JP2004151178A - Optical fiber coupler - Google Patents

Optical fiber coupler Download PDF

Info

Publication number
JP2004151178A
JP2004151178A JP2002313787A JP2002313787A JP2004151178A JP 2004151178 A JP2004151178 A JP 2004151178A JP 2002313787 A JP2002313787 A JP 2002313787A JP 2002313787 A JP2002313787 A JP 2002313787A JP 2004151178 A JP2004151178 A JP 2004151178A
Authority
JP
Japan
Prior art keywords
fusion
mounting
case
substrate
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002313787A
Other languages
Japanese (ja)
Other versions
JP4041380B2 (en
Inventor
Michitaka Okuda
通孝 奥田
Hiroki Sakurai
弘樹 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002313787A priority Critical patent/JP4041380B2/en
Publication of JP2004151178A publication Critical patent/JP2004151178A/en
Application granted granted Critical
Publication of JP4041380B2 publication Critical patent/JP4041380B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Light Guides In General And Applications Therefor (AREA)
  • Mechanical Coupling Of Light Guides (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the mounting area of an optical circuit using a fiber fused stretchable optical component. <P>SOLUTION: In the fiber fused stretchable optical component in which a plurality of fibers are arrayed and then heated, fused and stretched, the fused stretchable part is fixed at the end of a substrate. From both ends of the fused stretchable part on the substrate, fibers are bent with a certain radius of curvature R and drawn out of a mounting case. As a result, the length of the coupler case is shortened, with the area for processing an extra fiber length reduced, thereby reducing the area for mounting parts. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は光通信システムにおいて、光を分岐結合、または合波分波するのに用いられる光ファイバカプラにおいて、その実装構造に関する。
【0002】
【従来の技術】
ファイバ融着延伸型光部品は、複数のファイバの保護被覆を剥がし、そのクラッド部を露出、それらを密着して並列、局部的に加熱し、複数のファイバの両側を引っ張ることで、外観がテーパ状又はEXP状の融着延伸部が構成される。その融着延伸部長を必要な長さに調整することで、複数のファイバ間のエバネセント結合による分岐結合、合波分波特性が制御、機能を付加することができ、接続部のない低損失な光部品として実現することができるものである。そうした従来の光ファイバカプラの構成例を図5に示す。その融着延伸部2を石英の基板3上に接着剤4等で固定、その後固定した基板2をケース6内に実装、ケースの両端をシール材5で封止して製作される(特許文献1参照)。
【0003】
ケース6の両側から出るファイバ1は、その後ある曲率半径rの円形に巻かれ、ファイバ余長処理をされる。
【0004】
【特許文献1】
特開平3−294805号公報
【0005】
【発明が解決しようとする課題】
図5の光ファイバカプラでは、光回路部の小形化を図ろうとして、ケース6aの長さを短くしても、部品両側から出ているファイバ1の余長処理の為、必要な曲率半径rでファイバを巻かねばならず、その分のスペースが不可欠である。
【0006】
余長処理を含めた必要基板面積S0は、概算
S0=(W+2z+2r)×(2r+D)
L:ケース6の長さ(=W+2z)
D:ケース6の幅
W:融着延伸部2の長さ
z:融着延伸部2端からケース6端までの長さ
で示される。
【0007】
従って、光回路部分が占める面積S0を減らすことは、従来の実装構成をとる限り、上式により実装時の必要面積が設定され、融着延伸部の短くしたり、予長処理径を小さくする以外手がなく困難である。よって、融着延伸型ファイバカプラを用いた光回路部の小形・高密度化は困難な状況にある。
【0008】
【課題を解決する為の手段】
上記課題を解決する為、本発明においては、複数の光ファイバを融着延伸し、該融着延伸部を基板上に載置してその両端部にて固定し、実装用のケースに収納してなる光ファイバカプラにおいて、上記融着延伸部の両端に連続する光ファイバを特定の曲率半径Rで曲げながら実装ケース外に導出することを特徴とする。
【0009】
また、上記融着延伸部を固定する基板が曲率半径Rで湾曲していることを特徴とする。
【0010】
さらに、上記融着延伸部両端に連続する光ファイバが、実装用のケースの端部側面から導出されていることを特徴とする。
【0011】
【発明の実施の形態】
以下、本発明の実施形態を説明する。
【0012】
図1は、本発明によるファイバカプラの実装構造の実施形態で、2本のファイバによる融着延伸部2を石英等の材料からなる基板3に載置し、その両端の2カ所で接着剤4により固定している。使用される接着剤4には、紫外線や可視光硬化型のアクリル系、もしくはエポキシ系のものが主に使用されている。尚、低融点硝子、ハンダ等を用いたソルダ類でもよい。尚基板3のファイバの接する両端部は、C面又はR面をとった形状にすれば、接したファイバに傷が付くことを防止できる。
【0013】
引き続き基板3の両端から導出されるファイバ1をある曲率半径Rで曲げ、実装用のケース6の両側の内周端でシリコン樹脂系のシール材5にて固定する。ケース6の両端から曲率半径Rを維持した状態でファイバ1を外に出し、そこから曲率半径rでファイバ1を丸めて余長処理を行ったものである。ここで基板3の両端からのファイバ1の曲率半径Rとファイバ余長処理の曲率半径rの関係は、
R≧r で示される。
【0014】
ファイバ余長処理の曲率半径rは、ファイバ1に付加される張力と故障率(Fit数)で設定され、通常ファイバ1に対し、Fit数1以下とするには、付加張力がない場合、余長処理の曲率半径rは20〜30mmの間で設定され、曲率半径rが小さい程、必要な実装面積は小さくなるが、Fit数は大きくなり、信頼性上好ましくない。
【0015】
図2は、本発明によるファイバカプラ実装構造の位置関係を示す図で、融着延伸部2を固定する基板3の長さをW、ケース6の長さをL、基板3の端部とケース6の端部との長さをz、基板3の厚さをd(ケース6の肉厚込み)、基板3端からケース6端までのファイバ1の曲率半径をR、ケース6端までの角度をθ、ケース幅をD(円筒形の場合、外径D)とする。
【0016】
ここから
z=R×sinθ
R=r/cosθ
すると、半径Rは、余長処理半径r、ケース長L、実装基板長Wからのθにより設定することができる。余長処理半径rが20〜30mmの場合、θを20°程度とすると、融着延伸部2端からケース6端までの長さz、基板3の両端からのファイバの曲率半径Rは、
7.3mm≦z≦10.9mm
21.3mm≦R≦31.9mm
となる。
【0017】
実装に必要な面積S1は、
S1=(W+2d+2Rcosθ)×(2r+D)
で示すことができる。
【0018】
その結果、図6(a)に示す本発明の光ファイバカプラは、図6(b)に示す従来例よりも面積を小さくすることができる。
【0019】
図3は、本発明によるファイバカプラの他の実施形態で、ここでは、基板3の両端からある曲率半径Rで出てくるファイバ1を固定する為、基板3の両端部を階段状にし、曲率半径Rで曲がるファイバ1を、基板3の下部の両端で、接着剤4により、もう1カ所づつ固定したものである。ケース6の両端部の側面にスリット等を入れ、両端から出るファイバを固定したものである。エバネセント結合を行う融着延伸部2を各2カ所づつの固定により、付加張力に対し変動せずしっかりとした固定をすることができる為、両端のファイバ1からの引っ張り強度、融着延伸部2の光学特性の安定化を向上させることができる。
【0020】
図3に示したように外装ケース6の断面形状を矩形状にし、1平面を延長することにより、両側にケース固定用の取り付け穴も付けることができる。この部分に入出力用ファイバ曲がって出され、取り付け穴方面から外れる為、取り付け穴を用いて容易に実装固定することができる。
【0021】
図4は、さらに他の実施形態を示しており、融着延伸部2を固定する基板3にある曲率半径Rを持たせたもので、この場合、融着延伸部2の固定部間距離がWである。ここで、Rcosθ=2rとすると、
R=2r/cosθ
となる。
【0022】
実装に必要な面積S2は
S2=2(R−d)(2r+D)
となる。
【0023】
ここで各実施例における必要な実装面積S0、S1、S2を簡単化の為(2r+D)で割って比較すると、
S0=W+20d+2r (z=10d)
S1=W+2d+2r
S2=W+2r (W=2r、R=2r)
従来の実施例のS0は、本発明の実施例S1に比較して18d大きくなる。本発明の実施例S2に対して、20d大きくなる。
【0024】
以上から明らかなように本発明のカプラ実装構造による融着延伸型カプラの必要な実装面積S1,S2は、従来の場合のS0に比較して小さくなる。
【0025】
【実施例】
実際にシングルモードファイバを使用し、融着延伸部を作製、図1の光ファイバカプラを製作した。使用基板は、石英製の長さ15mm、最大厚さ1mm基板断面が半円状のもので、分岐比1:1の3dBカプラとして製作した。融着延伸部を基板上に載せ可視光硬化型接着剤で、基板端2カ所で融着延伸部を固定した。基板端からR=25mmで曲げて、実装ケース端で、シリコン系のシール剤で固定、そのままケース外に同じ曲率半径r=25mmで巻き固定した。基板実装用ケース長は32mm、肉厚0.3mmのステンレス製のパイプを使用した。必要な実装面積S1は、S1=65×53=3,445mm となった。
【0026】
従来、この種のカプラのケース長は、L=45mm、外径D=3mmあり、余長処理半径r=25mmの場合、必要な実装基板面積は、S0=95×53=5,035mmである。
【0027】
本発明のファイバカプラの実装構造を使用することにより、従来に対し、
{1−3,445/5,035}×100=31.6%
と、約30%以上実装基板面積を削減することができた。
【0028】
【発明の効果】
以上説明したように本発明の光ファイバカプラは、融着延伸部の両端に連続する光ファイバを特定の曲率半径Rで曲げながら、実装ケース外に導出することにより、ファイバカプラ実装ケース長が短くでき、ファイバ予長処理面積を削減できる為、ファイバカプラ等の融着延伸型光部品の実装面積を減らすことができ、融着延伸型光部品を用いた光回路部の実装面積を削減、回路部の小型・高密度化を図ることができ、各部品の実装・固定を容易に行うことができる。
【図面の簡単な説明】
【図1】本発明による光ファイバカプラを示す図である。
【図2】本発明による光ファイバカプラを示す図である。
【図3】本発明による光ファイバカプラの他の実施形態を示す図である。
【図4】本発明による光ファイバカプラの他の実施形態を示す図である。
【図5】従来の光ファイバカプラを示す図である。
【図6】(a)(b)は本発明と従来の光ファイバカプラを示す図である。
【符号の説明】
1 ファイバ
2 融着延伸部
3 融着延伸部実装基板
4 融着延伸部固定用接着剤
5 シール材
6 基板実装用ケース
7 部品実装面積
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a mounting structure of an optical fiber coupler used for branching / coupling or multiplexing / demultiplexing light in an optical communication system.
[0002]
[Prior art]
The fiber fusion-stretched optical component has a tapered appearance by peeling off the protective coating of multiple fibers, exposing the cladding, closely contacting them and heating them in parallel and locally, and pulling both sides of the fibers. Or EXP-shaped fusion-stretched portion. By adjusting the length of the fusion-stretched portion to the required length, branching and coupling and demultiplexing characteristics by evanescent coupling between a plurality of fibers can be controlled and functions can be added. It can be realized as a simple optical component. FIG. 5 shows a configuration example of such a conventional optical fiber coupler. The fused extension 2 is fixed on a quartz substrate 3 with an adhesive 4 or the like, and then the fixed substrate 2 is mounted in a case 6 and both ends of the case are sealed with sealing materials 5 (Patent Document 1). 1).
[0003]
The fiber 1 exiting from both sides of the case 6 is thereafter wound into a circle having a certain radius of curvature r, and subjected to extra fiber length processing.
[0004]
[Patent Document 1]
JP-A-3-294805
[Problems to be solved by the invention]
In the optical fiber coupler shown in FIG. 5, even if the length of the case 6a is shortened in order to reduce the size of the optical circuit portion, the required radius of curvature r In this case, the fiber must be wound, and that space is indispensable.
[0006]
The required substrate area S0 including the extra length processing is approximately calculated as S0 = (W + 2z + 2r) × (2r + D)
L: Length of case 6 (= W + 2z)
D: Width of the case 6 W: Length of the fusion-stretched portion 2 z: Length from the end of the fusion-stretched portion 2 to the end of the case 6
[0007]
Therefore, to reduce the area S0 occupied by the optical circuit portion, as long as the conventional mounting configuration is adopted, the required area at the time of mounting is set by the above equation, and the fusion-spread portion is shortened and the pre-length processing diameter is reduced. It is difficult because there is no other hand. Therefore, it is difficult to reduce the size and the density of the optical circuit unit using the fusion-stretched fiber coupler.
[0008]
[Means for solving the problem]
In order to solve the above problems, in the present invention, a plurality of optical fibers are fusion-stretched, the fusion-stretched portion is placed on a substrate, fixed at both ends thereof, and housed in a mounting case. The optical fiber coupler is characterized in that an optical fiber connected to both ends of the fusion-stretched portion is led out of the mounting case while being bent at a specific radius of curvature R.
[0009]
Further, the substrate for fixing the fusion-bonded stretched portion is curved with a radius of curvature R.
[0010]
Further, an optical fiber continuous to both ends of the fusion-bonded extension portion is drawn out from an end side surface of the mounting case.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
[0012]
FIG. 1 shows an embodiment of a mounting structure of a fiber coupler according to the present invention, in which a fusion-stretched portion 2 of two fibers is placed on a substrate 3 made of a material such as quartz, and an adhesive 4 is provided at two places at both ends thereof. It is fixed by. As the adhesive 4 to be used, an ultraviolet or visible light curable acrylic or epoxy-based adhesive is mainly used. Note that solders using low melting point glass, solder, or the like may be used. If both ends of the substrate 3 where the fibers are in contact are formed into a shape having a C surface or an R surface, it is possible to prevent the contacted fibers from being damaged.
[0013]
Subsequently, the fiber 1 led out from both ends of the substrate 3 is bent at a certain radius of curvature R, and fixed at both inner peripheral ends of the mounting case 6 with a silicone resin-based sealing material 5. The fiber 1 is taken out from both ends of the case 6 while maintaining the radius of curvature R, and the fiber 1 is rounded with the radius of curvature r from there, and the excess length processing is performed. Here, the relationship between the radius of curvature R of the fiber 1 from both ends of the substrate 3 and the radius of curvature r of the extra fiber length processing is as follows.
It is represented by R ≧ r.
[0014]
The radius of curvature r of the fiber surplus length processing is set by the tension applied to the fiber 1 and the failure rate (the number of Fits). The radius of curvature r of the long process is set between 20 and 30 mm. The smaller the radius of curvature r, the smaller the required mounting area, but the larger the number of Fits, which is not preferable in terms of reliability.
[0015]
FIG. 2 is a diagram showing the positional relationship of the fiber coupler mounting structure according to the present invention, in which the length of the substrate 3 for fixing the fusion-spreading section 2 is W, the length of the case 6 is L, and the end of the substrate 3 and the case. The length of the fiber 1 from the end of the substrate 3 to the end of the case 6 is R, and the angle from the end of the case 6 to the end of the case 6 is z. Is θ, and the case width is D (outer diameter D in the case of a cylindrical shape).
[0016]
From here z = R × sin θ
R = r / cos θ
Then, the radius R can be set by θ from the surplus processing radius r, the case length L, and the mounting substrate length W. When the surplus processing radius r is 20 to 30 mm and θ is about 20 °, the length z from the end of the fusion-stretched portion 2 to the end of the case 6 and the radius of curvature R of the fiber from both ends of the substrate 3 are:
7.3mm ≦ z ≦ 10.9mm
21.3 mm ≦ R ≦ 31.9 mm
It becomes.
[0017]
The area S1 required for mounting is
S1 = (W + 2d + 2Rcosθ) × (2r + D)
Can be indicated by
[0018]
As a result, the area of the optical fiber coupler of the present invention shown in FIG. 6A can be smaller than that of the conventional example shown in FIG. 6B.
[0019]
FIG. 3 shows another embodiment of the fiber coupler according to the present invention. Here, in order to fix the fiber 1 emerging from both ends of the substrate 3 with a certain radius of curvature R, both ends of the substrate 3 are stepped, and the curvature is changed. The fiber 1 that bends at the radius R is fixed at the other end of the lower portion of the substrate 3 by an adhesive 4 at another position. A slit or the like is formed in the side surface of both ends of the case 6 to fix the fibers coming out of both ends. By fixing the fusion-spreading section 2 for performing evanescent coupling at two locations, it is possible to firmly fix the fusion-stretching section 2 without changing the applied tension. Can improve the stabilization of the optical characteristics.
[0020]
As shown in FIG. 3, by making the cross-sectional shape of the outer case 6 rectangular and extending one plane, mounting holes for fixing the case can be provided on both sides. Since the input / output fiber is bent out of this portion and comes off the mounting hole, it can be easily mounted and fixed using the mounting hole.
[0021]
FIG. 4 shows still another embodiment, in which a substrate 3 for fixing the fusion-bonding and stretching portion 2 has a certain curvature radius R. In this case, the distance between the fixing portions of the fusion-bonding and stretching portion 2 is small. W. Here, assuming that Rcos θ = 2r,
R = 2r / cos θ
It becomes.
[0022]
The area S2 required for mounting is S2 = 2 (R−d) (2r + D)
It becomes.
[0023]
Here, when the required mounting areas S0, S1, and S2 in each embodiment are compared by dividing them by (2r + D) for simplification,
S0 = W + 20d + 2r (z = 10d)
S1 = W + 2d + 2r
S2 = W + 2r (W = 2r, R = 2r)
S0 of the conventional example is larger by 18d than the example S1 of the present invention. It is 20d larger than the embodiment S2 of the present invention.
[0024]
As is clear from the above, the necessary mounting areas S1 and S2 of the fusion-stretching coupler according to the coupler mounting structure of the present invention are smaller than S0 in the conventional case.
[0025]
【Example】
An optical fiber coupler shown in FIG. 1 was manufactured by actually using a single mode fiber to form a fusion-stretched portion. The substrate used was a 3 dB coupler made of quartz having a length of 15 mm, a maximum thickness of 1 mm, and a semicircular cross section of the substrate and having a branching ratio of 1: 1. The fusion-stretched portion was placed on the substrate, and the fusion-stretched portion was fixed at two positions on the substrate end with a visible light curable adhesive. The substrate was bent at R = 25 mm from the end, fixed at the end of the mounting case with a silicon-based sealant, and fixed as it was outside the case with the same radius of curvature r = 25 mm. A stainless steel pipe having a board mounting case length of 32 mm and a wall thickness of 0.3 mm was used. The required mounting area S1 was S1 = 65 × 53 = 3,445 mm 2 .
[0026]
Conventionally, the case length of this type of coupler is L = 45 mm, the outer diameter D = 3 mm, and when the surplus processing radius r = 25 mm, the required mounting board area is S0 = 95 × 53 = 5,035 mm 2 . is there.
[0027]
By using the mounting structure of the fiber coupler of the present invention,
{1-3,445 / 5,035} × 100 = 31.6%
As a result, the mounting substrate area can be reduced by about 30% or more.
[0028]
【The invention's effect】
As described above, the optical fiber coupler of the present invention has a short fiber coupler mounting case length by being led out of the mounting case while bending an optical fiber continuous at both ends of the fusion-spread portion with a specific radius of curvature R. Since the area for prefabricated fiber can be reduced, the mounting area for fusion-stretched optical components such as fiber couplers can be reduced, and the mounting area for optical circuit units using fusion-stretched optical components can be reduced. The size and density of the unit can be reduced, and the mounting and fixing of each component can be easily performed.
[Brief description of the drawings]
FIG. 1 is a diagram showing an optical fiber coupler according to the present invention.
FIG. 2 is a diagram illustrating an optical fiber coupler according to the present invention.
FIG. 3 is a diagram showing another embodiment of the optical fiber coupler according to the present invention.
FIG. 4 is a diagram showing another embodiment of the optical fiber coupler according to the present invention.
FIG. 5 is a diagram showing a conventional optical fiber coupler.
FIGS. 6A and 6B are diagrams showing the present invention and a conventional optical fiber coupler.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 fiber 2 fusion-spreading section 3 fusion-stretching section mounting board 4 adhesive for fixing fusion-spreading section 5 sealing material 6 board mounting case 7 component mounting area

Claims (3)

複数の光ファイバを融着延伸し、該融着延伸部を基板上に載置してその両端部にて固定し、実装用のケースに収納してなる光ファイバカプラにおいて、上記融着延伸部の両端に連続する光ファイバを所定の曲率半径Rで曲げながら実装ケース外に導出することを特徴とする光ファイバカプラ。A plurality of optical fibers are fusion-stretched, the fusion-stretched portion is placed on a substrate, fixed at both ends thereof, and the optical fiber coupler is housed in a mounting case. An optical fiber coupler which leads out of a mounting case while bending an optical fiber connected to both ends of the optical fiber at a predetermined radius of curvature R. 上記融着延伸部を固定する基板が曲率半径Rで湾曲していることを特徴とする請求項1記載のファイバカプラの実装構造。2. The mounting structure for a fiber coupler according to claim 1, wherein the substrate for fixing the fusion-spread portion is curved with a radius of curvature R. 上記融着延伸部両端に連続する光ファイバが、実装用のケースの端部側面から導出されていることを特徴とする請求項1又は2記載の光ファイバカプラ。3. The optical fiber coupler according to claim 1, wherein the optical fibers continuous with both ends of the fusion-spread portion are led out from side surfaces of end portions of the mounting case.
JP2002313787A 2002-10-29 2002-10-29 Optical fiber coupler Expired - Fee Related JP4041380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002313787A JP4041380B2 (en) 2002-10-29 2002-10-29 Optical fiber coupler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002313787A JP4041380B2 (en) 2002-10-29 2002-10-29 Optical fiber coupler

Publications (2)

Publication Number Publication Date
JP2004151178A true JP2004151178A (en) 2004-05-27
JP4041380B2 JP4041380B2 (en) 2008-01-30

Family

ID=32458287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002313787A Expired - Fee Related JP4041380B2 (en) 2002-10-29 2002-10-29 Optical fiber coupler

Country Status (1)

Country Link
JP (1) JP4041380B2 (en)

Also Published As

Publication number Publication date
JP4041380B2 (en) 2008-01-30

Similar Documents

Publication Publication Date Title
KR100386550B1 (en) Flexfoils having connector tabs
ATE184709T1 (en) MINIATURE FIBER OPTICAL BENDING APPARATUS AND METHOD
EP2275848A3 (en) Fiber optic cable and furcation module
WO2008023544A1 (en) Light path converting member and connector for light path converted light
JPH0534540A (en) Method for reinforcing optical fiber coupler
JP2001108859A (en) Small bent-splicing of optical fiber, and its forming method
JP2004151178A (en) Optical fiber coupler
GB2324167A (en) Optical waveguide splice protection system
JP2003322728A (en) Optical connecting component
JP2016090614A (en) Optical device
JP2016200763A (en) Optical integrated circuit type optical device
CA2190075A1 (en) Optical coupler
JPH11231166A (en) Optical fiber array block
JP2003156662A (en) Optical fiber array and method for manufacturing the same
US6381396B1 (en) Optical interconnection apparatus
JP3441206B2 (en) Optical fiber alignment board
JP3199170B2 (en) Optical wiring component and method of manufacturing the same
ATE230120T1 (en) OPTICAL COUPLING ELEMENT
BR0113332A (en) Fiber optic structure, fiber optic preform, and methods for fabricating a perforated fiber preform and a perforated fiber, and for guiding light along a perforated fiber structure
JPH08122553A (en) Fixing device for optical fiber fusion-connected
JP4125621B2 (en) Optical fiber sheet
JP2002221625A (en) Optical fiber array part and connecting method with optical part using it
JP2003287645A (en) Fiber array type optical component
JPH04145670A (en) Optical wiring circuit substrate
JPH09133833A (en) Structure for fixing optical fiber ribbon to optical fiber array member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071109

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131116

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees