JP2004149555A - Biaxially stretched polyamide film - Google Patents

Biaxially stretched polyamide film Download PDF

Info

Publication number
JP2004149555A
JP2004149555A JP2002312988A JP2002312988A JP2004149555A JP 2004149555 A JP2004149555 A JP 2004149555A JP 2002312988 A JP2002312988 A JP 2002312988A JP 2002312988 A JP2002312988 A JP 2002312988A JP 2004149555 A JP2004149555 A JP 2004149555A
Authority
JP
Japan
Prior art keywords
film
polyamide resin
biaxially stretched
polyamide
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002312988A
Other languages
Japanese (ja)
Other versions
JP4104423B2 (en
Inventor
Toshifumi Sakamoto
俊史 坂本
Toshiyuki Fujii
敏之 藤井
Hisashi Koshiro
久志 小城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kohjin Holdings Co Ltd
Kohjin Co
Original Assignee
Kohjin Holdings Co Ltd
Kohjin Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kohjin Holdings Co Ltd, Kohjin Co filed Critical Kohjin Holdings Co Ltd
Priority to JP2002312988A priority Critical patent/JP4104423B2/en
Publication of JP2004149555A publication Critical patent/JP2004149555A/en
Application granted granted Critical
Publication of JP4104423B2 publication Critical patent/JP4104423B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prepare a biaxially stretched polyamide film suitable for food packaging, particularly for packaging moist food, or the like, having excellent slipperiness under high-humidity and high-temperature conditions, and having a low rate of change in dimension due to moisture absorption and a low rate of MD (moisture dimensional change) creep. <P>SOLUTION: This biaxially stretched polyamide film is obtained by stretching at least 1.5-fold in both longitudinal and transverse directions a polyamide resin composition comprising a molecularly uniform dispersion of 0.05-1.0 pt.wt. of a laminar silicate, preferably a montmorillonite, in 100 pts.wt. of a polyamide resin, and containing 0.05-0.50 pt.wt. of inactive inorganic particles. The coefficient of static friction between untreated surfaces thereof at 20°C and 90% RH (relative humidity) is 1.0 or lower, and the coefficient of static friction between untreated surfaces thereof at 100°C is 1.5 or lower. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明が属する技術分野】
本発明は、高湿下及び高温下における滑り性が優れているとともに、吸湿寸法変化及びフィルムの縦方向(以下、MDと略記する。)のクリープ変形率の小さい二軸延伸ポリアミドフイルムに関する。
【0002】
【従来の技術】
二軸延伸ポリアミドフイルムは、ガスバリア性、強靱性、耐ピンホール性、耐熱性等の諸特性が優れているために、包装用フイルム、特に食品包装用分野を中心に、単層フイルムあるいはラミネートフイルムの基材として、また、他樹脂との共押出による多層フイルムの構成基材として使用されている。近年、特にレトルト食品包装用フイルムとしての需要が増加している。
しかしながら、ポリアミドフィルムは吸湿性が大きいことより、吸湿によるフイルム特性の変化が発現する。例えば、吸湿によりフィルムの滑り性及び剛性の低下が認められる。
吸湿はポリアミドフイルムの非晶領域で発生するため、フイルムの結晶化度を上げるようにフイルム製造条件、すなわち延伸前のベースフイルム成形条件、延伸条件、熱処理条件等の条件を選択することによって改善は認められるものの、製造条件だけでは限界がある。
【0003】
一方、ポリアミドフィルムは吸湿により耐ピンホール性、耐衝撃強度が向上するように、その特性により、水物あるいは液体包装用にも使用されているが、ポリアミドフィルムの吸湿による寸法変化は、吸湿によるシワ発生或いは、ポリアミドフイルム印刷加工時の吸湿或いは脱湿からくる寸法変化が原因となって発生する印刷見当ズレ等のトラブルを引き起こす。
更に、高湿下での滑り性向上、並びに印刷及びラミ工程におけるMDのクリープ変形率の低減が強く望まれることとなる。
【0004】
従来、ポリアミドフイルムの滑り性を改善させるためには、不活性無機粒子(例えば、シリカ、カオリン、タルク等)を配合することが一般的であり、その配合量を増やすことあるいは粒径を調整することにより、滑り性を向上させることができる。
しかし、これらの配合量を増やすことによって、滑り性は向上するものの、フイルムの透明性を大きく低下させるとともにダイリップ出口に発生する樹脂熱劣化物、いわゆる目ヤニの発生周期が短くなる傾向がある。
【0005】
ポリアミドフイルムを基材として、他のフイルム例えばポリエチレン等とラミネート加工する際、MDへの伸びが発生する傾向にあり、製袋等のピッチを一定にするには、MD伸びのトラブルを回避させることが必要である。
MDに於けるクリープ変形率の改善に関しては、延伸倍率を大きくする方法等が有効であるが、延伸倍率を大きくすると延伸工程が不安定になる傾向があり、フイルム破断などのトラブルが増加する。また、延伸倍率に関してはおのずと限界がある。
【0006】
一方、層状珪酸塩を含有したポリアミド樹脂からなる二軸延伸ポリアミドフイルムが種々知られており、ガスバリヤー性、滑り性、剛性等が改善されることが報告されている(例えば、特開平2−105856号公報、同4−80259号公報、同4−110347号公報、同8−53573号公報、同8−319417号公報、同11−181278号公報、同11−228817号公報、等)。しかしながら、層状珪酸塩の配合量を増やすほど、滑り性が向上し、吸湿寸法変化も小さくなる傾向が認められるものの、配合量を増やすことによってフイルムの透明性が低下するとともに、フイルムの剛性が著しく増大し延伸時における延伸性の低下、あるいはフイルムの耐屈曲特性(ゲルボ特性)の低下等の問題が発生する。
【0007】
また、層状珪酸塩を含む強化ポリアミド樹脂と非強化ポリアミド樹脂とからなる樹脂組成物の報告もある(特開平11−71517号公報)が、射出成形用等の組成物であるとともに、製造工程が煩雑となる。
【0008】
【特許文献1】
特開平11−71517号公報
【0009】
【発明が解決しようとする課題】
本発明は、食品包装用、特に水物等の包装に好適な、高湿下及び高温下で優れた滑り性を有し、吸湿寸法変化及びMDのクリープ変形率の小さい二軸延伸ポリアミドフイルムを提供することを課題とする。
【0010】
【課題を解決するための手段】
本発明者らは、かかる課題を解決するため研究の結果、ポリアミド樹脂に層状珪酸塩と不活性無機粒子を同時に配合することにより、これら層状珪酸塩と不活性無機粒子の相乗効果により、課題を解決できることを見いだし、本発明に到達した。
すなわち本発明は、
(1)ポリアミド樹脂100重量部に層状珪酸塩を0.05〜1.0重量部の範囲で分子状に均一に分散すると共に、不活性無機粒子を0.05〜0.50重量部の範囲で含有するポリアミド樹脂組成物を縦方向横方向共に1.5倍以上延伸したフィルムであって、20℃90%RHでの表面未処理同士の静摩擦係数が1.0以下、100℃での表面未処理面同士の静摩擦係数が1.5以下である、吸湿寸法変化及びフィルムの縦方向のクリープ変形率が小さいことを特徴とする二軸延伸ポリアミドフイルム、
(2)層状珪酸塩がモンモリロナイトである上記(1)記載の二軸延伸ポリアミドフイルム、
を提供するものである。
【0011】
【発明の実施の態様】
以下、本発明を詳細に説明する。
本発明で用いられるポリアミド樹脂は、分子中に酸アミド結合を有するものであり、脂肪族系ポリアミド樹脂、芳香族系ポリアミド樹脂あるいはこれらの混合物のいずれでもよい。
【0012】
本発明において、ポリアミド樹脂には層状珪酸塩及び不活性無機粒子が配合される。
用いられる層状珪酸塩としては、天然のものあるいは合成のものいずれでもよいが、スメクタイト系粘度鉱物が好ましく、なかでもモンモリロナイトが特に好ましい。
層状珪酸塩の配合量は、ポリアミド樹脂100重量部に対して0.05〜1.0重量部であり、配合量が0.05%未満であると滑り性、寸法安定性等に劣り、一方、1.0重量部を越えるとフイルムの透明性(ヘーズ)を低下させるとともにフイルムの剛性を増大させるため好ましくない。
層状珪酸塩は、ポリアミド樹脂中に分子状に均一に分散していることが必要であるが、その状態であれば、配合方法は、ポリアミド樹脂の製造時に添加する方法、ポリアミド樹脂に添加混合する方法等のいずれでもよい。
【0013】
本発明で用いられる不活性無機粒子としては、シリカ、カオリン、タルク、炭酸カルシウム等を例示することができ、これらは表面処理がなされているものでもよい。不活性無機粒子の配合量は、ポリアミド樹脂100重量部に対して0.05〜0.50重量部である。
配合量が0.05重量部未満であると滑り性が十分ではなく、また、0.50重量部を超えるとフイルムの透明性(ヘーズ)を低下させるので好ましくない。
【0014】
本発明の二軸延伸ポリアミドフィルムは、上記ポリアミド樹脂組成物を縦横方向共に1.5倍以上延伸した、20℃90%RHでの表面未処理同士の静摩擦係数が1.0以下、100℃での表面未処理面同士の静摩擦係数が1.5以下のものである。
ポリアミドフィルムは、印刷時の半調性向上及びラミ接着性向上のため、一般的に片面にコロナ処理が行われている。コロナ処理面はシーラントフィルムと貼り合わせるため、ラミネート後はポリアミドフィルム性能が重要となる。
静摩擦係数はフィルムが滑り始めるときの摩擦係数であり、動摩擦係数はフィルムが滑り始めてからの摩擦係数を示す。
ポリアミドフィルムは、通常ラミネート加工及び製袋加工されて袋製品として使用される場合が多く、その製袋時においてはヒートシール加工のためにラミネートフィルムが間欠的に移送されることになり、基材であるポリアミドフィルムの滑り性、特に移送時の滑り始めの摩擦係数である静摩擦係数が低いことが重要となる。
また、製袋品の充填工程においても、袋製品同士の滑り性が悪いと、充填前の製袋品の二重取り等のトラブルが発生しやすく、これらのトラブルを防止するには、ポリアミドフィルム面同士の静摩擦係数が低いことが望まれる。
更に、ラミネートフィルムを供給して充填する、例えばコンニャク・餅などの袋詰め(充填)工程では、高湿下の環境にあることが多く、ポリアミドフィルムの滑りが悪いと製袋時のカットピッチ不良等の問題が発生する。
【0015】
本発明の二軸延伸ポリアミドフィルムは、例えば、チューブラー法、テンター法等の公知の方法により製造することができる。
また、ポリアミド樹脂組成物には、本発明の効果を損なわない範囲で、滑剤、酸化防止剤、耐熱安定剤、耐電防止剤、透明改良剤などを配合できる。
【0016】
本発明の特徴は、層状珪酸塩と不活性無機粒子を併用する点にある。
本発明者等は、層状珪酸塩により結晶化度の向上、吸湿の減少・阻害、剛性の向上による吸湿寸法変化及びMDのクリープ変形率が小さくなると共に、フィルム中に微細分散した層状珪酸塩が表面に多数露出し、また、分散した層状珪酸塩の上に不活性無機粒子が位置することによりフイルム表面により多くの不活性無機粒子が露出するという相乗作用により、滑り性が向上したものと推察している。
【0017】
【実施例】
以下、実施例によって、本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
尚、実施例に於けるフイルム特性の測定法は以下の通りである。
▲1▼透明性
JIS K 7105に準じてフイルムの曇価(ヘーズ)を測定した。
▲2▼滑り性
ASTM D 1894に準じて、23℃、65%RHの雰囲気下で静摩擦係数及び動摩擦係数を測定した。
▲3▼高湿下の滑り性
温度を20℃、相対湿度を90%とした以外は、ASTM D 1894に準じて静摩擦係数及び動摩擦係数を測定した。
▲4▼高温下の滑り性
ASTM D 1894で規定された図1ー(d)に相当する測定器を用い、移動テーブルを加温することが出来る機能を付加して使用した。
試料(フィルム)をMD95mm×TD45mmにカットしスレッドに貼り付ける。23℃±2℃、50±5%RHの環境下に測定器を設置し、移動テーブルの温度を100℃±1℃に昇温した後、以下の条件下で、測定を行う。
スレッド:100g
ヘッドスピード:150mm/min
チャートスピード:200mm/min
測定後、ASTM D 1894に準じて算出する。
▲5▼吸湿寸法変化
試料(フィルム)をMD200mm×TD200mmにカットする。これを20℃40%RHで24時間調湿を行い、MD及びTDの寸法を測定し、この寸法を原寸Aとする。
試料を20℃90%RHで、再度、2時間調湿し、調湿後MD及びTDの寸法を測定し、この寸法をBとする。
数1により、寸法変化(吸湿による伸びの割合)を算出する。
【0018】
【数1】

Figure 2004149555
【0019】
▲6▼クリープ変形率
試料(フィルム)を300mm×50mmにカットし、250mm巾に基線をマジックでで入れる。(測定方向の長さを300mmとする。)
23℃、50%RHで2時間調湿し、基線間の距離を測定する。この長さを原寸Aとする。
試料の両端をクリップで挟み、垂直方向に吊り下げ1000gの荷重をかけ、90℃のオーブンに60秒間放置する。荷重を除き、素早く基線間の距離を測定し、この長さをBとする。
数2により、クリープ変形率を算出する。
【0020】
【数2】
Figure 2004149555
【0021】
延伸性の評価試験
ポリアミド樹脂(宇部興産製、1024B)と、ポリアミド樹脂100重量部に対しモンモリロナイトが1.70重量部分子状に均一に分散したポリアミド樹脂(宇部興産製、1022C2)とを、表1に記載の各モンモリロナイト含有量になるように混合調整した。
このポリアミド樹脂組成物を押出機にてシリンダー温度260℃の条件で押し出し、チューブラー法により縦横共に3.0倍の延伸倍率で同時二軸延伸を行った。
結果を表1に表す。
モンモリロナイトの配合量が1.1重量%では延伸持続性が劣り、特に1.5重量%の場合、延伸バブルの内圧が異常に高くなり、延伸持続性が著しく低下した。
このことより、テューブラー法では、モンモリロナイトの配合量が1重量%以下が好ましいことが分かる。
【0022】
【表1】
Figure 2004149555
【0023】
実施例1
層状珪酸塩としてモンモリロナイトがポリアミド樹脂100重量部に対し0.25重量部分子状に均一に分散し、更に滑り剤として二酸化珪素(シリカ)を0.1重量部配合したポリアミド樹脂組成物(宇部興産製、1024FDX21)を、押出機にてシリンダー温度260℃の条件で押し出し、チューブラー法により、縦横の各延伸倍率3.0倍で同時二軸延伸し、更に200℃で熱処理を行い、厚さ15μmの二軸延伸ポリアミドフイルムを得た。
このフイルムについて各特性を測定した。結果を表2に示す。
なお、使用したポリアミド樹脂組成物(1024FDX21)に含有されているモンモリロナイトの層間距離をX線解析した結果、十分に分散していることを確認した。
【0024】
実施例2
実施例1において、得られる二軸延伸ポリアミドフィルムの厚みが25μmとなるようにした以外は実施例1と同様に実施し、厚さ25μmの二軸延伸ポリアミドフィルムを製造した。
このフィルムについて各特性を測定した。結果を表3に示す。
【0025】
実施例3
実施例1において、ポリアミド樹脂組成物として、モンモリロナイトの配合量をポリアミド樹脂100重量部に対し0.50重量部、シリカの配合量をポリアミド樹脂100重量部に対して0.1重量部としたポリアミド樹脂組成物(宇部興産製、1024FDX21)を用い、かつ、得られるフィルムの厚みを25μmとした以外は実施例1と同様に実施し、厚さ25μmの二軸延伸ポリアミドフィルムを製造した。
このフィルムについて各特性を測定した。結果を表3に示す。
なお、使用したポリアミド樹脂組成物(1024FDX22)に含有されているモンモリロナイトの層間距離をX線解析した結果、十分に分散していることを確認した。
【0026】
比較例1
実施例1において、ポリアミド樹脂組成物として、モンモリロナイトを配合していない樹脂組成物(宇部興産製、1024FDX8)を用いた以外は、実施例1と同様に実施し、二軸延伸フイルムを製造した。
このフィルムについて各特性を測定した。結果を表2に示す。
【0027】
比較例2
比較例1において、得られる二軸延伸ポリアミドフィルムの厚みが25μmとなるようにした以外は比較例1と同様に実施し、二軸延伸ポリアミドフィルムを製造した。
このフィルムについて各特性を測定した。結果を表3に示す。
【0028】
比較例3
実施例1において、ポリアミド樹脂組成物として、モンモリロナイトを配合することなく、かつ、シリカの配合量をポリアミド100重量部に対し0.6重量部としたポリアミド6(分子量24,000)を用いた以外は実施例1と同様に実施し、二軸延伸フィルムを製造した。
このフィルムについて各特性を測定した。結果を表2に示す。
【0029】
比較例4
ポリアミド樹脂(宇部興産製、1024B)と、ポリアミド樹脂100重量部に対しモンモリロナイト1.7重量部を分子状に均一に分散したポリアミド樹脂(宇部興産製、1022C2)とを混合し、モンモリロナイトの配合量が0.5重量部となるように調整したポリアミド樹脂組成物を用い、他は実施例1と同様に実施し、二軸延伸フィルムを製造した。
このフィルムについて各特性を測定した。結果を表2に示す。
【0030】
【表2】
Figure 2004149555
【0031】
表2(二軸延伸ポリアミドフイルム15μm)から、モンモリロナイト配合品(実施例1)は未配合品(比較例1)と比較し、
▲1▼ヘーズ(フイルムの曇価)は若干の悪化が見られるが、十分実用範囲内である。▲2▼表面未処理面同士の摩擦係数は、高湿下摩擦及びホットスリップを含めて滑り性の改善が顕著である。
▲3▼MDでの吸湿による寸法変化が大巾に低下している。
▲4▼MDのクリープ変形率も改善される。
ことが分かる。
又、シリカ配合量が多くなると(比較例3)、ヘーズの増大が顕著となり、一方、シリカ無配合(比較例4)では、高湿下に於ける摩擦係数の改善が困難であることが分かる。
【0032】
【表3】
Figure 2004149555
【0033】
表3(二軸延伸ポリアミドフイルム25μm)から、モンモリロナイト配合品(実施例2、3)は未配合品(比較例2)と比較し、
▲1▼ヘーズ(フイルムの曇価)は若干の悪化がみられるが、十分実用範囲内である。▲2▼表面未処理面同士の高湿下摩擦及びホットスリップの滑り性の改善が顕著である。
▲3▼MDでの吸湿による寸法変化はかなりの改善が見られる。
▲4▼MDのクリープ変形率も改善される。
ことが分かる。
【0034】
【発明の効果】
本発明の二軸延伸ポリアミドフイルムは、高湿下及び高温下の滑り性に特に優れまた、吸湿寸法変化並びにMDに於けるクリープ変形率が小さく、食品包装用、特に水物等の包装材料として良好な加工性を示し実用上極めて有用である。[0001]
[Technical field to which the invention belongs]
The present invention relates to a biaxially stretched polyamide film having excellent slipperiness under high humidity and high temperature, and having a small change in moisture absorption dimension and a small creep deformation rate in the machine direction (hereinafter abbreviated as MD).
[0002]
[Prior art]
Biaxially stretched polyamide film has excellent properties such as gas barrier properties, toughness, pinhole resistance, heat resistance, etc., so it is a single layer film or laminate film, especially in the field of packaging for foods. In addition, it is used as a base material for multilayer films by coextrusion with other resins. In recent years, the demand for retort food packaging films has increased.
However, since the polyamide film has a high hygroscopic property, a change in film properties due to moisture absorption appears. For example, a decrease in film slipperiness and rigidity is observed due to moisture absorption.
Since moisture absorption occurs in the amorphous region of polyamide film, improvement can be achieved by selecting film production conditions, that is, base film forming conditions before stretching, stretching conditions, heat treatment conditions, etc., so as to increase the crystallinity of the film. Although recognized, there are limits to the manufacturing conditions alone.
[0003]
On the other hand, polyamide films are also used for water or liquid packaging due to their properties so that pinhole resistance and impact strength are improved by moisture absorption. However, dimensional changes due to moisture absorption of polyamide films are due to moisture absorption. It causes wrinkles or troubles such as printing misregistration caused by dimensional changes resulting from moisture absorption or dehumidification during polyamide film printing.
Furthermore, improvement of slipperiness under high humidity and reduction of MD creep deformation rate in printing and lamination processes are strongly desired.
[0004]
Conventionally, in order to improve the slipperiness of the polyamide film, it is common to blend inert inorganic particles (for example, silica, kaolin, talc, etc.), and increase the blending amount or adjust the particle size. Thus, slipperiness can be improved.
However, by increasing the blending amount of these, the slipperiness is improved, but the transparency of the film is greatly reduced and the generation period of the resin thermal degradation product generated at the die lip outlet, that is, the so-called eye sag tends to be shortened.
[0005]
When laminating with other films such as polyethylene using polyamide film as a base material, elongation to MD tends to occur. To keep the pitch of bag making etc. constant, avoid trouble of MD elongation. is required.
For improving the creep deformation rate in MD, a method of increasing the draw ratio is effective, but if the draw ratio is increased, the drawing process tends to become unstable, and troubles such as film breakage increase. Moreover, there is a limit to the draw ratio.
[0006]
On the other hand, various biaxially stretched polyamide films made of a polyamide resin containing a layered silicate are known, and it has been reported that gas barrier properties, slipperiness, rigidity, etc. are improved (for example, JP-A-2- No. 105856, No. 4-80259, No. 4-110347, No. 8-53573, No. 8-319417, No. 11-181278, No. 11-228817, etc.). However, as the amount of layered silicate increases, slipperiness improves and moisture absorption dimensional change tends to decrease.However, increasing the amount decreases the transparency of the film and significantly increases the rigidity of the film. Problems such as a decrease in stretchability at the time of stretching and a decrease in the bending resistance (gelbo characteristics) of the film occur.
[0007]
There is also a report of a resin composition comprising a reinforced polyamide resin containing a layered silicate and a non-reinforced polyamide resin (Japanese Patent Application Laid-Open No. 11-71517). It becomes complicated.
[0008]
[Patent Document 1]
Japanese Patent Laid-Open No. 11-71517
[Problems to be solved by the invention]
The present invention provides a biaxially stretched polyamide film suitable for food packaging, particularly packaging of water, etc., having excellent slipperiness at high humidity and high temperature, and having small moisture absorption dimensional change and MD creep deformation rate. The issue is to provide.
[0010]
[Means for Solving the Problems]
As a result of research to solve such problems, the present inventors have simultaneously formulated a layered silicate and inert inorganic particles in a polyamide resin. We have found that this can be solved, and have reached the present invention.
That is, the present invention
(1) A layered silicate is uniformly dispersed in a molecular form in a range of 0.05 to 1.0 part by weight in 100 parts by weight of a polyamide resin, and an inert inorganic particle is in a range of 0.05 to 0.50 part by weight. Is a film obtained by stretching the polyamide resin composition contained in 1.5 in the longitudinal and transverse directions by 1.5 times or more, and the static friction coefficient between the untreated surfaces at 20 ° C. and 90% RH is 1.0 or less and the surface at 100 ° C. A biaxially stretched polyamide film characterized in that the static friction coefficient between untreated surfaces is 1.5 or less, the hygroscopic dimensional change and the creep deformation rate in the machine direction of the film are small,
(2) The biaxially stretched polyamide film according to the above (1), wherein the layered silicate is montmorillonite,
Is to provide.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
The polyamide resin used in the present invention has an acid amide bond in the molecule, and may be an aliphatic polyamide resin, an aromatic polyamide resin, or a mixture thereof.
[0012]
In the present invention, layered silicate and inert inorganic particles are blended in the polyamide resin.
The layered silicate used may be either natural or synthetic, but is preferably a smectite-based viscosity mineral, and particularly preferably montmorillonite.
The compounding amount of the layered silicate is 0.05 to 1.0 part by weight with respect to 100 parts by weight of the polyamide resin, and if the blending amount is less than 0.05%, the slipperiness and dimensional stability are inferior. If the amount exceeds 1.0 part by weight, the transparency (haze) of the film is lowered and the rigidity of the film is increased.
The layered silicate needs to be uniformly dispersed in a molecular form in the polyamide resin, but in that state, the blending method is a method of adding at the time of manufacturing the polyamide resin, and adding and mixing to the polyamide resin. Any of the methods may be used.
[0013]
Examples of the inert inorganic particles used in the present invention include silica, kaolin, talc, calcium carbonate and the like, and these may be subjected to surface treatment. The compounding amount of the inert inorganic particles is 0.05 to 0.50 parts by weight with respect to 100 parts by weight of the polyamide resin.
If the blending amount is less than 0.05 parts by weight, the slipperiness is not sufficient, and if it exceeds 0.50 parts by weight, the transparency (haze) of the film is lowered, which is not preferable.
[0014]
The biaxially stretched polyamide film of the present invention is obtained by stretching the polyamide resin composition 1.5 times or more in both the longitudinal and transverse directions, and having a static coefficient of friction between untreated surfaces at 20 ° C. and 90% RH of 1.0 or less and 100 ° C. The coefficient of static friction between the untreated surfaces is 1.5 or less.
The polyamide film is generally subjected to corona treatment on one side in order to improve the halftone property at the time of printing and to improve the adhesion to the laminate. Since the corona-treated surface is bonded to the sealant film, the performance of the polyamide film is important after lamination.
The static friction coefficient is a friction coefficient when the film starts to slide, and the dynamic friction coefficient indicates a friction coefficient after the film starts to slide.
Polyamide films are usually laminated and made into bags, and are often used as bag products. At the time of making the bags, the laminate film is intermittently transferred for heat-sealing. It is important that the polyamide film as described above has a low slidability, particularly a low coefficient of static friction which is a coefficient of friction at the beginning of sliding at the time of transfer.
Also, in the bag filling product filling process, if the slip between the bag products is poor, troubles such as double picking of the bag making product before filling are likely to occur. It is desired that the coefficient of static friction is low.
In addition, the laminating film is supplied and filled, such as konjac and bag filling (filling) process, which is often in a high humidity environment, and if the polyamide film is slippery, the cut pitch is poor during bag making. Problems occur.
[0015]
The biaxially stretched polyamide film of the present invention can be produced by a known method such as a tubular method or a tenter method.
Further, the polyamide resin composition can be blended with a lubricant, an antioxidant, a heat stabilizer, an antistatic agent, a transparency improver and the like as long as the effects of the present invention are not impaired.
[0016]
The feature of the present invention is that a layered silicate and inert inorganic particles are used in combination.
The inventors of the present invention have improved the degree of crystallinity, reduced / inhibited moisture absorption, reduced hygroscopic dimensional change and improved MD creep deformation rate by layered silicates, and reduced dispersion of layered silicates in the film. It is inferred that the slipperiness has been improved due to the synergistic effect that many inert inorganic particles are exposed on the film surface due to many exposed inorganic particles on the surface and the presence of inert inorganic particles on the dispersed layered silicate. doing.
[0017]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, this invention is not limited to these Examples.
In addition, the measuring method of the film characteristic in an Example is as follows.
(1) Transparency The haze of the film was measured according to JIS K 7105.
(2) Sliding property According to ASTM D 1894, the static friction coefficient and the dynamic friction coefficient were measured in an atmosphere of 23 ° C. and 65% RH.
(3) The static friction coefficient and the dynamic friction coefficient were measured in accordance with ASTM D 1894 except that the slip temperature under high humidity was 20 ° C. and the relative humidity was 90%.
(4) Sliding property under high temperature A measuring device corresponding to FIG. 1- (d) stipulated by ASTM D 1894 was used to add a function capable of heating the moving table.
A sample (film) is cut into MD95 mm × TD45 mm and attached to a thread. A measuring instrument is installed in an environment of 23 ° C. ± 2 ° C. and 50 ± 5% RH, and the temperature of the moving table is raised to 100 ° C. ± 1 ° C., and measurement is performed under the following conditions.
Thread: 100g
Head speed: 150mm / min
Chart speed: 200mm / min
After the measurement, it is calculated according to ASTM D 1894.
(5) Moisture absorption dimension change sample (film) is cut into MD200 mm × TD200 mm. This is conditioned at 20 ° C. and 40% RH for 24 hours, and the MD and TD dimensions are measured.
The sample was conditioned again at 20 ° C. and 90% RH for 2 hours. After humidity adjustment, the dimensions of MD and TD were measured.
The dimensional change (the rate of elongation due to moisture absorption) is calculated from Equation 1.
[0018]
[Expression 1]
Figure 2004149555
[0019]
{Circle around (6)} Creep deformation rate A sample (film) is cut into 300 mm × 50 mm, and a base line is inserted with a magic to a width of 250 mm. (The length in the measurement direction is 300 mm.)
Humidity is adjusted at 23 ° C. and 50% RH for 2 hours, and the distance between the baselines is measured. This length is assumed to be full size A.
Both ends of the sample are sandwiched between clips, suspended in the vertical direction, a load of 1000 g is applied, and the sample is left in an oven at 90 ° C. for 60 seconds. The distance between the base lines is quickly measured excluding the load, and this length is designated as B.
The creep deformation rate is calculated from Equation 2.
[0020]
[Expression 2]
Figure 2004149555
[0021]
Stretchability evaluation test Polyamide resin (manufactured by Ube Industries, 1024B) and polyamide resin (manufactured by Ube Industries, 1022C2) in which montmorillonite is uniformly dispersed in a molecular form of 1.70 parts by weight with respect to 100 parts by weight of the polyamide resin, The mixture was adjusted so that each montmorillonite content described in 1 was obtained.
This polyamide resin composition was extruded using an extruder under the condition of a cylinder temperature of 260 ° C., and was subjected to simultaneous biaxial stretching by a tubular method at a stretching ratio of 3.0 times in both length and width.
The results are shown in Table 1.
When the blending amount of montmorillonite is 1.1% by weight, the stretching sustainability is inferior. Particularly when the blending amount is 1.5% by weight, the internal pressure of the stretching bubble becomes abnormally high, and the stretching sustainability is remarkably lowered.
From this, it can be seen that in the Tubler method, the amount of montmorillonite is preferably 1% by weight or less.
[0022]
[Table 1]
Figure 2004149555
[0023]
Example 1
A montmorillonite as a layered silicate is uniformly dispersed in a molecular form of 0.25 parts by weight with respect to 100 parts by weight of a polyamide resin, and further 0.1 parts by weight of silicon dioxide (silica) as a slip agent is blended (Ube Industries) Made of 1024FDX21) with an extruder at a cylinder temperature of 260 ° C, biaxially stretched at a stretch ratio of 3.0 times in the vertical and horizontal directions by a tubular method, and further heat treated at 200 ° C to obtain a thickness A biaxially stretched polyamide film of 15 μm was obtained.
Each characteristic of this film was measured. The results are shown in Table 2.
As a result of X-ray analysis of the interlayer distance of montmorillonite contained in the used polyamide resin composition (1024FDX21), it was confirmed that it was sufficiently dispersed.
[0024]
Example 2
A biaxially stretched polyamide film having a thickness of 25 μm was produced in the same manner as in Example 1 except that the thickness of the obtained biaxially stretched polyamide film was 25 μm.
Each characteristic was measured about this film. The results are shown in Table 3.
[0025]
Example 3
In Example 1, as a polyamide resin composition, a polyamide having a montmorillonite blending amount of 0.50 parts by weight with respect to 100 parts by weight of the polyamide resin and a silica blending amount of 0.1 parts by weight with respect to 100 parts by weight of the polyamide resin. A biaxially stretched polyamide film having a thickness of 25 μm was produced in the same manner as in Example 1 except that a resin composition (manufactured by Ube Industries, 1024FDX21) was used and the thickness of the obtained film was 25 μm.
Each characteristic was measured about this film. The results are shown in Table 3.
As a result of X-ray analysis of the interlayer distance of montmorillonite contained in the used polyamide resin composition (1024FDX22), it was confirmed that it was sufficiently dispersed.
[0026]
Comparative Example 1
In Example 1, a biaxially stretched film was produced in the same manner as in Example 1 except that a resin composition not containing montmorillonite (manufactured by Ube Industries, 1024FDX8) was used as the polyamide resin composition.
Each characteristic was measured about this film. The results are shown in Table 2.
[0027]
Comparative Example 2
In Comparative Example 1, a biaxially stretched polyamide film was produced in the same manner as in Comparative Example 1 except that the thickness of the obtained biaxially stretched polyamide film was 25 μm.
Each characteristic was measured about this film. The results are shown in Table 3.
[0028]
Comparative Example 3
In Example 1, polyamide 6 (molecular weight 24,000) was used as the polyamide resin composition without blending montmorillonite and having a silica blending amount of 0.6 parts by weight with respect to 100 parts by weight of polyamide. Was carried out in the same manner as in Example 1 to produce a biaxially stretched film.
Each characteristic was measured about this film. The results are shown in Table 2.
[0029]
Comparative Example 4
The amount of montmorillonite is mixed by mixing polyamide resin (manufactured by Ube Industries, 1024B) with polyamide resin (manufactured by Ube Industries, 1022C2) in which 1.7 parts by weight of montmorillonite is uniformly dispersed with respect to 100 parts by weight of polyamide resin. A biaxially stretched film was produced in the same manner as in Example 1 except that a polyamide resin composition adjusted to 0.5 parts by weight was used.
Each characteristic was measured about this film. The results are shown in Table 2.
[0030]
[Table 2]
Figure 2004149555
[0031]
From Table 2 (biaxially oriented polyamide film 15 μm), the montmorillonite blended product (Example 1) is compared with the unblended product (Comparative Example 1),
(1) Although the haze (cloudiness value of the film) is slightly deteriorated, it is well within the practical range. (2) The friction coefficient between the untreated surfaces is markedly improved in slipperiness including high humidity friction and hot slip.
(3) The dimensional change due to moisture absorption in MD is greatly reduced.
(4) MD creep deformation rate is also improved.
I understand that.
In addition, when the amount of silica is increased (Comparative Example 3), the increase in haze becomes remarkable. On the other hand, when silica is not added (Comparative Example 4), it is difficult to improve the coefficient of friction under high humidity. .
[0032]
[Table 3]
Figure 2004149555
[0033]
From Table 3 (biaxially stretched polyamide film 25 μm), the montmorillonite blended product (Examples 2 and 3) is compared with the unblended product (Comparative Example 2).
(1) Although the haze (cloudiness value of the film) is slightly deteriorated, it is sufficiently within the practical range. (2) The friction under high humidity between the untreated surfaces and the improvement of the slip property of hot slip are remarkable.
(3) The dimensional change due to moisture absorption in MD is considerably improved.
(4) MD creep deformation rate is also improved.
I understand that.
[0034]
【The invention's effect】
The biaxially stretched polyamide film of the present invention is particularly excellent in slipperiness under high humidity and high temperature, and has small moisture absorption dimensional change and creep deformation rate in MD, and is used for food packaging, particularly as a packaging material for water. It exhibits good workability and is extremely useful in practice.

Claims (2)

ポリアミド樹脂100重量部に層状珪酸塩を0.05〜1.0重量部の範囲で分子状に均一に分散すると共に、不活性無機粒子を0.05〜0.50重量部の範囲で含有するポリアミド樹脂組成物を縦方向横方向共に1.5倍以上延伸したフィルムであって、20℃90%RHでの表面未処理同士の静摩擦係数が1.0以下、100℃での表面未処理面同士の静摩擦係数が1.5以下である、吸湿寸法変化及びフィルムの縦方向のクリープ変形率が小さいことを特徴とする二軸延伸ポリアミドフイルム。A layered silicate is uniformly dispersed in a molecular form in a range of 0.05 to 1.0 part by weight in 100 parts by weight of a polyamide resin, and an inert inorganic particle is contained in a range of 0.05 to 0.50 part by weight. A film in which the polyamide resin composition is stretched 1.5 times or more in both the longitudinal and transverse directions, and the coefficient of static friction between the untreated surfaces at 20 ° C. and 90% RH is 1.0 or less, and the untreated surface at 100 ° C. A biaxially stretched polyamide film having a coefficient of static friction of 1.5 or less and a small change in moisture absorption dimension and a low creep deformation rate in the longitudinal direction of the film. 層状珪酸塩がモンモリロナイトである請求項1記載の二軸延伸ポリアミドフイルム。The biaxially oriented polyamide film according to claim 1, wherein the layered silicate is montmorillonite.
JP2002312988A 2002-10-28 2002-10-28 Biaxially stretched polyamide film Expired - Lifetime JP4104423B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002312988A JP4104423B2 (en) 2002-10-28 2002-10-28 Biaxially stretched polyamide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002312988A JP4104423B2 (en) 2002-10-28 2002-10-28 Biaxially stretched polyamide film

Publications (2)

Publication Number Publication Date
JP2004149555A true JP2004149555A (en) 2004-05-27
JP4104423B2 JP4104423B2 (en) 2008-06-18

Family

ID=32457726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002312988A Expired - Lifetime JP4104423B2 (en) 2002-10-28 2002-10-28 Biaxially stretched polyamide film

Country Status (1)

Country Link
JP (1) JP4104423B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008290369A (en) * 2007-05-25 2008-12-04 Toyobo Co Ltd Polyamide resin based multilayer film and its manufacturing method
JP2009279885A (en) * 2008-05-26 2009-12-03 Kohjin Co Ltd Polyamide film
KR20150032198A (en) * 2013-09-16 2015-03-25 코오롱인더스트리 주식회사 Nylon film
JP2016053177A (en) * 2010-07-20 2016-04-14 宇部興産株式会社 Polyamide resin composition and film
CN111763426A (en) * 2020-07-23 2020-10-13 湖南工业大学 Bio-based polyamide biaxially oriented film and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008290369A (en) * 2007-05-25 2008-12-04 Toyobo Co Ltd Polyamide resin based multilayer film and its manufacturing method
JP2009279885A (en) * 2008-05-26 2009-12-03 Kohjin Co Ltd Polyamide film
JP2016053177A (en) * 2010-07-20 2016-04-14 宇部興産株式会社 Polyamide resin composition and film
KR20150032198A (en) * 2013-09-16 2015-03-25 코오롱인더스트리 주식회사 Nylon film
JP2016532764A (en) * 2013-09-16 2016-10-20 コーロン インダストリーズ インク Nylon film
KR102290455B1 (en) * 2013-09-16 2021-08-18 코오롱인더스트리 주식회사 Nylon film
CN111763426A (en) * 2020-07-23 2020-10-13 湖南工业大学 Bio-based polyamide biaxially oriented film and preparation method thereof

Also Published As

Publication number Publication date
JP4104423B2 (en) 2008-06-18

Similar Documents

Publication Publication Date Title
WO2005118262A1 (en) Polyamide resin film roll, and production method therefor
JP7323021B2 (en) Laminate film
WO2006112090A1 (en) Film roll of polyamide-based blend resin and process for producing the same
EP2975079A1 (en) Biaxially oriented polyamide-based resin film
JP3829864B1 (en) Polyamide-based mixed resin laminated film roll and manufacturing method thereof
JP2012041527A (en) Polyamide resin composition and film
US4696857A (en) Annealed thin walled polymer articles and method to anneal
JP4104423B2 (en) Biaxially stretched polyamide film
JP2018095863A (en) Biaxially stretched polyamide resin film and laminate using the same
JP4618228B2 (en) Polyamide-based mixed resin laminated film roll and manufacturing method thereof
JP2008290369A (en) Polyamide resin based multilayer film and its manufacturing method
JP7131635B2 (en) Laminated stretched polyamide film
JP2010023242A (en) Biaxially stretched polyamide laminated film
WO2020195795A1 (en) Laminated stretched polyamide film
US20170210105A1 (en) Biaxially-stretched layer polyamide film and packaging bag
JP2011183738A (en) Polyamide multilayer film
WO2006132005A1 (en) Polyamide resin laminate roll and process for producing the same
JP4000002B2 (en) Hot water-resistant polyamide film
JP4209047B2 (en) Polyamide film with improved slip and method for producing the same
JPH0680873A (en) Polyamide resin composition for film
JP2020163587A (en) Polyamide film having easily adhesive property
JP2004058503A (en) Mat-style laminated film
JP2003313322A (en) Polyamide film having excellent sliding properties
US20230151131A1 (en) Wrap Film With Polyisobutylene Succinic Anhydride
KR101070800B1 (en) Polyamide film

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050812

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051116

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051130

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20060120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080325

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4104423

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term