JP2004149970A - Method for producing water-absorbing composite - Google Patents

Method for producing water-absorbing composite Download PDF

Info

Publication number
JP2004149970A
JP2004149970A JP2002317784A JP2002317784A JP2004149970A JP 2004149970 A JP2004149970 A JP 2004149970A JP 2002317784 A JP2002317784 A JP 2002317784A JP 2002317784 A JP2002317784 A JP 2002317784A JP 2004149970 A JP2004149970 A JP 2004149970A
Authority
JP
Japan
Prior art keywords
water
monomer
absorbing
base material
absorbing composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002317784A
Other languages
Japanese (ja)
Other versions
JP3681372B2 (en
Inventor
Koji Nomura
幸司 野村
Susumu Miho
享 美保
Koji Yamamoto
浩司 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daio Paper Corp
Toagosei Co Ltd
Original Assignee
Daio Paper Corp
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daio Paper Corp, Toagosei Co Ltd filed Critical Daio Paper Corp
Priority to JP2002317784A priority Critical patent/JP3681372B2/en
Publication of JP2004149970A publication Critical patent/JP2004149970A/en
Application granted granted Critical
Publication of JP3681372B2 publication Critical patent/JP3681372B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Absorbent Articles And Supports Therefor (AREA)
  • Polymerisation Methods In General (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a water-absorbing composite having a large water-absorbing rate, a high water absorption and flexible feeling, and suitable for an application such as a paper diaper. <P>SOLUTION: The water-absorbing composite is obtained by attaching an aqueous solution of a monomer consisting essentially of acrylic acid and/or a salt thereof so as to form a fine particle shape on a water-absorbing composite material obtained by fixing fine particles of a water-absorbing resin on a fibrous substrate, and polymerizing the monomer attached to the water-absorbing composite material. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、紙おむつ、生理用ナプキン等の製造に有用な吸水性複合体の製造方法に関する。本製造方法によれば、繊維質基材のしなやかさを保持しつつ、高い吸水速度及び高い吸水量を有する吸水性複合体を製造できる。
【0002】
【従来の技術】
従来、紙おむつ、生理用ナプキン等に用いられる吸水性複合体は、一般に紙、パルプ、不織布等の繊維質基材上に、架橋したポリアクリル酸等の吸水性樹脂粉末を均一に分散させ、固着させて製造されている。しかし、この製造方法による場合は、繊維質基材に吸水性樹脂粉末を確実に固着し難い。また粉末を取扱う点で操作が煩雑である。
【0003】
上記問題を解決するため、アクリル酸及びアクリル酸塩からなる単量体混合物水溶液を繊維質基材に噴霧した後、これに電離放射線や微粒子イオン化放射線等を照射することにより、前記噴霧した単量体混合物を重合させて吸水性樹脂を繊維質基材に固着させる方法が知られている。
【0004】
特許文献1には、基材を構成する繊維上に担持された単量体水溶液をUV照射により重合させるという手段を用いることにより、上記と同様の吸水性複合体を製造する方法が開示されている。同公報には、重合後に未反応単量体が残らないように、UV重合により単量体の大半を重合させた後、電子線を照射し、さらにその後にUVを照射することにより重合転換率を高めることが好ましいと記載されている。このように、UV重合法を採用する場合にも未反応単量体が残存しない吸水性複合体を製造するためには、複雑な製造工程を採用せざるを得ないのが現状であった。
【0005】
特許文献2には、重合中の単量体水溶液滴を繊維質基材に落下、付着させ、繊維質基材上でレドックス系の重合を完了させることにより、吸水能及び保水能が高い吸水性複合体を得る方法が記載されている。
【0006】
また、特許文献3には、同様な吸水性複合体においては、繊維質基材として空隙率が50〜99.5%であること、基材に担持された吸水性樹脂粒子の1次粒子径が50〜1000μmであり、また基材1m当りの吸水性樹脂担持量が10〜500gであることが好ましいと記載されている。
【0007】
上記特許文献2および特許文献3に記載の発明によれば、基材を構成する繊維上で単量体水溶液を重合させるため、得られる吸水性樹脂粒子は繊維に固着して一体となっており、粉末の吸水性樹脂を繊維質基材に適用する際に生じる前記問題点の多くが解決されている。
【0008】
しかしながら、前記各公報に記載された発明においては、基材1m当りの吸水性樹脂固着量を増加させても、製造した吸水性複合体の吸水量がそれに比例して増加しないという問題があった。すなわち、吸水性樹脂固着量が100g/m以上の場合は固着量をさらに増加させても、その増加に見合う吸水量の増加は得られなかった。さらに、固着量が大きい場合は、未反応単量体が残存し易いという問題も発生した。
【0009】
【特許文献1】
特開平1−292103号(第1〜3頁)
【特許文献2】
特開平2000−328456号(請求項1)
【特許文献3】
特開平9−67403号(特許請求の範囲)
【0010】
【発明が解決しようとする課題】
本発明においては、多量の吸水性樹脂を固着でき、吸水量および吸水速度に優れ、かつ未反応単量体を僅かしか含まない、柔軟性に富む吸水性複合体を工業的な規模で製造する方法の提供を課題とした。
【0011】
【課題を解決するための手段】
本発明者らは、前記課題を解決するために鋭意検討した結果、吸水性樹脂の微細粒子を繊維質基材に固着した吸水性複合材料に、更にアクリル酸等の単量体水溶液を噴霧した後、繊維質基材に微細粒子状に担持された単量体水溶液を重合させるという手段を採用することにより、生成する吸水性樹脂を繊維質基材の繊維を中心軸とする独立分離した略球状の微細粒子として数珠状に繊維に固着させた状態を保ちながら吸水性樹脂固着量を大幅に増加させることができ、このようにして製造した吸水性樹脂を固着した繊維質基材は適度の柔軟性を有すると共に、吸水性樹脂の固着量と比例して吸水量が増加すること、更に繊維質基材を予め起毛処理する場合は柔軟性を保ったまま吸水性樹脂固着量を更に増加させることができること、このようにして製造した吸水性樹脂を固着した繊維質基材に更に熱圧縮処理を行う場合は、液の拡散速度及び逆戻り防止特性が大幅に改善されることを見出し、本発明を完成するに至った。
【0012】
すなわち、本発明は、吸水性樹脂の微細粒子を繊維質基材に固着してなる吸水性複合材料に、アクリル酸および/またはその塩を主成分とする単量体水溶液を微細粒子状に担持させた後、該吸水性複合材料に担持させた単量体を重合させることを特徴とする吸水性複合体の製造方法である。
【0013】
【発明の実施の形態】
本発明の吸水性複合体の製造方法の特徴は、繊維質基材上に吸水性樹脂粒子を固着させるに当たり、単量体水溶液を複数回に分けて基材表面上に塗布する点であり、その実施態様としては、一連の製造工程の中で、2度以上単量体水溶液を基材表面上に塗布する場合(最初基材上に塗布された単量体の大半が重合した後に、再度同じ表面に単量体水溶液を塗布し重合させるという操作を繰返す場合)と、既に吸水性樹脂粒子が固着した吸水性複合材料を出発原料として用い、それに重ねて単量体水溶液を塗布し重合させるという場合がある。
【0014】
出発原料の吸水性複合材料は、何れの方法により製造しても良いが、以下に示すように起毛処理を施していない繊維質基材、又は起毛処理を施した繊維質基材にアクリル酸及び/またはその塩を主成分とする単量体水溶液を微細粒子状に担持させた後、該繊維質基材に担持させた単量体を重合させる方法により好適に製造できる。
【0015】
繊維質基材としては、不織布が好ましい。本発明において、不織布は狭義の不織布すなわちバインダーでベース繊維が固着された繊維ウェブの他に、カーデイングまたはエアレイングしたウェブおよび繊維の収束性のゆるいパッドを総称する。本発明に於いて用いる不織布は、ベース繊維をバインダー繊維で熱融着させることにより製造されるものがより好ましい。この不織布は、後述する起毛処理ができるので、より好ましいものである。
【0016】
不織布は、繊度(繊維の太さ)2.0〜20dtex、繊維長32〜128mmのベース繊維を用いて製造されたものが好ましい。ベース繊維の繊度が2.0dtex未満である場合は、得られる不織布の通気性が不足し易い。一方20dtexを越える場合は吸水性樹脂の付着量を多くすることが難しい。
【0017】
ベース繊維の繊維長が32mm未満である場合は、不織布の強度が低下しやすい。また、後述する加熱による起毛処理を行う場合は、繊維の起毛が不足し、吸水性樹脂の固着量が過少となり易い。一方128mmを越えると不織布製造の際に行われるカーデイング処理が難しくなる。
【0018】
不織布の目付けとしては10〜100g/mが適当である。不織布の嵩高性は、不織布1g当りの容積すなわち比容積で0.1×10〜2.0×10ml/gが好ましい。
【0019】
ベース繊維の素材としては、後述するように単量体水溶液を霧状にして基材表面に担持させる際に、単量体水溶液が独立した微細粒子状に繊維に付着する点で非親水性樹脂が好ましい。具体的には、ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体、ポリエチレンテレフタレート、ポリアミド、ポリスチレン、ポリアクリロニトリル、ポリ塩化ビニルおよびポリ塩化ビニリデン等が挙げられる。また、レーヨン、木綿、再生セルロース繊維等の親水性繊維を少量成分として用いた不織布も好ましい。かかる非親水性樹脂からなる繊維をベース繊維として用いて製造した不織布は、単量体水溶液が重合して得られる吸水性樹脂を微細粒子状に繊維に固着できる点では好ましいが、繊維質基材自体にある程度の親水性がないと、得られる吸水性複合体を用いて製造した紙おむつや生理用品等はその使用時に、液洩れ等が発生し易い。このため、本発明において使用する不織布は、親水化処理を施した不織布、例えばポリオキシエチレンアルキルエーテル、ポリオキシエチレンフェノールエーテル、ポリオキシエチレンソルビタンエステル、ポリオキシエチレンアルキル脂肪酸エステルまたはポリオキシエチレンオキシプロピレンブロックポリマー等のノニオン性界面活性剤、高級脂肪酸塩、アルキルナフタレンスルホン酸塩、ジアルキルコハク酸塩またはアルキル硫酸エステル塩等のアニオン系界面活性剤をコーティングした不織布が好ましい。
【0020】
具体的な親水化処理方法としては、ベース繊維を紡糸する際に紡糸原料樹脂に上記界面活性剤すなわち親水化剤を予め混合しておき、それを紡糸しても良い。また溶媒等に溶解した親水化剤を紡糸後の繊維に散布してもよい。
【0021】
本発明においては、上記繊維質基材をそのまま使用しても良いが、好ましくは加熱により起毛させて使用する。加熱温度は繊維質基材のベース繊維の軟化点付近が好ましく、実用的には70〜150℃の範囲の温度が選択される。加熱時間は、加熱温度によっても異なるが、通常数〜180秒間が適当である。さらに好ましい加熱条件は、80〜110℃で20〜60秒の加熱である。加熱手段は限定されず、例えば繊維質基材を加熱炉内を所定時間かけて通過させてもよいし、熱風を繊維質基材に吹付けても良く、または赤外線ランプ等によって繊維質基材を加熱してもよい。
【0022】
上記の加熱方法等により、繊維質基材を構成する繊維の一部が基材面と垂直の方向に配向する結果、繊維質基材はそれに使用されているベース繊維の繊維長によっても異なるが、通常その体積が起毛処理前の1.3〜3.0倍程度に膨らむ。ベース繊維の繊維長および加熱条件を適宜選択することにより、加熱による起毛処理で、繊維質基材の体積を起毛処理前の1.5〜2.5倍に膨らませることが好ましい。
【0023】
なお、不織布または繊維ウェブ等の起毛処理手段としては、加熱以外にも、例えば針山の付いたロールを用いる起毛処理手段等が知られている。しかし、加熱以外の機械的な起毛処理手段を採用する場合は、後記する単量体水溶液を繊維上に微細粒子として多量に担持させることが困難で、このため得られる吸水性複合体の吸水量および吸水速度は劣るものになる。
【0024】
上記繊維質基材、又は上記起毛処理した繊維質基材(通常はシート状である)にアクリル酸および/またはその塩(以下アクリル酸系単量体と総称する)を主成分とする単量体の水溶液を霧状にして吹きつけて担持させる。好ましい単量体は、アクリル酸の20〜90モル%がアルカリ金属塩またはアンモニウム塩に変換されているアクリル酸とアクリル酸塩との混合物である。アクリル酸系単量体以外の単量体も併用することができ、具体例としては、メタクリル酸またはその塩、(メタ)アクリルアミド、2−ヒドロキシエチル(メタ)アクリレートおよび2―アクリルアミド―2−メチルプロパンスルホン酸またはその塩等が挙げられる。かかる単量体の好ましい使用量は、アクリル酸系単量体との合計量を基準にして20モル%以下である。
【0025】
単量体水溶液における単量体の好ましい濃度は、20〜80質量%で、更に好ましくは40〜60質量%である。単量体濃度が高ければ、繊維質基材上に吸水性樹脂を多量に固着させ易く、また単量体を重合させた後の乾燥処理に際し、必要とする熱エネルギーを削減できる。従って、可能な限り高濃度の単量体水溶液を使用することが好ましい。通常は、単量体の飽和溶解度付近の濃度が選択される。
【0026】
上記単量体水溶液には、単量体以外に、架橋剤および重合開始剤等を添加することが好ましい。
【0027】
架橋剤としては、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、N,N’−メチレンビスアクリルアミド、ジアリルフタレート、トリアリルシアヌレート、トリアリルイソシアヌレートおよびトリアリルホスフェート等が例示できる。
【0028】
架橋剤の添加割合は、単量体合計質量に対して100〜1000ppmが好ましく、300〜750ppmが特に好ましい。
【0029】
単量体の重合は、一般的なラジカル重合法によって行うことができ、その際の重合開始方法としては、熱によりラジカルを発生する化合物を重合開始剤として用いる熱重合法、または紫外線、電子線等の活性エネルギー線の照射により重合開始させる方法等が採用できる。好ましくは、熱重合法、または光重合開始剤の存在下に紫外線照射する方法(以下、UV照射重合法という)であり、特に好ましくはUV照射重合法である。
【0030】
熱重合開始剤としては、過酸化水素、過硫酸アンモニウム、過硫酸カリウム、t−ブチルハイドロパーオキサイド及びクメンハイドロパーオキサイド等の水溶性ラジカル重合開始剤が挙げられる。これらの化合物は、例えば、亜硫酸水素ナトリウム、チオ硫酸ナトリウム、L−アスコルビン酸またはアミン等の還元性化合物と併用して、レドックス系重合開始剤として使用しても良い。
【0031】
UV照射重合法で重合させる場合に使用する光重合開始剤としては、特に制限が無く、紫外線によりラジカルを発生させることのできる光重合開始剤であれば何れのものでも使用でき、公知の光重合開始剤を適宜目的に応じて選択して使用できる。具体的には、2,2’−アゾビス(2−アミノジプロパン)塩等のアゾ化合物、1−ベンゾイル−1−ヒドロキシシクロヘキサン及びベンゾフェノン等のケトン、ベンゾイン及びそのアルキルエーテル、ベンジルケタール類、並びにアントラキノン誘導体等を例示できる。
【0032】
1−ヒドロキシ−シクロヘキシル−フェニル−ケトン等のベンゾイル系、2,2’−アゾビス{2−(2−イミダゾリン−2−イル)プロパン}等のアゾ系のものが好ましい。
【0033】
光重合開始剤の添加量は、単量体に対して100〜2000ppmが好ましい。光重合開始剤の濃度が100ppm未満の場合は、充分に重合が起らず、また2000ppmを超える場合は得られる重合体の重合度が低下する。
【0034】
上記光重合開始剤に加えて、熱分解型ラジカル重合開始剤を併用することが好ましい。この開始剤を併用することにより、UV重合と並行的に熱重合も起り、その結果重合転換率が上がり未反応単量体の残存量を低減できる。熱分解型ラジカル重合開始剤の添加量は、単量体に対して100〜5000ppmが好ましく、特に500〜2000ppmが好ましい。
【0035】
重合温度は50〜80℃が好ましく、従って熱分解型ラジカル重合開始剤としては、水中にて80℃以下で分解してラジカルを発生する化合物が好ましい。具体的には過硫酸アンモニウムや過硫酸ナトリウム等の過硫酸塩が挙げられる。
【0036】
単量体水溶液には、更に添加剤として、連鎖移動剤や界面活性剤等を必要により添加しても良い。
【0037】
上記単量体水溶液は、前記のとおり霧状にして繊維質基材上に噴霧(塗布)することにより、繊維質基材上に独立した微細粒子状に担持させ得る。単量体水溶液を霧状にする方法としては、公知の微粒化技術を利用できる。例えば、滴化法、スプレーノズルを用いた液滴化法、回転盤型アトマイザーを用いた液滴化法、超音波法等が挙げられる。
【0038】
噴霧液滴の平均径は、50〜500μmが好ましい。平均径が50μmに満たない場合は、繊維質基材に噴霧した液滴が繊維質基材に付着することなく裏側まで突抜けやすくなるため、繊維質基材へ付着し難くなる場合がある。液滴の平均径が500μmを超える場合は、液滴の付着が不均一となり、その結果重合して得られる吸水性複合材料の吸水量および吸水速度は不十分となる場合がある。50〜500μmの大きさの単量体水溶液は重合、乾燥工程を経ることにより、概略30〜300μmの吸水性樹脂粒子となって、繊維質基材に固着される。
【0039】
単量体水溶液の担持量は、その重合によって得られる吸水性樹脂の繊維質基材に対する固着量が5〜500g/mとなる量であり、好ましくは20〜300g/mである。
【0040】
上述のようにして単量体水溶液が担持された繊維質基材に紫外線(UV)を照射するか、または該基材を所定の温度に加熱して、アクリル酸系単量体を架橋剤の存在下に重合させる。
【0041】
重合に際しては、単量体水溶液を取り囲む雰囲気を窒素ガス等の不活性ガスで置換し、酸素を極力排除することが好ましい。
【0042】
紫外線ランプとしては、高圧水銀ランプやメタルハライドランプ等の250〜450nmの波長を照射可能なもので、30〜240W/cmのランプ入力の水銀ランプが好ましい。紫外線照射量は100〜10000mj/cm、より好ましくは2000〜6000mj/cmである。必要な線量に応じて水銀ランプを多数並べて使用することができる。
【0043】
上記のUV照射により単量体の大半(約90%以上)が5〜60秒程度で重合を完結する。この際、重合温度は基材に塗布された単量体水溶液の微粒子の温度として80〜90℃程度と推測される。このようにして、水分を15〜30質量%程度および未反応単量体を0.1〜10質量%含む含水重合体粒子が繊維質基材上に形成される。
【0044】
以下、さらに適当な時間加熱を継続し、未反応単量体を低減させるとともに上記含水重合体粒子を乾燥させることにより、本発明の出発原料である吸水性複合材料が得られる。
【0045】
前述のとおり、本発明おいては、上記の方法等により製造された吸水性複合材料の表面上に、さらに吸水性樹脂を形成しうる単量体水溶液を塗布し重合させることにより、繊維質基材上の吸水性樹脂量を増量する。また、出発原料として上記のような吸水性複合材料を使用せずに、一連の製造工程中で繊維質基材への単量体水溶液の塗布、重合という操作を複数回繰返しても良い。
【0046】
後者の場合1回当りの単量体水溶液の塗布量は10〜1000g/mが好ましく、さらに好ましくは50〜500g/mである。また、先の単量体水溶液の重合が進み、重合率で50%以上となった段階で、次の単量体水溶液の塗布をするのが好ましい。先に塗布された単量体の重合率が50%未満の段階で次の単量体水溶液を塗布すると、単量体水溶液の液滴が半重合物と合一し、大きな粒子を形成する結果、得られる吸水性複合体シートが硬くなり易く、また吸水性も不十分となり易い。
【0047】
該単量体水溶液の担持および重合操作の繰返し回数は1回でも、複数回でも良く、得られる吸水性複合体の使用目的等を勘案して、適宜繰返し回数を決定する。
【0048】
単量体水溶液の担持、単量体の重合等の操作の詳細は、上記出発原料の吸水性複合材料の製造に於いて述べた方法がそのまま利用できる。
【0049】
本発明の吸水性複合体の製造方法によれば、吸水性樹脂の繊維質基材に対する固着量が100g/m以上になり、好ましくは150〜1000g/mである。
【0050】
上記方法により吸水性複合体を製造した後に、カルボキシル基と反応性のエポキシ基等を複数有する架橋剤(以下表面処理剤という)の水溶液を該複合体上に散布することが望ましい。この操作により、吸水性樹脂粒子の表面層の架橋度をさらに上げることができる。
【0051】
表面処理剤としては、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル等のグリシジルエーテル、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、グリセリン、ペンタエリスリトール等のポリオール、エチレンジアミン等のポリアミンを例示できる。表面処理剤の添加量は、吸水性樹脂粒子に対して100〜1000ppmが好ましい。
【0052】
得られる吸水性複合体は、吸水性能(吸水速度、吸水量、液拡散性、液逆戻り防止性等)をより一層向上させる目的で、更に熱圧縮することが好ましい。熱圧縮は熱プレス、熱ロールまたはエンボスロール等を用いて行うことが好ましい。
【0053】
熱圧縮温度は、50〜150℃が好ましく、70〜120℃がより好ましい。熱圧縮温度が50℃未満の場合は十分な圧縮効果が得られず、150℃よりも高い場合は繊維質基材が熱溶融して得られる吸水性複合体の柔軟性が損われる場合があるので、好ましくない。
【0054】
熱圧縮圧力は、0.01〜100MPaが好ましく、0.1〜10MPaがより好ましい。熱圧縮時間は、熱圧縮温度及び熱圧縮圧力により異なるが、1〜100秒が好ましい。
【0055】
工業的規模で熱圧縮する場合は、特に熱ロールを用いることが好ましい。具体的には、一対のロールを1〜100kg/cmの線圧になるように加圧しながら、前記吸水性複合体を連続的にロール間に導き、ロール間で熱圧縮する。
【0056】
熱圧縮に用いる一対のロール間隙は熱圧縮される吸水性複合体の厚さにもよるが、通常10〜500μmが好ましい。10μm未満の場合は、繊維質基材が切断される場合があり、また500μmを超える場合は圧縮効果が不十分になる。
【0057】
前記一対のロールは、少なくとも一方のロールに凹凸模様が形成されていることが好ましい。凹凸模様の深さは、0.001mm以上、好ましくは0.01〜1mmが好ましい。凹凸模様は、10mm以下の間隔で凹凸が繰返されているものや、直径10mmの円に収る模様が10mm以下の間隔で連続的に形成されていることが好ましい。繰返し間隔が10mmを超える模様や、10mmの円に収らない模様の場合は繊維質基材を圧縮することにより生じる前記本発明の利点が十分発揮されない場合がある。
【0058】
以下、図1を参照して、本発明の吸水性複合体の製造方法を取り入れた、吸水性複合体シートの連続的な製造工程の一例について説明する。この製造工程は、主発原料である吸水性複合材料を製造する工程1と、吸水性複合材料に再度単量体水溶液を担持させた後、単量体を重合する工程2とからなる。
【0059】
(工程1)
図1中2は、巻回された不織布からなる繊維質基材ロールである。このロール2に巻回された繊維質基材は液透過性、ガス透過性にすぐれたものが好ましい。
【0060】
前記ロール2から繰出された繊維質基材4は、次いで起毛処理部6に送られ、ここで加熱されて、起毛処理が施される。起毛処理のための処理条件は既に詳述した。
【0061】
上記加熱処理によって連続的に起毛処理を施された繊維質基材4には、次いでスプレーノズル7により架橋剤、重合開始剤等が含まれた単量体水溶液が塗布される。図1中、8は単量体及び架橋剤等の水溶液を収納する単量体水溶液槽、10は重合開始剤等の添加剤水溶液を収納する添加剤槽である。これらの各槽中の架橋剤および単量体の水溶液と、重合開始剤等の添加剤の水溶液とは混合され、前記スプレーノズル7に供給される。
【0062】
本例に於いては、重合開始剤として光重合開始剤に加えて、熱分解型ラジカル重合開始剤を併用している。
【0063】
上述のようにして単量体水溶液が担持された繊維質基材4は、次いで複数の紫外線ランプ12を上部に備えた第1重合処理部100に送られ、ここで上方から紫外線を照射されることにより繊維質基材4に塗工された単量体が重合せしめられる。第1重合処理部100内は窒素ガス等の不活性ガス雰囲気に保たれ、酸素は極力排除される。紫外線ランプ12としては、水銀ランプや、メタルハライドランプが好ましい。
【0064】
これにより、本発明の出発原料の吸水性複合材料5が得られる。
【0065】
(工程2)
その後、第1重合処理部100を通過して得られた吸水性複合材料5に、再度スプレーノズル14を用いて前記と同様の単量体水溶液が塗工される。これにより、繊維質基材4に十分な量の単量体が担持される。
【0066】
次に、再度単量体水溶液が塗工された吸水性複合材料5は第2重合処理部110に送られる。第2重合処理部110は、第1重合処理部100と同様に内部が不活性雰囲気に保持されていると共に、上部には複数の紫外線ランプ16が備えられており、この紫外線ランプの照射する紫外線により前記再度塗工した単量体が重合させられる。
【0067】
第2重合処理部110の後段には、表面処理剤槽18内に貯留した表面処理剤を噴霧する表面処理剤塗工用スプレーノズル20が配備されている。この塗工用スプレーノズル20により、前記第2重合処理部110を通過した吸水性複合材料5に表面処理剤が塗工される。
【0068】
前記表面処理剤塗工用スプレーノズル20の後段には、第3重合処理部120が設けられている。この第3処理部120は、前記第2処理部110と同様に不活性ガス雰囲気に保たれており、その上部には複数の紫外線ランプ22が取付けられている。
【0069】
表面処理剤を塗工された吸水性複合材料5は、この第3処理部を通過する際に、紫外線を照射され、光ラジカル重合が行われると共に、光ラジカル重合の進行に伴い発生する重合熱による温度上昇により、熱重合開始剤が作用して熱重合が開始され、これにより残存単量体は殆ど消滅する。更に、表面処理剤により、吸水性樹脂粒子の表面近傍の架橋密度が高められる。
【0070】
前記第3重合処理部120の下方には、保温部130が構成されており、前記吸水性樹脂粒子を付着した吸水性複合材料5がここを通過することにより吸水性樹脂粒子が乾燥され、これにより吸水性複合体24が得られる。
【0071】
(熱圧縮処理)
なお、26は熱圧縮ロールで、これにより吸水性複合体が熱圧縮される。
【0072】
吸水性複合体24に熱圧縮を施す方法としては、従来公知の各種方法が採用できるが、図1に示すように、加熱手段を備えた互いに対向する1対のロール26間に、吸水性複合体24を通過させて連続的に熱圧縮処理を施す方法が好ましい。
【0073】
上記熱圧縮処理をした後、圧縮吸水性複合体27は巻取られ、これにより製品吸水性複合体ロール28が得られる。
【0074】
以下、実施例により本発明を更に具体的に説明する。
【0075】
【実施例】
実施例1
アクリル酸ナトリウム70mol%、アクリル酸30mol%からなる単量体水溶液(単量体合計含有量42質量%)に、架橋剤としてテトラエチレングリコールジアクリレート(東亞合成株式会社製 アロニックスM−240)0.05質量%(単量体質量基準)を添加し、この単量体水溶液を20℃に冷却した。次いで、この単量体水溶液に窒素ガスを吹込み、溶存酸素濃度を1ppm以下に低減させた。
【0076】
この単量体水溶液に、光重合開始剤として1−ヒドロキシシクロヘキシル−フェニル−ケトン0.02質量%(単量体質量基準)、熱重合開始剤として過硫酸ナトリウム0.15質量%(単量体質量基準)を添加した。
【0077】
一方、PE/PPからなるエアスルー不織布(目付 40g/m)に前記調製した単量体水溶液をスプレーノズルを用いて190g/m(該水溶液の量で)となるように塗工した。この単量体水溶液をスプレーした不織布に、窒素雰囲気下で高圧水銀ランプを用いて紫外線を照射した。紫外線光量は1000mj/cmであった。
【0078】
得られた吸水性複合材料に、更に上記単量体水溶液を190g/m(該水溶液の量で)となるようにスプレーした。その後、窒素雰囲気下で高圧水銀ランプを用いて紫外線を照射した。紫外線光量は2500mj/cmであった。得られた吸水性複合体は、吸水性樹脂が160g/m固着した柔軟性のあるものであった。
【0079】
実施例2
単量体水溶液を127g/mとなるようにスプレーした後、重合させることを合計3回繰返した以外は実施例1と同様に操作して、吸水性樹脂の固着量が160g/mの吸水性複合体を得た。
【0080】
比較例1
単量体水溶液を一度に380g/mスプレーした以外は実施例1と同様にして吸水性樹脂が160g/m固着した吸水性複合体を得た。
【0081】
実施例1、2及び比較例1の吸水性複合体を以下に記載の試験法により評価した。その結果を表1に示した。なお、人工尿(10kg当り)は以下の組成のものである。
【0082】
尿素/NaCl/MgSO・7HO/CaCl・2HO/純水=200g/80g/8.0g/3.0g/9709g
(人工尿吸水量)
300mlのビーカーに6cmx7cmに切出した吸水性複合体、及び人工尿200mlを入れ、30分間室温で放置した。その後、人工尿を吸収して膨潤した吸水性複合体を人工尿中から取出し、200メッシュの濾布で付着した人工尿をぬぐい去り、その質量を測定した。人工尿吸水量A(kg/m)を下記式により算出した。
【0083】
【数1】
A=(W1−W2)/0.42
但し、W1は吸水後の、W2は吸水前の吸水性複合体の質量を示す。
【0084】
(人工尿吸水速度)
300mlのビーカーに6cmx7cmに切出した吸水性複合体、及び人工尿200mlを入れ、5分間室温で放置した。その後、人工尿により膨潤した吸水性複合体又は吸水性樹脂担持繊維質基材を人工尿中から取出し、200メッシュの濾布で付着した人工尿をぬぐい去り、その質量を測定した。人工尿吸水速度B(kg/m)を下記式により算出した。
【0085】
【数2】
B=(W1−W2)/0.42
(人工尿吸引速度)
結果を表1に示した。
【0086】
【表1】

Figure 2004149970
【0087】
【発明の効果】
本発明の吸水性複合体の製造方法においては、吸水性樹脂を固着した繊維質基材に更に単量体水溶液を担持させ、単量体を重合させるようにしているので、得られる吸水性複合体は、吸水性樹脂の固着量が大きい。更に、更に本発明の吸水性複合体の製造方法においては、繊維質基材に単量体水溶液を噴霧し、繊維質基材に担持された単量体水溶液を重合させるようにしているので、基材の繊維に吸水性樹脂粒子を確実に互いに独立していわゆる数珠繋ぎの状態で付着できる。このようにして製造した吸水性複合体は、その内部に吸水性樹脂粒子が互いに独立して均一に分散されているので、吸水速度が高く、吸水量が大きく、且つ柔軟性が高い。このため本発明方法により製造する吸水性複合体は、例えば紙おむつ等の衛生材料に好適である。また更に、繊維質基材を予め加熱による起毛処理をする場合は、更に高性能な吸水性複合体を製造できる。また、得られる吸水性複合体を熱圧縮して吸水性複合体の表面に凹凸模様を付ける場合は、吸水速度、吸水量等を更に高めることができる。
【図面の簡単な説明】
【図1】本発明の吸水性複合体の連続的製造方法に用いる製造装置の一例を示す構成図である。
【符号の説明】
2 繊維質基材ロール
4 繊維質基材
5 吸水性複合材料
6 起毛処理部
7、14 スプレーノズル
8 単量体水溶液槽
10 添加剤槽
12、16、22 紫外線ランプ
18 表面処理剤槽
20 表面処理剤塗工用スプレーノズル
24 吸水性複合体
26 熱圧縮ロール
27 圧縮吸水性複合体
28 製品吸水性複合体ロール
100 第1重合処理部
110 第2重合処理部
120 第3重合処理部
130 保温部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a water-absorbing composite useful for producing disposable diapers, sanitary napkins, and the like. According to the present production method, it is possible to produce a water-absorbing composite having a high water absorption rate and a high water absorption while maintaining the flexibility of the fibrous base material.
[0002]
[Prior art]
Conventionally, water-absorbing composites used for disposable diapers, sanitary napkins, etc. are generally formed by uniformly dispersing and adsorbing a water-absorbing resin powder such as cross-linked polyacrylic acid on a fibrous base material such as paper, pulp, or nonwoven fabric. It has been manufactured. However, according to this manufacturing method, it is difficult to securely fix the water-absorbing resin powder to the fibrous base material. The operation is complicated in handling powder.
[0003]
In order to solve the above problem, after spraying an aqueous solution of a monomer mixture comprising acrylic acid and an acrylate onto a fibrous base material, irradiating the fibrous base material with ionizing radiation or fine particle ionizing radiation, etc. There is known a method in which a body mixture is polymerized to fix a water absorbent resin to a fibrous base material.
[0004]
Patent Document 1 discloses a method for producing a water-absorbing composite similar to that described above by using a means of polymerizing an aqueous monomer solution supported on fibers constituting a base material by UV irradiation. I have. The publication states that, after polymerization, most of the monomers are polymerized by UV polymerization so that no unreacted monomers remain after polymerization, and then irradiated with an electron beam, and then irradiated with UV. Is described as being preferred. As described above, in order to produce a water-absorbing composite in which unreacted monomers do not remain even when the UV polymerization method is employed, at present, a complicated production process must be employed.
[0005]
Patent Literature 2 discloses that a monomer aqueous solution droplet being polymerized is dropped and adhered to a fibrous base material, and redox-based polymerization is completed on the fibrous base material, so that water absorption and water retention are high. A method for obtaining the complex is described.
[0006]
Patent Literature 3 discloses that a similar water-absorbent composite has a porosity of 50 to 99.5% as a fibrous base material, and a primary particle size of water-absorbent resin particles supported on the base material. Is preferably 50 to 1000 μm, and the amount of the water-absorbing resin carried per 1 m 2 of the base material is preferably 10 to 500 g.
[0007]
According to the inventions described in Patent Documents 2 and 3, since the aqueous monomer solution is polymerized on the fibers constituting the base material, the obtained water-absorbent resin particles are fixed to the fibers and integrated. Many of the above-mentioned problems that occur when a powdery water-absorbing resin is applied to a fibrous base material have been solved.
[0008]
However, in the inventions described in the above publications, there is a problem that even if the amount of water-absorbing resin adhered per 1 m 2 of the base material is increased, the amount of water absorbed by the manufactured water-absorbing composite does not increase in proportion thereto. Was. That is, when the amount of the water-absorbing resin adhered was 100 g / m 2 or more, even if the amount of the water-absorbing resin was further increased, the increase in the amount of water absorbed could not be obtained. Further, when the amount of fixation is large, there has been a problem that unreacted monomers tend to remain.
[0009]
[Patent Document 1]
JP-A-1-292103 (pages 1-3)
[Patent Document 2]
JP-A-2000-328456 (Claim 1)
[Patent Document 3]
JP-A-9-67403 (Claims)
[0010]
[Problems to be solved by the invention]
In the present invention, a water-absorbing composite which can fix a large amount of a water-absorbing resin, is excellent in water absorption amount and water absorption rate, and contains only a small amount of unreacted monomer, and has high flexibility is produced on an industrial scale. The task was to provide a method.
[0011]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above problems, and as a result, further sprayed a monomer aqueous solution such as acrylic acid on a water-absorbing composite material in which fine particles of a water-absorbing resin were fixed to a fibrous base material. After that, by adopting a means of polymerizing the aqueous monomer solution supported in fine particles on the fibrous base material, the resulting water-absorbent resin is substantially independently separated from the center of the fibers of the fibrous base material. The amount of water-absorbent resin adhered can be greatly increased while maintaining the state in which beads are adhered to the fiber as spherical fine particles. While having flexibility, the amount of water absorption increases in proportion to the amount of the water-absorbent resin adhered. Further, when the fibrous base material is subjected to a brushing treatment in advance, the amount of the water-absorbent resin adhered is further increased while maintaining the flexibility. Can be like this In the case where the fibrous base material to which the water-absorbent resin is fixed further is subjected to a heat compression treatment, it has been found that the diffusion rate of the liquid and the anti-return property are significantly improved, and the present invention has been completed. .
[0012]
That is, the present invention provides a water-absorbing composite material obtained by fixing fine particles of a water-absorbing resin to a fibrous base material, in which a monomer aqueous solution containing acrylic acid and / or a salt thereof as a main component is supported in the form of fine particles. And then polymerizing the monomer supported on the water-absorbing composite material.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
The feature of the method for producing a water-absorbent composite of the present invention is that, in fixing the water-absorbent resin particles on the fibrous base material, the monomer aqueous solution is applied on the base material surface in a plurality of times, As an embodiment thereof, when a monomer aqueous solution is applied on a substrate surface twice or more in a series of manufacturing steps (after most of the monomers first applied on the substrate are polymerized, When the operation of applying and polymerizing an aqueous monomer solution on the same surface is repeated), and using a water-absorbing composite material to which water-absorbing resin particles are fixed as a starting material, and then applying and polymerizing the aqueous monomer solution on top of it. There is a case.
[0014]
The water-absorbing composite material of the starting material may be manufactured by any method, but a fibrous base material that has not been subjected to a raising treatment as described below, or an acrylic acid and It can be suitably produced by a method in which a monomer aqueous solution mainly containing a salt thereof is supported in fine particles, and then the monomer supported on the fibrous base material is polymerized.
[0015]
As the fibrous base material, a nonwoven fabric is preferable. In the present invention, the nonwoven fabric is a general term of a nonwoven fabric in a narrow sense, that is, a fibrous web to which base fibers are fixed by a binder, a carded or airlaid web, and a loose pad of fibers. The nonwoven fabric used in the present invention is more preferably manufactured by heat-sealing a base fiber with a binder fiber. This nonwoven fabric is more preferable because it can be subjected to a raising process described later.
[0016]
The nonwoven fabric is preferably manufactured using a base fiber having a fineness (thickness of fiber) of 2.0 to 20 dtex and a fiber length of 32 to 128 mm. When the fineness of the base fiber is less than 2.0 dtex, the resulting nonwoven fabric tends to have insufficient air permeability. On the other hand, when it exceeds 20 dtex, it is difficult to increase the adhesion amount of the water-absorbing resin.
[0017]
If the fiber length of the base fiber is less than 32 mm, the strength of the nonwoven fabric tends to decrease. In the case of performing the raising process by heating, which will be described later, the raising of the fibers is insufficient, and the amount of the water-absorbing resin adhered tends to be insufficient. On the other hand, if it exceeds 128 mm, the carding treatment performed in the production of the nonwoven fabric becomes difficult.
[0018]
As basis weight of the nonwoven fabric is suitably 10 to 100 g / m 2. The bulkiness of the nonwoven fabric is preferably 0.1 × 10 2 to 2.0 × 10 2 ml / g in volume per 1 g of the nonwoven fabric, that is, in specific volume.
[0019]
As a base fiber material, a non-hydrophilic resin is used in that when the monomer aqueous solution is atomized and supported on the substrate surface as described later, the monomer aqueous solution adheres to the fibers in the form of independent fine particles. Is preferred. Specific examples include polyethylene, polypropylene, ethylene-propylene copolymer, polyethylene terephthalate, polyamide, polystyrene, polyacrylonitrile, polyvinyl chloride, polyvinylidene chloride, and the like. Further, a nonwoven fabric using hydrophilic fibers such as rayon, cotton, and regenerated cellulose fibers as a small component is also preferable. A nonwoven fabric produced using a fiber made of such a non-hydrophilic resin as a base fiber is preferable in that a water-absorbent resin obtained by polymerizing an aqueous monomer solution can be fixed to the fiber in fine particles. If there is no hydrophilic property to some extent, paper diapers, sanitary products, and the like manufactured using the resulting water-absorbing composite are likely to leak when used. Therefore, the nonwoven fabric used in the present invention is a nonwoven fabric subjected to a hydrophilic treatment, for example, polyoxyethylene alkyl ether, polyoxyethylene phenol ether, polyoxyethylene sorbitan ester, polyoxyethylene alkyl fatty acid ester or polyoxyethylene oxypropylene. A nonwoven fabric coated with an anionic surfactant such as a nonionic surfactant such as a block polymer, a higher fatty acid salt, an alkyl naphthalene sulfonate, a dialkyl succinate or an alkyl sulfate is preferred.
[0020]
As a specific hydrophilic treatment method, the above-mentioned surfactant, that is, a hydrophilic agent may be mixed in advance with the spinning raw material resin when spinning the base fiber, and then spinning may be performed. Further, a hydrophilizing agent dissolved in a solvent or the like may be sprayed on the fiber after spinning.
[0021]
In the present invention, the above fibrous base material may be used as it is, but it is preferably used by raising the hair by heating. The heating temperature is preferably near the softening point of the base fiber of the fibrous base material, and practically a temperature in the range of 70 to 150 ° C is selected. The heating time varies depending on the heating temperature, but is usually several seconds to 180 seconds. More preferable heating conditions are heating at 80 to 110 ° C for 20 to 60 seconds. The heating means is not limited. For example, the fibrous base material may be passed through a heating furnace for a predetermined time, hot air may be blown on the fibrous base material, or the fibrous base material may be irradiated with an infrared lamp or the like. May be heated.
[0022]
As a result of the above-described heating method and the like, some of the fibers constituting the fibrous base material are oriented in a direction perpendicular to the base material surface, so that the fibrous base material varies depending on the fiber length of the base fiber used therein. Usually, the volume swells to about 1.3 to 3.0 times the volume before the raising treatment. By appropriately selecting the fiber length of the base fiber and the heating conditions, it is preferable that the volume of the fibrous base material be increased by 1.5 to 2.5 times the volume before the raising process by the raising process by heating.
[0023]
In addition, as a raising treatment means such as a nonwoven fabric or a fiber web, for example, a raising treatment means using a roll with a needle ridge is known in addition to heating. However, in the case of employing a mechanical raising treatment means other than heating, it is difficult to carry a large amount of the aqueous monomer solution described below as fine particles on the fiber. And the water absorption rate becomes inferior.
[0024]
Monomer containing acrylic acid and / or a salt thereof (hereinafter collectively referred to as an acrylic acid monomer) as a main component in the fibrous base material or the raised fibrous base material (usually in the form of a sheet). An aqueous solution of the body is sprayed and carried by spraying. A preferred monomer is a mixture of acrylic acid and acrylate wherein 20-90 mol% of acrylic acid has been converted to an alkali metal or ammonium salt. Monomers other than acrylic acid monomers can also be used in combination, and specific examples include methacrylic acid or a salt thereof, (meth) acrylamide, 2-hydroxyethyl (meth) acrylate and 2-acrylamido-2-methyl And propanesulfonic acid or a salt thereof. The preferred use amount of such a monomer is 20 mol% or less based on the total amount of the monomer and the acrylic acid-based monomer.
[0025]
The preferred concentration of the monomer in the aqueous monomer solution is 20 to 80% by mass, more preferably 40 to 60% by mass. When the monomer concentration is high, a large amount of the water-absorbing resin can be easily fixed on the fibrous base material, and the heat energy required for the drying treatment after the polymerization of the monomer can be reduced. Therefore, it is preferable to use an aqueous monomer solution having the highest possible concentration. Usually, a concentration near the saturation solubility of the monomer is selected.
[0026]
It is preferable to add a crosslinking agent, a polymerization initiator, and the like to the aqueous monomer solution in addition to the monomer.
[0027]
As a crosslinking agent, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, glycerin tri (meth) acrylate , N, N'-methylenebisacrylamide, diallyl phthalate, triallyl cyanurate, triallyl isocyanurate, triallyl phosphate and the like.
[0028]
The proportion of the crosslinking agent added is preferably from 100 to 1000 ppm, particularly preferably from 300 to 750 ppm, based on the total mass of the monomers.
[0029]
The polymerization of the monomer can be performed by a general radical polymerization method, and the polymerization initiation method at that time is a thermal polymerization method using a compound that generates a radical by heat as a polymerization initiator, or an ultraviolet ray, an electron beam. For example, a method of initiating polymerization by irradiation with active energy rays. Preferably, it is a thermal polymerization method or a method of irradiating ultraviolet rays in the presence of a photopolymerization initiator (hereinafter referred to as UV irradiation polymerization method), and particularly preferably a UV irradiation polymerization method.
[0030]
Examples of the thermal polymerization initiator include water-soluble radical polymerization initiators such as hydrogen peroxide, ammonium persulfate, potassium persulfate, t-butyl hydroperoxide and cumene hydroperoxide. These compounds may be used as a redox polymerization initiator in combination with a reducing compound such as sodium bisulfite, sodium thiosulfate, L-ascorbic acid or an amine.
[0031]
The photopolymerization initiator used for polymerization by the UV irradiation polymerization method is not particularly limited, and any photopolymerization initiator that can generate radicals by ultraviolet rays can be used. The initiator can be appropriately selected and used according to the purpose. Specifically, azo compounds such as 2,2'-azobis (2-aminodipropane) salt, ketones such as 1-benzoyl-1-hydroxycyclohexane and benzophenone, benzoin and its alkyl ethers, benzyl ketals, and anthraquinone Derivatives and the like can be exemplified.
[0032]
Benzoyl compounds such as 1-hydroxy-cyclohexyl-phenyl-ketone and azo compounds such as 2,2′-azobis {2- (2-imidazolin-2-yl) propane} are preferred.
[0033]
The addition amount of the photopolymerization initiator is preferably from 100 to 2000 ppm based on the monomer. When the concentration of the photopolymerization initiator is less than 100 ppm, polymerization does not sufficiently occur, and when it exceeds 2,000 ppm, the degree of polymerization of the obtained polymer decreases.
[0034]
It is preferable to use a thermal decomposition type radical polymerization initiator in addition to the photopolymerization initiator. When this initiator is used in combination, thermal polymerization occurs in parallel with UV polymerization, and as a result, the polymerization conversion rate increases, and the amount of unreacted monomer remaining can be reduced. The amount of the thermal decomposition type radical polymerization initiator to be added is preferably from 100 to 5,000 ppm, particularly preferably from 500 to 2,000 ppm, based on the monomer.
[0035]
The polymerization temperature is preferably from 50 to 80 ° C. Therefore, as the thermal decomposition type radical polymerization initiator, a compound which decomposes in water at 80 ° C or less to generate radicals is preferable. Specific examples include persulfates such as ammonium persulfate and sodium persulfate.
[0036]
If necessary, a chain transfer agent, a surfactant and the like may be further added to the monomer aqueous solution.
[0037]
As described above, the monomer aqueous solution can be supported in the form of fine particles independently on the fibrous base material by spraying (coating) on the fibrous base material in the form of a mist as described above. As a method for atomizing the monomer aqueous solution, a known atomization technique can be used. Examples of the method include a dropletization method, a dropletization method using a spray nozzle, a dropletization method using a rotary disk atomizer, and an ultrasonic method.
[0038]
The average diameter of the spray droplet is preferably 50 to 500 μm. If the average diameter is less than 50 μm, droplets sprayed on the fibrous base material may easily penetrate to the back side without adhering to the fibrous base material, and thus may not easily adhere to the fibrous base material. When the average diameter of the droplets exceeds 500 μm, the adhesion of the droplets becomes uneven, and as a result, the water absorption amount and the water absorption rate of the water-absorbing composite material obtained by polymerization may be insufficient. The monomer aqueous solution having a size of 50 to 500 μm is subjected to polymerization and drying steps to become water-absorbent resin particles having a size of approximately 30 to 300 μm, and is fixed to the fibrous base material.
[0039]
The amount of the monomer aqueous solution carried is such that the amount of fixation of the water-absorbent resin obtained by the polymerization to the fibrous base material is 5 to 500 g / m 2 , preferably 20 to 300 g / m 2 .
[0040]
The fibrous base material carrying the aqueous monomer solution as described above is irradiated with ultraviolet light (UV) or the base material is heated to a predetermined temperature to convert the acrylic acid-based monomer into a crosslinking agent. Polymerize in the presence.
[0041]
At the time of polymerization, it is preferable to replace the atmosphere surrounding the monomer aqueous solution with an inert gas such as nitrogen gas to eliminate oxygen as much as possible.
[0042]
As the ultraviolet lamp, a high-pressure mercury lamp, a metal halide lamp or the like capable of irradiating a wavelength of 250 to 450 nm, and a mercury lamp having a lamp input of 30 to 240 W / cm is preferable. The amount of ultraviolet irradiation is 100 to 10000 mj / cm 2 , more preferably 2000 to 6000 mj / cm 2 . A number of mercury lamps can be used side by side depending on the required dose.
[0043]
By the above-mentioned UV irradiation, the majority (about 90% or more) of the monomer completes the polymerization in about 5 to 60 seconds. At this time, the polymerization temperature is estimated to be about 80 to 90 ° C. as the temperature of the fine particles of the aqueous monomer solution applied to the base material. In this way, hydrated polymer particles containing about 15 to 30% by weight of water and 0.1 to 10% by weight of unreacted monomer are formed on the fibrous base material.
[0044]
Thereafter, the heating is continued for a further appropriate period of time to reduce the unreacted monomers and to dry the hydropolymer particles, whereby a water-absorbing composite material as a starting material of the present invention is obtained.
[0045]
As described above, in the present invention, a fibrous base is obtained by further applying and polymerizing an aqueous monomer solution capable of forming a water-absorbing resin on the surface of the water-absorbing composite material produced by the above-described method or the like. Increase the amount of water absorbent resin on the material. Further, the operation of applying and polymerizing the aqueous monomer solution to the fibrous base material in a series of manufacturing steps may be repeated a plurality of times without using the water-absorbing composite material as a starting material.
[0046]
The coating amount of the aqueous monomer solution when per the latter is preferably 10 to 1000 g / m 2, more preferably from 50 to 500 g / m 2. Further, it is preferable to apply the next monomer aqueous solution when the polymerization of the previous monomer aqueous solution has progressed and the polymerization rate has reached 50% or more. When the next monomer aqueous solution is applied at a stage where the polymerization rate of the previously applied monomer is less than 50%, the droplets of the monomer aqueous solution unite with the semi-polymer to form large particles. The resulting water-absorbent composite sheet tends to be hard and the water absorption tends to be insufficient.
[0047]
The number of repetitions of the operation of carrying the monomer aqueous solution and the polymerization may be one or more, and the number of repetitions is appropriately determined in consideration of the purpose of use of the resulting water-absorbing composite.
[0048]
For details of operations such as supporting the aqueous monomer solution and polymerizing the monomer, the method described in the production of the water-absorbing composite material as the starting material can be used as it is.
[0049]
According to the production process for a water-absorbent composite of the present invention, the amount of sticking against the fibrous substrate of the water-absorbent resin becomes 100 g / m 2 or more, preferably 150~1000g / m 2.
[0050]
After producing the water-absorbing composite by the above method, it is desirable to spray an aqueous solution of a crosslinking agent (hereinafter referred to as a surface treatment agent) having a plurality of epoxy groups reactive with a carboxyl group on the composite. By this operation, the degree of crosslinking of the surface layer of the water-absorbent resin particles can be further increased.
[0051]
Examples of the surface treatment agent include glycidyl ethers such as ethylene glycol diglycidyl ether and polyethylene glycol diglycidyl ether, polyols such as diethylene glycol, triethylene glycol, propylene glycol, glycerin and pentaerythritol, and polyamines such as ethylene diamine. The addition amount of the surface treatment agent is preferably 100 to 1000 ppm based on the water-absorbing resin particles.
[0052]
The resulting water-absorbing composite is preferably further heat-compressed for the purpose of further improving the water-absorbing performance (water-absorbing speed, water-absorbing amount, liquid diffusivity, liquid reversion preventing property, etc.). The thermal compression is preferably performed using a hot press, a hot roll, an emboss roll, or the like.
[0053]
The heat compression temperature is preferably from 50 to 150C, more preferably from 70 to 120C. When the heat compression temperature is lower than 50 ° C., a sufficient compression effect cannot be obtained. When the heat compression temperature is higher than 150 ° C., the flexibility of the water-absorbing composite obtained by hot-melting the fibrous base material may be impaired. It is not preferred.
[0054]
The thermal compression pressure is preferably from 0.01 to 100 MPa, more preferably from 0.1 to 10 MPa. The heat compression time varies depending on the heat compression temperature and the heat compression pressure, but is preferably 1 to 100 seconds.
[0055]
When performing thermal compression on an industrial scale, it is particularly preferable to use a hot roll. Specifically, the water-absorbent composite is continuously guided between the rolls while pressing the pair of rolls so as to have a linear pressure of 1 to 100 kg / cm, and is thermally compressed between the rolls.
[0056]
The gap between the pair of rolls used for thermal compression depends on the thickness of the water-absorbing composite to be thermally compressed, but is usually preferably 10 to 500 µm. When it is less than 10 μm, the fibrous base material may be cut, and when it exceeds 500 μm, the compression effect becomes insufficient.
[0057]
The pair of rolls preferably have at least one of the rolls formed with an uneven pattern. The depth of the concavo-convex pattern is preferably 0.001 mm or more, and more preferably 0.01 to 1 mm. It is preferable that the concavo-convex pattern is a pattern in which the concavo-convex pattern is repeated at intervals of 10 mm or less, or a pattern that fits in a circle having a diameter of 10 mm is formed continuously at intervals of 10 mm or less. In the case of a pattern in which the repetition interval exceeds 10 mm or a pattern which does not fit in a circle of 10 mm, the advantage of the present invention caused by compressing the fibrous base material may not be sufficiently exhibited.
[0058]
Hereinafter, an example of a continuous process for producing a water-absorbing composite sheet, which incorporates the method for producing a water-absorbing composite of the present invention, will be described with reference to FIG. This production process includes a process 1 for producing a water-absorbing composite material as a main raw material, and a process 2 for polymerizing a monomer after again supporting an aqueous monomer solution on the water-absorbing composite material.
[0059]
(Step 1)
Reference numeral 2 in FIG. 1 denotes a fibrous base material roll made of a wound nonwoven fabric. The fibrous base material wound around the roll 2 is preferably excellent in liquid permeability and gas permeability.
[0060]
The fibrous base material 4 fed from the roll 2 is then sent to a raising treatment section 6, where it is heated and subjected to a raising treatment. The processing conditions for the raising treatment have already been described in detail.
[0061]
The aqueous solution of a monomer containing a crosslinking agent, a polymerization initiator, and the like is applied by the spray nozzle 7 to the fibrous base material 4 that has been continuously raised by the heat treatment. In FIG. 1, reference numeral 8 denotes a monomer aqueous solution tank for storing an aqueous solution of a monomer and a cross-linking agent, and 10 denotes an additive tank for storing an aqueous solution of an additive such as a polymerization initiator. The aqueous solution of the crosslinking agent and the monomer in each of these tanks and the aqueous solution of an additive such as a polymerization initiator are mixed and supplied to the spray nozzle 7.
[0062]
In this example, a thermal decomposition type radical polymerization initiator is used in addition to the photopolymerization initiator as the polymerization initiator.
[0063]
The fibrous base material 4 on which the monomer aqueous solution is carried as described above is then sent to the first polymerization processing section 100 provided with a plurality of ultraviolet lamps 12 on the upper side, where the ultraviolet light is irradiated from above. As a result, the monomer applied to the fibrous base material 4 is polymerized. The inside of the first polymerization section 100 is kept in an atmosphere of an inert gas such as nitrogen gas, and oxygen is eliminated as much as possible. As the ultraviolet lamp 12, a mercury lamp or a metal halide lamp is preferable.
[0064]
Thereby, the water-absorbing composite material 5 of the starting material of the present invention is obtained.
[0065]
(Step 2)
Thereafter, the same aqueous monomer solution as described above is applied again to the water-absorbing composite material 5 obtained by passing through the first polymerization treatment section 100 using the spray nozzle 14. As a result, a sufficient amount of the monomer is supported on the fibrous base material 4.
[0066]
Next, the water-absorbing composite material 5 to which the aqueous monomer solution has been applied again is sent to the second polymerization processing section 110. The second polymerization processing section 110 has an interior maintained in an inert atmosphere similarly to the first polymerization processing section 100, and is provided with a plurality of ultraviolet lamps 16 at an upper portion thereof. This causes the re-coated monomer to polymerize.
[0067]
A spray nozzle 20 for applying a surface treatment agent that sprays the surface treatment agent stored in the surface treatment agent tank 18 is provided downstream of the second polymerization treatment unit 110. The coating spray nozzle 20 applies a surface treatment agent to the water-absorbing composite material 5 that has passed through the second polymerization treatment section 110.
[0068]
A third polymerization treatment section 120 is provided downstream of the spray nozzle 20 for applying the surface treatment agent. The third processing unit 120 is maintained in an inert gas atmosphere similarly to the second processing unit 110, and has a plurality of ultraviolet lamps 22 mounted thereon.
[0069]
The water-absorbing composite material 5 coated with the surface treatment agent is irradiated with ultraviolet rays when passing through the third processing section, and is subjected to photo-radical polymerization and polymerization heat generated as the photo-radical polymerization proceeds. As a result, the thermal polymerization is initiated by the action of a thermal polymerization initiator, whereby the residual monomers are almost completely eliminated. Furthermore, the crosslink density near the surface of the water-absorbent resin particles is increased by the surface treatment agent.
[0070]
Below the third polymerization processing section 120, a heat retaining section 130 is formed, and the water absorbing composite material 5 to which the water absorbing resin particles are adhered passes therethrough to dry the water absorbing resin particles. Thus, the water-absorbing composite 24 is obtained.
[0071]
(Heat compression processing)
Reference numeral 26 denotes a heat compression roll, by which the water-absorbing composite is heat-compressed.
[0072]
As a method of applying heat compression to the water-absorbing composite 24, various conventionally known methods can be adopted. As shown in FIG. 1, the water-absorbing composite 24 is provided between a pair of opposed rolls 26 provided with heating means. A method in which the heat compression treatment is continuously performed by passing through the body 24 is preferable.
[0073]
After the heat compression treatment, the compressed water-absorbent composite 27 is wound up, whereby a product water-absorbent composite roll 28 is obtained.
[0074]
Hereinafter, the present invention will be described more specifically with reference to examples.
[0075]
【Example】
Example 1
In a monomer aqueous solution composed of 70 mol% of sodium acrylate and 30 mol% of acrylic acid (total content of monomers: 42 mass%), tetraethylene glycol diacrylate (Aronix M-240 manufactured by Toagosei Co., Ltd.) was used as a crosslinking agent. 05% by mass (based on the mass of the monomer) was added, and the aqueous monomer solution was cooled to 20 ° C. Next, nitrogen gas was blown into the monomer aqueous solution to reduce the dissolved oxygen concentration to 1 ppm or less.
[0076]
In this monomer aqueous solution, 1-hydroxycyclohexyl-phenyl-ketone (0.02% by mass (based on monomer mass)) as a photopolymerization initiator, and sodium persulfate (0.15% by mass) (monomer (Based on the amount).
[0077]
On the other hand, the prepared monomer aqueous solution was applied to an air-through nonwoven fabric (basis weight 40 g / m 2 ) composed of PE / PP using a spray nozzle so as to be 190 g / m 2 (in the amount of the aqueous solution). The non-woven fabric sprayed with the monomer aqueous solution was irradiated with ultraviolet rays using a high-pressure mercury lamp under a nitrogen atmosphere. The amount of ultraviolet light was 1000 mj / cm 2 .
[0078]
The obtained water-absorbing composite material was further sprayed with the above monomer aqueous solution at 190 g / m 2 (in the amount of the aqueous solution). Thereafter, ultraviolet irradiation was performed using a high-pressure mercury lamp under a nitrogen atmosphere. The amount of ultraviolet light was 2500 mj / cm 2 . The obtained water-absorbent composite had flexibility with the water-absorbent resin fixed at 160 g / m 2 .
[0079]
Example 2
The same procedure as in Example 1 was repeated except that the monomer aqueous solution was sprayed at 127 g / m 2 and then polymerized three times in total, and the amount of the water-absorbing resin fixed was 160 g / m 2 . A water-absorbing composite was obtained.
[0080]
Comparative Example 1
A water-absorbing composite having a water-absorbing resin fixed to 160 g / m 2 was obtained in the same manner as in Example 1 except that 380 g / m 2 of the aqueous monomer solution was sprayed at a time.
[0081]
The water-absorbing composites of Examples 1 and 2 and Comparative Example 1 were evaluated by the test methods described below. The results are shown in Table 1. The artificial urine (per 10 kg) has the following composition.
[0082]
Urea / NaCl / MgSO 4 · 7H 2 O / CaCl 2 · 2H 2 O / pure water = 200g / 80g / 8.0g / 3.0g / 9709g
(Amount of artificial urine absorbed)
The water-absorbing complex cut into 6 cm × 7 cm and 200 ml of artificial urine were placed in a 300 ml beaker and left at room temperature for 30 minutes. After that, the water-absorbing complex swollen by absorbing the artificial urine was taken out from the artificial urine, and the artificial urine attached thereto was wiped off with a 200-mesh filter cloth, and the mass was measured. The artificial urine water absorption A (kg / m 2 ) was calculated by the following equation.
[0083]
(Equation 1)
A = (W1-W2) /0.42
Here, W1 represents the mass of the water-absorbing composite after water absorption, and W2 represents the mass of the water-absorbing composite before water absorption.
[0084]
(Artificial urine absorption rate)
The water-absorbing complex cut into 6 cm × 7 cm and 200 ml of artificial urine were placed in a 300 ml beaker and left at room temperature for 5 minutes. Thereafter, the water-absorbing composite or the water-absorbent resin-supporting fibrous base material swollen by the artificial urine was taken out from the artificial urine, and the artificial urine attached thereto was wiped off with a 200-mesh filter cloth, and the mass was measured. The artificial urine water absorption rate B (kg / m 2 ) was calculated by the following equation.
[0085]
(Equation 2)
B = (W1-W2) /0.42
(Artificial urine suction speed)
The results are shown in Table 1.
[0086]
[Table 1]
Figure 2004149970
[0087]
【The invention's effect】
In the method for producing a water-absorbent composite of the present invention, the fibrous base material to which the water-absorbent resin is fixed further supports an aqueous monomer solution, and the monomer is polymerized. The body has a large amount of water-absorbing resin adhered. Furthermore, in the method for producing a water-absorbing composite of the present invention, since the aqueous monomer solution is sprayed on the fibrous base material, and the aqueous monomer solution supported on the fibrous base material is polymerized. The water-absorbent resin particles can be reliably attached to the fibers of the base material independently in a so-called rosary connection state. The water-absorbing composite thus produced has a high water absorption rate, a large amount of water absorption, and a high flexibility since the water-absorbing resin particles are uniformly and independently dispersed therein. Therefore, the water-absorbing composite produced by the method of the present invention is suitable for sanitary materials such as disposable diapers. Further, when the fibrous base material is subjected to a raising treatment by heating in advance, a more sophisticated water-absorbing composite can be produced. In the case where the resulting water-absorbing composite is thermally compressed to form an uneven pattern on the surface of the water-absorbing composite, the water absorption speed, the water absorption, and the like can be further increased.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an example of a production apparatus used for a continuous production method of a water-absorbing composite of the present invention.
[Explanation of symbols]
2 fibrous base material roll 4 fibrous base material 5 water-absorbing composite material 6 napping treatment part 7, 14 spray nozzle 8 monomer aqueous solution tank 10 additive tank 12, 16, 22 ultraviolet lamp 18 surface treatment agent tank 20 surface treatment Spray nozzle for agent coating 24 Water-absorbing composite 26 Hot compression roll 27 Compressed water-absorbing composite 28 Product water-absorbing composite roll 100 First polymerization processing section 110 Second polymerization processing section 120 Third polymerization processing section 130 Insulation section

Claims (3)

吸水性樹脂の微細粒子を繊維質基材に固着してなる吸水性複合材料に、アクリル酸および/またはその塩を主成分とする単量体水溶液を微細粒子状に担持させた後、該吸水性複合材料に担持させた単量体を重合させることを特徴とする吸水性複合体の製造方法。After a monomer aqueous solution containing acrylic acid and / or a salt thereof as a main component is supported in fine particles on a water-absorbing composite material obtained by fixing fine particles of a water-absorbing resin to a fibrous base material, A method for producing a water-absorbing composite, comprising polymerizing a monomer supported on a water-soluble composite material. 下記工程1及び工程2を含むことを特徴とする吸水性複合体の製造方法。
(工程1) 起毛処理を施した繊維質基材に、アクリル酸および/またはその塩を主成分とする単量体水溶液を微細粒子状に担持させた後、該繊維質基材に担持させた単量体を重合させて吸水性複合材料を得る工程
(工程2) 工程1で得た吸水性複合材料に、更にアクリル酸および/またはその塩を主成分とする単量体水溶液を微細粒子状に担持させた後、該吸水性複合材料に担持させた単量体を重合させる工程
A method for producing a water-absorbing composite, comprising the following steps 1 and 2.
(Step 1) An aqueous monomer solution containing acrylic acid and / or a salt thereof as a main component was supported in fine particles on a fibrous substrate that had been subjected to a raising treatment, and then supported on the fibrous substrate. Step of polymerizing the monomer to obtain a water-absorbing composite material (Step 2) In addition to the water-absorbing composite material obtained in Step 1, a monomer aqueous solution containing acrylic acid and / or a salt thereof as a main component is formed into fine particles. And then polymerizing the monomer supported on the water-absorbing composite material
吸水性樹脂の微粒子が繊維質基材に100g/m以上固着された吸水性複合体を得る請求項1又は2に記載の吸水性複合体の製造方法。Method for producing a water-absorbing composite according to claim 1 or 2 fine particles of the water-absorbing resin to obtain a 100 g / m 2 or more fixed water-absorbent composite fibrous base material.
JP2002317784A 2002-10-31 2002-10-31 Method for producing water-absorbing composite Expired - Fee Related JP3681372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002317784A JP3681372B2 (en) 2002-10-31 2002-10-31 Method for producing water-absorbing composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002317784A JP3681372B2 (en) 2002-10-31 2002-10-31 Method for producing water-absorbing composite

Publications (2)

Publication Number Publication Date
JP2004149970A true JP2004149970A (en) 2004-05-27
JP3681372B2 JP3681372B2 (en) 2005-08-10

Family

ID=32461088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002317784A Expired - Fee Related JP3681372B2 (en) 2002-10-31 2002-10-31 Method for producing water-absorbing composite

Country Status (1)

Country Link
JP (1) JP3681372B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006059524A1 (en) * 2004-11-30 2006-06-08 Kao Corporation Absorptive sheet
KR20160062900A (en) * 2014-11-26 2016-06-03 코오롱인더스트리 주식회사 Method of manufacturing superabsorbent yarn
KR20160115422A (en) * 2015-03-27 2016-10-06 코오롱인더스트리 주식회사 Method of manufacturing superabsorbent yarn

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006059524A1 (en) * 2004-11-30 2006-06-08 Kao Corporation Absorptive sheet
JP2006149870A (en) * 2004-11-30 2006-06-15 Kao Corp Absorbent sheet
JP4535858B2 (en) * 2004-11-30 2010-09-01 花王株式会社 Absorbent sheet
KR20160062900A (en) * 2014-11-26 2016-06-03 코오롱인더스트리 주식회사 Method of manufacturing superabsorbent yarn
KR102055931B1 (en) * 2014-11-26 2019-12-13 코오롱인더스트리 주식회사 Method of manufacturing superabsorbent yarn
KR20160115422A (en) * 2015-03-27 2016-10-06 코오롱인더스트리 주식회사 Method of manufacturing superabsorbent yarn
KR102143136B1 (en) * 2015-03-27 2020-08-10 코오롱인더스트리 주식회사 Method of manufacturing superabsorbent yarn

Also Published As

Publication number Publication date
JP3681372B2 (en) 2005-08-10

Similar Documents

Publication Publication Date Title
JP3583227B2 (en) Water-absorbing composite and method for producing the same
KR940010048B1 (en) Apparatus and method for the manufacture of absorbent materials
AU543970B2 (en) Absorbent composite
KR950012335B1 (en) Process for the preparation of water absorptive composite material
JPH1193073A (en) Production of composite of polymer and fiber
JP2006063508A (en) Water absorbing resin composite material, method for producing the same, water absorbing resin sheet and water absorbing article
JPH01292103A (en) Production of absorbing material
US20060127585A1 (en) Process for production of water-absorbing composites
EP1548179B1 (en) Method for producing water-absorbing composite
JP3681372B2 (en) Method for producing water-absorbing composite
JP4043334B2 (en) Method for producing water-absorbing composite
JP4263576B2 (en) Water absorbent sheet
JP4455835B2 (en) Water-absorbing composite sheet and method for producing the same
EP0223908B1 (en) Process for continuous production of nonwoven highly water-absorbent complex
JP3782050B2 (en) Method for producing water-absorbing composite
JP4414293B2 (en) Method for producing absorbent composite
JP2007197873A (en) Liquid-absorbing composite and method for producing the same, liquid-absorbing article and nozzle
JP2006016719A5 (en)
JPH0291129A (en) Preparation of water-absorbing composite
JPH0327181A (en) Production of water absorbing nonwoven fabric
JP2004332159A (en) Water-absorbing composite sheet
JPS62133183A (en) Production of water absorbable composite
JP2006168324A (en) Water absorbent composite, its manufacturing method and material using water absorbent composite
JPS62225507A (en) Production of water-absorbing composite
JP2683095B2 (en) Body fluid absorbent article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20021108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050517

R150 Certificate of patent or registration of utility model

Ref document number: 3681372

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080527

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees