JP4455835B2 - Water-absorbing composite sheet and method for producing the same - Google Patents

Water-absorbing composite sheet and method for producing the same Download PDF

Info

Publication number
JP4455835B2
JP4455835B2 JP2003159488A JP2003159488A JP4455835B2 JP 4455835 B2 JP4455835 B2 JP 4455835B2 JP 2003159488 A JP2003159488 A JP 2003159488A JP 2003159488 A JP2003159488 A JP 2003159488A JP 4455835 B2 JP4455835 B2 JP 4455835B2
Authority
JP
Japan
Prior art keywords
water
sheet
absorbent
fibrous base
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003159488A
Other languages
Japanese (ja)
Other versions
JP2004358797A (en
Inventor
幸司 野村
享 美保
浩司 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daio Paper Corp
Original Assignee
Daio Paper Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2003159488A priority Critical patent/JP4455835B2/en
Application filed by Daio Paper Corp filed Critical Daio Paper Corp
Priority to US10/524,916 priority patent/US20060153988A1/en
Priority to AU2003261868A priority patent/AU2003261868A1/en
Priority to PCT/JP2003/011149 priority patent/WO2004022840A1/en
Priority to DE60331567T priority patent/DE60331567D1/en
Priority to CNB038203065A priority patent/CN1311124C/en
Priority to EP03794161.4A priority patent/EP1548179B2/en
Publication of JP2004358797A publication Critical patent/JP2004358797A/en
Application granted granted Critical
Publication of JP4455835B2 publication Critical patent/JP4455835B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、吸水性シートと繊維質シートとを貼着してなる吸水性複合シートに関する。本吸水性複合シートは、繊維質基材のしなやかさを保持しつつ、高い吸水速度及び高い吸水量を有し、紙おむつ、生理用ナプキン等の製造に有用なものである。
【0002】
【従来の技術】
従来、紙おむつ、生理用ナプキン等に用いられる吸水性シートには、紙、パルプ、不織布等の繊維質基材シートに、架橋したポリアクリル酸等の吸水性樹脂粒子を均一に分散させ、固着させたものがある。しかし、この吸水性シートは、吸水性樹脂粒子が繊維質基材シートに確実に固着されているものが少なく、吸水性樹脂粒子が脱落しやすい。またその製造上も、粉末粒子を取扱う点で操作が煩雑である。
【0003】
上記問題を解決するため、アクリル酸及びアクリル酸塩からなる単量体混合物水溶液を繊維質基材に噴霧した後、これに電離放射線や微粒子イオン化放射線等を照射することにより、前記噴霧した単量体混合物を重合させて吸水性樹脂を繊維質基材シートに固着させた吸水性シートが知られている。
【0004】
特許文献1には、繊維質基材上に担持された単量体水溶液にUV照射して重合させることにより、上記と同様の吸水性シートを製造する方法が開示されている。同公報には、重合後に未反応単量体が残らないように、UV照射することにより単量体の大半を重合させた後、電子線を照射し、さらにその後にUVを照射して重合転換率を高めることが好ましいと記載されている。このように、UV重合法を採用する場合においても、未反応単量体が残存しない吸水性シートを製造するためには、複雑な製造工程を採用せざるを得ないのが現状である。
【0005】
特許文献2には、重合中の単量体水溶液滴を繊維質基材に落下、付着させ、繊維質基材上でレドックス系の重合を完了させることにより、吸水能及び保水能が高い吸水性シートを製造する方法が記載されている。
【0006】
また、特許文献3には、同様な吸水性シートにおいては、繊維質基材として空隙率が50〜99.5%であること、基材に担持されている吸水性樹脂粒子の1次粒子径が50〜1000μmであること、また基材1m2当りの吸水性樹脂担持量は10〜500gが好ましいと記載されている。
【0007】
上記特許文献1〜3に記載の発明によれば、繊維質基材上で単量体水溶液を重合させるため、得られる吸水性樹脂粒子は繊維に固着して一体となっており、粉末の吸水性樹脂を繊維質基材に適用する際に生じる前記問題点の多くが解決されている。
【0008】
しかしながら、前記各公報に記載された吸水性シートは吸水速度が不十分であり、特におむつ等の衛生用品への用途にはより高吸水速度の吸水性シートが求められている。
【0009】
これらの問題点を解決する為に、その面方向に沿って交互に繊維密度に差を施した繊維ウェブを繊維質基材に利用する方法が提案されている(特許文献4)。
【0010】
この発明によれば、上記繊維ウェブ上で重合した吸水性ポリマーは、該繊維質基材に安定に固定されるものの、このような繊維ウェブ上にモノマーを塗工する場合、該繊維ウェブ上でモノマーの液滴が重合前に合一化したり、或いは繊維中にしみ込んでしまう。その結果、このモノマーを重合させて得られる吸水性シートは不均一で且つ柔軟性が不足する傾向にある。従って、上記各発明によっても、吸水性シートとして要求される各性能のバランスの取れた高性能吸水性シートは従来得られていない。
【0011】
【特許文献1】
特開平1−292103号(第1〜3頁)
【特許文献2】
特開平2000−328456号(請求項1)
【特許文献3】
特開平9−67403号(特許請求の範囲)
【特許文献4】
特許第2554136号(請求項1)
【0012】
【発明が解決しようとする課題】
本発明においては、吸水速度が高く、吸水性樹脂当りの吸水量が大きく、かつ未反応単量体を僅かしか含まない、柔軟性に富む吸水性複合シート、及びその製造方法を提供することを課題とする。
【0013】
【課題を解決するための手段】
本発明者らは、前記課題を解決するために鋭意検討した結果、繊維質基材に微細な吸水性樹脂粒子が多数固着した吸水性シートと、繊維質基材シートとを張合わせて一体化して複合シート化すると、この複合シートは該吸水性樹脂粒子が有する潜在的吸水能力を効率よく引出し、多量の水分を急速に吸収できるようになること、更に上記複合シート表面に熱圧縮による凹凸模様を形成することにより柔軟性を損うことなく、より高い吸水能力を発揮するようになることを見出した。本発明は上記発見に基づいて完成するに至ったものである。
【0014】
即ち、上記課題を解決する本発明は、繊維質基材に吸水性樹脂粒子を固着してなる吸水性シートと、前記吸水性シートの少なくとも片面に貼着した繊維質基材シートとからなることを特徴とする吸水性複合シートである。また、本発明は吸水性シートと繊維質基材シートとの貼着を、少なくとも一方のロールが加熱されている一対のロールを用いて熱圧縮することにより行うことを特徴とする吸水性複合シートの製造方法で、少なくとも一方のロールの表面に凹凸模様が施されていることを含む。
【0015】
【発明の実施の形態】
(吸水性複合シート)
本発明の吸水性複合シートは、吸水性シートと、前記吸水性シートの片面又は両面に貼着した繊維質基材シートとからなる。吸水性シートと、繊維質基材シートとの貼着は、接着剤、バインダーの使用、融着等の任意の貼着方法が採用できる。
【0016】
吸水性複合シートの表面には、凹凸模様が形成されていることが好ましい。凹凸模様の深さは0.01〜1mmが好ましい。また、凹凸模様は、ピッチが10mm以下、好ましくは0.05〜5mmのストライプ状、又は直径10mm以下、好ましくは1〜5mmの円内に納る多角形、円、楕円等の模様を連続的に形成したものが好ましい。
【0017】
(吸水性シート)
吸水性シートは、繊維質基材の繊維に吸水性樹脂粒子を数珠状に固着してなる。吸水性樹脂粒子はアクリル酸及びその塩等の親水性単量体を主成分とし、これらを重合させてなるものであり、代表例としては後記する方法により製造される吸水性シートがある。吸水性樹脂粒子径は30〜300μmが好ましい。吸水性樹脂の繊維質基材に対する固着量は100g/m2以上で、好ましくは150〜1000g/m2である。
【0018】
(繊維質基材シート)
本発明において、前記吸水性シートに貼着する繊維質基材シート(以下貼着シートということがある)としては、繊維質パッド、カーディングされたウェブ、木綿ガーゼのような織布、メリヤス地及び不織布等が挙げられる。
【0019】
該繊維質基材シートとしては、それ自身が吸水性に優れることが好ましく、そのため繊維質基材シートを構成する繊維としては、木材パルプ、レーヨン、木綿、再生セルロース等の親水性繊維又は親水性化処理の施された合成繊維が好ましい。
【0020】
具体的には、親水性化処理の施された合成繊維からなる不織布、またはトイレットペーパー、紙タオル、ナプキン紙、ちり紙およびワッディング等(これらは一般に衛生用紙と総称されている。)の紙材が好ましく、特に好ましいのは衛生用紙等の紙材である。
【0021】
上記合成繊維としては、ポリエステル、ポリエチレン、ポリプロピレン、ポリアミド、ポリビニルアルコール、ポリアクリロニトリル及びポリ塩化ビニル等が挙げられ、好ましくはポリエステル、ポリアミド、ポリプロピレンおよびポリエチレンである。
【0022】
後記する吸水性シートの製造用に使用される不織布のうち、親水性繊維または親水性化処理の施された合成繊維により形成された不織布は、すべて貼着シートとして用いることができる。
【0023】
(吸水性複合シートの製造方法)
以下、吸水性複合シートの製造方法の一例につき説明する。
【0024】
先ず、吸水性シートの製造方法を説明する。吸水性シートは、以下に示すように、起毛処理を施していない繊維質基材、又は起毛処理を施した繊維質基材にアクリル酸及び/またはその塩を主成分とする単量体水溶液を微細粒子状に担持させた後、該繊維質基材に担持させた単量体を重合させることにより製造する。
【0025】
繊維質基材としては、不織布が好ましい。本発明において不織布は、狭義の不織布、すなわちバインダーでベース繊維が固着された繊維ウェブの他に、カーデイングまたはエアレイングしたウェブおよび繊維の収束性のゆるいパッドも包含するものとする。
【0026】
本発明に於いて用いる不織布は、ベース繊維をバインダー繊維で熱融着させることにより製造されるものが好ましい。この不織布は、後述する起毛処理ができるので、より好ましいものである。
【0027】
熱融着により製造される不織布は、ベース繊維と熱融着型のバインダー繊維とを、例えばベース繊維/バインダー繊維=40〜90/60〜10(質量比)の比率で均一に混綿し、カーディング等の手段を用いてウェブを形成し、しかる後相互に熱融着させることにより容易に製造できる。
【0028】
不織布の目付けとしては10〜100g/m2が適当である。不織布の嵩高性は、不織布1g当りの容積すなわち比容積で0.1×102〜2.0×102ml/gが好ましい。
【0029】
不織布は、繊度1.0〜20dtex、繊維長25〜128mmのベース繊維を用いて製造されたものが好ましい。ベース繊維の繊度が1.0dtex未満である場合は、得られる不織布の通気性が不足し易い。一方20dtexを越える場合は吸水性樹脂の付着量を多くすることが難しい。
【0030】
ベース繊維の繊維長が25mm未満である場合は、不織布の強度が低下しやすい。また、後述する加熱による起毛処理を行う場合は、繊維の起毛が不足し、吸水性樹脂の固着量が過少となり易い。一方128mmを越えると不織布製造の際に行われるカーデイング処理が難しくなる。
【0031】
ベース繊維の素材としては、後述するように単量体水溶液を霧状にして基材表面に担持させる際に、単量体水溶液が独立した微細粒子状に繊維に付着する点で非親水性樹脂が好ましい。具体的には、ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体、ポリエチレンテレフタレート、ポリアミド、ポリスチレン、ポリアクリロニトリル、ポリ塩化ビニルおよびポリ塩化ビニリデン等が挙げられる。また、レーヨン、木綿、再生セルロース繊維等の親水性繊維を少量成分として含有する不織布も好ましい。かかる非親水性樹脂からなる繊維をベース繊維として用いて製造した不織布は、単量体水溶液を重合させて得られる吸水性樹脂を微細粒子状に繊維に固着できる点では好ましいが、不織布自体にある程度の親水性がないと、得られる吸水性複合シートを用いて製造する紙おむつや生理用品等はその使用時に、液洩れ等が発生し易い。このため、不織布は、親水化処理を施した不織布、例えばポリオキシエチレンアルキルエーテル、ポリオキシエチレンフェノールエーテル、ポリオキシエチレンソルビタンエステル、ポリオキシエチレンアルキル脂肪酸エステル、ポリオキシエチレンオキシプロピレンブロックポリマー等のノニオン性界面活性剤、高級脂肪酸塩、アルキルナフタレンスルホン酸塩、ジアルキルコハク酸塩またはアルキル硫酸エステル塩等のアニオン系界面活性剤をコーティングした不織布が好ましい。
【0032】
具体的な親水化処理方法としては、ベース繊維を紡糸する際に紡糸原料樹脂に上記界面活性剤、即ち親水化剤を予め混合しておき、それを紡糸しても良い。また溶媒等に溶解した親水化剤を紡糸後の繊維に散布してもよい。
【0033】
上記不織布はそのまま使用しても良いが、加熱により起毛させたものが好ましい。加熱温度は不織布のベース繊維の軟化点付近が好ましく、実用的には70〜150℃の範囲の温度が選択される。加熱時間は、加熱温度によっても異なるが、通常数〜180秒間が適当である。さらに好ましい加熱条件は、80〜110℃で20〜60秒の加熱である。加熱手段は限定されず、例えば不織布を加熱炉内を所定時間かけて通過させてもよいし、熱風を繊維質基材に吹付けても良く、または赤外線ランプ等によって不織布を加熱してもよい。
【0034】
上記不織布等の繊維質基材にアクリル酸および/またはその塩(以下アクリル酸系単量体と総称する)を主成分とする単量体の水溶液を霧状にして吹きつけて担持させる。好ましい単量体は、アクリル酸の20〜90モル%がアルカリ金属塩またはアンモニウム塩に変換されているアクリル酸とアクリル酸塩との混合物である。
【0035】
アクリル酸系単量体以外の単量体も併用することができ、具体例としては、メタクリル酸またはその塩、(メタ)アクリルアミド、2−ヒドロキシエチル(メタ)アクリレートおよび2―アクリルアミド―2−メチルプロパンスルホン酸またはその塩等が挙げられる。かかる単量体の好ましい使用量は、アクリル酸系単量体との合計量を基準にして20モル%以下である。
【0036】
単量体水溶液における単量体の好ましい濃度は、20〜80質量%で、更に好ましくは40〜60質量%である。
【0037】
上記単量体水溶液には、単量体以外に、架橋剤および重合開始剤等を添加することが好ましい。
【0038】
架橋剤としては、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、N,N'−メチレンビスアクリルアミド、ジアリルフタレート、トリアリルシアヌレート、トリアリルイソシアヌレートおよびトリアリルホスフェート等が例示できる。
【0039】
架橋剤の添加割合は、単量体合計質量に対して100〜1000ppmが好ましく、300〜750ppmが特に好ましい。
【0040】
単量体の重合は、一般的なラジカル重合法によって行うことができる。重合開始方法としては、熱によりラジカルを発生する化合物を重合開始剤として用いる熱重合法、または紫外線、電子線等の活性エネルギー線の照射により重合開始させる方法等が採用できる。好ましくは、熱重合法、または光重合開始剤の存在下に紫外線照射する方法(以下、UV照射重合法という)であり、特に好ましくはUV照射重合法である。
【0041】
熱重合開始剤としては、過酸化水素、過硫酸アンモニウム、過硫酸カリウム、t−ブチルハイドロパーオキサイド及びクメンハイドロパーオキサイド等の水溶性ラジカル重合開始剤が挙げられる。これらの化合物は、例えば、亜硫酸水素ナトリウム、チオ硫酸ナトリウム、L−アスコルビン酸またはアミン等の還元性化合物と併用して、レドックス系重合開始剤として使用しても良い。
【0042】
UV照射重合法で重合させる場合に使用する光重合開始剤としては、特に制限が無く、紫外線によりラジカルを発生させることのできる光重合開始剤であれば何れのものでも使用でき、公知の光重合開始剤を適宜目的に応じて選択して使用できる。具体的には、2,2’−アゾビス(2−アミノジプロパン)塩等のアゾ化合物、1−ベンゾイル−1−ヒドロキシシクロヘキサン及びベンゾフェノン等のケトン、ベンゾイン及びそのアルキルエーテル、ベンジルケタール類、並びにアントラキノン誘導体等を例示できる。
【0043】
上記単量体水溶液は、前記のとおり霧状にして繊維質基材上に噴霧(塗布)することにより、繊維質基材上に独立した微細粒子状に担持させ得る。単量体水溶液を霧状にする方法としては、公知の微粒化技術を利用できる。例えば、滴化法としては、スプレーノズルを用いた液滴化法、回転盤型アトマイザーを用いた液滴化法、超音波法等が挙げられる。
【0044】
噴霧液滴の平均径は、50〜500μmが好ましい。平均径が50μmに満たない場合は、繊維質基材に噴霧した液滴が繊維質基材に付着することなく裏側まで突抜けやすくなるため、繊維質基材へ付着し難くなる場合がある。液滴の平均径が500μmを超える場合は、液滴の付着が不均一となり、その結果重合して得られる吸水性シートの吸水量および吸水速度は不十分となる場合がある。50〜500μmの大きさの単量体水溶液は重合、乾燥工程を経ることにより、概略30〜300μmの吸水性樹脂粒子となって、繊維質基材に固着される。
【0045】
単量体水溶液の担持量は、その重合によって得られる吸水性樹脂の繊維質基材に対する固着量が5〜500g/m2となる量であり、好ましくは20〜300g/m2である。
【0046】
上記方法により吸水性シートを製造した後、カルボキシル基と反応性のエポキシ基等を複数有する架橋剤(以下表面処理剤という)の水溶液を該吸水性シートに散布し、加熱することが望ましい。この操作により、吸水性樹脂粒子の表面層の架橋度をさらに上げることができる。
【0047】
上記のようにして得られる吸水性シートは、次いで前記貼着シートと貼着され、本発明の吸水性複合シートが得られる。
【0048】
貼着方法としては、接着剤等を用いる方法、融着する方法等がある。特に好ましい貼着方法は、熱圧縮による貼着方法である。
【0049】
熱圧縮は熱プレス、熱ロールまたはエンボスロール等を用いて行うことが好ましい。
【0050】
熱圧縮温度は、50〜150℃が好ましく、70〜120℃がより好ましい。熱圧縮温度が50℃未満の場合は十分な圧縮効果が得られない。150℃よりも高い場合は繊維質基材又は貼着シートが熱溶融して得られる吸水性複合体シートの柔軟性が損われる場合がある。
【0051】
熱圧縮圧力は、0.01〜100MPaが好ましく、0.1〜10MPaがより好ましい。熱圧縮時間は、熱圧縮温度及び熱圧縮圧力により異なるが、1〜100秒が好ましい。
【0052】
工業的規模で熱圧縮する場合は、特に熱ロールを用いることが好ましい。具体的には、一対のロールを1〜100kg/cmの線圧になるように加圧しながら、前記吸水性シートと貼着シートとの積層体を連続的にロール間に導き、ロール間で熱圧縮する。
【0053】
熱圧縮に用いる一対のロール間隙は熱圧縮される積層体の厚さにもよるが、通常10〜500μmが好ましい。10μm未満の場合は、繊維質基材や貼着シートが切断される場合がある。また500μmを超える場合は圧縮効果が不十分になる。
【0054】
前記一対のロールは、少なくとも一方のロールに凹凸模様が形成されていることが好ましい。凹凸模様の深さは、0.001mm以上が好ましく、0.01〜1mmがより好ましい。凹凸模様は、10mm以下の間隔で凹凸が繰返されているものや、直径10mmの円に納る模様が10mm以下の間隔で連続的に形成されていることが好ましい。繰返し間隔が10mmを超える模様や、10mmの円に収らない模様の場合は繊維質基材を圧縮することにより生じる前記本発明の利点が十分発揮されない場合がある。
【0055】
この熱圧縮、好ましくは凹凸模様を形成する熱圧縮により、吸水性シートと貼着シートとが貼着一体化すると共に、吸水性能(吸水速度、吸水量、液拡散性、液逆戻り防止性等)をより一層向上させることができる。
【0056】
【実施例】
(比較例1)
アクリル酸ナトリウム70mol%およびアクリル酸30mol%からなる単量体成分水溶液(単量体成分42質量%)に架橋剤としてテトラエチレングリコールジアクリレート(アロニックスM−240、東亞合成株式会社製)0.05質量%(対単量体成分)を添加し、これを20℃に冷却した。次いで、窒素ガスを単量体成分水溶液に吹き込み、溶存酸素量を1ppm以下とした。この単量体成分水溶液に光重合開始剤として1−ヒドロキシ−シクロヘキシル−フェニル−ケトン0.02質量%(対単量体成分)および酸化性重合開始剤として過硫酸ナトリウム0.15質量%(対単量体成分)を添加混合して重合用モノマー水溶液を調製した。親水性化処理の施されたPE/PETからなるエアスルー不織布(目付け量:25g/m2)上に上記重合性モノマー水溶液をスプレーにて357g/m2となるように塗工した後、窒素雰囲気下で高圧水銀ランプを用いて紫外線を照射して重合を行った(紫外線光量:2,500mj/cm)。得られた吸水性シート(比較品1)は柔軟性があり、吸水性樹脂粒子の固着量は150g/m2であった。
【0057】
(実施例1)
比較例1で得られた吸水性シートを親水性化処理の施されたPE/PPからなるエアスルー不織布(目付け:35g/m2)とともに加熱ロール(ロール表面温度80℃、ニップ圧70kg/cm)に送り、熱圧縮を行った。ロールはダイヤ柄(一辺長さ2mm)の凹凸模様(深さ0.6mm)を形成したものであった。これによりヒートエンボスを施した吸水性複合シート(実施品1)を得た。
【0058】
(実施例2)
比較例1で得られた吸水性シートを親水性化処理の施されたPE/PETからなるエアスルー不織布(目付け量:35g/m2)とトイレットペーパー(目付け量20g/m2)との間に挟み込んで加熱ロールに送り、実施例1と同様のヒートエンボスを施して吸水性複合シート(実施品2)を得た。
【0059】
上記実施品1、2、比較品1を用いて下記評価試験を行った。結果を表1に示した。
【0060】
A.実施品、比較品単独での評価方法
(人工尿吸水量)
300mlビーカーに6cm×7cmに切り出した実施品、比較品および人工尿200mlを入れ、30分放置して実施品1、2、比較品1を人工尿で十分に膨潤させた。ついで、200mesh濾布で実施品及び比較品の付着水を除去した後、下記式に従って人工尿吸水量A(kg/m2)を算出した。
【0061】
A=(W1−W2)/0.42
式中、W1は吸水後の実施品、比較品の質量、W2は吸水前の実施品、比較品の質量である。
【0062】
(人工尿吸水速度)
300mlビーカーに6cm×7cmに切り出した実施品または比較品と、人工尿200mlとを入れ、5分放置して人工尿により膨潤させた。ついで、200mesh濾布で膨潤させた実施品又は比較品に付着した人工尿を除去した後、上記式に従って人工尿吸水速度A(kg/m2)を算出した。
【0063】
人工尿(10kg当たり)の組成は、尿素/NaCl/MgSO4・7H2O/CaCl2・2H2O/純水=200g/80g/8.0g/3.0g/9709gである。
【0064】
結果を表1に示した。
【0065】
【表1】

Figure 0004455835
【0066】
B.失禁ライナー評価方法
(評価用失禁ライナー作成方法)
4.5cm×14cmに切り出した実施品1、2及び比較品を不織布とポリエチレンシートで挟み、周囲をホッチキスで固定し紙おむつ評価サンプルとした。
【0067】
図1に、作製した失禁ライナーの構成を示した。図1中(a)は実施品1を用いて作製した失禁ライナー、(b)は実施品2を用いて作製した失禁ライナー、(c)は比較品を用いて作製した失禁ライナーである。図1中、2は不織布、4は吸水性シート、6はトイレットペーパー、8は不織布、10はポリエチレンシートである。
【0068】
(失禁ライナー評価方法)
失禁ライナーを水平面上に置き、中心部分に測定用の筒(φ26mm)を乗せ、その中に人工尿(青色に着色したもの)5mlを一気に流し込んだ。筒内の人工尿が失禁ライナー中に吸収されるのに要する時間を測定し、これを第一吸水時間とした。3分間放置後、再び失禁ライナー中心部分に測定用の筒を置き、人工尿5mlを一気に流し込み、同様にして第二吸水時間を測定した。2分間放置後、失禁ライナー中心部分に予め質量を測定してある4cm×5cmに切り出したキッチンペーパー10枚(W1g)を乗せた。その後、キッチンペーパーの上に更に100g(4cm×5cm)の錘を乗せて10秒間加圧した。キッチンペーパーを取り除き、その質量を測定した(W2g)。以下の式で逆戻り量を求めた。
【0069】
逆戻り量=W2−W1
逆戻り量を測定した後、失禁ライナーを切り開き、人工尿の拡散性を定規で測定し拡散距離を求めた。
【0070】
【表2】
Figure 0004455835
【0071】
【発明の効果】
本発明においては、繊維質基材に微細な吸水性樹脂粒子が多数固着した吸水性シートと、繊維質基材シートとを張合わせて一体化して複合シート化したので、該吸水性樹脂粒子が有する潜在的吸水能力を効率よく引出し、多量の水分を急速に吸収できる。更に本吸水性複合シートの表面に熱圧縮による凹凸模様を形成する場合は、柔軟性を損うことなく、より高い吸水能力を発揮することができる。
【図面の簡単な説明】
【図1】失禁用ライナーの構成を示す概略図で、(a)は、実施例1の吸水性複合シートを用いた場合、(b)は実施例2の吸水性複合シートを用いた場合、(c)は比較例1の吸水シートを用いる場合を示す。
【符号の説明】
2 不織布
4 吸水性シート
6 トイレットペーパー
8 不織布
10 ポリエチレンシート[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a water-absorbing composite sheet formed by adhering a water-absorbing sheet and a fibrous sheet. The water-absorbent composite sheet has a high water absorption rate and a high water absorption amount while maintaining the flexibility of the fibrous base material, and is useful for producing disposable diapers, sanitary napkins and the like.
[0002]
[Prior art]
Conventionally, water-absorbent sheets used for paper diapers, sanitary napkins, etc. are uniformly dispersed by adhering crosslinked water-absorbent resin particles such as polyacrylic acid to a fibrous base sheet such as paper, pulp, and nonwoven fabric. There is something. However, in this water absorbent sheet, few water absorbent resin particles are securely fixed to the fibrous base sheet, and the water absorbent resin particles easily fall off. In addition, the operation is complicated in terms of handling powder particles.
[0003]
In order to solve the above problems, after spraying a monomer mixture aqueous solution composed of acrylic acid and acrylate onto a fibrous base material, the sprayed single amount is irradiated with ionizing radiation, fine particle ionizing radiation, etc. A water-absorbent sheet in which a body mixture is polymerized to fix a water-absorbent resin to a fibrous base material sheet is known.
[0004]
Patent Document 1 discloses a method for producing a water-absorbent sheet similar to that described above by polymerizing a monomer aqueous solution supported on a fibrous base material by UV irradiation. In the same publication, after polymerization, most of the monomer is polymerized by UV irradiation so that no unreacted monomer remains, and then the electron beam is irradiated, and then UV is irradiated, followed by polymerization conversion. It is stated that it is preferable to increase the rate. As described above, even when the UV polymerization method is employed, in order to produce a water-absorbent sheet in which unreacted monomers do not remain, it is currently necessary to employ a complicated production process.
[0005]
In Patent Document 2, a water-absorbing and water-holding ability is high by dropping and adhering a monomer aqueous solution droplet during polymerization onto a fibrous base material to complete redox polymerization on the fibrous base material. A method of manufacturing a sheet is described.
[0006]
Patent Document 3 discloses that a similar water-absorbent sheet has a porosity of 50 to 99.5% as the fibrous base material, and the primary particle diameter of the water-absorbent resin particles carried on the base material. Is 50 to 1000 μm, and the amount of water-absorbing resin supported per 1 m 2 of the substrate is preferably 10 to 500 g.
[0007]
According to the inventions described in Patent Documents 1 to 3, since the monomer aqueous solution is polymerized on the fibrous base material, the water-absorbing resin particles obtained are fixed to and integrated with the fiber. Many of the problems that occur when applying a functional resin to a fibrous base material have been solved.
[0008]
However, the water-absorbing sheet described in each of the above publications has an insufficient water-absorbing rate, and a water-absorbing sheet with a higher water-absorbing rate is particularly required for use in sanitary goods such as diapers.
[0009]
In order to solve these problems, a method has been proposed in which a fiber web having a difference in fiber density alternately along the surface direction is used as a fibrous base material (Patent Document 4).
[0010]
According to this invention, although the water-absorbing polymer polymerized on the fiber web is stably fixed to the fibrous base material, when a monomer is applied on such a fiber web, Monomer droplets coalesce before polymerization or penetrate into the fiber. As a result, the water-absorbent sheet obtained by polymerizing this monomer is not uniform and tends to lack flexibility. Therefore, according to each of the above-described inventions, a high-performance water-absorbent sheet having a balanced performance required as a water-absorbent sheet has not been obtained conventionally.
[0011]
[Patent Document 1]
JP-A-1-292103 (pages 1 to 3)
[Patent Document 2]
JP 2000-328456 A (Claim 1)
[Patent Document 3]
JP-A-9-67403 (Claims)
[Patent Document 4]
Japanese Patent No. 2554136 (Claim 1)
[0012]
[Problems to be solved by the invention]
In the present invention, a water-absorbing composite sheet having a high water absorption rate, a large amount of water absorption per water-absorbing resin and containing only a few unreacted monomers, and a method for producing the same are provided. Let it be an issue.
[0013]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the inventors of the present invention bonded and integrated a water-absorbent sheet having a large number of fine water-absorbent resin particles fixed to a fibrous base material and the fibrous base material sheet. When the composite sheet is formed, the composite sheet can efficiently draw out the potential water absorption capability of the water-absorbent resin particles, and can absorb a large amount of water rapidly. It has been found that by forming the film, a higher water absorption capacity can be exhibited without impairing flexibility. The present invention has been completed based on the above discovery.
[0014]
That is, the present invention for solving the above problems comprises a water absorbent sheet formed by adhering water absorbent resin particles to a fibrous base material, and a fibrous base material sheet adhered to at least one surface of the water absorbent sheet. Is a water-absorbent composite sheet characterized by In the present invention, the water-absorbent composite sheet is characterized in that the water-absorbent sheet and the fibrous base sheet are adhered by heat compression using a pair of rolls in which at least one roll is heated. In this manufacturing method, it is included that the surface of at least one roll is provided with an uneven pattern.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
(Water-absorbing composite sheet)
The water-absorbent composite sheet of the present invention comprises a water-absorbent sheet and a fibrous base sheet adhered to one or both sides of the water-absorbent sheet. Adhesion between the water-absorbent sheet and the fibrous base material sheet can employ any adhering method such as use of an adhesive, a binder, and fusion.
[0016]
It is preferable that an uneven pattern is formed on the surface of the water-absorbent composite sheet. The depth of the uneven pattern is preferably 0.01 to 1 mm. Further, the concavo-convex pattern is a continuous pattern of polygons, circles, ellipses, etc. that fit in a circle with a pitch of 10 mm or less, preferably 0.05 to 5 mm, or a diameter of 10 mm or less, preferably 1 to 5 mm. What was formed in is preferable.
[0017]
(Water absorbent sheet)
The water-absorbent sheet is formed by adhering water-absorbent resin particles in a rosary shape to fibers of a fibrous base material. The water-absorbing resin particles are mainly composed of hydrophilic monomers such as acrylic acid and salts thereof, and these are polymerized. A typical example is a water-absorbing sheet produced by the method described later. The water absorbent resin particle diameter is preferably 30 to 300 μm. Fixed amount for the fibrous base material of the water-absorbent resin in 100 g / m 2 or more, preferably 150~1000g / m 2.
[0018]
(Fiber base sheet)
In the present invention, the fibrous base material sheet (hereinafter sometimes referred to as an adhesive sheet) to be adhered to the water absorbent sheet includes a fibrous pad, a carded web, a woven fabric such as cotton gauze, and a knitted fabric. And non-woven fabrics.
[0019]
As the fiber base sheet, it is preferable that the fiber base sheet itself is excellent in water absorption. Therefore, as the fiber constituting the fiber base sheet, hydrophilic fibers such as wood pulp, rayon, cotton, regenerated cellulose, etc. Synthetic fibers that have been subjected to chemical treatment are preferred.
[0020]
Specifically, a non-woven fabric made of a synthetic fiber subjected to a hydrophilic treatment, or a paper material such as toilet paper, paper towel, napkin paper, dust paper, and wadding (these are generally collectively referred to as sanitary paper). A paper material such as sanitary paper is particularly preferable.
[0021]
Examples of the synthetic fiber include polyester, polyethylene, polypropylene, polyamide, polyvinyl alcohol, polyacrylonitrile, and polyvinyl chloride, and polyester, polyamide, polypropylene, and polyethylene are preferable.
[0022]
Among the nonwoven fabrics used for the production of the water-absorbent sheet described later, all nonwoven fabrics formed from hydrophilic fibers or synthetic fibers subjected to hydrophilic treatment can be used as an adhesive sheet.
[0023]
(Method for producing water-absorbing composite sheet)
Hereinafter, an example of a method for producing a water-absorbing composite sheet will be described.
[0024]
First, the manufacturing method of a water absorbing sheet is demonstrated. As shown below, the water-absorbent sheet is a fibrous base material that has not been subjected to the raising treatment, or a monomer aqueous solution mainly composed of acrylic acid and / or a salt thereof on the fibrous base material that has undergone the raising treatment. After being supported in the form of fine particles, it is produced by polymerizing the monomer supported on the fibrous base material.
[0025]
As the fibrous base material, a nonwoven fabric is preferable. In the present invention, the non-woven fabric includes a non-woven fabric in a narrow sense, that is, a carded or air-laid web and a loosely convergent pad of fibers, in addition to a fiber web to which base fibers are fixed with a binder.
[0026]
The nonwoven fabric used in the present invention is preferably produced by heat-sealing base fibers with binder fibers. This non-woven fabric is more preferable because it can be raised later.
[0027]
The non-woven fabric produced by heat-sealing uniformly mixes base fibers and heat-sealable binder fibers in a ratio of, for example, base fibers / binder fibers = 40 to 90/60 to 10 (mass ratio), It can be easily manufactured by forming a web using means such as ding and then heat-sealing with each other.
[0028]
As basis weight of the nonwoven fabric is suitably 10 to 100 g / m 2. The bulkiness of the nonwoven fabric is preferably 0.1 × 10 2 to 2.0 × 10 2 ml / g in volume per gram of nonwoven fabric, that is, specific volume.
[0029]
The nonwoven fabric is preferably manufactured using base fibers having a fineness of 1.0 to 20 dtex and a fiber length of 25 to 128 mm. When the fineness of the base fiber is less than 1.0 dtex, the air permeability of the obtained nonwoven fabric is likely to be insufficient. On the other hand, if it exceeds 20 dtex, it is difficult to increase the amount of water-absorbing resin attached.
[0030]
When the fiber length of the base fiber is less than 25 mm, the strength of the nonwoven fabric tends to decrease. Moreover, when performing the raising process by the heating mentioned later, the raising of a fiber is insufficient and the fixed amount of a water absorbing resin tends to become too small. On the other hand, if it exceeds 128 mm, the carding process performed at the time of nonwoven fabric manufacture will become difficult.
[0031]
The base fiber material is a non-hydrophilic resin in that the monomer aqueous solution adheres to the fibers in independent fine particles when the monomer aqueous solution is atomized and supported on the substrate surface as described later. Is preferred. Specific examples include polyethylene, polypropylene, ethylene / propylene copolymer, polyethylene terephthalate, polyamide, polystyrene, polyacrylonitrile, polyvinyl chloride, and polyvinylidene chloride. Moreover, the nonwoven fabric which contains hydrophilic fibers, such as rayon, cotton, and a regenerated cellulose fiber, as a small component is also preferable. A non-woven fabric produced using such a non-hydrophilic resin fiber as a base fiber is preferable in that a water-absorbing resin obtained by polymerizing an aqueous monomer solution can be fixed to the fiber in fine particles, but to some extent on the non-woven fabric itself. Without the hydrophilic property, a paper diaper, a sanitary product and the like manufactured using the water-absorbing composite sheet are liable to leak when used. Therefore, the non-woven fabric is a non-woven fabric such as polyoxyethylene alkyl ether, polyoxyethylene phenol ether, polyoxyethylene sorbitan ester, polyoxyethylene alkyl fatty acid ester, polyoxyethylene oxypropylene block polymer, etc. subjected to hydrophilic treatment. Non-woven fabrics coated with an anionic surfactant such as a reactive surfactant, higher fatty acid salt, alkylnaphthalene sulfonate, dialkyl succinate or alkyl sulfate ester salt are preferred.
[0032]
As a specific hydrophilization treatment method, when spinning the base fiber, the above-mentioned surfactant, that is, the hydrophilizing agent may be mixed in advance with the spinning raw material resin, and then it may be spun. Further, a hydrophilizing agent dissolved in a solvent or the like may be sprayed on the fiber after spinning.
[0033]
The non-woven fabric may be used as it is, but is preferably raised by heating. The heating temperature is preferably near the softening point of the base fiber of the nonwoven fabric, and a temperature in the range of 70 to 150 ° C. is practically selected. The heating time varies depending on the heating temperature, but usually several to 180 seconds is appropriate. Further preferable heating conditions are heating at 80 to 110 ° C. for 20 to 60 seconds. The heating means is not limited. For example, the nonwoven fabric may be passed through a heating furnace over a predetermined time, hot air may be blown onto the fibrous base material, or the nonwoven fabric may be heated by an infrared lamp or the like. .
[0034]
An aqueous solution of a monomer mainly composed of acrylic acid and / or a salt thereof (hereinafter collectively referred to as an acrylic acid monomer) is sprayed and supported on a fibrous base material such as the above-mentioned nonwoven fabric. A preferred monomer is a mixture of acrylic acid and acrylate in which 20 to 90 mole percent of acrylic acid has been converted to an alkali metal salt or ammonium salt.
[0035]
Monomers other than acrylic acid monomers can be used in combination. Specific examples include methacrylic acid or a salt thereof, (meth) acrylamide, 2-hydroxyethyl (meth) acrylate, and 2-acrylamido-2-methyl. Examples thereof include propanesulfonic acid or a salt thereof. The preferable usage amount of such a monomer is 20 mol% or less based on the total amount with the acrylic acid monomer.
[0036]
The preferable concentration of the monomer in the monomer aqueous solution is 20 to 80% by mass, and more preferably 40 to 60% by mass.
[0037]
In addition to the monomer, it is preferable to add a crosslinking agent, a polymerization initiator, and the like to the monomer aqueous solution.
[0038]
Cross-linking agents include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, and glycerin tri (meth) acrylate. N, N′-methylenebisacrylamide, diallyl phthalate, triallyl cyanurate, triallyl isocyanurate, triallyl phosphate and the like.
[0039]
The addition ratio of the crosslinking agent is preferably from 100 to 1000 ppm, particularly preferably from 300 to 750 ppm, based on the total mass of the monomers.
[0040]
The polymerization of the monomer can be performed by a general radical polymerization method. As a polymerization initiation method, a thermal polymerization method using a compound that generates radicals by heat as a polymerization initiator, or a method of initiating polymerization by irradiation with an active energy ray such as an ultraviolet ray or an electron beam can be employed. A thermal polymerization method or a method of irradiating ultraviolet rays in the presence of a photopolymerization initiator (hereinafter referred to as a UV irradiation polymerization method) is preferable, and a UV irradiation polymerization method is particularly preferable.
[0041]
Examples of the thermal polymerization initiator include water-soluble radical polymerization initiators such as hydrogen peroxide, ammonium persulfate, potassium persulfate, t-butyl hydroperoxide, and cumene hydroperoxide. These compounds may be used as a redox polymerization initiator in combination with a reducing compound such as sodium bisulfite, sodium thiosulfate, L-ascorbic acid or amine.
[0042]
The photopolymerization initiator used for polymerization by the UV irradiation polymerization method is not particularly limited, and any photopolymerization initiator that can generate radicals by ultraviolet rays can be used. An initiator can be appropriately selected according to the purpose and used. Specifically, azo compounds such as 2,2′-azobis (2-aminodipropane) salt, ketones such as 1-benzoyl-1-hydroxycyclohexane and benzophenone, benzoin and alkyl ethers thereof, benzyl ketals, and anthraquinone Examples thereof include derivatives.
[0043]
The monomer aqueous solution can be carried in the form of an independent fine particle on the fibrous base material by spraying (coating) it onto the fibrous base material in the form of a mist as described above. As a method for atomizing the monomer aqueous solution, a known atomization technique can be used. For example, examples of the droplet formation method include a droplet formation method using a spray nozzle, a droplet formation method using a rotating disk atomizer, and an ultrasonic method.
[0044]
The average diameter of the spray droplets is preferably 50 to 500 μm. When the average diameter is less than 50 μm, the droplet sprayed on the fibrous base material is likely to penetrate to the back side without adhering to the fibrous base material, and thus it may be difficult to adhere to the fibrous base material. When the average diameter of the droplets exceeds 500 μm, the adhesion of the droplets becomes uneven, and as a result, the water absorption amount and the water absorption rate of the water absorbent sheet obtained by polymerization may be insufficient. The monomer aqueous solution having a size of 50 to 500 μm is subjected to polymerization and drying steps to become water-absorbing resin particles of approximately 30 to 300 μm, and is fixed to the fibrous base material.
[0045]
The carrying amount of the monomer aqueous solution is an amount such that the water-absorbent resin obtained by the polymerization is fixed to the fibrous base material in an amount of 5 to 500 g / m 2 , preferably 20 to 300 g / m 2 .
[0046]
After the water-absorbing sheet is produced by the above method, it is desirable that an aqueous solution of a cross-linking agent having a plurality of carboxyl groups and reactive epoxy groups (hereinafter referred to as a surface treatment agent) is sprayed on the water-absorbing sheet and heated. By this operation, the degree of crosslinking of the surface layer of the water-absorbent resin particles can be further increased.
[0047]
The water absorbent sheet obtained as described above is then stuck to the sticking sheet to obtain the water absorbent composite sheet of the present invention.
[0048]
As a sticking method, there are a method using an adhesive or the like, a method of fusing, and the like. A particularly preferable sticking method is a sticking method by heat compression.
[0049]
The thermal compression is preferably performed using a hot press, a hot roll, an embossing roll, or the like.
[0050]
The heat compression temperature is preferably 50 to 150 ° C, more preferably 70 to 120 ° C. When the heat compression temperature is less than 50 ° C., a sufficient compression effect cannot be obtained. When the temperature is higher than 150 ° C., the flexibility of the water-absorbent composite sheet obtained by thermally melting the fibrous base material or the sticking sheet may be impaired.
[0051]
The hot compression pressure is preferably from 0.01 to 100 MPa, more preferably from 0.1 to 10 MPa. Although heat compression time changes with heat compression temperature and heat compression pressure, 1 to 100 second is preferable.
[0052]
When heat-compressing on an industrial scale, it is particularly preferable to use a heat roll. Specifically, while pressurizing a pair of rolls to a linear pressure of 1 to 100 kg / cm, the laminate of the water absorbent sheet and the adhesive sheet is continuously guided between the rolls, and heat is generated between the rolls. Compress.
[0053]
The gap between the pair of rolls used for thermal compression is preferably 10 to 500 μm, although it depends on the thickness of the laminate to be thermally compressed. When the thickness is less than 10 μm, the fibrous base material or the sticking sheet may be cut. On the other hand, when it exceeds 500 μm, the compression effect is insufficient.
[0054]
In the pair of rolls, it is preferable that an uneven pattern is formed on at least one of the rolls. The depth of the concavo-convex pattern is preferably 0.001 mm or more, and more preferably 0.01 to 1 mm. The concavo-convex pattern is preferably such that the concavo-convex pattern is repeated at intervals of 10 mm or less, or a pattern that fits in a circle having a diameter of 10 mm is continuously formed at intervals of 10 mm or less. In the case of a pattern having a repetition interval exceeding 10 mm or a pattern that does not fit in a 10 mm circle, the advantages of the present invention that are generated by compressing the fibrous base material may not be sufficiently exhibited.
[0055]
By this heat compression, preferably heat compression that forms a concavo-convex pattern, the water-absorbent sheet and the adhesive sheet are bonded and integrated, and water absorption performance (water absorption speed, water absorption, liquid diffusibility, liquid reversion prevention property, etc.) Can be further improved.
[0056]
【Example】
(Comparative Example 1)
Tetraethylene glycol diacrylate (Aronix M-240, manufactured by Toagosei Co., Ltd.) 0.05 as a crosslinking agent in a monomer component aqueous solution (monomer component 42 mass%) composed of 70 mol% sodium acrylate and 30 mol% acrylic acid 0.05 Mass% (based on monomer component) was added and cooled to 20 ° C. Subsequently, nitrogen gas was blown into the monomer component aqueous solution, and the dissolved oxygen amount was adjusted to 1 ppm or less. In this monomer component aqueous solution, 0.02% by mass of 1-hydroxy-cyclohexyl-phenyl-ketone (as a monomer component) as a photopolymerization initiator and 0.15% by mass of sodium persulfate as an oxidative polymerization initiator (as compared to Monomer component) was added and mixed to prepare an aqueous monomer solution for polymerization. After applying the above polymerizable monomer aqueous solution by spraying onto an air-through nonwoven fabric (weight per unit area: 25 g / m 2 ) made of PE / PET that has been subjected to a hydrophilic treatment by spraying to 357 g / m 2 , a nitrogen atmosphere Polymerization was performed by irradiating with ultraviolet rays using a high-pressure mercury lamp (ultraviolet light amount: 2,500 mj / cm). The obtained water-absorbent sheet (Comparative Product 1) was flexible, and the amount of water-absorbent resin particles fixed was 150 g / m 2 .
[0057]
Example 1
Obtained in Comparative Example 1 the water-absorbent sheet air-through nonwoven fabric made of PE / PP, having undergone a hydrophilic treatment (basis weight: 35g / m 2) with a heating roll (roll surface temperature of 80 ° C., nip pressure 70 kg / cm) And subjected to thermal compression. The roll was formed with an uneven pattern (depth 0.6 mm) having a diamond pattern (side length 2 mm). Thus, a water-absorbent composite sheet (Example 1) subjected to heat embossing was obtained.
[0058]
(Example 2)
Between the air-through nonwoven fabric (weight per unit area: 35 g / m 2 ) made of PE / PET that has been subjected to a hydrophilic treatment, and the toilet paper (weight per unit area 20 g / m 2 ) between the water absorbent sheet obtained in Comparative Example 1 The product was sandwiched and sent to a heating roll, and heat embossing similar to that in Example 1 was performed to obtain a water-absorbing composite sheet (Example Product 2).
[0059]
The following evaluation tests were performed using the above-mentioned products 1 and 2 and comparative product 1. The results are shown in Table 1.
[0060]
A. Evaluation method for the product and comparative product alone (artificial urine water absorption)
A practical product, a comparative product, and 200 ml of artificial urine cut into 6 cm × 7 cm were placed in a 300 ml beaker, and left for 30 minutes to sufficiently swell the practical products 1, 2, and comparative product 1 with artificial urine. Next, after removing the adhered water of the product and the comparative product with a 200 mesh filter cloth, the artificial urine water absorption A (kg / m 2 ) was calculated according to the following formula.
[0061]
A = (W1-W2) /0.42
In the formula, W1 is the mass of the product after water absorption and the comparative product, and W2 is the mass of the product before water absorption and the comparative product.
[0062]
(Artificial urine water absorption speed)
A practical product or a comparative product cut into 6 cm × 7 cm in a 300 ml beaker and 200 ml of artificial urine were placed and allowed to stand for 5 minutes to swell with artificial urine. Next, after removing artificial urine adhering to the embodiment product or the comparative product swollen with a 200 mesh filter cloth, the artificial urine water absorption rate A (kg / m 2 ) was calculated according to the above formula.
[0063]
The composition of the artificial urine (per 10 kg) is urea / NaCl / MgSO 4 .7H 2 O / CaCl 2 .2H 2 O / pure water = 200 g / 80 g / 8.0 g / 3.0 g / 9709 g.
[0064]
The results are shown in Table 1.
[0065]
[Table 1]
Figure 0004455835
[0066]
B. Incontinence liner evaluation method (How to make an incontinence liner for evaluation)
Examples 1 and 2 and a comparative product cut out to 4.5 cm × 14 cm were sandwiched between a nonwoven fabric and a polyethylene sheet, and the periphery was fixed with a stapler to obtain a sample for evaluating a paper diaper.
[0067]
FIG. 1 shows the configuration of the manufactured incontinence liner. In FIG. 1, (a) is an incontinence liner produced using the implementation product 1, (b) is an incontinence liner produced using the implementation product 2, and (c) is an incontinence liner produced using a comparative product. In FIG. 1, 2 is a nonwoven fabric, 4 is a water absorbing sheet, 6 is toilet paper, 8 is a nonwoven fabric, and 10 is a polyethylene sheet.
[0068]
(Incontinence liner evaluation method)
An incontinence liner was placed on a horizontal plane, and a measurement cylinder (φ26 mm) was placed in the center, and 5 ml of artificial urine (colored in blue) was poured into it at once. The time required for the artificial urine in the cylinder to be absorbed into the incontinence liner was measured, and this was defined as the first water absorption time. After standing for 3 minutes, the measurement cylinder was placed again in the center of the incontinence liner, 5 ml of artificial urine was poured all at once, and the second water absorption time was measured in the same manner. After leaving for 2 minutes, 10 pieces of kitchen paper (W1 g) cut into 4 cm × 5 cm whose mass was measured in advance was placed on the center of the incontinence liner. Thereafter, an additional 100 g (4 cm × 5 cm) weight was placed on the kitchen paper and pressurized for 10 seconds. The kitchen paper was removed and the mass was measured (W2g). The return amount was determined by the following formula.
[0069]
Return amount = W2-W1
After measuring the amount of reversion, the incontinence liner was opened, and the diffusion distance of the artificial urine was measured with a ruler to determine the diffusion distance.
[0070]
[Table 2]
Figure 0004455835
[0071]
【The invention's effect】
In the present invention, since the water-absorbent sheet having a large number of fine water-absorbent resin particles fixed to the fibrous base material and the fibrous base material sheet are laminated and integrated into a composite sheet, the water-absorbent resin particles are Efficiently draws out the potential water absorption capability and can absorb a large amount of water rapidly. Furthermore, when the uneven | corrugated pattern by heat compression is formed in the surface of this water absorptive composite sheet, a higher water absorption capability can be exhibited, without impairing a softness | flexibility.
[Brief description of the drawings]
FIG. 1 is a schematic view showing the configuration of an incontinence liner, where (a) shows the case where the water absorbent composite sheet of Example 1 is used, and (b) shows the case where the water absorbent composite sheet of Example 2 is used. (C) shows the case of using the water absorbent sheet of Comparative Example 1.
[Explanation of symbols]
2 Nonwoven fabric 4 Water absorbent sheet 6 Toilet paper 8 Nonwoven fabric 10 Polyethylene sheet

Claims (3)

繊度1.0〜20dtex、繊維長25〜128mmのベース繊維を用いて製造された目付け10〜100g/mの非親水性樹脂の不織布であって親水化処理及び起毛処理が施される繊維質基材に粒子径30〜300μmの吸水性樹脂粒子が20〜300g/m 前記繊維質基材に単量体水溶液滴を付着させて重合することによって固着してなる吸水性シートと、前記吸水性シートの少なくとも片面に貼着した親水性繊維又は親水性化処理の施された合成繊維からなる、深さ0.01〜1mmの凹凸模様の形成された繊維質基材シートとからなることを特徴とする吸水性複合シート。Nonwoven fabric of non-hydrophilic resin having a basis weight of 10 to 100 g / m 2 manufactured using a base fiber having a fineness of 1.0 to 20 dtex and a fiber length of 25 to 128 mm, and subjected to hydrophilization treatment and raising treatment and absorbent sheet obtained by sticking by the water-absorbing resin particles with a particle size 30~300μm to the substrate is polymerized by attaching aqueous monomer solution droplets 2 0~300g / m 2 wherein the fibrous base material, wherein It consists of a fibrous base material sheet having a depth of 0.01 to 1 mm and having a concavo-convex pattern formed of hydrophilic fibers adhered to at least one surface of a water-absorbent sheet or synthetic fibers subjected to a hydrophilic treatment. Water-absorbent composite sheet characterized by 繊度1.0〜20dtex、繊維長25〜128mmのベース繊維を用いて製造された非親水性樹脂からなる目付け10〜100g/mの親水化処理の施された不織布を80〜110℃で20〜60秒間加熱して起毛させる工程と、
前記不織布にアクリル酸の20〜90モル%がアルカリ金属塩に変換されているアクリル酸とアクリル酸塩との混合物を40〜60質量%と、重合開始剤とを含む水溶液を噴霧して平均粒子径50〜500μmの粒状に担持させる工程と、
前記アクリル酸とアクリル酸塩との混合物と重合開始剤とを含む水溶液が粒状に担持される不織布を加熱及び/又は光照射することにより、アクリル酸とアクリル酸塩との混合物を重合させ、吸水性シートを得る工程と、
前記吸水性シートに繊維質基材シートを、少なくとも一方のロールに凹凸模様が形成されていて、加熱されている一対のロールを用いて熱圧縮して貼着する工程と、
を有する請求項1記載の吸水性複合シートの製造方法。
Fineness 1.0~20Dtex, the fiber length 25~128mm nonhydrophilic basis weight 10 to 100 g / m 2 made of resin hydrophilic treatment of decorated nonwoven made with the base fibers at 80 to 110 ° C. 20 Heating for ~ 60 seconds and raising the hair;
An average particle is obtained by spraying an aqueous solution containing 40 to 60% by mass of a mixture of acrylic acid and acrylate in which 20 to 90 mol% of acrylic acid is converted to an alkali metal salt and a polymerization initiator on the nonwoven fabric. A step of supporting particles having a diameter of 50 to 500 μm ;
Wherein by an aqueous solution containing a mixture of acrylic acid and acrylate and a polymerization initiator to nonwoven heating and / or light irradiation to be carried on the particulate, by polymerizing a mixture of acrylic acid and acrylate, water Obtaining an adhesive sheet;
A step of attaching the fibrous base sheet to the water-absorbent sheet by heat compression using a pair of heated rolls having a concavo-convex pattern formed on at least one roll , and
The manufacturing method of the water absorptive composite sheet of Claim 1 which has these.
少なくとも一方のロールの表面に凹凸模様が施されている請求項2に記載の吸水性複合シートの製造方法。The method for producing a water-absorbent composite sheet according to claim 2, wherein the surface of at least one of the rolls has a concavo-convex pattern.
JP2003159488A 2002-09-04 2003-06-04 Water-absorbing composite sheet and method for producing the same Expired - Fee Related JP4455835B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2003159488A JP4455835B2 (en) 2003-06-04 2003-06-04 Water-absorbing composite sheet and method for producing the same
AU2003261868A AU2003261868A1 (en) 2002-09-04 2003-09-01 Method for producing water-absorbing composite
PCT/JP2003/011149 WO2004022840A1 (en) 2002-09-04 2003-09-01 Method for producing water-absorbing composite
DE60331567T DE60331567D1 (en) 2002-09-04 2003-09-01 METHOD FOR PRODUCING A WATER ABSORBENT COMPOUND
US10/524,916 US20060153988A1 (en) 2002-09-04 2003-09-01 Method for producing water-absorbing composite
CNB038203065A CN1311124C (en) 2002-09-04 2003-09-01 Method for producing water-absorbing composite
EP03794161.4A EP1548179B2 (en) 2002-09-04 2003-09-01 Method for producing water-absorbing composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003159488A JP4455835B2 (en) 2003-06-04 2003-06-04 Water-absorbing composite sheet and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004358797A JP2004358797A (en) 2004-12-24
JP4455835B2 true JP4455835B2 (en) 2010-04-21

Family

ID=34052533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003159488A Expired - Fee Related JP4455835B2 (en) 2002-09-04 2003-06-04 Water-absorbing composite sheet and method for producing the same

Country Status (1)

Country Link
JP (1) JP4455835B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602006021004D1 (en) 2005-05-13 2011-05-12 Asahi Kasei Chemicals Corp ABSORBENT COMPOSITE MATERIAL AND MANUFACTURING METHOD THEREFOR
US8148598B2 (en) 2006-02-22 2012-04-03 Dsg Technology Holdings Limited Method of making an absorbent composite and absorbent articles employing the same
JP4816948B2 (en) * 2006-10-31 2011-11-16 日の丸カーボテクノ株式会社 Functional sheet and manufacturing method thereof
MX362615B (en) 2013-07-03 2019-01-28 Dsg Technology Holdings Ltd An absorbent composite, methods for making the absorbent composite, and an absorbent article employing the same.

Also Published As

Publication number Publication date
JP2004358797A (en) 2004-12-24

Similar Documents

Publication Publication Date Title
US8932504B2 (en) Method of making absorbent structure having three-dimensional topography
TWI414542B (en) Process for preparing water-absorbing polymer beads with high permeability by polymerizing droplets of a monomer solution
TWI447149B (en) Process for preparing water-absorbing polymer beads with high permeability by polymerizing droplets of a monomer solution
JP2021049383A (en) Thin and flexible absorbent articles
JP4701180B2 (en) Method for manufacturing absorbent structure
JP2021049381A (en) Thin and flexible absorbent articles
JP3895624B2 (en) Water-absorbing composite and method for producing the same
JPH0351372A (en) Mixture of water absorptive material and preparation thereof
WO2006059525A1 (en) Absorbing sheet and absorbing article
JP4455835B2 (en) Water-absorbing composite sheet and method for producing the same
JPH01292103A (en) Production of absorbing material
EP1548179B1 (en) Method for producing water-absorbing composite
MX2013013423A (en) Feminine hygiene absorbent article comprising a superabsorbent foam of high swell rate.
US20060127585A1 (en) Process for production of water-absorbing composites
JP4263576B2 (en) Water absorbent sheet
JP3681372B2 (en) Method for producing water-absorbing composite
EP0223908B1 (en) Process for continuous production of nonwoven highly water-absorbent complex
JP4043334B2 (en) Method for producing water-absorbing composite
JP4414293B2 (en) Method for producing absorbent composite
JP3782050B2 (en) Method for producing water-absorbing composite
JP2004332159A (en) Water-absorbing composite sheet
JPH01221575A (en) Production of absorber
JP2006016719A5 (en)
JP2683091B2 (en) Body fluid absorbent article
JP2683095B2 (en) Body fluid absorbent article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060509

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20081022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4455835

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees