JP2004149839A - Non-heat treated steel plate with high toughness and high tensile strength, and its manufacturing method - Google Patents

Non-heat treated steel plate with high toughness and high tensile strength, and its manufacturing method Download PDF

Info

Publication number
JP2004149839A
JP2004149839A JP2002314932A JP2002314932A JP2004149839A JP 2004149839 A JP2004149839 A JP 2004149839A JP 2002314932 A JP2002314932 A JP 2002314932A JP 2002314932 A JP2002314932 A JP 2002314932A JP 2004149839 A JP2004149839 A JP 2004149839A
Authority
JP
Japan
Prior art keywords
amount
toughness
steel sheet
rolling
solid solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002314932A
Other languages
Japanese (ja)
Other versions
JP3828480B2 (en
Inventor
Hiroki Imamura
弘樹 今村
Shigeo Okano
重雄 岡野
Hitoshi Hatano
等 畑野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2002314932A priority Critical patent/JP3828480B2/en
Publication of JP2004149839A publication Critical patent/JP2004149839A/en
Application granted granted Critical
Publication of JP3828480B2 publication Critical patent/JP3828480B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-heat treated type high tensile strength steel plate having excellent toughness and to provide its manufacturing method. <P>SOLUTION: The non-heat treated steel plate with high toughness and high tensile strength contains, by mass, 0.02 to 0.06% C, 0.05 to 0.5% Si, 1 to 1.6% Mn, 0.02 to 0.07% Al, 0.005 to 0.02% Ti, 0.010 to 0.030% Nb, 0.0010 to 0.0030% B and 0.003 to 0.0050% N, and is formed so that the amount of solid-solution Nb is 0.010 to 0.025% and that of solid-solution B is 0.0010 to 0.0025%. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、建築構造物や橋梁などの大型構造物用として有用な、引張強さが590MPa以上の高張力鋼板(以下、「590MPa級鋼板」と称する場合がある)に関し、殊に靭性に優れ、しかも非調質でも高強度を示す高靭性高張力非調質鋼板およびその製法に関するものである。
【0002】
【従来の技術】
上記の様な大型構造物用として用いられる590MPa級鋼板では、高強度に加えて、高靭性が要求されるが、これらの特性を満足する鋼板を製造する際には、圧延後に焼入れ焼戻しの調質処理を行なうのが一般的である。ところがこの方法では、圧延後に再加熱処理工程が必要となるので、工期が長くなると共にコスト高になっていた。そこで、再加熱処理を省略して工期の短縮とコストダウンを図る鋼板の製法が望まれており、近年、著しい発展をみた技術として制御圧延がある。この技術によれば、圧延時の温度や圧下率などを適切に制御することによって結晶粒を微細化し、圧延ままでも高強度・高靭性の鋼を得ることができ、この様な鋼は一般に非調質鋼と呼ばれている。
【0003】
こうした非調質鋼の製法として、例えば特許文献1には、C量を極低レベルまで低減すると共に適量のNbやBを添加し、組織をベイナイト化することによって空冷ままでも高い強度を確保する技術が提案されている。しかし、この種の技術では、強度確保のためにマイクロアロイ元素(例えば、TiやNb、Bなど)を比較的多量含有させているのでベイナイト組織が粗大化し、母材靭性が却って劣化するという問題がある。また、マイクロアロイ元素は比較的高価な元素であり、コスト高となる。
【0004】
また、特許文献2には、MoやNb,Ti,Bなどを添加した鋼に対して制御圧延と制御冷却を組み合わせることによって、板厚方向に均一組織でかつ強度や低温靭性に優れた高張力鋼板を製造する技術が提案されている。しかし、この技術では、圧延後の冷却速度が遅く、例えば水冷した場合は、水冷完了後の鋼板形状確保の観点から矯正工程が必要となることが多く、工期の短縮は難しくなる。また、本発明者らが検討したところ、板厚を更に厚くすると安定した強度や靭性を確保し難くなることが分かった。
【0005】
【特許文献1】
特開平8−144019号公報(「特許請求の範囲」参照)
【特許文献2】
特開2001−152248号公報(「特許請求の範囲」、段落[0009]参照)
【0006】
【発明が解決しようとする課題】
本発明は、この様な状況に鑑みてなされたものであり、その目的は、靭性に優れた非調質型の高張力鋼板を提供することにある。また、他の目的は、本発明に係る高靭性高張力非調質鋼板を効率良く製造できる方法を提供することにある。
【0007】
【課題を解決するための手段】
上記課題を解決することのできた本発明に係る高靭性高張力非調質鋼板とは、質量%で、C:0.02〜0.06%、Si:0.05〜0.5%、Mn:1〜1.6%、Al:0.02〜0.07%、Ti:0.005〜0.02%、Nb:0.010〜0.030%、B:0.0010〜0.0030%、N:0.003〜0.0050%、を夫々含み、固溶Nb量:0.010〜0.025%、固溶B量:0.0010〜0.0025%、を満足する点に要旨を有する。
【0008】
なお、上記Nb含量とB含量は、夫々固溶Nb量と固溶B量を含む意味である。
【0009】
更に、他の元素として、Cu:0.3〜1.2%、Ni:0.3〜1.2%、Cr:0.5〜1.2%、Mo:0.03〜0.3%よりなる群から選ばれる1種以上を含有することが好ましい。
【0010】
上記課題を解決することのできた本発明に係る高靭性高張力非調質鋼板を効率良く製造には、上記化学成分の要件を満たす鋼片を、1000〜1150℃に加熱した後、980〜890℃の温度域を圧下量20%以上で圧下し、引き続いて、860〜780℃の温度域を圧下量30%以上で圧下すれば良く、この製法を採用することによって、固溶Nb量:0.010〜0.025%、固溶B量:0.0010〜0.0025%、を満たす高靭性高張力非調質鋼板を得ることができる。
【0011】
本発明では、前記860〜780℃の温度域で圧下した後、更に、780℃以下で圧下量20〜35%の圧下を行い、最終圧延温度を770〜730℃とすることが推奨される。
【0012】
【発明の実施の形態】
本発明者らは、上記課題を解決すべく、様々な角度から検討してきた。その結果、鋼板の成分組成を厳密に規定すると共に、鋼板中に含まれる固溶Nb量と固溶B量を夫々適切に制御してやれば、上記課題が見事に解決されることを見出し、本発明を完成した。以下、本発明の作用効果について説明する。
【0013】
本発明の鋼板は、基本成分として、質量%で、C:0.02〜0.06%、Si:0.05〜0.5%、Mn:1〜1.6%、Al:0.02〜0.07%、Ti:0.005〜0.02%、Nb:0.010〜0.030%、B:0.0010〜0.0030%、N:0.003〜0.0050%、を含有するものである。この様な範囲に限定した理由は次の通りである。
【0014】
C:0.02〜0.06%
Cは、母材強度を確保するために重要な元素であり、少なくとも0.02%以上含有させねばならない。しかし、0.06%を超えると高冷却速度側で低温変態ベイナイトが生成せずにマルテンサイトが生成し易くなり、満足のいく母材靭性が得られなくなる。C含量の好ましい下限は0.03%であり、好ましい上限は0.05%である。
【0015】
Si:0.05〜0.5%
Siは、脱酸剤として有用な元素であり、この効果を有効に発揮させるには、0.05%以上含有させる必要がある。しかし、0.5%を超えて過剰に含有させると母材靭性が低下するので、上限は0.5%とする。より好ましくは0.1%以上、0.3%以下とするのが良い。
【0016】
Mn:1〜1.6%
Mnは、圧延後の空冷時における焼入れ性を高めて高強度化に寄与すると共に、ベイナイトブロックを微細化して母材靭性を高める作用も有しており、これらの作用を有効に発揮させるには、Mnを1%以上含有させる必要がある。好ましい下限は1.3%である。しかし、Mn含量が過剰となって1.6%を超えると、焼入れ性が高くなり過ぎて母材靭性を著しく劣化させるので、1.6%以下に抑制すべきである。
【0017】
Al:0.02〜0.07%
Alは、脱酸剤として有用な元素である。また、AlはNと化合し易く、鋼中のNを固定することによって固溶Bや固溶Nbの増大に寄与し、更には、Bによる圧延後の空冷時における焼入れ性を向上させる作用も有する。これらの効果を有効に発揮させるには0.02%以上含有させる必要があり、好ましくは0.03%以上である。その効果はAl含量が多くなるにつれて増大するが、0.07%を超えて過剰に含有させるとアルミナ系非金属介在物量が多くなって清浄度が低下し母材靭性が劣化する。より好ましくは0.06%以下とするのが良い。
【0018】
Ti:0.005〜0.02%
Tiは、Nと化合して窒化物を形成し易く、鋼中Nの固定に有用な元素であり、結果的に固溶Bや固溶Nbを増加させる。また、γ粒の粗大化を抑えて、母材靭性の劣化を防ぐ。こうした効果を発揮させるには、0.005%以上含有させる必要があるが、Ti含量が0.02%を超えて過剰に含有させると、却って母材靭性の低下を招く。Ti含量の好ましい下限は0.01%である。
【0019】
Nb:0.010〜0.030%
Nbは、Bと共に含有させることによって、圧延後の空冷時における焼入れ性を高め、母材の強度と靭性の向上に寄与する。また、本発明で規定する固溶Nb量を確保するためにも、Nbは0.010%以上含有させる必要がある。しかし、0.030%を超えて過多に含有させると、ベイナイトブロックが粗大化して、母材靭性が低下するので上限は0.030%とする。Nb含量の好ましい下限は0.015%であり、好ましい上限は0.025%である。なお、本発明においてNb含量とは、析出しているNbのみならず、固溶Nbも含む意味である。
【0020】
B:0.0010〜0.0030%
Bは、Nbと併せて含有させることにより圧延後の空冷時における焼入れ性を高め、母材の強度と靭性を高める。また、本発明で規定する固溶B量を確保するためにも、Bは0.0010%以上含有させる必要がある。しかし、0.0030%を超えて過多に含有させると、母材靭性が劣化するので、B含量は0.0030%以下に抑えるべきである。B含量の好ましい下限は0.0015%であり、好ましい上限は0.0025%程度である。なお、本発明においてB含量とは、析出しているBのみならず、固溶Bも含む意味である。
【0021】
N:0.003〜0.0050%
Nは、AlやTiと化合して窒化物を形成し、組織の微細化による母材靭性の向上に有効に作用する。これらの効果を有効に発揮させるには0.003%以上含有させる必要がある。但し、NはNbやBとも窒化物を形成し易く、Nを過剰に含有させると、本発明で規定する固溶Nb量や固溶B量を確保できなくなるので、N含量は0.0050%以下に抑える必要がある。より好ましくは0.0040%以下であり、N含量はできるだけ少ない方が良い。
【0022】
本発明の鋼板においては、上記成分組成を厳密に規定するだけではその目的を達成できず、鋼板中に含まれる固溶Nb量と固溶B量を夫々適切に制御する必要がある。すなわち、後述する実施例を含めて種々の実験を繰り返し、鋼板中に含まれる固溶Nb量と固溶B量が母材強度や母材靭性に及ぼす影響を調べた結果、これらの間には良好な相関関係が認められ、鋼板中の固溶Nb量や固溶B量が過剰になると、母材の靭性を確保できなくなることが明らかになった。これは過剰量の固溶Nbや固溶Bがベイナイト組織を粗大化するためと考えられる。また、NbやBは比較的高価な元素であり、これらの元素の過剰添加はコスト高となる。但し、固溶Nb量や固溶B量が不足すると、圧延後の空冷時における焼入れ性が低下し、母材の強度を確保できなくなる。
【0023】
この様な観点から、本発明では、固溶Nb量を0.010〜0.025%、固溶B量を0.0010〜0.0025%、に夫々定めている。固溶Nb量のより好ましい上限は0.020%であり、固溶B量のより好ましい上限は0.0020%である。なお、前述したNb含量とB含量とは、固溶Nb量と固溶B量を夫々含むもので、NbやBの一部はNなどと化合して析出するので、上記Nb含量やB含量の上限値よりも固溶Nb量や固溶B量の上限値を若干少なめに抑えている。
【0024】
本発明において、鋼板に含まれる固溶Nb量(または固溶B量)とは、化学分析によるNb含量(またはB含量)の測定値から析出Nb量(または析出B量)の測定値を引いた値である。
【0025】
本発明に係る鋼板における上記基本成分以外の、残部成分は実質的にFeであるが、これら以外にも微量成分を含み得る。こうした微量成分としては、不純物、特にPやSなどの不可避不純物が挙げられ、これら不可避不純物は本発明の効果を損なわない限度で許容される。具体的には、不可避不純物として許容されるPやSの量は下記の通りである。
【0026】
P:0.015%以下(0%を含む)
Pは、母材靭性に影響を与える元素であり、0.015%を超えると母材靭性が著しく劣化するので、上限を0.015%とした。より好ましくは0.008%以下とするのが良い。
【0027】
S:0.006%以下(0%を含む)
Sも母材靭性に影響を与える元素であり、含量が0.006%を超えると粗大な硫化物が生成して母材靭性を劣化させるので、上限を0.006%とした。より好ましくは0.003%以下とするのが良い。
【0028】
本発明の鋼板には、必要によって、Cu,Ni,CrおよびMoよりなる群から選ばれる1種以上を含有させることも有効である。これらの元素は、いずれも圧延後の空冷時における焼入れ性を高める元素であり、これにより母材の強度や靭性を一層高めることができる。これらの元素の好ましい含有量を定めた理由は次の通りである。
【0029】
Cu:0.3〜1.2%
Cuは、固溶強化および析出強化によって母材強度を向上させる元素であり、0.3%以上含有させることによってその効果を発揮する。より好ましくは0.5%以上含有させるのが望ましい。但し、1.2%を超えて含有させると大入熱HAZ靭性が低下し易いため、その上限は1.2%とすることが好ましい。より好ましくは1.0%以下にするのが良い。
【0030】
Ni:0.3〜1.2%
Niは、母材靭性の向上に有用な元素であり、0.3%以上含有させることによりその効果を発揮する。より好ましくは0.5%以上とするのが良い。しかし、1.2%を超えて添加するとスケール疵が発生し易くなるため、その上限は1.2%とすることが好ましい。より好ましくは1.0%以下にするのが良い。
【0031】
Cr:0.5〜1.2%
Crは、ベイナイトブロックの微細化を増進し、母材靭性の一層の向上に寄与する。Cr含量が0.5%未満では、これらの効果が発揮され難く、1.2%を超えると、特に大入熱溶接を行なったときのHAZ部の耐溶接割れ性が劣化し易くなる。Cr含量のより好ましい下限は0.8%であり、好ましい上限は1.0%である。
【0032】
Mo:0.03〜0.3%
Moは、NbやBと併せて含有させることにより圧延後の空冷時における焼入れ性を向上させ、母材の強度と靭性を高める元素である。こうした効果を発揮させるには0.03%以上含有させるのが好ましいが、過剰に含有させるとHAZ部の耐溶接割れ性が劣化するので、0.3%を上限とする。Mo含量のより好ましい下限は0.10%であり、好ましい上限は0.20%である。
【0033】
本発明の鋼板を製造する方法は特に限定されず、上記成分組成を有する鋼を用い、通常採用されている高張力鋼板の製造工程および製造条件(温度や時間など)に従って操業して、鋼板中に所定量の固溶Nbと固溶Bを確保すれば本発明の目的が達成されるが、次に示す方法を採用すれば、より確実に且つ効率良く本発明の高靭性高張力非調質鋼板を製造できる。
【0034】
鋼板中に所定量の固溶Nbと固溶Bを存在させるには、NbとBの析出量の変動を最小限に抑えれば良い。すなわち、圧延後再加熱処理を行なわない非調質鋼板では、制御圧延を行なうことで母材の強度と靭性を確保しているが、圧延材(鋼板)はその寸法(つまり鋼板の厚みや長さ)や圧下率によって熱履歴に変動を生じやすく、制御圧延条件によっては、所定の固溶Nb量や固溶B量が確保し難くなる。
【0035】
例えば、圧延材の厚みが異なれば、制御圧延によって圧延材が受ける熱収支は異なるので、特定温度域での圧下量も変動する。その結果、NbとBの加工誘起析出の程度にも差を生じ、この差によってNbとBの析出量が変化する。そして、NbとBの析出量の変動が大きくなると、固溶Nb量と固溶B量の変動も大きくなり、所定量を確保できない。また、制御圧延では複数回の圧下を繰り返すことによって所定厚みまで薄肉化していくが、このとき、圧延材の長さが異なると、圧下の間隔が変化して圧延材の温度低下量にも差を生じてくる。すなわち、圧延材が長くなると、圧下間隔が広がるので、この間に圧延材は冷却されて降温する。その結果、圧延材の受ける熱収支が変化して特定温度域での圧下量が変動し、最終的に得られる圧延材として所定量の固溶Nbと固溶Bを確保できなくなることがある。
【0036】
これらの理由も考慮して、所定量の固溶Nbと固溶Bを含む本発明の高靭性高張力非調質鋼板を効率良く製造するには、上記化学成分を満たす鋼片を使用し、これを1000〜1150℃に加熱した後、980〜890℃の温度域における圧下量を20%以上とすると共に、860〜780℃の温度域における圧下量を30%以上とすれば良く、この製法を採用することによって、固溶Nb量:0.010〜0.025%、固溶B量:0.0010〜0.0025%、を満たす高靭性高張力非調質鋼板を効率良く製造できる。好ましくは前記860〜780℃の温度域で圧下した後、更に780℃以下での圧下量を20〜35%とし、最終圧延温度を770〜730℃とするのがよい。
【0037】
この様な条件を推奨する理由は、次の通りである。
【0038】
加熱温度:1000〜1150℃
NbとBの窒化物を固溶させるには、鋼片を1000℃以上に加熱するのが良く、より好ましくは1050℃以上に加熱することが望ましい。しかし、加熱温度が1150℃を超えると、γ粒が粗大化して母材の靭性が劣化するので、上限は1150℃とした。より好ましくは1100℃以下である。
【0039】
980〜890℃の温度域における圧下量:20%以上
980〜890℃の温度域では、Nbの窒化物が生成し易いので、この温度域における圧下量を20%以上、より好ましくは30%以上とすると、Nb窒化物の加工誘起析出が促進されて析出時間が短縮され、Nbの析出量が安定化する。つまり、この温度域における圧下量が20%未満では、Nbの析出量が不安定となり、本発明で規定する固溶Nb量を確保することが困難になる。この温度域における圧下量の上限は特に限定されず、次工程でなされる圧下温度域での圧下量を確保できる範囲であれば良い。
【0040】
860〜780℃の温度域における圧下量:30%以上
860〜780℃の温度域では、Bの窒化物が生成し易いので、この温度域における圧下量を30%以上、より好ましくは40%以上とすると、B窒化物の加工誘起析出が促進されて析出時間が短くなり、Bの析出量が安定化する。つまり、この温度域における圧下量が30%未満では、Bの析出量が不安定となり、本発明で規定する固溶B量を確保することが困難になる。この温度域における圧下量の上限も特に限定されず、次工程でなされる圧下温度域での圧下量を確保できる範囲であれば良い。
【0041】
780℃以下での圧下量:20〜35%
780℃以下の温度域で、20%以上の圧下を行なうと組織の微細化が促進され、母材の靭性を一段と向上させることができる。しかし、この温度域での圧下量が過剰になると、加工変態が促進されてフェライトが析出し、母材の強度確保が困難になるので、圧下量の上限は35%とした。
【0042】
最終圧延温度:770〜730℃
最終圧延温度を770℃以下にすることによって組織の微細化が促進され、母材の靭性を確保できる。しかし、最終圧延温度が730℃を下回ると、フェライト変態が促進されて母材強度の確保が困難になるので、最終圧延温度は730℃以上にすることを推奨する。
【0043】
なお、本発明で好ましく採用される上記各温度は、厚板(t)方向に対してt/4の位置での温度である。また、本発明において圧下量とは、各温度域における入側温度での板厚に対する、入側温度での板厚と出側温度での板厚の差の割合である。例えば980〜890℃の温度域における圧下量は、下記(1)式で算出できる。
【0044】
【数1】

Figure 2004149839
【0045】
但し、780℃以下での圧下量を算出するに際しては、出側温度における板厚として最終仕上圧延温度における板厚を用いる。
【0046】
【実施例】
以下、本発明を実施例によって更に詳細に説明するが、下記実施例は本発明を限定する性質のものではなく、前・後記の趣旨に適合し得る範囲で適当に変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。
【0047】
下記表1に示す化学成分組成の鋼を通常の溶製法により溶製し、スラブとした後、下記表2に示す温度(加熱温度)まで加熱し、その後冷却しつつ表2に示す各温度域で熱間圧延して所定の板厚の鋼板を製造した。このときの圧延終了温度を表2に示す。
【0048】
【表1】
Figure 2004149839
【0049】
【表2】
Figure 2004149839
【0050】
得られた各鋼板に含まれる固溶Nb量と固溶B量は、化学分析によるNb含量(またはB含量)の測定値から析出Nb量(または析出B量)の測定値を引くことにより算出した。但し、析出Nb量(または析出B量)は、電解液として10%アセチルアセトン−1%テトラメチルアンモニウムクロリド−メタノール溶液を用い、200A/m以下の電流下で抽出したものを0.1μmのフィルターを用いて回収・測定している。なお、化学分析によるNb含量(またはB含量)は公知の方法で測定している。各鋼板に含まれる固溶Nb量と固溶B量を夫々表3に示す。
【0051】
次に、得られた各鋼板について、下記の要領で母材特性[引張強さ、0.2%耐力および靭性(vTrs)]を評価した。
【0052】
[母材特性試験]
▲1▼引張試験:各鋼板の板厚1/4部位からJIS4号試験片を採取し、引張試験を行なうことにより引張強さおよび0.2%耐力を測定した。引張強さ(TS)は600MPa以上、0.2%耐力(YS)は450MPa以上を夫々合格とした。
▲2▼衝撃試験:各鋼板の板厚1/4部位からJIS4号試験片を採取し、シャルピー衝撃試験を行なうことにより延性破面率を求め、破面遷移温度を算出した。破面遷移温度(vTrs)は−20℃以下を合格とした。
【0053】
母材特性試験で得られた結果を表3に示す。また、固溶Nb量に対して引張強さ及び0.2%耐力を夫々プロットしたグラフを図1、固溶B量に対して引張強さ及び0.2%耐力を夫々プロットしたグラフを図2、固溶Nb量に対して靭性(vTrs)をプロットしたグラフを図3、固溶B量に対して靭性(vTrs)をプロットしたグラグを図4、として夫々示す。但し、図1および2中、□は引張強さ(TS)、■は0.2%耐力(YS)の結果を夫々示している。
【0054】
【表3】
Figure 2004149839
【0055】
表3および図1〜4から明らかな様に、No.1〜8の鋼板は本発明で規定する要件を満足する例であり、靭性に優れた非調質型の高張力鋼板を実現できている。
【0056】
なお、No.2とNo.4は、本発明で規定する要件を満足しているけれども、その製造条件は本発明で推奨する条件から若干外れている。この理由は、鋼板に含有しているNbまたはB量が比較的少ないので、固溶Nbおよび固溶B量が本発明で規定する範囲を満足していると考えられる。
【0057】
これに対し、No.9〜14は本発明の要件を満足しない例であり、鋼板の化学成分組成が本発明で規定する範囲から外れており、特に固溶Nb量および/または固溶B量が本発明で規定する範囲から外れているので、強度または靭性のどちらかが劣っている。
【0058】
【発明の効果】
本発明によれば、圧延後に再加熱処理工程を必要としない非調質鋼板であって、高靭性と高張力の両特性に優れた鋼板およびその製法を提供することができた。
【図面の簡単な説明】
【図1】固溶Nb量に対して鋼板の引張強さ及び0.2%耐力を夫々プロットしたグラフである。
【図2】固溶B量に対して鋼板の引張強さ及び0.2%耐力を夫々プロットしたグラフである。
【図3】固溶Nb量に対して鋼板の靭性をプロットしたグラフである。
【図4】固溶B量に対して鋼板の靭性をプロットしたグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-strength steel sheet having a tensile strength of 590 MPa or more (hereinafter, may be referred to as a “590 MPa grade steel sheet”) useful for large structures such as building structures and bridges, and is particularly excellent in toughness. The present invention also relates to a high-toughness, high-strength non-heat-treated steel sheet exhibiting high strength even in a non-heat-treated state, and a method for producing the same.
[0002]
[Prior art]
The 590 MPa class steel sheet used for large-scale structures as described above requires high toughness in addition to high strength. However, when manufacturing a steel sheet satisfying these characteristics, the quenching and tempering after rolling is performed. It is common to perform quality processing. However, in this method, a reheating treatment step is required after rolling, so that the construction period is long and the cost is high. Therefore, there is a demand for a method of manufacturing a steel sheet that shortens the construction period and reduces the cost by omitting the reheating treatment. In recent years, there is control rolling as a technique that has seen remarkable development. According to this technology, crystal grains can be refined by appropriately controlling the temperature and rolling reduction during rolling, and a high-strength and high-toughness steel can be obtained even as it is rolled. It is called tempered steel.
[0003]
As a method for producing such a non-heat-treated steel, for example, Patent Document 1 discloses a method of reducing the C content to an extremely low level, adding an appropriate amount of Nb or B, and bainizing the structure to ensure high strength even with air cooling. Technology has been proposed. However, in this type of technology, a microalloy element (for example, Ti, Nb, B, etc.) is contained in a relatively large amount in order to secure strength, so that the bainite structure is coarsened and the base material toughness is rather deteriorated. There is. Further, the microalloy element is a relatively expensive element, which increases the cost.
[0004]
Further, Patent Document 2 discloses a high tensile strength steel having a uniform structure in the thickness direction and excellent strength and low-temperature toughness by combining controlled rolling and controlled cooling of steel to which Mo, Nb, Ti, B, or the like is added. Techniques for manufacturing steel sheets have been proposed. However, in this technique, the cooling rate after rolling is slow, for example, when water cooling is performed, a straightening step is often required from the viewpoint of securing the shape of the steel sheet after completion of water cooling, and it is difficult to shorten the construction period. Further, the present inventors have studied and found that it is difficult to secure stable strength and toughness when the plate thickness is further increased.
[0005]
[Patent Document 1]
Japanese Patent Application Laid-Open Publication No. Hei 8-144019 (refer to "Claims")
[Patent Document 2]
JP 2001-152248 A (see “Claims”, paragraph [0009])
[0006]
[Problems to be solved by the invention]
The present invention has been made in view of such a situation, and an object of the present invention is to provide a non-heat treated high-strength steel sheet having excellent toughness. Another object is to provide a method for efficiently producing the high-toughness and high-strength non-heat treated steel sheet according to the present invention.
[0007]
[Means for Solving the Problems]
The high-toughness and high-strength non-heat-treated steel sheet according to the present invention which can solve the above-mentioned problems is as follows: C: 0.02 to 0.06%, Si: 0.05 to 0.5%, Mn : 1 to 1.6%, Al: 0.02 to 0.07%, Ti: 0.005 to 0.02%, Nb: 0.010 to 0.030%, B: 0.0010 to 0.0030 %, And N: 0.003 to 0.0050%, respectively, so that the amount of solid solution Nb: 0.010 to 0.025% and the amount of solid solution B: 0.0010 to 0.0025% are satisfied. Have a gist.
[0008]
In addition, the said Nb content and B content mean the amount of solid solution Nb and the amount of solid solution B, respectively.
[0009]
Further, as other elements, Cu: 0.3 to 1.2%, Ni: 0.3 to 1.2%, Cr: 0.5 to 1.2%, Mo: 0.03 to 0.3% It is preferable to contain at least one member selected from the group consisting of:
[0010]
In order to efficiently produce a high-toughness and high-strength non-heat-treated steel sheet according to the present invention that can solve the above-mentioned problems, a steel slab satisfying the above requirements for the chemical components is heated to 1000 to 1150 ° C, and then 980 to 890 ° C. The temperature range of ℃ is reduced by 20% or more, and the temperature range of 860 to 780 ° C. is reduced by 30% or more. It is possible to obtain a high-toughness and high-strength non-heat treated steel sheet satisfying 0.010 to 0.025% and the amount of solute B: 0.0010 to 0.0025%.
[0011]
In the present invention, it is recommended that after rolling down in the temperature range of 860 to 780 ° C, further rolling is performed at 780 ° C or lower with a rolling reduction of 20 to 35%, and the final rolling temperature is 770 to 730 ° C.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
The present inventors have studied from various angles to solve the above problems. As a result, it has been found that the above-mentioned problems can be solved satisfactorily by strictly defining the component composition of the steel sheet and appropriately controlling the amount of solute Nb and the amount of solute B contained in the steel sheet. Was completed. Hereinafter, the operation and effect of the present invention will be described.
[0013]
The steel sheet of the present invention has, as basic components, by mass%, C: 0.02 to 0.06%, Si: 0.05 to 0.5%, Mn: 1 to 1.6%, Al: 0.02. 0.07%, Ti: 0.005 to 0.02%, Nb: 0.010 to 0.030%, B: 0.0010 to 0.0030%, N: 0.003 to 0.0050%, It contains. The reason for limiting to such a range is as follows.
[0014]
C: 0.02 to 0.06%
C is an important element for securing the strength of the base material, and must be contained at least 0.02% or more. However, if it exceeds 0.06%, low-temperature transformed bainite is not generated on the high cooling rate side, and martensite is easily formed, and satisfactory base metal toughness cannot be obtained. A preferred lower limit of the C content is 0.03%, and a preferred upper limit is 0.05%.
[0015]
Si: 0.05-0.5%
Si is an element useful as a deoxidizing agent, and it is necessary to contain 0.05% or more to effectively exhibit this effect. However, if the content exceeds 0.5%, the base material toughness decreases, so the upper limit is set to 0.5%. More preferably, the content is 0.1% or more and 0.3% or less.
[0016]
Mn: 1 to 1.6%
Mn enhances the hardenability during air cooling after rolling and contributes to high strength, and also has the effect of refining the bainite block to increase the base metal toughness. , Mn must be contained at 1% or more. A preferred lower limit is 1.3%. However, if the Mn content is excessive and exceeds 1.6%, the quenchability becomes too high and the base material toughness is remarkably deteriorated. Therefore, the content should be suppressed to 1.6% or less.
[0017]
Al: 0.02 to 0.07%
Al is an element useful as a deoxidizing agent. Further, Al is easily combined with N, which contributes to increase of solid solution B and solid solution Nb by fixing N in the steel, and further has an effect of improving hardenability at the time of air cooling after rolling by B. Have. In order to exhibit these effects effectively, it is necessary to contain 0.02% or more, preferably 0.03% or more. The effect increases as the Al content increases, but if the Al content exceeds 0.07%, the amount of alumina-based nonmetallic inclusions increases, the cleanliness decreases, and the base metal toughness deteriorates. More preferably, it is good to be 0.06% or less.
[0018]
Ti: 0.005 to 0.02%
Ti is easily combined with N to form a nitride, and is an element useful for fixing N in steel. As a result, Ti increases solid solution B and Nb. Further, coarsening of γ grains is suppressed, and deterioration of base material toughness is prevented. In order to exert such an effect, it is necessary to contain 0.005% or more. However, if the Ti content exceeds 0.02% and is excessive, the base material toughness is rather lowered. A preferred lower limit of the Ti content is 0.01%.
[0019]
Nb: 0.010-0.030%
By containing Nb together with B, the hardenability during air cooling after rolling is enhanced, and the strength and toughness of the base material are improved. Further, in order to secure the amount of solid solution Nb specified in the present invention, Nb needs to be contained at 0.010% or more. However, if the content exceeds 0.030%, the bainite block becomes coarse and the base material toughness decreases, so the upper limit is made 0.030%. A preferred lower limit of the Nb content is 0.015%, and a preferred upper limit is 0.025%. In the present invention, the Nb content means not only precipitated Nb but also solute Nb.
[0020]
B: 0.0010 to 0.0030%
B is contained together with Nb to enhance the hardenability during air cooling after rolling, and to increase the strength and toughness of the base material. Further, in order to secure the amount of solid solution B specified in the present invention, B needs to be contained at 0.0010% or more. However, if the content exceeds 0.0030%, the base material toughness deteriorates. Therefore, the B content should be suppressed to 0.0030% or less. A preferred lower limit of the B content is 0.0015%, and a preferred upper limit is about 0.0025%. In the present invention, the B content includes not only precipitated B but also solid solution B.
[0021]
N: 0.003 to 0.0050%
N combines with Al and Ti to form a nitride, and effectively acts to improve the base metal toughness by making the structure finer. In order to exhibit these effects effectively, it is necessary to contain 0.003% or more. However, N easily forms nitrides with both Nb and B. If N is contained excessively, it becomes impossible to secure the amount of solid solution Nb and the amount of solid solution B specified in the present invention. It is necessary to keep it below. It is more preferably 0.0040% or less, and the N content is preferably as small as possible.
[0022]
In the steel sheet of the present invention, the object cannot be achieved only by strictly defining the component composition, and it is necessary to appropriately control the amounts of the solute Nb and the solute B contained in the steel sheet. That is, various experiments including the examples described later were repeated, and as a result of examining the effects of the amount of solute Nb and the amount of solute B contained in the steel sheet on the base metal strength and the base metal toughness, the results were as follows. A good correlation was recognized, and it became clear that if the amount of solute Nb or solute B in the steel sheet was excessive, the toughness of the base material could not be secured. This is considered because excessive amounts of solid solution Nb and solid solution B coarsen the bainite structure. Nb and B are relatively expensive elements, and excessive addition of these elements increases the cost. However, if the amount of solid solution Nb or the amount of solid solution B is insufficient, the hardenability during air cooling after rolling is reduced, and the strength of the base material cannot be secured.
[0023]
From such a viewpoint, in the present invention, the amount of solid solution Nb is set to 0.010 to 0.025%, and the amount of solid solution B is set to 0.0010 to 0.0025%. A more preferred upper limit of the amount of solute Nb is 0.020%, and a more preferred upper limit of the amount of solute B is 0.0020%. The above-mentioned Nb content and B content include the solute Nb amount and the solute B amount, respectively. Since a part of Nb and B is combined with N and precipitated, the above-mentioned Nb content and B content The upper limits of the amount of solid solution Nb and the amount of solid solution B are slightly lower than the upper limits of the above.
[0024]
In the present invention, the amount of solute Nb (or the amount of solute B) contained in a steel sheet is obtained by subtracting the measured value of the amount of precipitated Nb (or the amount of precipitated B) from the measured value of the Nb content (or B content) by chemical analysis. Value.
[0025]
The remaining component other than the above basic components in the steel sheet according to the present invention is substantially Fe, but may contain trace components other than these. Such trace components include impurities, particularly unavoidable impurities such as P and S, and these unavoidable impurities are allowed as long as the effects of the present invention are not impaired. Specifically, the amounts of P and S allowed as unavoidable impurities are as follows.
[0026]
P: 0.015% or less (including 0%)
P is an element that affects the base material toughness, and if it exceeds 0.015%, the base material toughness is significantly deteriorated. Therefore, the upper limit is set to 0.015%. More preferably, it is set to 0.008% or less.
[0027]
S: 0.006% or less (including 0%)
S is also an element that affects the base metal toughness, and if the content exceeds 0.006%, coarse sulfides are generated to deteriorate the base metal toughness. Therefore, the upper limit was made 0.006%. More preferably, it is set to 0.003% or less.
[0028]
It is also effective that the steel sheet of the present invention contains at least one selected from the group consisting of Cu, Ni, Cr and Mo, if necessary. Each of these elements is an element that enhances the hardenability during air cooling after rolling, whereby the strength and toughness of the base material can be further increased. The reasons for determining the preferable contents of these elements are as follows.
[0029]
Cu: 0.3-1.2%
Cu is an element that improves the strength of the base material by solid solution strengthening and precipitation strengthening, and exhibits its effect when contained at 0.3% or more. More preferably, it is desirable to contain 0.5% or more. However, if the content exceeds 1.2%, the high heat input HAZ toughness tends to decrease, so the upper limit is preferably set to 1.2%. More preferably, it is set to 1.0% or less.
[0030]
Ni: 0.3 to 1.2%
Ni is an element useful for improving the base material toughness, and its effect is exhibited by containing 0.3% or more. More preferably, it is 0.5% or more. However, if the content exceeds 1.2%, scale flaws easily occur, so the upper limit is preferably set to 1.2%. More preferably, it is set to 1.0% or less.
[0031]
Cr: 0.5 to 1.2%
Cr promotes the refinement of the bainite block and contributes to further improvement of the base metal toughness. If the Cr content is less than 0.5%, these effects are hardly exhibited, and if it exceeds 1.2%, the weld cracking resistance of the HAZ portion particularly when large heat input welding is performed is likely to deteriorate. A more preferred lower limit of the Cr content is 0.8%, and a preferred upper limit is 1.0%.
[0032]
Mo: 0.03 to 0.3%
Mo is an element that, when contained in combination with Nb and B, improves the hardenability during air cooling after rolling and increases the strength and toughness of the base material. In order to exhibit such an effect, it is preferable to contain 0.03% or more. However, if it is contained excessively, the welding crack resistance of the HAZ portion is deteriorated, so the upper limit is 0.3%. A more preferred lower limit of the Mo content is 0.10%, and a preferred upper limit is 0.20%.
[0033]
The method for producing the steel sheet of the present invention is not particularly limited, and the steel having the above-mentioned composition is operated according to the production steps and production conditions (temperature, time, etc.) of a commonly used high-strength steel sheet. The object of the present invention can be achieved by securing a predetermined amount of solid solution Nb and solid solution B. However, if the following method is adopted, the high toughness and high tension non-tempering of the present invention can be performed more reliably and efficiently. Can manufacture steel sheet.
[0034]
In order for a predetermined amount of solute Nb and solute B to be present in the steel sheet, the variation in the amount of precipitation of Nb and B may be minimized. That is, in a non-heat treated steel sheet in which reheating is not performed after rolling, the strength and toughness of the base material are secured by performing controlled rolling, but the rolled material (steel sheet) has its dimensions (that is, the thickness and length of the steel sheet). And the rolling history tends to fluctuate depending on the rolling reduction, and depending on the controlled rolling conditions, it becomes difficult to secure a predetermined amount of solid solution Nb or solid solution B.
[0035]
For example, if the thickness of the rolled material is different, the heat balance received by the rolled material by the controlled rolling is different, so that the amount of reduction in a specific temperature range also varies. As a result, the degree of the work-induced precipitation of Nb and B also differs, and the difference changes the amount of Nb and B deposited. When the fluctuation of the precipitation amount of Nb and B becomes large, the fluctuation of the amount of solid solution Nb and the amount of solid solution B also become large, and it is impossible to secure a predetermined amount. In controlled rolling, the thickness is reduced to a predetermined thickness by repeating the reduction several times. At this time, if the length of the rolled material is different, the reduction interval changes and the temperature decrease of the rolled material also differs. Comes out. That is, as the rolled material becomes longer, the rolling interval increases, and during this time, the rolled material is cooled and its temperature falls. As a result, the heat balance received by the rolled material changes, and the rolling reduction in a specific temperature range fluctuates, so that a predetermined amount of solid solution Nb and solid solution B cannot be secured as a finally obtained rolled material.
[0036]
In consideration of these reasons, in order to efficiently manufacture the high toughness and high strength non-heat treated steel sheet of the present invention containing a predetermined amount of solute Nb and solute B, a steel slab satisfying the above chemical components is used. After heating this to 1000 to 1150 ° C., the reduction in the temperature range of 980 to 890 ° C. should be 20% or more, and the reduction in the temperature range of 860 to 780 ° C. should be 30% or more. By adopting the above, a high toughness and high tensile strength non-heat treated steel sheet satisfying the solid solution Nb amount: 0.010 to 0.025% and the solid solution B amount: 0.0010 to 0.0025% can be efficiently produced. Preferably, after reduction in the temperature range of 860 to 780 ° C, the reduction amount at 780 ° C or lower is set to 20 to 35%, and the final rolling temperature is set to 770 to 730 ° C.
[0037]
The reason for recommending such conditions is as follows.
[0038]
Heating temperature: 1000-1150 ° C
In order to form a solid solution of the nitride of Nb and B, the steel slab is preferably heated to 1000 ° C. or more, more preferably 1050 ° C. or more. However, if the heating temperature exceeds 1150 ° C., γ grains become coarse and the toughness of the base material deteriorates. Therefore, the upper limit was set to 1150 ° C. More preferably, it is 1100 ° C or lower.
[0039]
Reduction in the temperature range of 980 to 890 ° C .: 20% or more In the temperature range of 980 to 890 ° C., nitride of Nb is easily formed. Therefore, the reduction in this temperature range is 20% or more, more preferably 30% or more. Then, the work-induced precipitation of Nb nitride is promoted, the deposition time is shortened, and the amount of Nb deposited is stabilized. That is, if the rolling reduction in this temperature range is less than 20%, the precipitation amount of Nb becomes unstable, and it becomes difficult to secure the solid solution Nb amount specified in the present invention. The upper limit of the rolling reduction in this temperature range is not particularly limited, and may be any range as long as the rolling reduction in the rolling temperature range performed in the next step can be secured.
[0040]
Reduction in temperature range of 860 to 780 ° C .: 30% or more In a temperature range of 860 to 780 ° C., nitride of B is easily formed, so the reduction in this temperature range is 30% or more, more preferably 40% or more. In this case, the process-induced precipitation of the B nitride is promoted, the deposition time is shortened, and the precipitation amount of B is stabilized. That is, if the rolling reduction in this temperature range is less than 30%, the precipitation amount of B becomes unstable, and it becomes difficult to secure the solid solution B amount specified in the present invention. The upper limit of the rolling reduction in this temperature range is not particularly limited as long as the rolling reduction in the rolling temperature range performed in the next step can be ensured.
[0041]
Reduction at 780 ° C or lower: 20-35%
When a reduction of 20% or more is performed in a temperature range of 780 ° C. or less, the refinement of the structure is promoted, and the toughness of the base material can be further improved. However, when the amount of reduction in this temperature range is excessive, the transformation of the work is promoted and ferrite is precipitated, and it becomes difficult to secure the strength of the base material. Therefore, the upper limit of the amount of reduction is set to 35%.
[0042]
Final rolling temperature: 770-730 ° C
By setting the final rolling temperature to 770 ° C. or lower, the refinement of the structure is promoted, and the toughness of the base material can be secured. However, if the final rolling temperature is lower than 730 ° C., ferrite transformation is promoted and it becomes difficult to secure base material strength. Therefore, it is recommended that the final rolling temperature be 730 ° C. or higher.
[0043]
The above-mentioned temperatures preferably adopted in the present invention are temperatures at a position of t / 4 with respect to the direction of the thick plate (t). In the present invention, the rolling reduction is the ratio of the difference between the thickness at the entrance temperature and the thickness at the exit temperature to the thickness at the entrance temperature in each temperature range. For example, the rolling reduction in the temperature range of 980 to 890 ° C. can be calculated by the following equation (1).
[0044]
(Equation 1)
Figure 2004149839
[0045]
However, when calculating the rolling reduction at 780 ° C. or lower, the thickness at the final finish rolling temperature is used as the thickness at the delivery side temperature.
[0046]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples, but the following Examples are not intended to limit the present invention, and may be appropriately modified and implemented within a range that can conform to the purpose of the preceding and the following. It is possible and they are all included in the technical scope of the present invention.
[0047]
A steel having a chemical composition shown in Table 1 below was melted by a normal melting method to form a slab, and then heated to the temperature (heating temperature) shown in Table 2 below, and then cooled and cooled to each temperature range shown in Table 2. To produce a steel plate having a predetermined thickness. Table 2 shows the rolling end temperature at this time.
[0048]
[Table 1]
Figure 2004149839
[0049]
[Table 2]
Figure 2004149839
[0050]
The amount of dissolved Nb and the amount of dissolved B contained in each of the obtained steel sheets were calculated by subtracting the measured value of the precipitated Nb amount (or the precipitated B amount) from the measured value of the Nb content (or B content) by chemical analysis. did. However, the amount of precipitated Nb (or the amount of precipitated B) was determined using a 10% acetylacetone-1% tetramethylammonium chloride-methanol solution as an electrolytic solution and extracted under a current of 200 A / m 2 or less using a 0.1 μm filter. It is collected and measured using. The Nb content (or B content) by chemical analysis is measured by a known method. Table 3 shows the amounts of solute Nb and B in each steel sheet.
[0051]
Next, the properties of the base material [tensile strength, 0.2% proof stress and toughness (vTrs)] of each of the obtained steel sheets were evaluated in the following manner.
[0052]
[Base material property test]
{Circle around (1)} Tensile test: A JIS No. 4 test piece was sampled from a quarter of the thickness of each steel sheet, and a tensile test was performed to measure the tensile strength and 0.2% proof stress. The tensile strength (TS) passed 600 MPa or more, and the 0.2% proof stress (YS) passed 450 MPa or more.
{Circle around (2)} Impact test: A JIS No. 4 test piece was sampled from a quarter of the thickness of each steel sheet, and subjected to a Charpy impact test to determine the ductile fracture rate and calculate the fracture transition temperature. A fracture surface transition temperature (vTrs) of -20 ° C or less was accepted.
[0053]
Table 3 shows the results obtained in the base material property test. FIG. 1 is a graph in which tensile strength and 0.2% proof stress are plotted against the amount of solute Nb, and FIG. 1 is a graph in which tensile strength and 0.2% proof stress are plotted against the amount of solute B. 2. A graph in which the toughness (vTrs) is plotted against the amount of solute Nb is shown in FIG. 3, and a graph in which the toughness (vTrs) is plotted against the amount of solute B is shown in FIG. 4, respectively. In FIGS. 1 and 2, □ indicates the result of tensile strength (TS), and ■ indicates the result of 0.2% proof stress (YS), respectively.
[0054]
[Table 3]
Figure 2004149839
[0055]
As is clear from Table 3 and FIGS. The steel sheets 1 to 8 are examples that satisfy the requirements specified in the present invention, and have realized a non-heat-treated high-tensile steel sheet having excellent toughness.
[0056]
In addition, No. 2 and No. Although No. 4 satisfies the requirements defined in the present invention, its manufacturing conditions are slightly different from those recommended in the present invention. It is considered that the reason is that the amount of Nb or B contained in the steel sheet is relatively small, so that the amounts of solute Nb and solute B satisfy the range specified in the present invention.
[0057]
On the other hand, no. Nos. 9 to 14 are examples that do not satisfy the requirements of the present invention, in which the chemical composition of the steel sheet is out of the range specified in the present invention, and particularly, the amount of solute Nb and / or the amount of solute B are specified in the present invention. Out of range, either strength or toughness is poor.
[0058]
【The invention's effect】
According to the present invention, it is possible to provide a non-heat treated steel sheet which does not require a reheating treatment step after rolling, and which is excellent in both high toughness and high tensile properties, and a method for producing the same.
[Brief description of the drawings]
FIG. 1 is a graph in which the tensile strength and 0.2% proof stress of a steel sheet are plotted against the amount of solute Nb.
FIG. 2 is a graph in which the tensile strength and 0.2% proof stress of a steel sheet are plotted against the amount of solute B, respectively.
FIG. 3 is a graph in which the toughness of a steel sheet is plotted against the amount of solute Nb.
FIG. 4 is a graph in which the toughness of a steel sheet is plotted against the amount of solute B.

Claims (4)

質量%で、
C:0.02〜0.06%、
Si:0.05〜0.5%、
Mn:1〜1.6%、
Al:0.02〜0.07%、
Ti:0.005〜0.02%、
Nb:0.010〜0.030%、
B:0.0010〜0.0030%、
N:0.003〜0.0050%、を夫々含み、
固溶Nb量:0.010〜0.025%、
固溶B量:0.0010〜0.0025%、
を満足することを特徴とする高靭性高張力非調質鋼板。
In mass%,
C: 0.02 to 0.06%,
Si: 0.05-0.5%,
Mn: 1 to 1.6%,
Al: 0.02 to 0.07%,
Ti: 0.005 to 0.02%,
Nb: 0.010-0.030%,
B: 0.0010 to 0.0030%,
N: 0.003-0.0050%, respectively.
Solid solution Nb amount: 0.010 to 0.025%,
Solid solution B amount: 0.0010 to 0.0025%,
A high toughness, high tensile strength non-heat treated steel sheet characterized by satisfying the following.
更に、他の元素として、
Cu:0.3〜1.2%、
Ni:0.3〜1.2%、
Cr:0.5〜1.2%、
Mo:0.03〜0.3%よりなる群から選ばれる1種以上を含有するものである請求項1に記載の高靭性高張力非調質鋼板。
Further, as other elements,
Cu: 0.3 to 1.2%,
Ni: 0.3 to 1.2%,
Cr: 0.5 to 1.2%,
The high-toughness and high-strength non-heat treated steel sheet according to claim 1, comprising one or more kinds selected from the group consisting of Mo: 0.03 to 0.3%.
請求項1または2に記載された化学成分の要件を満たす鋼片を、
1000〜1150℃に加熱した後、
980〜890℃の温度域を圧下量20%以上で圧下し、引き続いて、
860〜780℃の温度域を圧下量30%以上で圧下し、
固溶Nb量:0.010〜0.025%、
固溶B量:0.0010〜0.0025%、
を満たす高靭性高張力非調質鋼板を得ることを特徴とする高靭性高張力非調質鋼板の製法。
A steel slab that satisfies the requirements for the chemical composition described in claim 1 or 2,
After heating to 1000-1150 ° C,
The temperature range of 980 to 890 ° C. is reduced by a reduction amount of 20% or more.
The temperature range of 860 to 780 ° C is reduced with a reduction amount of 30% or more,
Solid solution Nb amount: 0.010 to 0.025%,
Solid solution B amount: 0.0010 to 0.0025%,
A method for producing a high-toughness, high-strength non-heat-treated steel sheet, characterized by obtaining a high-toughness, high-strength non-heat-treated steel sheet satisfying the following conditions.
前記860〜780℃の温度域で圧下した後、更に、780℃以下で圧下量20〜35%の圧下を行い、最終圧延温度を770〜730℃とする請求項3に記載の製法。4. The method according to claim 3, wherein after rolling in the temperature range of 860 to 780 ° C., rolling is further performed at 780 ° C. or lower with a rolling reduction of 20 to 35%, and the final rolling temperature is 770 to 730 ° C. 5.
JP2002314932A 2002-10-29 2002-10-29 High toughness and high strength non-tempered steel sheet and its production Expired - Fee Related JP3828480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002314932A JP3828480B2 (en) 2002-10-29 2002-10-29 High toughness and high strength non-tempered steel sheet and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002314932A JP3828480B2 (en) 2002-10-29 2002-10-29 High toughness and high strength non-tempered steel sheet and its production

Publications (2)

Publication Number Publication Date
JP2004149839A true JP2004149839A (en) 2004-05-27
JP3828480B2 JP3828480B2 (en) 2006-10-04

Family

ID=32459111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002314932A Expired - Fee Related JP3828480B2 (en) 2002-10-29 2002-10-29 High toughness and high strength non-tempered steel sheet and its production

Country Status (1)

Country Link
JP (1) JP3828480B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007020683A1 (en) * 2005-08-15 2007-02-22 Kabushiki Kaisha Kobe Seiko Sho Thick steel plate excelling in toughness of large heat input welded joint
JP2011231375A (en) * 2010-04-28 2011-11-17 Sumitomo Metal Ind Ltd Hot-working steel for case hardening

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007020683A1 (en) * 2005-08-15 2007-02-22 Kabushiki Kaisha Kobe Seiko Sho Thick steel plate excelling in toughness of large heat input welded joint
JP2011231375A (en) * 2010-04-28 2011-11-17 Sumitomo Metal Ind Ltd Hot-working steel for case hardening

Also Published As

Publication number Publication date
JP3828480B2 (en) 2006-10-04

Similar Documents

Publication Publication Date Title
JP5092554B2 (en) Manufacturing method of high strength steel for reinforcing steel
EP2272994A1 (en) High-tensile strength steel and manufacturing method thereof
EP2184373B1 (en) Thick hot-rolled steel sheet having excellent processability and excellent strength/toughness after thermal treatment, and method for production of the steel sheet
EP3653736A1 (en) Hot-rolled steel strip and manufacturing method
JP2003138345A (en) High strength and high ductility steel and steel sheet having excellent local ductility, and method of producing the steel sheet
EP3034643B1 (en) Electric-resistance-welded steel pipe with excellent weld quality and method for producing same
JP5045074B2 (en) High tensile thin-walled steel sheet having low yield ratio and manufacturing method thereof
EP3889298A1 (en) High-strength steel with excellent durability and method for manufacturing same
JP4207334B2 (en) High-strength steel sheet with excellent weldability and stress corrosion cracking resistance and method for producing the same
JP4379085B2 (en) Manufacturing method of high strength and high toughness thick steel plate
JP2019199649A (en) Non-tempered low yield ratio high tensile thick steel sheet and its production method
JPH06306543A (en) High strength pc wire rod excellent in delayed fracture resistance and its production
JPH05186823A (en) Production of cu-containing high tensile strength steel with high toughness
JP5082475B2 (en) Manufacturing method of high toughness and high strength steel sheet with excellent strength-elongation balance
EP3502292B1 (en) Hot-rolled steel sheet
JP4868762B2 (en) High-strength, high-toughness bainite non-tempered steel sheet with small acoustic anisotropy
JPH07331381A (en) Seamless steel tube having high strength and high toughness and its production
JP4715166B2 (en) Non-heat treated steel for rebar and manufacturing method thereof
JP2002047532A (en) High tensile strength steel sheet excellent in weldability and its production method
JP4043754B2 (en) High strength PC steel bar with excellent delayed fracture characteristics
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JP5082500B2 (en) Manufacturing method of high toughness and high strength steel sheet with excellent strength-elongation balance
JP2004323917A (en) High strength high toughness steel sheet
JP3828480B2 (en) High toughness and high strength non-tempered steel sheet and its production
JP3602396B2 (en) Low yield ratio high strength steel sheet with excellent weldability

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040810

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060706

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3828480

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130714

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees