【0001】
【発明の属する技術分野】
この発明は、測位用衛星などの測位用信号を送信する送信機からの信号を受信して、受信点の測位を行う測位装置およびその測位の為のキャリア位相差の整数バイアス決定方法に関するものである。
【0002】
【従来の技術】
従来、GPSを用いた高精度測位が必要な場合、GPS衛星から送信される信号のキャリア位相を用いた相対測位が行われている。すなわち、基準点と測位点で複数のGPS衛星のうち、1つを基準の衛星とし、その基準の衛星と他の衛星の組で一重または二重のキャリア位相差を観測し、その観測キャリア位相差に整数バイアスを加えたキャリア位相差を基にして相対測位が行われている。このような測位装置は、例えば3つのGPSアンテナを移動体に配置しておき、それらの相対位置関係を測位することによって、移動体の方位や姿勢を測定するコンパスとして用いられている。
【0003】
但し、キャリア位相差の整数バイアスは直接的には求めることができず、検定処理によって求められる。従来の検定方法は次のとおりである。まず、測位点の概略絶対位置と基準点に対する測位点の相対位置に基づき、例えば単独測位により求められた測位点の概略位置で、基準とするアンテナの位置(基準点)に対する他のアンテナの位置(測位点)となるべき、複数組の衛星による複数のキャリア位相の等位相差面が交差する点をキャリア位相差の整数バイアスの候補点として求め、全ての候補点について、対象とする候補点がまず真の候補点(正解の整数バイアス)と仮定し、その整数値の前後1〜5サイクル程度離れた範囲内で各候補点のそれぞれについて残差を求める。次に、時間経過にともなって残差が所定の閾値を超える候補点を捨てる操作を行い、最終的に1つの候補点を選び出し、それを真の整数バイアスとして決定する(例えば、非特許文献1参照。)。
【0004】
図6は6つの候補点と各キャリア位相差の位置線との関係を示している。図6において(P1−B)、(P2−B)、(S1−B)は、2つのGPS衛星の組によって生じるキャリア位相の等位相差面と水平面との交差により生じる線(以下、「位置線」という。)であり、位置線(P1−B)、(P2−B)による候補点から、他の位置線(S1−B)に下ろした垂線が残差である。
【0005】
一般に残差は0〜0.5の値を採り、正解でない候補点の残差は、GPS衛星の移動による位置線の回転にともなって0〜0.5の範囲で増減する。したがって正解の候補点でない残差は、いずれ所定サイクル(たとえば1/5サイクル)を超えることになる。これに対して、正解の候補点の残差は0.5サイクル未満の或る値(たとえば1/5サイクル)におさまり、時間が経過しても、その値を超えることはない。そして真の位置から遠い候補点ほど残差の変化が速いため、早期に所定サイクルを超える。従って残差が所定サイクルを超えた候補点を捨てる処理(以下この処理を「ふるい落とし」という。)を一定時間行うことにより、真の位置から遠い候補点ほど早く捨てられる確率が高く、真の位置に近い候補点ほど残っている確率が高くなる。
【0006】
【非特許文献1】
編著・日本測地学会「新訂版GPS−人口衛星による精密測位システム−」社団法人 日本測量協会1991年11月 1日第2刷 p.156−157
【0007】
【発明が解決しようとする課題】
ところが、このような整数バイアスの決定を行う際、ノイズの影響などによって残差が偶然に最小となる候補点が生じる場合があるので、一定時間をかけて観測を継続し、平均化などの統計的手法でノイズによる影響を受けないようにする必要がある。そのため真の整数バイアスの決定のために長時間を要していた。通常、前記検定には早くてもGPS衛星からの信号のL1帯のキャリア信号を用いる一周波GPS受信機で10分程度必要であり、L1,L2の両方のキャリア信号を利用する二周波GPS受信機で1分程度必要であった。
【0008】
従って、GPS受信機の電源投入後、上記整数バイアスの決定に要する時間を待たなければ測位結果が得られなかった。
【0009】
この発明の目的は、整数バイアスの決定に要する時間を大幅に短縮化して、早期に相対測位の結果を出力できるようにした測位装置およびその整数バイアス決定方法を提供することにある。
【0010】
【課題を解決するための手段】
この発明は、基準点と測位点で、複数の測位用送信機のうち一つを基準の測位用送信機とし、該基準の測位用送信機と他の測位用送信機を組として一重のまたは二重のキャリア位相差を観測し、該キャリア位相差の整数バイアスを決定して測位点の測位を行う測位装置において、測位点に関する事前の位置精度に応じた等位相差面の間隔が得られる、複数組の測位用送信機を選択するとともに、該複数組の測位用送信機による複数のキャリア位相の等位相差面の交点である候補点のうち、正解の整数バイアスに相当する真の候補点を求める候補点決定手段を備えたことを特徴としている。
【0011】
これにより、検定すべき候補点の数を初めから大幅に少なくでき、そのことによって極めて短時間で精度の高い測位結果を得ることができる。
【0012】
また、この発明は、前記候補点決定手段により決定された候補点の位置精度に応じて、等位相差面の間隔が順次狭くなるように、候補点決定手段による候補点の決定を繰り返す制御手段を備えたことを特徴としている。
【0013】
これにより、検定すべき候補点の数を常に少なくしながら等位相差面の間隔を順次狭くしていくことによって、極めて短時間のうちに最終的に高精度な測位結果を得ることができる。
【0014】
また、この発明は、前記制御手段が、測位点の位置精度に応じて候補点が1つだけ生じるように測位用送信機の組を選択するものとする。これにより、複数の候補点から1つを決定するための検定処理が不要となり、整数バイアスの決定に要する時間がより一層短縮化できる。
【0015】
【発明の実施の形態】
この発明の実施形態では、3つのGPSアンテナを用い、その3つのGPSアンテナの相対位置を測位して、その3つのGPSアンテナを搭載した移動体の方位や姿勢を求めるサテライトコンパスを例とする。
【0016】
図1はその全体の構成を示すブロック図である。ここで11,21,31はそれぞれGPSアンテナであり、これらを移動体の定常時の水平面内で正三角形を成すように配置している。10,20,30はそれぞれGPS受信機である。12,22,32は、GPSアンテナ11,21,31の受信信号を中間周波信号に周波数変換し、所定周期でサンプリングし、順次デジタルデータ列に変換してGPS受信機10,20,30に与えるダウンコンバータである。
【0017】
40は、3つのGPS受信機10,20,30が求めた各GPS衛星からの受信信号の観測キャリア位相のデータを入力し、後述するように各キャリア位相差の整数バイアスを決定し、3つのGPSアンテナ11,21,31の相対測位を行い、方位および姿勢データを出力する測位演算部である。
【0018】
GPS受信機10において、13は受信信号処理部であり、C/Aコードの相関器およびキャリア信号の相関器を、それぞれ複数チャンネル分備えている。CPU14は各GPS衛星からの受信信号のキャリア位相を観測し、通信インターフェース17を介して測位演算部40へ出力する。ROM15にはCPU14の実行すべきプログラムを予め書き込んでいて、RAM16は演算処理の際ワーキングエリアとして用いる。他のGPS受信機20,30についても、10と同様の構成である。
【0019】
測位演算部40においてCPU42は、各GPS受信機が求めた各GPS衛星からの受信信号のキャリア位相のデータを通信インターフェース41から読み取り、後述する方法によってGPSアンテナ11,21,31の相対位置を測位する。また、これら3つのアンテナを搭載した移動体の方位および姿勢のデータを通信インターフェース45を介してホスト装置へ出力する。ROM43にはCPU42の実行すべきプログラムを予め書き込んでいる。RAM44はその実行に際してのワーキングエリアとして用いる。
【0020】
図2は各GPS受信機10,20,30の処理内容を示すフローチャートである。処理の流れを大きく分けると、まず各GPS衛星からの受信信号のサーチを行い、受信信号のC/Aコードおよびキャリア位相の捕捉追尾を行う(s1)。そして、各GPS衛星からの受信信号の観測キャリア位相を求める(s2)。この観測キャリア位相のデータを時刻データおよび衛星番号と共に1組のデータとして測位演算部40へ送信する(s3)。以上の処理を各GPS受信機が繰り返すことによって、測位演算部は3つのGPSアンテナ11,21,31の位置における観測キャリア位相のデータを収集する。
【0021】
図3は測位演算部40の行う整数バイアス決定の為の処理手順を示すフローチャートである。まず、2つのGPS衛星を組としてキャリア位相の二重差(以下、「二重位相差」という。)を求めるための対を成す2つのGPS衛星の組を3組求める(s11)。ここで、キャリア位相の等位相差面の間隔が、位置精度に応じた位置曖昧さの2倍以上になるような関係となる2つのGPS衛星を3組求める。この「位置曖昧さ」とは、この時点で既に求まっている測位点位置の位置精度が半径rの球で表されるとき、その半径rのことである。例えば3つのアンテナのうち、ある1つのアンテナの位置を基準点とし、他の2つのアンテナの位置を測位点とするが、2つのアンテナ間の距離が45cm以内である場合、それぞれの等位相差面の間隔がその2倍の90cm以上となるように3組のGPS衛星の組を選択する。
なお、この整数バイアス決定処理を行う時点で、GPSアンテナ11,21,31のいずれかにおける位置を既に単独測位している。
【0022】
ここで、図4を参照して衛星の配置とキャリア位相の等位相差面の間隔との関係を示す。ここで、Oは基準アンテナの位置であり、Oを中心として半径45cmの球内に測位点が存在することになる。但し、ここでは、2次元平面上で説明するために、2つのGPS衛星の組によって生じる等位相差面と水平面との交差により生じる線(位置線)の例を示している。したがって、図4においては、Cで示す半径45cmの円内に測位点が存在することになる。この円内に引いた複数の位置線のうち太線はGPS衛星SbとScの組によるもの、細線はGPS衛星SaとSdの組によるものである。このように、等位相差面の間隔は、2つの衛星を見込む角度の半分の正弦に反比例する。従って、測位点から2つのGPS衛星を見込む角度が180度の時、等位相差面の間隔が最も狭くなり、この時の間隔はキャリア波長の半分(約9cm)である。
【0023】
従来はこのようなキャリア位相を用いた相対測位の精度を最も高めるために、等位相差面の間隔が最も狭くなるようなGPS衛星の組み合わせを選んで候補点を求めるようにしていた。ここでは寧ろ、等位相差面の間隔が広くなって、キャリア位相の等位相差面の間隔が、位置精度に応じた位置曖昧さの2倍以上になるようにGPS衛星の組を選択する。
【0024】
図5は等位相差面(位置線)の間隔と候補点の生じる例を示す図である。ここでは、図4の場合と同様に、2次元平面上で説明するために、3つのGPS衛星による2つの組によって生じる2組の位置線の例を示している。
【0025】
図5の(A)において、円C0は基準アンテナの位置を中心Oとする半径45cmの円である。P1は2組の衛星による2組の位置線によって生じる交点である。このように測位点の位置曖昧さを示す円内に生じる位置線の交点P1が単一であれば、その候補点P1が直ちに真の候補点として求まる。これにより、各組の二重位相差の整数バイアスを決定する。例えば、GPSアンテナの間隔が45cmであれば、等位相差面の間隔が90cm以上になるような衛星の組み合わせを選択する。この時の組み合わせた衛星の見込む角度が11.5度以内であれば等位相差面の最短間隔9cmの10倍以上となる。等位相差面の間隔が最も狭い時のその等位相差面の誤差はおおよそ最大2cmであることが知られているから、その時の測位誤差も10倍の20cm程度となる。このことは見方を変えれば、既にこの段階で20cmの精度で測位点の測位ができたことになる。
【0026】
図3に戻って、このように候補点が1点であれば、次に等位相差面の間隔が次の段階に狭くなるような衛星の組み合わせを3組求める(s12→s14→s11)。この等位相差面の間隔は、既に求められている位置の曖昧さの2倍以上となるように定める。そのことによって、上記曖昧さの範囲内に存在する候補点は1つに限られる。ここでは、20cmの精度で測位点の位置が既に求められているので、等位相面の間隔がその2倍の40cmとなるような衛星の組み合わせを選択する。この時の候補点も1点だけとなり、10cmの精度で測位点の位置が求まったことになる。
【0027】
例えば、図5の(B)に示すように、等位相差面(この例では二次元で表しているので位置線)の間隔を、図5の(A)に示した場合より狭くして、上記位置曖昧さの範囲内に候補点P2が1つだけ存在するような間隔となるように衛星の組を選択する。ここでP1は図5の(A)に示したP1の位置であり、前回決定した候補点である。C1はこのP1を中心として、その位置の曖昧さを表す円である。この円C1の半径は20cmである。
【0028】
図3のステップs11の処理を、等位相差面の間隔が最も狭くなるまで繰り返す。図5の(C)は図5の(B)からさらに次の段階での例を示している。ここで、点P2と円C1は図5の(B)に示したP2,C1にそれぞれ対応している。位置線の間隔を狭くして、上述した場合と同様にして単一の候補点P3を求め、それに相当する整数バイアスを検定することなく直接決定する。
【0029】
このような処理を繰り返して、最終的に等位相差面の間隔を最も狭くして、2cm精度の位置精度で測位点の相対位置を求める。
【0030】
上述の例では、候補点が常に1点だけ求まるようにGPS衛星の組を選択できた場合について述べたが、受信可能な衛星の配置によっては、等位相差面の間隔を十分に広くとることができず、上記曖昧さの範囲内に生じる候補点が複数生じる場合もある。その場合には従来と同様の方法により複数の候補点から真の候補点(正解の整数バイアス)を検定し、ふるい落としの処理を行う(s13)。但し、検定すべき候補点の数は従来とは異なり、極めて限られた点数となっているので、この検定および振るい落としに要する時間は十分に短くすることができる。
【0031】
その後、決定した3組のキャリア二重位相差の整数バイアスと、それらの観測位相差(小数部)とから整数バイアスを含めた真の二重位相差を求める(s15)。そして、その時刻での衛星位置とキャリア位相差とから測位点の位置を求める(s15→s16)。すなわち3つのGPSアンテナ11,21,31のうちいずれか1つを基準アンテナとし、他の2つのアンテナの相対位置を求め、この2つのアンテナの相対位置から、3つのGPSアンテナ11,21,31が成す平面の方位と姿勢を求め、これを出力する(s17)。
【0032】
なお、この発明によれば、キャリア位相の等位相差面の間隔を順次狭めていく段階で、視野内の多数のGPS衛星の組み合わせによるキャリア位相差の整数バイアスを求めていくことになるが、2つのGPS衛星の組とするいくつかの組のすべての組についてキャリア位相差の整数バイアスを決定する必要はない。例えば、3つのGPS衛星A,B,Cがあって、A−Bの組とA−Cの組についてキャリア位相差の整数バイアスを決定すれば、B−Cの組についての整数バイアスは、単にA−Bの整数バイアスからA−Bの整数バイアスを引くことによって直ちに求めることができる。このような方法によりGPS衛星の所望の組についてキャリア位相差の整数バイアスを求めることによって、全体の処理時間をさらに短縮化できる。
【0033】
以上に示した実施形態では、基準点に対する測位点の位置が、予め定まった範囲内に存在するものを例にしたが、基準点に対する測位点の位置範囲が不定である場合には、初めに単独測位で測位点の位置を測位し、その位置精度に応じた等位相差面の間隔が得られるように、GPS衛星の組を選択する。例えば、静止衛星を用いて誤差補正を行った場合、数十cmの位置精度で単独測位可能であるので、最初の等位相差面の間隔が1m程度と広くなるように、GPS衛星の組を選択すればよい。
【0034】
また、基準点のGPSアンテナ、測位点のGPSアンテナ、および2つのGPS衛星を組としてキャリア位相の二重差(二重位相差)を求め、その等位相差面に基づいて整数バイアスを求めるようにしたが、基準点のGPSアンテナの位置と測位点のGPSアンテナの位置で、それぞれ2つのGPS衛星を組としてキャリア位相の一重差(一重位相差)を求め、その等位相差面に基づいて整数バイアスを求めるようにしてもよい。
【0035】
また、GPS衛星を測位用送信機の例として挙げたが、GPS衛星から送信される電波と同じフォーマットの測位用信号を送信する測位用送信機を用いてもよい。例えば、その測位用送信機を、GPS衛星からの電波が届かない場所に設置しておき、測位装置が、GPS衛星からの電波および設置された測位用送信機からの電波を適宜受信するように構成してもよい。これによれば、例えば地下街などにおいても、測位が可能となる。
【0036】
また、測位用送信機が送信する電波は、GPSに則ったフォーマットである必要はなく、任意である。また、電波である必要はなく、光や音波であってもよい。すなわち、複数の測位用送信機から基準局および受信局の受信点までのキャリア位相の差を求め、このキャリア位相の差を基に、基準点に対する測位点の位置を測位する場合に同様に適用できる。
【0037】
【発明の効果】
この発明によれば、従来のような多数の候補点に対する検定およびふるい落としの処理を行う必要が無いので、極めて短時間のうちにキャリア位相差の整数バイアスを決定することができる。そのため、受信機の電源投入後、極短時間のうちに測位結果を出力することが可能となる。
【0038】
特に、検定すべき候補点の数を常に少なくしながら等位相差面の間隔を順次狭くしていくことによって、極めて短時間のうちに最終的に高精度な測位結果を得ることができる。
【0039】
さらに、測位点の位置精度に応じて候補点が可能な限り1つだけ生じるように測位用送信機の組を選択すれば、複数の候補点から1つを決定するための検定処理が全く不要となり、整数バイアスの決定に要する時間がより一層短縮化できる。
【図面の簡単な説明】
【図1】実施形態に係るサテライトコンパスの構成を示すブロック図
【図2】同サテライトコンパスにおける各GPS受信機での処理内容を示すフローチャート
【図3】同サテライトコンパスにおける測位演算部での整数バイアス決定の処理手順を示すフローチャート
【図4】衛星の位置と等位相差面(位置線)の間隔との対応関係の例を示す図
【図5】等位相差面(位置線)の間隔と候補点の生じる例を示す図
【図6】候補点の検定時に用いる残差の例を示す図
【符号の説明】
10,20,30−GPS受信機
11,21,31−GPSアンテナ
12,22,32−ダウンコンバータ
40−測位演算部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a positioning device that receives a signal from a transmitter that transmits a positioning signal such as a positioning satellite, and performs positioning of a receiving point, and a method of determining an integer bias of a carrier phase difference for the positioning. is there.
[0002]
[Prior art]
Conventionally, when high-accuracy positioning using GPS is required, relative positioning using the carrier phase of a signal transmitted from a GPS satellite has been performed. That is, one of a plurality of GPS satellites is used as a reference satellite at a reference point and a positioning point, and a single or double carrier phase difference is observed by a set of the reference satellite and another satellite, and the observed carrier position is determined. Relative positioning is performed based on a carrier phase difference obtained by adding an integer bias to the phase difference. Such a positioning device is used as a compass that measures, for example, the orientation and posture of a moving object by arranging, for example, three GPS antennas on the moving object and measuring the relative positional relationship between them.
[0003]
However, the integer bias of the carrier phase difference cannot be directly obtained, but is obtained by a test process. The conventional test method is as follows. First, based on the approximate absolute position of the positioning point and the relative position of the positioning point with respect to the reference point, for example, the approximate position of the positioning point obtained by independent positioning, the position of another antenna relative to the position of the reference antenna (reference point) A point where equal phase difference planes of a plurality of carrier phases by a plurality of sets of satellites to be (positioning points) intersect is obtained as a candidate point of an integer bias of a carrier phase difference. Is assumed to be a true candidate point (correct integer bias), and the residual is determined for each candidate point within a range of about 1 to 5 cycles before and after the integer value. Next, an operation of discarding candidate points whose residuals exceed a predetermined threshold value with the passage of time is performed, and finally one candidate point is selected and determined as a true integer bias (for example, Non-Patent Document 1). reference.).
[0004]
FIG. 6 shows the relationship between the six candidate points and the position line of each carrier phase difference. In FIG. 6, (P1-B), (P2-B), and (S1-B) denote lines (hereinafter referred to as “positions”) generated by the intersection of a horizontal plane with an equal phase difference plane of carrier phases generated by a pair of two GPS satellites. This is referred to as a “line”), and a perpendicular drawn from a candidate point by the position lines (P1-B) and (P2-B) to another position line (S1-B) is a residual.
[0005]
Generally, the residual takes a value of 0 to 0.5, and the residual of a candidate point that is not the correct answer increases or decreases in the range of 0 to 0.5 with the rotation of the position line due to the movement of the GPS satellite. Therefore, the residual that is not a correct candidate point will eventually exceed a predetermined cycle (for example, 1/5 cycle). On the other hand, the residual of the correct candidate point falls to a certain value of less than 0.5 cycle (for example, 1/5 cycle), and does not exceed the value even if time passes. Then, the candidate point farther from the true position has a faster change in the residual, so that the predetermined point is exceeded earlier. Therefore, by performing a process for discarding candidate points whose residuals exceed a predetermined cycle (hereinafter, this process is referred to as “sieving-off”) for a certain period of time, a candidate point farther from the true position is more likely to be discarded earlier, The higher the candidate point is, the higher the probability of remaining.
[0006]
[Non-patent document 1]
Edited by The Geodetic Society of Japan, "Newly Revised GPS-Precise Positioning System Using Artificial Satellites-" The Japan Survey Association, Nov. 1, 1991, second print, p. 156-157
[0007]
[Problems to be solved by the invention]
However, when determining such an integer bias, there may be a case where a candidate point where the residual is minimized by chance due to the influence of noise or the like. It is necessary to avoid the influence by the noise by a technical method. Therefore, it took a long time to determine the true integer bias. Normally, the above-described verification requires at least 10 minutes with a single-frequency GPS receiver using an L1 band carrier signal of a signal from a GPS satellite at the earliest, and a dual-frequency GPS reception using both L1 and L2 carrier signals. It took about one minute by machine.
[0008]
Therefore, after turning on the power of the GPS receiver, the positioning result cannot be obtained unless the time required for determining the integer bias is waited.
[0009]
SUMMARY OF THE INVENTION An object of the present invention is to provide a positioning apparatus and a method for determining an integer bias that can significantly reduce the time required for determining an integer bias and output a result of relative positioning at an early stage.
[0010]
[Means for Solving the Problems]
According to the present invention, at a reference point and a positioning point, one of a plurality of positioning transmitters is used as a reference positioning transmitter, and the reference positioning transmitter and another positioning transmitter are combined into a single or In a positioning device that observes a double carrier phase difference, determines an integer bias of the carrier phase difference, and performs positioning of a positioning point, an interval of an equal phase difference plane corresponding to a prior position accuracy of the positioning point can be obtained. A plurality of positioning transmitters are selected, and among the candidate points which are the intersections of the equiphase difference planes of the plurality of carrier phases by the plurality of positioning transmitters, the true candidate corresponding to the correct integer bias It is characterized by having candidate point determining means for obtaining points.
[0011]
As a result, the number of candidate points to be tested can be significantly reduced from the beginning, and a highly accurate positioning result can be obtained in a very short time.
[0012]
Further, the present invention provides a control unit that repeats the determination of a candidate point by a candidate point determining unit so that an interval between equal phase difference surfaces is sequentially reduced in accordance with the position accuracy of the candidate point determined by the candidate point determining unit. It is characterized by having.
[0013]
This makes it possible to finally obtain a highly accurate positioning result in a very short time by gradually narrowing the interval between the equal phase difference surfaces while always reducing the number of candidate points to be tested.
[0014]
Further, in the present invention, the control means selects a set of positioning transmitters such that only one candidate point is generated according to the position accuracy of the positioning point. This eliminates the need for a test process for determining one from a plurality of candidate points, and can further reduce the time required for determining an integer bias.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
In the embodiment of the present invention, a satellite compass that uses three GPS antennas, measures the relative positions of the three GPS antennas, and obtains the azimuth and attitude of a moving object equipped with the three GPS antennas will be described as an example.
[0016]
FIG. 1 is a block diagram showing the entire configuration. Here, 11, 21 and 31 are GPS antennas, respectively, which are arranged so as to form an equilateral triangle in a horizontal plane when the mobile body is stationary. Reference numerals 10, 20, and 30 denote GPS receivers, respectively. 12, 22, and 32 convert the frequency of the received signals of the GPS antennas 11, 21, and 31 into intermediate frequency signals, sample the signals at a predetermined cycle, sequentially convert them to digital data strings, and give the data streams to the GPS receivers 10, 20, and 30 It is a down converter.
[0017]
40 inputs the data of the observed carrier phase of the received signal from each GPS satellite obtained by the three GPS receivers 10, 20, and 30, determines the integer bias of each carrier phase difference as described later, and It is a positioning calculation unit that performs relative positioning of the GPS antennas 11, 21, and 31, and outputs azimuth and attitude data.
[0018]
In the GPS receiver 10, a reception signal processing unit 13 includes a C / A code correlator and a carrier signal correlator for a plurality of channels. The CPU 14 observes the carrier phase of the signal received from each GPS satellite, and outputs it to the positioning operation unit 40 via the communication interface 17. A program to be executed by the CPU 14 is written in the ROM 15 in advance, and the RAM 16 is used as a working area during arithmetic processing. The other GPS receivers 20 and 30 have the same configuration as 10.
[0019]
In the positioning calculation section 40, the CPU 42 reads the carrier phase data of the received signal from each GPS satellite obtained by each GPS receiver from the communication interface 41, and determines the relative positions of the GPS antennas 11, 21, 31 by a method described later. I do. Further, it outputs data of the azimuth and attitude of the moving object equipped with these three antennas to the host device via the communication interface 45. The program to be executed by the CPU 42 is written in the ROM 43 in advance. The RAM 44 is used as a working area for the execution.
[0020]
FIG. 2 is a flowchart showing the processing contents of each of the GPS receivers 10, 20, and 30. When the processing flow is roughly divided, first, a search for a received signal from each GPS satellite is performed, and the C / A code and carrier phase of the received signal are captured and tracked (s1). Then, the observation carrier phase of the received signal from each GPS satellite is obtained (s2). The data of the observed carrier phase is transmitted to the positioning operation unit 40 together with the time data and the satellite number as a set of data (s3). By repeating the above processing by each GPS receiver, the positioning calculation unit collects the data of the observed carrier phase at the positions of the three GPS antennas 11, 21, 31.
[0021]
FIG. 3 is a flowchart showing a processing procedure for determining the integer bias performed by the positioning operation unit 40. First, three sets of two GPS satellites forming a pair for obtaining a double difference in carrier phase (hereinafter, referred to as “double phase difference”) are obtained by using two GPS satellites as a set (s11). Here, three sets of two GPS satellites having a relationship such that the distance between the equal phase difference planes of the carrier phase is twice or more the position ambiguity corresponding to the position accuracy are obtained. This “position ambiguity” refers to the radius r when the positioning accuracy of the positioning point position already determined at this time is represented by a sphere having a radius r. For example, of the three antennas, the position of a certain one of the antennas is used as a reference point, and the positions of the other two antennas are used as positioning points. A set of three GPS satellites is selected so that the distance between the planes is twice as large as 90 cm or more.
At the time of performing the integer bias determination process, the position of any one of the GPS antennas 11, 21, and 31 has already been independently measured.
[0022]
Here, with reference to FIG. 4, the relationship between the arrangement of the satellites and the interval between the equal phase difference planes of the carrier phase will be described. Here, O is the position of the reference antenna, and a positioning point exists within a sphere having a radius of 45 cm with O as the center. However, in order to explain on a two-dimensional plane, an example of a line (position line) generated by the intersection of an equal phase difference plane generated by a set of two GPS satellites and a horizontal plane is shown. Therefore, in FIG. 4, the positioning point exists within a circle indicated by C and having a radius of 45 cm. Of the plurality of position lines drawn within the circle, the thick line is based on the set of GPS satellites Sb and Sc, and the thin line is based on the set of GPS satellites Sa and Sd. Thus, the interval between the equal phase difference planes is inversely proportional to the sine of half the angle looking into the two satellites. Therefore, when the angle at which the two GPS satellites are viewed from the positioning point is 180 degrees, the interval between the equal phase difference planes becomes the narrowest, and the interval at this time is half the carrier wavelength (about 9 cm).
[0023]
Conventionally, in order to maximize the accuracy of relative positioning using such a carrier phase, a candidate point is determined by selecting a combination of GPS satellites that minimizes the interval between equal phase difference planes. Here, rather, the set of GPS satellites is selected such that the distance between the equal phase difference planes is widened and the distance between the equal phase difference planes of the carrier phase is twice or more the position ambiguity corresponding to the position accuracy.
[0024]
FIG. 5 is a diagram illustrating an example in which the intervals between the equal phase difference planes (position lines) and the candidate points occur. Here, as in the case of FIG. 4, an example of two sets of position lines generated by two sets of three GPS satellites is shown for explanation on a two-dimensional plane.
[0025]
In FIG. 5A, a circle C0 is a circle having a radius of 45 cm centered on the position of the reference antenna. P1 is the intersection created by the two sets of position lines from the two sets of satellites. As described above, if the intersection P1 of the position line generated in the circle indicating the position ambiguity of the positioning point is single, the candidate point P1 is immediately obtained as a true candidate point. This determines the integer bias of each set of double phase differences. For example, if the distance between the GPS antennas is 45 cm, a combination of satellites is selected such that the distance between the equal phase difference planes is 90 cm or more. If the angle of view of the combined satellite at this time is within 11.5 degrees, the minimum interval of the equal phase difference plane is 9 times or more. It is known that the error of the phase difference surface when the interval between the phase difference surfaces is the narrowest is approximately 2 cm at the maximum, and the positioning error at that time is about 20 cm, which is ten times as large. From a different point of view, this means that positioning of the positioning point has already been performed with an accuracy of 20 cm at this stage.
[0026]
Returning to FIG. 3, if the number of candidate points is one, three pairs of satellites are determined so that the interval between the equal phase difference planes becomes smaller in the next stage (s12 → s14 → s11). The interval between the equal phase difference surfaces is determined so as to be twice or more the ambiguity of the position already obtained. Thereby, only one candidate point exists within the range of the ambiguity. Here, since the position of the positioning point has already been obtained with an accuracy of 20 cm, a combination of satellites is selected such that the interval between the equal phase planes is twice as large as 40 cm. At this time, there is only one candidate point, and the position of the positioning point has been determined with an accuracy of 10 cm.
[0027]
For example, as shown in FIG. 5B, the interval between the equal phase difference planes (position lines in this example, which are represented in two dimensions, is made narrower than the case shown in FIG. 5A). A set of satellites is selected so that the interval is such that only one candidate point P2 exists within the range of the position ambiguity. Here, P1 is the position of P1 shown in FIG. 5A, and is the previously determined candidate point. C1 is a circle centering on P1 and representing the ambiguity of its position. The radius of the circle C1 is 20 cm.
[0028]
The process of step s11 in FIG. 3 is repeated until the interval between the equal phase difference surfaces becomes the narrowest. FIG. 5C shows an example of the next stage from FIG. 5B. Here, the point P2 and the circle C1 respectively correspond to P2 and C1 shown in FIG. A single candidate point P3 is obtained in the same manner as described above by narrowing the interval between the position lines, and the corresponding integer bias is directly determined without testing.
[0029]
By repeating such processing, the interval between the equal phase difference surfaces is finally narrowed to obtain the relative position of the positioning point with the position accuracy of 2 cm.
[0030]
In the above-described example, a case has been described in which a set of GPS satellites can be selected so that only one candidate point is always obtained. However, depending on the arrangement of receivable satellites, the interval between equal phase difference planes should be sufficiently wide. Cannot be performed, and a plurality of candidate points may occur within the range of the ambiguity. In that case, a true candidate point (correct integer bias) is tested from a plurality of candidate points by a method similar to the conventional method, and a sieve-off process is performed (s13). However, since the number of candidate points to be verified is different from the conventional one and is extremely limited, the time required for the verification and shake-off can be sufficiently reduced.
[0031]
Thereafter, a true double phase difference including the integer bias is obtained from the determined three pairs of carrier double phase differences and the observed phase differences (decimal part) (s15). Then, the position of the positioning point is obtained from the satellite position and the carrier phase difference at that time (s15 → s16). That is, any one of the three GPS antennas 11, 21, 31 is used as a reference antenna, and the relative positions of the other two antennas are obtained. From the relative positions of the two antennas, the three GPS antennas 11, 21, 31, 31 are determined. The orientation and orientation of the plane defined by are obtained and output (s17).
[0032]
According to the present invention, the integer bias of the carrier phase difference due to the combination of a large number of GPS satellites in the field of view is obtained at the stage of sequentially narrowing the interval between the equal phase difference planes of the carrier phase. It is not necessary to determine the integer bias of the carrier phase difference for all sets of several GPS satellite sets. For example, if there are three GPS satellites A, B, and C and the integer bias of the carrier phase difference is determined for the set of AB and the set of AC, the integer bias for the set of BC is simply It can be obtained immediately by subtracting the integer bias of AB from the integer bias of AB. By determining the integer bias of the carrier phase difference for a desired set of GPS satellites by such a method, the overall processing time can be further reduced.
[0033]
In the embodiment described above, the position of the positioning point with respect to the reference point is described as an example that exists within a predetermined range.However, if the position range of the positioning point with respect to the reference point is indefinite, The position of the positioning point is measured by single positioning, and a set of GPS satellites is selected so that an interval between equal phase difference planes according to the position accuracy is obtained. For example, when error correction is performed using a geostationary satellite, a single positioning can be performed with a positional accuracy of several tens of centimeters. Therefore, a set of GPS satellites is set so that the interval between the first equal phase difference planes becomes as large as about 1 m. Just select.
[0034]
Further, a double difference (double phase difference) of the carrier phase is obtained by using the GPS antenna at the reference point, the GPS antenna at the positioning point, and two GPS satellites as a set, and an integer bias is obtained based on the equal phase difference plane. However, at the position of the GPS antenna at the reference point and the position of the GPS antenna at the positioning point, a single difference (single phase difference) of the carrier phase is determined for each pair of two GPS satellites, and based on the equal phase difference plane. An integer bias may be obtained.
[0035]
Although the GPS satellite has been described as an example of the positioning transmitter, a positioning transmitter that transmits a positioning signal in the same format as a radio wave transmitted from the GPS satellite may be used. For example, the positioning transmitter is installed in a place where radio waves from GPS satellites do not reach, and the positioning device receives radio waves from GPS satellites and radio waves from the installed positioning transmitter as appropriate. You may comprise. According to this, positioning can be performed even in, for example, an underground mall.
[0036]
The radio wave transmitted by the positioning transmitter does not need to be in a format conforming to the GPS, and is arbitrary. Further, it is not necessary to be a radio wave, but may be a light or a sound wave. That is, a difference in carrier phase from a plurality of positioning transmitters to the receiving points of the reference station and the receiving station is determined, and the present invention can be similarly applied to the case where the position of the positioning point with respect to the reference point is located based on the difference in carrier phase. .
[0037]
【The invention's effect】
According to the present invention, since it is not necessary to perform the test and the sieving process for a large number of candidate points unlike the related art, it is possible to determine the integer bias of the carrier phase difference in a very short time. Therefore, it is possible to output a positioning result within an extremely short time after turning on the power of the receiver.
[0038]
In particular, by successively narrowing the intervals between the equal phase difference planes while always reducing the number of candidate points to be tested, a highly accurate positioning result can be finally obtained in a very short time.
[0039]
Furthermore, if a set of positioning transmitters is selected so that only one candidate point is generated as much as possible according to the position accuracy of the positioning point, no test processing is required to determine one from a plurality of candidate points. And the time required to determine the integer bias can be further reduced.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of a satellite compass according to an embodiment; FIG. 2 is a flowchart showing processing performed by each GPS receiver in the satellite compass; FIG. 3 is an integer bias in a positioning operation unit in the satellite compass; FIG. 4 is a flowchart showing a processing procedure of determination. FIG. 4 is a diagram showing an example of a correspondence relationship between a satellite position and an interval between equal phase difference planes (position lines). FIG. 6 shows an example of occurrence of points. FIG. 6 shows an example of residuals used in testing candidate points.
10, 20, 30-GPS receivers 11, 21, 31-GPS antennas 12, 22, 32-Down converter 40-Positioning calculation unit