JP2004150729A - Binary refrigerator - Google Patents

Binary refrigerator Download PDF

Info

Publication number
JP2004150729A
JP2004150729A JP2002317603A JP2002317603A JP2004150729A JP 2004150729 A JP2004150729 A JP 2004150729A JP 2002317603 A JP2002317603 A JP 2002317603A JP 2002317603 A JP2002317603 A JP 2002317603A JP 2004150729 A JP2004150729 A JP 2004150729A
Authority
JP
Japan
Prior art keywords
refrigerant
temperature side
temperature
refrigeration circuit
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002317603A
Other languages
Japanese (ja)
Inventor
Kazuo Takemasa
一夫 竹政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Biomedical Co Ltd
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Biomedical Co Ltd, Sanyo Electric Co Ltd filed Critical Sanyo Electric Biomedical Co Ltd
Priority to JP2002317603A priority Critical patent/JP2004150729A/en
Publication of JP2004150729A publication Critical patent/JP2004150729A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/006Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a binary refrigerator capable of sufficiently exercising refrigerating capability. <P>SOLUTION: In the binary refrigerator, since a mixture of nitrous oxide and an HC refrigerant is used as a refrigerant of a low temperature side refrigeration circuit, a mixture of carbon dioxide and the HC refrigerant is used as a refrigerant of a high temperature side refrigeration circuit, a low temperature side gas-liquid separator is provided in an outlet side of a condenser of the low temperature side refrigeration circuit, a low temperature side heat exchanger is provided for cooling an un-condensed refrigerant from a gaseous phase part of the low temperature side gas-liquid separator by a condensed refrigerant from a liquid phase part of the low temperature side gas-liquid separator, a high temperature side gas-liquid separator is provided in an outlet side of a condenser of the high temperature side refrigeration circuit, and a high temperature side heat exchanger is provided for cooling an un-condensed refrigerant from a gaseous phase part of the high temperature side gas-liquid separator by a condensed refrigerant from the high temperature side gas-liquid separator, the un-condensed refrigerants can be condensed by each heat exchanger, and the binary refrigerator capable of sufficiently exercising refrigerating capability can be provided. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、高温側の冷凍回路と低温側の冷凍回路とを備えた2元冷凍装置に関する。
【0002】
【従来の技術】
従来より、−60℃〜−90℃の超低温の生成には、2元冷凍装置が用いられている。この2元冷凍装置は、高温側冷凍回路の蒸発器と低温側冷温回路の凝縮器とをカスケード接続することにより構成している(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開平7−27431号公報
このような2元冷凍装置は、高温側冷凍回路は圧縮器、凝縮器、キャピラリーチューブ及びカスケードコンデンサにより構成されており、高沸点の冷媒が封入されている。
【0004】
また低温側冷凍回路は、圧縮器、カスケードコンデンサ、キャピラリーチューブ等の減圧装置及び蒸発器により構成されており、低沸点の冷媒が封入されている。
【0005】
高温側冷凍回路では、冷媒が圧縮器で圧縮され、凝縮器で冷却されることにより液化され、カスケードコンデンサに供給される。カスケードコンデンサから出た冷媒は再び圧縮器に吸い込まれ高温側冷凍回路を形成している。
【0006】
低温側冷凍回路は、冷媒が圧縮機により圧縮され、カスケードコンデンサにおいて上述の高温側冷凍回路から供給される冷媒を用いて冷却され、液化される。
【0007】
その後、冷媒は蒸発器に供給されて低温を発生する。
【0008】
蒸発器から出た冷媒は、圧縮機に戻り、低温側冷凍回路を形成している。
【0009】
このように、高温側冷凍回路と低温側冷凍回路とはカスケードコンデンサにより熱的に結合されている。
【0010】
【発明が解決しようとする課題】
このように構成された2元冷凍装置では、高温側冷凍回路及び低温側冷凍回路が圧縮機、凝縮器(又はカスケードコンデンサ)、キャピラリーチューブ、蒸発器(又はカスケードコンデンサ)を環状に接続したものであるため、冷媒の一部が凝縮しないまま循環する恐れがあり、冷凍能力が充分に発揮されない恐れがあった。
【0011】
この発明は、冷凍能力を充分に発揮できる2元冷凍装置を提供するものである。
【0012】
【課題を解決するための手段】
この発明は、高温側冷凍回路の蒸発器と低温側冷凍回路の凝縮器とをカスケード接続して構成した2元冷凍装置において、亜酸化窒素とHC冷媒との混合物を前記低温側冷凍回路の冷媒とし、二酸化炭素とHC冷媒との混合物を前記高温側冷凍回路の冷媒とし、前記高温側冷凍回路の凝縮器の出口側には高温側気液分離器を設けると共に、この高温側気液分離器の気相部からの未凝縮冷媒を、この高温側気液分離器の液相部からの凝縮冷媒で冷却するための高温側熱交換器を設けたものである。
【0013】
また、高温側冷凍回路の蒸発器と低温側冷凍回路の凝縮器とをカスケード接続して構成した2元冷凍装置において、亜酸化窒素とHC冷媒との混合物を前記低温側冷凍回路の冷媒とし、二酸化炭素とHC冷媒との混合物を前記高温側冷凍回路の冷媒とし、前記低温側冷凍回路の凝縮器の出口側には低温側気液分離器を設けると共に、この低温側気液分離器の気相部からの未凝縮冷媒を、この低温側気液分離器の液相部からの凝縮冷媒で冷却するための低温側熱交換器を設けたものである。
【0014】
更に、高温側冷凍回路の蒸発器と低温側冷凍回路の凝縮器とをカスケード接続して構成した2元冷凍装置において、亜酸化窒素とHC冷媒との混合物を前記低温側冷凍回路の冷媒とし、二酸化炭素とHC冷媒との混合物を前記高温側冷凍回路の冷媒とし、前記低温側冷凍回路の凝縮器の出口側には低温側気液分離器を設けると共に、この低温側気液分離器の気相部からの未凝縮冷媒を、この低温側気液分離器の液相部からの凝縮冷媒で冷却するための低温側熱交換器を設け、前記高温側冷凍回路の凝縮器の出口側には高温側気液分離器を設けると共に、この高温側気液分離器の気相部からの未凝縮冷媒を、この高温側気液分離器からの凝縮冷媒で冷却するための高温側熱交換器を設けたものである。
【0015】
【発明の実施の形態】
実施の形態を図1を参照しつつ説明する。
【0016】
図1は、2元冷凍装置を示している。22は高温側冷凍回路である。23は低温側冷凍回路である。
【0017】
高温側冷凍回路22は、圧縮器24、凝縮器25、低温側気液分離器26、デハイドレータ27、キャピラリーチューブ(減圧装置)28、高温側熱交換器29、デハイドレータ30、キャピラリーチューブ(減圧装置)31、カスケードコンデンサ32、及び膨張タンク33により構成されている。封入される冷媒は、二酸化炭素(CO)とHC冷媒との混合物である。
【0018】
低温側冷凍回路23は、圧縮器34、カスケードコンデンサ32、高温側気液分離器35、デハイドレータ36、キャピラリーチューブ(減圧装置)37、高温側熱交換器38、デハイドレータ39、キャピラリーチューブ(減圧装置)40、蒸発器41、及び膨張タンク42により構成されている。封入される冷媒は、亜酸化窒素(NO)とHC冷媒との混合物である。
【0019】
なお、このHC冷媒としては、nペンタン、nブタン、イソブタン等が考えらられる。また、プロパン、エタン、エチレン等でも良い。
【0020】
すなわち、特許請求の範囲に記載のように、高温側冷凍回路22の蒸発器(カスケードコンデンサ32)と低温側冷凍回路23の凝縮器(カスケードコンデンサ32)とをカスケード接続して構成した2元冷凍装置において、亜酸化窒素とHC冷媒との混合物を前記低温側冷凍回路23の冷媒とし、二酸化炭素とHC冷媒との混合物を前記高温側冷凍回路22の冷媒とし、前記低温側冷凍回路23の凝縮器の出口側には低温側気液分離器35を設けると共に、この低温側気液分離器35の気相部からの未凝縮冷媒を、この低温側気液分離器35の液相部からの凝縮冷媒で冷却するための低温側熱交換器38を設け、前記高温側冷凍回路22の凝縮器の出口側には高温側気液分離器26を設けると共に、この高温側気液分離器26の気相部からの未凝縮冷媒を、この高温側気液分離器26からの凝縮冷媒で冷却するための高温側熱交換器29を設けたものである。
【0021】
この実施形態の高温側冷凍回路22では、高温側気液分離器26を備えているので、液になりやすいHC冷媒は、どちらかというと、デハイドレータ27、キャピラリーチューブ28、高温側熱交換器29を介して圧縮機24に戻り易い。また、二酸化炭素は、この高温側気液分離器26、高温側熱交換器29、デハイドレータ30、キャピラリーチューブ31、カスケードコンデンサ32を介して圧縮機24に戻り易い。
【0022】
また、低温側冷凍回路23でも同様に、低温側気液分離器26により、液になりやすい冷媒は、どちらかというと、デハイドレータ36、キャピラリーチューブ37、低温側熱交換器38を介して圧縮機34に戻り易い。
【0023】
このように、未凝縮冷媒は各熱交換器29,38で凝縮させることができるので、冷凍能力を充分発揮できる2元冷凍装置を提供することができる。
【0024】
尚、低温側冷媒回路23に充填する冷媒として、メタン(R50)を用いた場合には、気液分離器35の果たす役割が非常に大きくなる。
【0025】
【発明の効果】
本発明は、2元冷凍装置において、亜酸化窒素とHC冷媒との混合物を前記低温側冷凍回路の冷媒とし、二酸化炭素とHC冷媒との混合物を前記高温側冷凍回路の冷媒とし、前記低温側冷凍回路の凝縮器の出口側には低温側気液分離器を設けると共に、この低温側気液分離器の気相部からの未凝縮冷媒を、この低温側気液分離器の液相部からの凝縮冷媒で冷却するための低温側熱交換器を設け、前記高温側冷凍回路の凝縮器の出口側には高温側気液分離器を設けると共に、この高温側気液分離器の気相部からの未凝縮冷媒を、この高温側気液分離器からの凝縮冷媒で冷却するための高温側熱交換器を設けたので、未凝縮冷媒を各熱交換器で凝縮させることができ、冷凍能力を充分発揮できる2元冷凍装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施形態を説明するための冷媒回路図である。
【符号の説明】
22 高温側冷凍回路
23 低温側冷凍回路
26 高温側気液分離器
29 高温側熱交換器
32 カスケードコンデンサ
35 低温側気液分離器
38 低温側熱交換器
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a binary refrigeration system including a high-temperature refrigeration circuit and a low-temperature refrigeration circuit.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a binary refrigeration apparatus has been used for generating an extremely low temperature of -60 ° C. to −90 ° C. This two-way refrigeration apparatus is configured by cascade-connecting an evaporator of a high-temperature side refrigeration circuit and a condenser of a low-temperature side refrigeration circuit (for example, see Patent Document 1).
[0003]
[Patent Document 1]
In such a binary refrigerating apparatus, the high-temperature side refrigerating circuit includes a compressor, a condenser, a capillary tube, and a cascade condenser, and a high-boiling-point refrigerant is sealed therein.
[0004]
The low-temperature side refrigeration circuit is composed of a decompression device such as a compressor, a cascade condenser, and a capillary tube, and an evaporator, and has a low-boiling-point refrigerant sealed therein.
[0005]
In the high-temperature side refrigeration circuit, the refrigerant is compressed by a compressor, cooled by a condenser, liquefied, and supplied to a cascade condenser. The refrigerant flowing out of the cascade condenser is sucked into the compressor again to form a high-temperature refrigeration circuit.
[0006]
In the low-temperature side refrigeration circuit, the refrigerant is compressed by a compressor, cooled in a cascade condenser using the refrigerant supplied from the high-temperature side refrigeration circuit, and liquefied.
[0007]
Thereafter, the refrigerant is supplied to the evaporator to generate a low temperature.
[0008]
The refrigerant flowing out of the evaporator returns to the compressor and forms a low-temperature refrigeration circuit.
[0009]
Thus, the high-temperature side refrigeration circuit and the low-temperature side refrigeration circuit are thermally coupled by the cascade capacitor.
[0010]
[Problems to be solved by the invention]
In the binary refrigeration system configured as described above, the high-temperature side refrigeration circuit and the low-temperature side refrigeration circuit connect the compressor, the condenser (or cascade condenser), the capillary tube, and the evaporator (or cascade condenser) in a ring. Therefore, there is a possibility that a part of the refrigerant may circulate without being condensed, and the refrigeration capacity may not be sufficiently exhibited.
[0011]
The present invention provides a binary refrigeration apparatus that can sufficiently exhibit refrigeration capacity.
[0012]
[Means for Solving the Problems]
The present invention relates to a binary refrigeration system in which an evaporator of a high-temperature side refrigeration circuit and a condenser of a low-temperature side refrigeration circuit are cascaded, wherein a mixture of nitrous oxide and HC refrigerant is mixed with the refrigerant of the low-temperature side refrigeration circuit. A mixture of carbon dioxide and HC refrigerant is used as the refrigerant of the high-temperature side refrigeration circuit, and a high-temperature side gas-liquid separator is provided at the outlet side of the condenser of the high-temperature side refrigeration circuit. The high-temperature side heat exchanger for cooling the uncondensed refrigerant from the gaseous phase portion with the condensed refrigerant from the liquid phase portion of the high-temperature side gas-liquid separator is provided.
[0013]
Further, in a binary refrigeration apparatus configured by cascading an evaporator of a high-temperature refrigeration circuit and a condenser of a low-temperature refrigeration circuit, a mixture of nitrous oxide and HC refrigerant is used as a refrigerant of the low-temperature refrigeration circuit, A mixture of carbon dioxide and HC refrigerant is used as the refrigerant for the high-temperature side refrigeration circuit. A low-temperature side gas-liquid separator is provided at the outlet side of the condenser of the low-temperature side refrigeration circuit. A low-temperature side heat exchanger for cooling the uncondensed refrigerant from the phase portion with the condensed refrigerant from the liquid phase portion of the low-temperature side gas-liquid separator is provided.
[0014]
Further, in a binary refrigeration apparatus configured by cascading the evaporator of the high-temperature refrigeration circuit and the condenser of the low-temperature refrigeration circuit, a mixture of nitrous oxide and HC refrigerant is used as the refrigerant of the low-temperature refrigeration circuit, A mixture of carbon dioxide and HC refrigerant is used as the refrigerant for the high-temperature side refrigeration circuit. A low-temperature side gas-liquid separator is provided at the outlet side of the condenser of the low-temperature side refrigeration circuit. A low-temperature side heat exchanger for cooling the uncondensed refrigerant from the phase portion with the condensed refrigerant from the liquid phase portion of the low-temperature side gas-liquid separator is provided, and at the outlet side of the condenser of the high-temperature side refrigeration circuit, A high-temperature side gas-liquid separator is provided, and a high-temperature side heat exchanger for cooling uncondensed refrigerant from the gas phase portion of the high-temperature side gas-liquid separator with the condensed refrigerant from the high-temperature side gas-liquid separator. It is provided.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment will be described with reference to FIG.
[0016]
FIG. 1 shows a binary refrigeration system. 22 is a high-temperature side refrigeration circuit. 23 is a low temperature side refrigeration circuit.
[0017]
The high-temperature refrigeration circuit 22 includes a compressor 24, a condenser 25, a low-temperature gas-liquid separator 26, a dehydrator 27, a capillary tube (decompression device) 28, a high-temperature heat exchanger 29, a dehydrator 30, and a capillary tube (decompression device). 31, a cascade condenser 32, and an expansion tank 33. The refrigerant to be sealed is a mixture of carbon dioxide (CO 2 ) and HC refrigerant.
[0018]
The low-temperature refrigeration circuit 23 includes a compressor 34, a cascade condenser 32, a high-temperature gas-liquid separator 35, a dehydrator 36, a capillary tube (decompression device) 37, a high-temperature heat exchanger 38, a dehydrator 39, and a capillary tube (decompression device). 40, an evaporator 41, and an expansion tank 42. The enclosed refrigerant is a mixture of nitrous oxide (N 2 O) and HC refrigerant.
[0019]
In addition, as this HC refrigerant, n-pentane, n-butane, isobutane and the like can be considered. Further, propane, ethane, ethylene or the like may be used.
[0020]
That is, as described in the claims, a two-way refrigeration system configured by cascading the evaporator (cascade condenser 32) of the high-temperature side refrigeration circuit 22 and the condenser (cascade condenser 32) of the low-temperature side refrigeration circuit 23. In the apparatus, a mixture of nitrous oxide and HC refrigerant is used as a refrigerant for the low-temperature refrigeration circuit 23, a mixture of carbon dioxide and HC refrigerant is used as a refrigerant for the high-temperature refrigeration circuit 22, and condensation of the low-temperature refrigeration circuit 23 is performed. A low-temperature side gas-liquid separator 35 is provided on the outlet side of the vessel, and uncondensed refrigerant from the gas phase part of the low-temperature side gas-liquid separator 35 is separated from the liquid phase part of the low-temperature side gas-liquid separator 35. A low-temperature heat exchanger 38 for cooling with a condensed refrigerant is provided, and a high-temperature gas-liquid separator 26 is provided at the outlet side of the condenser of the high-temperature refrigeration circuit 22. From the gas phase The uncondensed refrigerant, is provided with a high-temperature-side heat exchanger 29 for cooling in the condensing refrigerant from the high temperature side gas-liquid separator 26.
[0021]
In the high-temperature side refrigeration circuit 22 of this embodiment, since the high-temperature side gas-liquid separator 26 is provided, the HC refrigerant that easily becomes a liquid is rather a dehydrator 27, a capillary tube 28, and a high-temperature side heat exchanger 29. , It is easy to return to the compressor 24. Further, the carbon dioxide easily returns to the compressor 24 via the high-temperature side gas-liquid separator 26, the high-temperature side heat exchanger 29, the dehydrator 30, the capillary tube 31, and the cascade condenser 32.
[0022]
Similarly, in the low-temperature side refrigeration circuit 23, the refrigerant that easily becomes a liquid by the low-temperature side gas-liquid separator 26 is rather a compressor via the dehydrator 36, the capillary tube 37, and the low-temperature side heat exchanger 38. It is easy to return to 34.
[0023]
As described above, since the uncondensed refrigerant can be condensed in each of the heat exchangers 29 and 38, it is possible to provide a binary refrigeration apparatus that can sufficiently exhibit refrigeration capacity.
[0024]
When methane (R50) is used as the refrigerant to be charged into the low-temperature side refrigerant circuit 23, the role of the gas-liquid separator 35 becomes very large.
[0025]
【The invention's effect】
The present invention provides a binary refrigeration apparatus, wherein a mixture of nitrous oxide and HC refrigerant is used as a refrigerant in the low-temperature side refrigeration circuit, a mixture of carbon dioxide and HC refrigerant is used as a refrigerant in the high-temperature side refrigeration circuit, A low-temperature gas-liquid separator is provided at the outlet side of the condenser of the refrigeration circuit, and uncondensed refrigerant from the gas phase of the low-temperature gas-liquid separator is discharged from the liquid phase of the low-temperature gas-liquid separator. A high-temperature side gas-liquid separator is provided at the outlet side of the condenser of the high-temperature side refrigeration circuit, and a gas-phase portion of the high-temperature side gas-liquid separator is provided. Is provided with a high-temperature side heat exchanger for cooling the uncondensed refrigerant from the high-temperature side gas-liquid separator with the condensed refrigerant from the high-temperature side gas-liquid separator. Can be provided.
[Brief description of the drawings]
FIG. 1 is a refrigerant circuit diagram for explaining an embodiment of the present invention.
[Explanation of symbols]
22 High-temperature side refrigeration circuit 23 Low-temperature side refrigeration circuit 26 High-temperature side gas-liquid separator 29 High-temperature side heat exchanger 32 Cascade condenser 35 Low-temperature side gas-liquid separator 38 Low-temperature side heat exchanger

Claims (3)

高温側冷凍回路の蒸発器と低温側冷凍回路の凝縮器とをカスケード接続して構成した2元冷凍装置において、亜酸化窒素とHC冷媒との混合物を前記低温側冷凍回路の冷媒とし、二酸化炭素とHC冷媒との混合物を前記高温側冷凍回路の冷媒とし、前記高温側冷凍回路の凝縮器の出口側には高温側気液分離器を設けると共に、この高温側気液分離器の気相部からの未凝縮冷媒を、この高温側気液分離器の液相部からの凝縮冷媒で冷却するための高温側熱交換器を設けたことを特徴とする2元冷凍装置。In a binary refrigeration apparatus configured by cascading an evaporator of a high-temperature refrigeration circuit and a condenser of a low-temperature refrigeration circuit, a mixture of nitrous oxide and HC refrigerant is used as a refrigerant for the low-temperature refrigeration circuit, And a mixture of HC refrigerant as the refrigerant in the high-temperature side refrigeration circuit. A high-temperature side gas-liquid separator is provided at the outlet side of the condenser in the high-temperature side refrigeration circuit. A high-temperature side heat exchanger for cooling uncondensed refrigerant from the high-temperature side gas-liquid separator with the condensed refrigerant from a liquid phase portion of the high-temperature side gas-liquid separator. 高温側冷凍回路の蒸発器と低温側冷凍回路の凝縮器とをカスケード接続して構成した2元冷凍装置において、亜酸化窒素とHC冷媒との混合物を前記低温側冷凍回路の冷媒とし、二酸化炭素とHC冷媒との混合物を前記高温側冷凍回路の冷媒とし、前記低温側冷凍回路の凝縮器の出口側には低温側気液分離器を設けると共に、この低温側気液分離器の気相部からの未凝縮冷媒を、この低温側気液分離器の液相部からの凝縮冷媒で冷却するための低温側熱交換器を設けたことを特徴とする2元冷凍装置。In a binary refrigeration apparatus configured by cascading an evaporator of a high-temperature refrigeration circuit and a condenser of a low-temperature refrigeration circuit, a mixture of nitrous oxide and HC refrigerant is used as a refrigerant for the low-temperature refrigeration circuit, And a HC refrigerant as a refrigerant of the high-temperature side refrigeration circuit, and a low-temperature side gas-liquid separator is provided at an outlet side of a condenser of the low-temperature side refrigeration circuit. A low-temperature side heat exchanger for cooling uncondensed refrigerant from the liquid phase with the condensed refrigerant from the liquid phase of the low-temperature side gas-liquid separator. 高温側冷凍回路の蒸発器と低温側冷凍回路の凝縮器とをカスケード接続して構成した2元冷凍装置において、亜酸化窒素とHC冷媒との混合物を前記低温側冷凍回路の冷媒とし、二酸化炭素とHC冷媒との混合物を前記高温側冷凍回路の冷媒とし、前記低温側冷凍回路の凝縮器の出口側には低温側気液分離器を設けると共に、この低温側気液分離器の気相部からの未凝縮冷媒を、この低温側気液分離器の液相部からの凝縮冷媒で冷却するための低温側熱交換器を設け、前記高温側冷凍回路の凝縮器の出口側には高温側気液分離器を設けると共に、この高温側気液分離器の気相部からの未凝縮冷媒を、この高温側気液分離器からの凝縮冷媒で冷却するための高温側熱交換器を設けたことを特徴とする2元冷凍装置。In a binary refrigeration apparatus configured by cascading an evaporator of a high-temperature refrigeration circuit and a condenser of a low-temperature refrigeration circuit, a mixture of nitrous oxide and HC refrigerant is used as a refrigerant for the low-temperature refrigeration circuit, And a HC refrigerant as a refrigerant of the high-temperature side refrigeration circuit, and a low-temperature side gas-liquid separator is provided at an outlet side of a condenser of the low-temperature side refrigeration circuit. A low-temperature heat exchanger for cooling the uncondensed refrigerant from the liquid-phase portion of the low-temperature gas-liquid separator from the high-temperature side at the outlet side of the condenser of the high-temperature refrigeration circuit. A gas-liquid separator was provided, and a high-temperature heat exchanger for cooling uncondensed refrigerant from the gas phase of the high-temperature gas-liquid separator with the condensed refrigerant from the high-temperature gas-liquid separator was provided. A binary refrigeration apparatus characterized by the above-mentioned.
JP2002317603A 2002-10-31 2002-10-31 Binary refrigerator Pending JP2004150729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002317603A JP2004150729A (en) 2002-10-31 2002-10-31 Binary refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002317603A JP2004150729A (en) 2002-10-31 2002-10-31 Binary refrigerator

Publications (1)

Publication Number Publication Date
JP2004150729A true JP2004150729A (en) 2004-05-27

Family

ID=32460956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002317603A Pending JP2004150729A (en) 2002-10-31 2002-10-31 Binary refrigerator

Country Status (1)

Country Link
JP (1) JP2004150729A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2448308C1 (en) * 2010-10-13 2012-04-20 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Cooling machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2448308C1 (en) * 2010-10-13 2012-04-20 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Cooling machine

Similar Documents

Publication Publication Date Title
US6438994B1 (en) Method for providing refrigeration using a turboexpander cycle
US7669428B2 (en) Vortex tube refrigeration systems and methods
CA2793469C (en) Integrated pre-cooled mixed refrigerant system and method
JP3678619B2 (en) Variable load refrigeration system especially for cryogenic use
RU2189544C2 (en) Method for realizing artificial cooling
US6494054B1 (en) Multicomponent refrigeration fluid refrigeration system with auxiliary ammonia cascade circuit
JPWO2007046332A1 (en) CO2 refrigerator
Alexeev et al. Mixed gas JT cryocooler with precooling stage
JP4651255B2 (en) Refrigerant composition and refrigeration circuit using the same
JP2004019995A (en) Refrigeration device
JP2004150729A (en) Binary refrigerator
KR100596157B1 (en) Refrigerator using mixed refrigerant with carbon dioxide
JP2004019996A (en) Two-refrigerant refrigerator
JPH0678851B2 (en) Refrigeration equipment
KR100609168B1 (en) Cascade refrigerating cycle
JP3863831B2 (en) Refrigerant composition and refrigeration circuit using the refrigerant composition
JP2009540262A (en) Refrigerant and refrigeration system
JP2004002492A (en) Refrigerant compsition and ultra-deep freezer
JP3448377B2 (en) Refrigeration system using non-azeotropic refrigerant mixture
JP6682081B1 (en) Freezing method
JP3256856B2 (en) Refrigeration system
JP4108656B2 (en) Refrigeration method with non-azeotropic refrigerant mixture
JP2626912B2 (en) Refrigeration equipment
JP2017138046A (en) Refrigeration device
JP2003279181A (en) Two-way refrigerating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050920

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051219

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081007