あらかじめ用意されたコンピュータ読み取り可能なプログラムであってもよく、またそのプログラムをパーソナルコンピュータやワークステーションなどのコンピュータで実行することによって実現される。このプログラムは、HD、FD、CD−ROM、MO、DVDなどのコンピュータで読み取り可能な記録媒体に記録され、コンピュータによって記録媒体から読み出されることによって実行される。また、このプログラムは、インターネットなどのネットワークを介して配布することが可能な伝送媒体であってもよい。
【0052】
(付記1)既知または未知の、化合物または生体高分子の構造情報を入力する第1の入力工程と、
複数のタンパク質の活性部位に関する情報を含む構造情報を入力する第2の入力工程と、
前記第1の入力工程によって入力された構造情報と、前記第2の入力工程によって入力された構造情報とに基づいて、前記化合物または生体高分子と前記タンパク質とのドッキングに関する評価値を、前記タンパク質ごとに算出する算出工程と、
前記算出工程によって算出されたドッキングに関する評価値を含むドッキング情報を出力するドッキング情報出力工程と、
を含むことを特徴とする機能予測支援方法。
【0053】
(付記2)前記ドッキング情報出力工程は、前記算出工程によって算出された評価値に基づいて、前記化合物または生体高分子と結合する候補となるタンパク質のドッキング情報を一覧出力することを特徴とする付記1に記載の機能予測支援方法。
【0054】
(付記3)前記ドッキング情報出力工程は、前記ドッキング情報とともに、前記タンパク質の毒性または副作用に関する情報を出力することを特徴とする付記2に記載の機能予測支援方法。
【0055】
(付記4)さらに、前記化合物または生体高分子が代謝された場合の構造を予測する予測工程を含み、
前記第1の入力工程は、前記化合物または生体高分子の構造情報として、前記予測工程によって予測された構造に関する情報を入力することを特徴とする付記1〜3のいずれか一つに記載の機能予測支援方法。
【0056】
(付記5)既知または未知の、化合物または生体高分子の構造情報を入力させる第1の入力工程と、
複数のタンパク質の活性部位に関する情報を含む構造情報を入力させる第2の入力工程と、
前記第1の入力工程によって入力された構造情報と、前記第2の入力工程によって入力された構造情報とに基づいて、前記化合物または生体高分子と前記タンパク質とのドッキングに関する情報を、前記タンパク質ごとに算出させる算出工程と、
前記算出工程によって算出されたドッキングに関する情報を出力させるドッキング情報出力工程と、
をコンピュータに実行させることを特徴とする機能予測支援プログラム。
【0057】
(付記6)既知または未知の、化合物または生体高分子の構造情報の入力を受け付ける第1の入力手段と、
複数のタンパク質の活性部位に関する情報を含む構造情報の入力を受け付ける第2の入力手段と、
前記第1の入力手段によって入力が受け付けられた構造情報と、前記第2の入力手段によって入力が受け付けられた構造情報とに基づいて、前記化合物または生体高分子と前記タンパク質とのドッキングに関する情報を、前記タンパク質ごとに算出する算出手段と、
前記算出手段によって算出されたドッキングに関する情報を出力するドッキング情報出力手段と、
を備えたことを特徴とする機能予測支援装置。
【0058】
(付記7)ドッキング用データを収録したデータベースと接続し、
前記第2の入力手段は、前記データベースから情報の入力を受け付けることを特徴とする付記6に記載の機能予測支援装置。
【0059】
(付記8)前記データベースは、ドッキングに必要な情報として、活性部位の形状、静電ポテンシャルおよび疎水性領域の少なくとも一つを含むことを特徴とする付記7に記載の機能予測支援装置。
【0060】
【発明の効果】
以上説明したように、この発明によれば、タンパク質間の特異性およびタンパク質内の活性部位の特異性を迅速かつ効率的に検証することで、化合物の発見以降の新薬開発の工程を効率的におこなうことで、効果的な新薬開発を支援することが可能な機能予測支援方法、機能予測支援プログラム、機能予測支援装置が得られるという効果を奏する。
【図面の簡単な説明】
【図1】この発明の本実施の形態にかかる機能予測支援装置のハードウエア構成の一例を示すブロック図である。
【図2】この発明の本実施の形態にかかる機能予測支援装置の機能的構成を示す説明図である。
【図3】この発明の本実施の形態にかかる機能予測支援装置の別の機能的構成を示す説明図である。
【図4】出力結果の一覧の一例を示す説明図である。
【図5】この発明の本実施の形態にかかる機能予測支援装置の処理の手順を示すフローチャートである。
【図6】この発明の本実施の形態にかかる機能予測支援装置の代謝生成物予測処理の手順を示すフローチャートである。
【図7】この発明の本実施の形態にかかる機能予測支援装置に接続されるタンパク質情報データベースの概要を示す説明図である。
【図8】タンパク質情報データベースの生成の処理の手順を示すフローチャートである。
【符号の説明】
200 タンパク質情報DB
201 化合物/生体高分子構造情報入力部
202 タンパク質情報入力部
203 タンパク質−化合物/高分子ドッキング評価部
204 ドッキング情報出力部
300 代謝反応情報DB
301 代謝生成物予測部
701 既知文献情報
702 追加実験情報
703 活性部位情報抽出部

Claims (5)

  1. 既知または未知の、化合物または生体高分子の構造情報を入力する第1の入力工程と、
    複数のタンパク質の活性部位に関する情報を含む構造情報を入力する第2の入力工程と、
    前記第1の入力工程によって入力された構造情報と、前記第2の入力工程によって入力された構造情報とに基づいて、前記化合物または生体高分子と前記タンパク質とのドッキングに関する評価値を、前記タンパク質ごとに算出する算出工程と、
    前記算出工程によって算出されたドッキングに関する評価値を含むドッキング情報を出力するドッキング情報出力工程と、
    を含むことを特徴とする機能予測支援方法。
  2. 前記ドッキング情報出力工程は、前記算出工程によって算出された評価値に基づいて、前記化合物または生体高分子と結合する候補となるタンパク質のドッキング情報を一覧出力することを特徴とする請求項1に記載の機能予測支援方法。
  3. さらに、前記化合物または生体高分子が代謝された場合の構造を予測する予測工程を含み、
    前記第1の入力工程は、前記化合物または生体高分子の構造情報として、前記予測工程によって予測された構造に関する情報を入力することを特徴とする請求項1または2に記載の機能予測支援方法。
  4. 既知または未知の、化合物または生体高分子の構造情報を入力させる第1の入力工程と、
    複数のタンパク質の活性部位に関する情報を含む構造情報を入力させる第2の入力工程と、
    前記第1の入力工程によって入力された構造情報と、前記第2の入力工程によって入力された構造情報とに基づいて、前記化合物または生体高分子と前記タンパク質とのドッキングに関する情報を、前記タンパク質ごとに算出させる算出工程と、
    前記算出工程によって算出されたドッキングに関する情報を出力させるドッキング情報出力工程と、
    をコンピュータに実行させることを特徴とする機能予測支援プログラム。
  5. 既知または未知の、化合物または生体高分子の構造情報の入力を受け付ける第1の入力手段と、
    複数のタンパク質の活性部位に関する情報を含む構造情報の入力を受け付ける第2の入力手段と、
    前記第1の入力手段によって入力が受け付けられた構造情報と、前記第2の入力手段によって入力が受け付けられた構造情報とに基づいて、前記化合物または生体高分子と前記タンパク質とのドッキングに関する情報を、前記タンパク質ごとに算出する算出手段と、
    前記算出手段によって算出されたドッキングに関する情報を出力するドッキング情報出力手段と、
    を備えたことを特徴とする機能予測支援装置。
JP2002316757A 2002-10-30 2002-10-30 機能予測支援方法、機能予測支援プログラムおよび機能予測支援装置 Withdrawn JP2004152029A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002316757A JP2004152029A (ja) 2002-10-30 2002-10-30 機能予測支援方法、機能予測支援プログラムおよび機能予測支援装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002316757A JP2004152029A (ja) 2002-10-30 2002-10-30 機能予測支援方法、機能予測支援プログラムおよび機能予測支援装置

Publications (1)

Publication Number Publication Date
JP2004152029A true JP2004152029A (ja) 2004-05-27

Family

ID=32460367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002316757A Withdrawn JP2004152029A (ja) 2002-10-30 2002-10-30 機能予測支援方法、機能予測支援プログラムおよび機能予測支援装置

Country Status (1)

Country Link
JP (1) JP2004152029A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007058273A (ja) * 2005-08-22 2007-03-08 National Institute Of Advanced Industrial & Technology 複数のポリペプチド同士の結合体モデルを評価する結合体モデル評価装置、結合体モデル評価方法および結合体モデル評価プログラム
JP2009151406A (ja) * 2007-12-19 2009-07-09 National Institute Of Advanced Industrial & Technology タンパク質機能識別装置
JP2017504913A (ja) * 2013-11-15 2017-02-09 インフィニットバイオInfinitebio 治療設計のためのコンピュータ支援モデル化
JP2018092575A (ja) * 2016-10-27 2018-06-14 武田薬品工業株式会社 化合物の生物活性を予測するためのプログラム、装置及び方法
WO2018158916A1 (ja) * 2017-03-02 2018-09-07 富士通株式会社 化合物の原料物質の探索方法、及び探索装置、並びにプログラム
CN109887599A (zh) * 2019-02-25 2019-06-14 中国计量大学 一种基于神经网络的中医处方疗效推演方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007058273A (ja) * 2005-08-22 2007-03-08 National Institute Of Advanced Industrial & Technology 複数のポリペプチド同士の結合体モデルを評価する結合体モデル評価装置、結合体モデル評価方法および結合体モデル評価プログラム
JP2009151406A (ja) * 2007-12-19 2009-07-09 National Institute Of Advanced Industrial & Technology タンパク質機能識別装置
JP2017504913A (ja) * 2013-11-15 2017-02-09 インフィニットバイオInfinitebio 治療設計のためのコンピュータ支援モデル化
JP2018092575A (ja) * 2016-10-27 2018-06-14 武田薬品工業株式会社 化合物の生物活性を予測するためのプログラム、装置及び方法
JP7126337B2 (ja) 2016-10-27 2022-08-26 武田薬品工業株式会社 化合物の生物活性を予測するためのプログラム、装置及び方法
WO2018158916A1 (ja) * 2017-03-02 2018-09-07 富士通株式会社 化合物の原料物質の探索方法、及び探索装置、並びにプログラム
CN109887599A (zh) * 2019-02-25 2019-06-14 中国计量大学 一种基于神经网络的中医处方疗效推演方法

Similar Documents

Publication Publication Date Title
Dallakyan et al. Small-molecule library screening by docking with PyRx
Galindez et al. Lessons from the COVID-19 pandemic for advancing computational drug repurposing strategies
Smalley AI-powered drug discovery captures pharma interest
Adams et al. Estimating the cost of new drug development: is it really $802 million?
Ihlenfeldt et al. Enhanced CACTVS browser of the Open NCI Database
Venkatesh et al. Role of the development scientist in compound lead selection and optimization
Dang et al. A simple model predicts UGT-mediated metabolism
Gao et al. A comprehensive survey of small-molecule binding pockets in proteins
Liang et al. WebFEATURE: an interactive web tool for identifying and visualizing functional sites on macromolecular structures
Jacob et al. Efficient peptide–MHC-I binding prediction for alleles with few known binders
Sorich et al. Comparison of linear and nonlinear classification algorithms for the prediction of drug and chemical metabolism by human UDP-glucuronosyltransferase isoforms
Stank et al. TRAPP webserver: predicting protein binding site flexibility and detecting transient binding pockets
Taboureau et al. Established and emerging trends in computational drug discovery in the structural genomics era
Choudhury et al. Dynamics based pharmacophore models for screening potential inhibitors of mycobacterial cyclopropane synthase
Nero et al. Protein structure and computational drug discovery
Liu et al. Novel leverage of structural genomics
Ball et al. Funding high-throughput data sharing
Mirzaei et al. Rigid body energy minimization on manifolds for molecular docking
Badaoui et al. Combined free-energy calculation and machine learning methods for understanding ligand unbinding kinetics
Kurkinen et al. Getting docking into shape using negative image-based rescoring
Rácz et al. Molecular dynamics simulations and diversity selection by extended continuous similarity indices
Altman et al. Pharmacogenomics: will the promise be fulfilled?
Bajorath et al. Drug discovery and development in the era of big data
Ucisik et al. Pairwise additivity of energy components in protein-ligand binding: The HIV II protease-indinavir case
JP2004152029A (ja) 機能予測支援方法、機能予測支援プログラムおよび機能予測支援装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110