JP2004148771A - Mat-shape inorganic fiber heat-insulating material and heat insulation structure - Google Patents

Mat-shape inorganic fiber heat-insulating material and heat insulation structure Download PDF

Info

Publication number
JP2004148771A
JP2004148771A JP2002319382A JP2002319382A JP2004148771A JP 2004148771 A JP2004148771 A JP 2004148771A JP 2002319382 A JP2002319382 A JP 2002319382A JP 2002319382 A JP2002319382 A JP 2002319382A JP 2004148771 A JP2004148771 A JP 2004148771A
Authority
JP
Japan
Prior art keywords
insulating material
mat
heat insulating
region including
inorganic fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002319382A
Other languages
Japanese (ja)
Inventor
Keiji Otaki
慶二 大滝
Tomohiro Watanabe
智広 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Paramount Glass Manufacturing Co Ltd
Original Assignee
Paramount Glass Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Paramount Glass Manufacturing Co Ltd filed Critical Paramount Glass Manufacturing Co Ltd
Priority to JP2002319382A priority Critical patent/JP2004148771A/en
Publication of JP2004148771A publication Critical patent/JP2004148771A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Building Environments (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mat-shape inorganic fiber heat-insulating material which can fill and vanish a deformation part by elastic deformation and bounce impact elasticity of the heat insulating material itself, even if a deformation part, such as a small dimensional difference of a space, an intersection or irregularity other than right-angled and a level difference, of materials standing face to face, exist in an arraying space of the heat-insulating material wherein structural materials of buildings, such as a strut, mud, sleeper, joist, purlin and rafter, stand face to face to form this heat-insulating material. <P>SOLUTION: An elastic deformation capacity and a restoring elastic capacity to the direction right-angled with the inside and outside of the insulating material are given to an area containing at least one end 19 of the insulating material by arranging a laminating direction of fibers of this area to be the direction right-angled with the inside and outside of the insulating material. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、建造物の支柱、間柱、大引、根太、母屋、垂木等の構造材が対峙して構成された空間に配設されるマット状無機質繊維断熱材と、この断熱材を用いた断熱構造とに関する。
【0002】
【従来の技術】
建造物の屋根裏、床或は壁面等に施工される内断熱用の断熱材とその断熱構造としては、グラスウール、ロックウール等をマット状に積層した断熱材を、現場作業として施工空間の形状に合致させて切断し、ビス留め、釘留め等で支持している。(例えば特許文献1参照)また床の内断熱構造としては、マット状の断熱材を支持金具で大引間に支持したものも提案されている。(例えば特許文献2参照)
【0003】
【特許文献1】
特開2002−106081号公報(第5頁、図1、図2)
【0004】
【特許文献2】
登録実用新案第3008188号公報(第3頁、図6)
【0005】
【発明が解決しようとする課題】
従来の内断熱構造の一例を図12に示す屋根材A、野地板Bを支持する垂木Cと、この垂木Cを支承する母屋D、E間に、グラスウール、ロックウール等の積層材たる主断熱材Fが配設されている構造について検討すると、主断熱材Fの上側端面Gを、母屋Dと垂木Cとで形成される屋根勾配θに正確に合致した角度θ1の上側端面Gに切断すると共に、主断熱材Fの下側端面Hを母屋E側に支持する副断熱材Iの上面Jをも屋根勾配θに正確に合致した角度θ1に切断し、主断熱材Fの上側端面Gを母屋Dの垂直側面Kに当接させ、副断熱材Iの上面Jを主断熱材Fの下面Lと当接させると共に、副断熱材Iの母屋E側の側面Mを母屋Eの垂直側面Nに当接させ、留具Oで副断熱材Iを母屋Eに固定し、また主断熱材Fを留具Pで垂木Cに固定する作業を、多数の母屋Eの間に施工する必要が存し、主副両断熱材F、Iの上側端面G、上面Jを屋根勾配θに正確に合致させての切断作業、並びに母屋D、Eの間隔に適合した長さに主副両断熱材F、Iを切断する作業等の作業が、グラスウール、ロックウール等の積層材たる主副両断熱材F、Iの場合には著しく困難であり、長い作業時間を要する問題を有している。
【0006】
仮りに、主副両断熱材F、Iを各母屋D、E間の寸法差に対応できる長さに予め成形しておく場合には、母屋間隔が長いケースでは、副断熱材Iと母屋Eと主断熱材Fとの三者の当接部分にコールドブリッジが形成される問題が発生し、母屋間隔が短いケースでは、主断熱材Fの切断作業が必要となる問題も生ずる。
【0007】
また床面の内暖房のため、図13に示すごとく、大引Q、R間にグラスウール、ロックウール等の積層材たる断熱材Sを安定して固定支持するためには、大引Q、R間に断熱材Sの支持具Tを配設しない限り、断熱材Sが下方へ撓曲し、落下する問題があり、支持具Tの製作、運搬、施工等の作業工程が必要となり、工事費の高騰を招く問題がある。
【0008】
【課題を解決するための手段】
既述の従来の内断熱に使用されている無機質繊維の積層体と、これを用いた内断熱構造との問題点に鑑み、請求項1の発明では、マット状無機質繊維断熱材を、マット状に積層されている無機質繊維の積層方向が、マット形状の断熱材の中央を含む領域では、マット形状の表裏面と平行する方向であり、該断熱材の少なくとも1端部を含む領域では、無機質繊維の積層方向が前記表裏面と直交する方向とされているという構成とし、無機質繊維の積層方向を、断熱材の中央を含む領域では、マット形状の表裏面と平行する方向とすることにより十分な断熱性能を保持させると共に、該断熱材の少なくとも1端部を含む領域では、無機質繊維の配列方向を前記表面と直交する方向とすることにより、該断熱材に表裏面と平行方向或は表裏面と交叉する方向への押圧に対する弾性変形能と該方向に対する復元反撥弾性能とを具備させることにより、無機質繊維断熱材に前記弾性変形能の範囲内の狭さの配設空間への押し込みによる設置を可能とし、しかも復元反撥弾性能による設置位置保持機能と、間隙内への入り込み閉塞能によるコールドブリッジの発生防止機能とを具備させた。
【0009】
請求項2の発明では、請求項1の発明に中央部を含む領域と少なくとも1端部を含む領域とが同じ厚さに形成されているという構成要件を付加することにより、横断面又は、縦断面が長方形の設置空間への適用と複数枚の積み重ね梱包等を容易とした。
【0010】
請求項3の発明では、請求項1の発明に、少なくとも1端部を含む領域の厚さが中央部を含む領域及び他の端部を含む領域の厚さより厚く形成されているという構成要件を付加することにより、横断面又は縦断面が概ね長方形であるものの1隅に凹陥部が存するごとき設置空間に対し、前記厚さの厚い部分で凹陥部を充填することにより1種の断熱材のみで、該凹陥部を埋め、コールドブリッジの発生を防止しうる機能を具備させた。
【0011】
請求項4の発明では、請求項1ないし請求項3のいずれかの発明に、中央を含む領域と、少なくとも1端部を含む領域との無機質繊維の積層密度を異ならせるという構成要件を付加することにより、断熱効果を大としたい部位には積層密度の大きい部分を配置し、該断熱材の弾性変形に伴う復元反撥弾性による該断熱材の係止力を大としたい部位には積層密度の小さい部分を配置することを単一のマット状無機質繊維断熱材で実現しうるようにした。
【0012】
請求項5の発明では、断熱構造を次記の構造とした。即ち請求項1ないし請求項4のいずれかの発明のマット状無機質繊維断熱材を、建造物の支柱、間柱、大引、根太、母屋、垂木等の構造物が対峙して構成された空間内等に圧入し、該断熱材の1端部を含む領域の無機繊維の積層方向がマット形状の表裏面と直交する方向とされている部分の弾性変形と復元弾性とによって、前記空間に臨む構造材等の凹凸、切欠等に順応させて変形させ、充填させることにより、コールドブリッジの発生を防止すると共に、該弾性変形部分の復元反撥弾性によって、該マット状断熱材を前記空間内に係止できる断熱構造とした。
【0013】
【発明の実施の形態】
本発明は、一例として図1に示されるごとく、建造物の柱1、2の間の空間部3、或は図2に示されるごとく建造物の屋根部を構成する母屋4、5と垂木6との間の空間部7のごとく、内断熱構造を施す必要の存する建造物の部位に、図3、図4に一例として示すごとく組み付けられるマット状無機質繊維断熱材8、9と、この断熱材を使用した内断熱構造に関する。
【0014】
図3は、建造物の壁面の一部の横断面であり、図1に示した柱1、2の間にマット状無機質繊維断熱材8が圧入され、外装材10と内装材11とが張設されて、壁面の内断熱構造を形成している実施例である。なお、マット状無機質繊維断熱材は、以下単にマット状断熱材と略称することとする。
【0015】
図4は、建造物の屋根部を構成している母屋4、5と垂木6との間の空間部7に本発明に係るマット状断熱材9が、その両端の無機質繊維の積層方向を、中央部を含む領域の無機質繊維の積層方向と直交する方向とした領域の有する弾性変形能とその反撥復元弾性能とにより、比較的簡単にコールドブリッジが発生しないよう固定された例である。
【0016】
図5及び図6は、請求項1及び請求項2の両発明を併せ適用したマット状断熱材の実施の一例を示しており、図5に示されるごとく、中央14を含む領域15では、無機質繊維の積層方向16がマット形状の表面17、裏面18と平行する方向であり、該断熱材8の1端部19を含む領域20では、無機質繊維の積層方向21がマット形状の表面17と裏面18と直交する方向とされている。
【0017】
マット状の無機質繊維断熱材は、一般的にはガラス、或は高炉スラッグと緑泥片岩との混合物等の溶融体を遠心法で噴出させ、垂直上方からのジェットフレームの噴射によって細繊維化させたものにバインダーを供給して集綿コンベア上に集綿することを、一連の集綿コンベア上で複数段に亘って行うことにより、複数層に無機質繊維層が積層したマット状体が得られる。このマット状体を単位幅W1に切断したものが図6に一例として示すマット状断熱材22である。
【0018】
単位幅W1のマット状断熱材22の1側端面23から、マット状断熱材22の厚さW2と等長の幅W2の位置において、前記積層方向16と直交させて切断部24において切断して端片25としたのち、端片25を角度90度だけ矢印X方向に回動させ、図6に示す端片25の上面とマット状断熱材22の主体側の切断部24の切断面とを接着剤で接着することにより、前記図5に示すマット状無機質繊維断熱材8が形成される。
【0019】
図5に示すマット状断熱材8は、領域15では無機質繊維の積層方向16がマット形状の表面17、裏面18と平行しており、無機質繊維の積層境界域は、バインダーによって、集綿された無機質繊維の積層面の集綿密度が積層面間の無機質繊維の集綿密度より密となっており、この積層境界域が複数段存在することにより、マット形状の表裏面方向の断熱特性が、図5に示す領域20におけるごとく、積層方向21がマット形状の表面17裏面18と直交方向とされている部分に比し高く形成されている。
【0020】
逆に前記領域20においては、積層方向21と直交する方向に押圧された際の弾圧変形量が大きく、かつその復元反撥弾性も大きく形成されている。
【0021】
図7は、請求項1及び請求項2の発明の別の実施例を示しており、図5及び図6に示す実施例では、1端部19を含む領域20のみが、その積層方向21がマット形状の表面17と裏面18と直交する方向とされているが、この実施例では両端部26、27を含む領域28、29が、その無機質繊維の積層方向30、31をマット形状の表面32、裏面33と直交する方向とされており、中央の領域34の断熱特性、両端の領域28、29の弾性変形能、反撥弾性能も図5及び図6に示すものと同様である。然し、前述の領域29は、発明の構成としては、その有無は特に限定されるものではない。
【0022】
図8及び図9は、請求項1及び請求項3の発明を併せ適用した実施の一例たるマット状無機質繊維断熱材34Aを示しており、1端部35を含む領域36の厚さW7が中央37を含む領域38及び他の端部39を含む領域40の厚さW8より厚く形成されている。
【0023】
図示例では、領域36と領域40とを形成する断熱材が、領域38のマット状断熱材の無機質繊維の積層方向41と直交する方向に積層方向42を配置した構成とされている。
【0024】
図8に示す構造のマット状断熱材34Aは、図9に示すごとく、所定長さL1に形成されたマット状断熱材43の1端部35から前記厚さW7と等長の幅W7の位置において、長さL1と直交する切断部44で切断して端片45としたのち、該端片45を角度90度だけ矢印X方向に回動させ、端片45の上面基部46をマット状断熱材43の切断部44の端面に接着剤で接着することによりマット状断熱材34Aに形成される。図示例では1端部35と反対側の端部47も、該端部47の厚さW8と等長W8の位置の切断部48で切断されて端片49とされ、矢印Xで示すごとく、角度90度だけ回動され、該端片49の上面がマット状断熱材43の切断部48の端面に接着剤で接着されて図8に示す前記端部39とされているが、この端部39の形成は必要に応じて形成されるもので発明の構成としてはその有無は特に限定されるものでは無い。
【0025】
図8に示されるマット状断熱材34Aは、1端部35を含む領域36の厚さが、他の領域38、40より厚いことを利用し、マット状断熱材34Aの配設空間の隅部に切欠部、凹陥部等が存在する場合に、該厚い領域36の弾性変形能と復元反撥弾性とを利用し、該切欠部、凹陥部等を充填することができるので、コールドブリッジの発生部位を簡単に排除できる。
【0026】
請求項4の発明では、図5に示す中央14を含む領域15、1端部19を含む領域20、図7に示す中央の領域34及び端部26、27を含む領域28、29、図8に示す中央37を含む領域38、端部35、39を含む領域36、40における各中央を含む領域と、各端部を含む領域との無機質繊維の積層密度を、施工地域における気象条件、建造物構造等に対応して所要の断熱性能、所要のコールドブリッジの発生防止機能を発現できるよう各領域の無機質繊維の積層密度を異ならせた発明であって、図7に示す実施例の場合、中央の領域34では密度32kg/m、端部を含む領域では密度24kg/mに設定され、図8に示す構造の場合、中央を含む領域38では密度32kg/m、端部35、39を含む領域36、40では密度24kg/mに設定されている。
【0027】
この請求項4の発明の実施に当っては、各領域を形成するマット状無機質繊維断熱材は、それぞれ必要される積層密度に製造されたものを所要寸法に切断し、接着することにより組み立てられる。
【0028】
なお、標準的な寸法は、図5、図6に示す構造の場合、単位幅W1が900mm、厚さと幅W2が42mm、長さL0が1820mmであり、図7に示す実施例の場合、長さL1が910mm、厚さW3が50mm、幅W4が455mm、領域28、29の幅W5、W6がそれぞれ50mmとされ、更に図8に示す実施例の場合、長さL2が910mm、厚さW7が100mm、厚さW8が50mm、幅W9が455mmとされているが、これ等の数値は、マット状断熱材の設置空間の構造に応じ設定されるものである。
【0029】
図3、図4、図10及び図11は、請求項5の発明のそれぞれ異なる実施態様を模型的に示しており、図3は、柱1、2の対向側面101、102間の空間部3に、その間隔より僅かに長い図5に示される幅W10の構造のマット状無機質繊維断熱材8が、端部19を含む領域20を圧縮させた状態で挿置され、該領域20の復元反撥弾性で、柱1、2の対向側面101、102にマット状断熱材8の両側面が密着し、コールドブリッジが発生しない取付構造とされた断熱構造を示している。なお、柱1、2間の間隔或は柱間に間柱が存し、これ等の部材間の間隔が、付帯構造物等の存在のため数cm程度の寸法差を有する際には、図7に示すごとく、両端部26、27を含む領域28、29に積層方向30、31がマット形状の表面32、裏面33と直交する方向とし、両端部の弾性変形能、復元反撥弾性能を大としたやや長尺のマット状断熱材が組み付けられる。
【0030】
図4は、図2に示すごとき建造物の屋根部を構成する母屋4、5と垂木6との間の空間部7に、図8に示す構造のマット状断熱材34Aを固着した断熱構造を示しており、マット状断熱材34Aを平坦な底面34Bが垂木6に9接するように配置し、端部39を含む領域40を上方の母屋4の下り勾配側の垂直面4Aに強く圧接させると共に、他端部35を含む厚さW7が高い領域36を下側の母屋5の上り勾配側の垂直面5Aに強く圧接させて押し込むと、領域36、40は、無機質繊維の積層方向がマット状断熱材34Aの中心を含む領域の無機質繊維の積層方向と直交する方向であり、該方向への弾性変形能が大きいことにより、母屋4、5と垂木6と連続隅部の形状に順応して弾性変形し、該連続隅部を完全に埋め、その復元反撥弾性により、マット状断熱材34Aを、その位置に保持する。また連続隅部を完全に埋めることによりコールドブリッジの発生も、該マット状断熱材34Aの取付け完了と同時に完全に防止される。なお、常態では、この取付構造のみでマット状断熱材34Aが脱落することは皆無であるが、強い地震による振動等に備えるためには、1本程度の釘打ちで垂木6に固定することにより、強振動による変位は防止できる。
【0031】
図10は、柱50、51間の床部に段差52が存する場合に、図5に示されるマット状無機質繊維断熱材8を用い領域20の断熱材部分の弾性変形能と復元反撥弾性能とにより、前記段差52を吸収消去しコールドブリッジの発生を防止した実施例である。
【0032】
図11は床張り前の大引53、54間に、同じく図5に示される構造のマット状無機質繊維断熱材8を配設した例であり、木造建築の場合、実際の施工時に大引間隔に数ミリ程度の寸法差が生ずるのみでなく、大引の断面寸法が90mm角、105mm角、120mm角等種々存在し、間取りによって、使用される大引の大きさに差が存する場合があり、使用される大引の寸法差を、図5に示される構造のマット状無機質繊維断熱材8の弾性変形能と復元弾性能とによって吸収、消去した実施例である。
図中符号55、56は地震等の激しい上下動の際などにおけるマット状断熱材8の変位を防止する止具である。
【0033】
本発明に係るマット状無機質繊維断熱材は、施工時における切断整形作業が不必要であり、従って、請求項1ないし請求項4の何れの発明のマット状断熱材においても、上下両面又は両側面を含む4面、或は前後端面を含む6面全部を合成樹脂フィルム等で被覆し、そのまま建造物に組み付けることが可能である。従って、図示各実施例では無機質繊維の積層方向が角度90度相違する2個の領域を何れも接着剤で接着したが、接着剤を用いることなく、合成樹脂フィルムで被覆し緊縛状態に1枚ごとに梱包した構造でもよく、両手段の併用でもよいことは勿論である。
【0034】
また屋根用断熱材、壁用断熱材の何れにおいても建造物の外側に面する被覆材表面は、アルミニウム蒸着等の幅射熱遮蔽性と透湿性を有するものがよく、建造物の内側に面する被覆材表面は、有機又は無機材料の不織布で被覆するか、或は有機、無機の資材のスプレー塗着面としてもよい。
【0035】
【発明の効果】
請求項1の発明によると、マット形状の断熱材の中央を含む領域では、無機質繊維の積層方向がマット形状の表裏面と平行する方向であり、表裏面を貫く方向の断熱特性が大であり、少なくとも1端部を含む領域では、無機質繊維の積層方向が、前記表裏面と直交する方向であり、表裏面と平行する方向の押圧に対する弾性変形量が大きく、かつ復元弾性も大きいので、該端部を含む領域の弾性変形量と弾性復元量の範囲であれば、対応する設置空間の如何なる寸法差を有する変形にも順応して変形し、密着するので、コールドブリッジの発生を弾性変形させつつ圧入するのみで防止でき、如何なる配設空間にも、単純な押し込み動作のみで配設でき、弾発復元力のみで係止されるので、従来のマット形状の断熱材の取付けに必須であった寸法差や異形状に対応する切断、成形等の作業並びに建造物に対する断熱材の固定作業も原則として不要となり、作業効率、断熱効果の向上を図りうる効果を奏する。
【0036】
請求項2の発明によると、請求項1記載の発明に係るマット状無機質繊維断熱材が、中央部を含む領域と少なくとも1端部を含む領域とが同じ厚さに形成されるので、建造物の支柱間、間柱間、大引や根太の間或は母屋と垂木との間の空間のごとく、原則として長方形状の空間に汎用的に施工でき、施工業者が予め準備すべき断熱材の種別の減少が図れ、寸法誤差による断熱効果の劣化等の防止も図れる効果を奏する。
【0037】
請求項3の発明によると、断熱材設置空間の少なくとも一辺或は一隅に異形部凹陥部、段差部等が存しても、断熱材を厚肉の領域が、前記異形部、凹陥部、段差部等に当接し得る姿勢として組み込み、押し込むことにより、該厚肉の領域が、前記異形部等に押し込まれ、該部を充填するので、不測のコールドブリッジの発生等を良好に防止できる効果を奏する。
【0038】
請求項4の発明によると、例えば寒冷地域における断熱効果を向上させるため、マット状断熱材の積層密度を大とした場合に柔軟性が小となり、弾性変形させるためには強い力の作用が必要となり、請求項3の発明の効果を発現し得なくなる場合に、請求項4の発明によって、少なくとも1端部を含む領域の無機質繊維の積層密度を中央を含む領域の積層密度より小とすることにより、この積層密度の小さい1端部を含む領域の弾性変形能により、断熱効果が大きい積層密度の大きいマット状断熱材を使用しても、コールドブリッジの発生防止を確実に実現できる効果を奏しうる。
【0039】
請求項5の発明によると、建造物の支柱、間柱、大引、根太、母屋、垂木等の構造材が対峙して構成されている空間内等に、請求項1ないし請求項4のいずれかの発明に係るマット状無機質繊維断熱材を圧入するのみで、無機質繊維の積層方向が、前記マット状断熱材の表裏面と直交する方向とされている少なくとも1端部を含む領域の弾性変形能で、前記空間に臨む構造材等の凹凸、切欠等に順応して変形して該凹凸、切欠等が充填され、かつ該マット状断熱材の復元弾性で前記空間内に係止されるので、施工に当り前記空間の凹凸、切欠等に対応するマット状断熱材切断等の成形加工、加工品の構造部材への固定、マット状断熱材自体の建造物への固定等のマット状無機質繊維断熱材の現場作業を省略でき、作業効率を著しく向上させる効果を奏する。
【0040】
また前記無機質繊維の積層方向がマット状断熱材の表裏面に直交する方向とされている該マット状断熱材の少なくとも1端部を含む領域の弾性変形によって、断熱材組付け空間の臨む構造材によって生成された凹凸、切欠等が充填されるので、コールドブリッジの発生が、前記マット状無機質繊維断熱材の弾性変形を伴なう組み込みのみで達成され、格別のコールドブリッジ防止加工を不必要とする効果を奏するのみでなく、前記マット状断熱材の弾性変形に伴なう復元弾性で、該断熱材が、組み込まれるべき建造物の空間部分に係止されるので、該断熱材の固定係止作業の省略又は簡略化を実現できる効果も奏する。
【図面の簡単な説明】
【図1】建造物の柱間のマット状断熱材の配設空間を示す斜視説明図である。
【図2】建造物の母屋と垂木間のマット状断熱材の配設空間を示す略示側面である。
【図3】図1に示す配設空間に対する本発明に係るマット状断熱材の配設構造を示す略示縦断面図である。
【図4】図2に示す配設空間に対する本発明に係るマット状断熱材の配設構造を示す略示縦断面図である。
【図5】請求項1及び請求項2の両発明を併せ適用した実施の一例の略示斜視図である。
【図6】図5に示すマット状断熱材の製作手順を示す略示斜視図である。
【図7】請求項1及び請求項2両発明を併せ適用した別の実施例の略示斜視図である。
【図8】請求項1及び請求項3の両発明を併せ適用した実施の一例の略示斜視図である。
【図9】図8に示すマット状断熱材の製作手順を示す略示斜視図である。
【図10】図5に示されるマット状断熱材の施工の一例の略示斜視図である。
【図11】図5に示されるマット状断熱材の別の施工例の略示縦断面図である。
【図12】従来のマット状断熱材の別の施工の一例の略示縦断面図である。
【図13】従来のマット状断熱材の別の施工例の略示縦断面図である。
【符号の説明】
4、5 母屋
6 垂木
9 マット状無機質繊維断熱材
36 1端部を含む厚さの厚い領域
38 中央を含む領域
40 他端端部を含む領域
41、42 積層方向
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention uses a mat-like inorganic fiber heat insulating material disposed in a space where structural materials such as struts, studs, girders, joists, purlins, rafters and the like of a building are arranged facing each other, and this heat insulating material is used. Heat insulation structure.
[0002]
[Prior art]
Insulation material for internal insulation to be installed on the attic, floor or wall surface of the building, and its insulation structure is made of mat wool made of glass wool, rock wool, etc. They are cut to match and are supported with screws, nails, etc. (See, for example, Patent Literature 1) As a heat insulating structure inside a floor, a mat-like heat insulating material supported by a support metal with a support bracket has been proposed. (For example, see Patent Document 2)
[0003]
[Patent Document 1]
JP-A-2002-106081 (page 5, FIG. 1, FIG. 2)
[0004]
[Patent Document 2]
Registered Utility Model No. 308188 (page 3, FIG. 6)
[0005]
[Problems to be solved by the invention]
An example of a conventional inner heat insulation structure is shown in FIG. 12. A roof insulation material A, a rafter C supporting a base plate B, and a main house D and E supporting the rafter C are main insulation as a laminated material such as glass wool or rock wool. Considering the structure in which the material F is disposed, the upper end face G of the main heat insulating material F is cut into an upper end face G at an angle θ1 that exactly matches the roof gradient θ formed by the purlin D and the rafter C. At the same time, the upper surface J of the sub-insulation material I that supports the lower end surface H of the main insulation material F on the purlin E side is also cut at an angle θ1 that exactly matches the roof gradient θ, and the upper end surface G of the main insulation material F is cut. The vertical surface K of the sub-insulating material I is brought into contact with the vertical side surface K of the sub-insulating material I, and the lower insulating surface L of the main insulating material F is brought into contact with the vertical surface K of the sub-insulating material I. , And the auxiliary heat insulator I is fixed to the purlin E with the fastener O, and the main heat insulator F is fixed to the rafter C with the fastener P. It is necessary to carry out the work to be performed between a number of purlins E, the cutting operation in which the upper end face G and the upper surface J of the main and sub heat insulating materials F and I exactly match the roof gradient θ, and the purlin D The work such as the work of cutting the main and sub heat insulating materials F and I to a length suitable for the distance between the main and sub heat insulating materials F and I such as glass wool and rock wool is extremely difficult. However, there is a problem that a long working time is required.
[0006]
If the main and sub heat insulating materials F and I are preliminarily formed to have a length corresponding to the dimensional difference between the purlins D and E, in a case where the purlin interval is long, the sub heat insulating material I and the purlin E are used. A problem arises in that a cold bridge is formed at a contact portion between the three members and the main heat insulating material F, and in a case where the interval between purlins is short, there is also a problem that a cutting operation of the main heat insulating material F is required.
[0007]
Further, as shown in FIG. 13, in order to stably fix and support a heat insulating material S such as a glass wool or a rock wool between the large pulleys Q and R for indoor heating of the floor, the large pullouts Q and R are required. Unless the support T of the heat insulating material S is provided in between, there is a problem that the heat insulating material S bends downward and falls, and work processes such as production, transportation, and construction of the support T are required, and the construction cost is increased. There is a problem that causes soaring.
[0008]
[Means for Solving the Problems]
In view of the above-described problems of the conventional inorganic fiber laminate used for internal heat insulation and the internal heat insulation structure using the same, the mat-like inorganic fiber heat insulating material is replaced with a mat-like inorganic fiber heat insulator. In the region including the center of the mat-shaped heat insulating material, the laminating direction of the inorganic fibers is parallel to the front and back surfaces of the mat-shaped heat insulating material. It is sufficient that the lamination direction of the fibers is a direction perpendicular to the front and back surfaces, and the lamination direction of the inorganic fibers is in a region including the center of the heat insulating material in a direction parallel to the mat-shaped front and back surfaces. In a region including at least one end of the heat insulating material, the direction of arrangement of the inorganic fibers is set to a direction orthogonal to the front surface, so that the heat insulating material has a direction parallel to the front and back surfaces or a front surface. Interchange with the back By providing the elastic deformation ability against the pressing in the direction to be pressed and the rebound repelling performance in the direction, it is possible to install the inorganic fiber heat-insulating material by pushing it into the space within the narrow range of the elastic deformation ability. In addition, it has a function of holding the installation position by the rebound resilience performance and a function of preventing the occurrence of a cold bridge by the ability to enter the gap and close.
[0009]
According to the second aspect of the present invention, a cross-section or a longitudinal section is added to the first aspect of the invention by adding a component requirement that the region including the central portion and the region including at least one end are formed to have the same thickness. It is easy to apply to the installation space with a rectangular surface and stack and pack multiple sheets.
[0010]
According to a third aspect of the present invention, there is provided the first aspect of the present invention, wherein the thickness of the region including at least one end is formed to be thicker than the thickness of the region including the central portion and the region including the other end. By adding, to the installation space where the cross section or the vertical cross section is generally rectangular, but there is a recess at one corner, the recess is filled with the thick part, so that only one kind of heat insulating material is used. In addition, a function capable of filling the recess and preventing the occurrence of a cold bridge is provided.
[0011]
According to a fourth aspect of the present invention, a constitutional requirement that the lamination density of the inorganic fibers in the region including the center and the region including the at least one end be different from each other in any one of the first to third aspects of the invention. Accordingly, a portion having a large lamination density is arranged in a portion where the heat insulating effect is desired to be increased, and a portion where the locking force of the heat insulating material is to be increased due to the rebound resilience accompanying the elastic deformation of the heat insulating material is provided. The placement of the small parts was made possible with a single mat-like inorganic fiber insulation.
[0012]
According to the fifth aspect of the present invention, the heat insulating structure has the following structure. That is, the mat-like inorganic fiber heat-insulating material according to any one of claims 1 to 4 is used in a space in which structures such as pillars, studs, girders, joists, purlins, and rafters of a building face each other. And a structure facing the space by elastic deformation and restoring elasticity of a portion where the laminating direction of the inorganic fibers in a region including one end of the heat insulating material is set to a direction orthogonal to the front and back surfaces of the mat shape. By deforming and filling according to irregularities, notches, etc. of the material, etc., the occurrence of cold bridges is prevented, and the mat-shaped heat insulating material is locked in the space by the rebound resilience of the elastically deformed portion. A heat insulation structure that can be used.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
As shown in FIG. 1 as an example, the present invention relates to a space 3 between pillars 1 and 2 of a building, or a main house 4, 5 and a rafter 6 constituting a roof of a building as shown in FIG. As shown in FIGS. 3 and 4, mat-like inorganic fiber heat insulators 8 and 9 are attached to a part of a building where an internal heat insulation structure needs to be provided, such as a space portion 7 between them. The present invention relates to an inner heat-insulating structure employing
[0014]
FIG. 3 is a cross-sectional view of a part of the wall surface of the building. The mat-like inorganic fiber heat insulating material 8 is press-fitted between the columns 1 and 2 shown in FIG. 1, and the exterior material 10 and the interior material 11 are stretched. This is an embodiment in which a heat insulation structure is formed on the wall surface. In addition, the mat-shaped inorganic fiber heat insulating material is simply referred to as a mat-shaped heat insulating material hereinafter.
[0015]
FIG. 4 shows the mat-like heat insulating material 9 according to the present invention in the space 7 between the purlins 4 and 5 and the rafter 6 constituting the roof of the building, and the laminating direction of the inorganic fibers at both ends thereof. This is an example in which a cold bridge is relatively easily prevented from being generated by the elastic deformability and the rebound resilience performance of a region including a central portion in a direction perpendicular to the laminating direction of the inorganic fibers.
[0016]
5 and 6 show an embodiment of a mat-like heat insulating material to which both the first and second aspects of the present invention are applied. As shown in FIG. The laminating direction 16 of the fibers is a direction parallel to the mat-shaped front surface 17 and the back surface 18. In a region 20 including one end 19 of the heat insulating material 8, the laminating direction 21 of the inorganic fibers is the mat-shaped front surface 17 and the back surface 18. The direction is orthogonal to 18.
[0017]
The mat-shaped inorganic fiber insulation is generally made of glass or a melt of a mixture of blast furnace slug and chlorite by a centrifugal method, and is made into fine fibers by jetting a jet frame from above vertically. By supplying a binder to the material and collecting the cotton on the cotton collection conveyor in a plurality of stages on a series of cotton collection conveyors, a mat-like body in which the inorganic fiber layers are laminated in a plurality of layers can be obtained. The mat-like body cut into a unit width W1 is a mat-like heat insulating material 22 shown as an example in FIG.
[0018]
From the one end face 23 of the mat-like heat insulating material 22 having a unit width W1, the sheet is cut at a position of a width W2 equal to the thickness W2 of the mat-like heat insulating material 22 at a cutting portion 24 orthogonally to the laminating direction 16. After the end piece 25 is formed, the end piece 25 is rotated by an angle of 90 degrees in the arrow X direction, and the upper surface of the end piece 25 and the cut surface of the cut portion 24 on the main side of the mat-like heat insulating material 22 shown in FIG. By bonding with an adhesive, the mat-like inorganic fiber heat insulator 8 shown in FIG. 5 is formed.
[0019]
In the mat-like heat insulating material 8 shown in FIG. 5, the laminating direction 16 of the inorganic fibers is parallel to the mat-shaped front surface 17 and the back surface 18 in the region 15, and the laminating boundary region of the inorganic fibers is collected by the binder. The density of cotton collected on the laminating surface of the inorganic fibers is denser than that of the inorganic fibers between the laminating surfaces, and the lamination boundary region exists in a plurality of stages, so that the heat insulating properties in the front and back directions of the mat shape are As in the region 20 shown in FIG. 5, the laminating direction 21 is formed higher than a portion where the laminating direction 21 is orthogonal to the mat-shaped front surface 17 and back surface 18.
[0020]
Conversely, in the region 20, the amount of elastic deformation when pressed in the direction orthogonal to the laminating direction 21 is large, and the rebound resilience thereof is also large.
[0021]
FIG. 7 shows another embodiment of the first and second aspects of the present invention. In the embodiment shown in FIGS. 5 and 6, only the region 20 including the one end 19 has the laminating direction 21. Although the direction is orthogonal to the mat-shaped front surface 17 and the back surface 18, in this embodiment, the regions 28 and 29 including both ends 26 and 27 are arranged so that the laminating directions 30 and 31 of the inorganic fibers are aligned with the mat-shaped front surface 32. The heat insulating property of the central area 34, the elastic deformability and the rebound resilience of the two end areas 28 and 29 are the same as those shown in FIGS. However, the presence or absence of the above-described region 29 is not particularly limited as a configuration of the present invention.
[0022]
FIGS. 8 and 9 show a mat-like inorganic fiber heat insulating material 34A as an example of an embodiment to which the inventions of claims 1 and 3 are applied. The thickness W7 of a region 36 including one end 35 is the center. The region 38 including the region 37 and the region 40 including the other end 39 are formed to be thicker than the thickness W8.
[0023]
In the illustrated example, the heat insulating material forming the region 36 and the region 40 is configured such that the laminating direction 42 is arranged in a direction orthogonal to the laminating direction 41 of the inorganic fibers of the mat-like heat insulating material in the region 38.
[0024]
As shown in FIG. 9, the mat-shaped heat insulating material 34A having the structure shown in FIG. 8 is located at a position having a width W7 equal to the thickness W7 from one end 35 of the mat-shaped heat insulating material 43 formed with a predetermined length L1. , The end piece 45 is cut by a cutting portion 44 orthogonal to the length L1, and then the end piece 45 is rotated by an angle of 90 degrees in the arrow X direction, so that the upper surface base 46 of the end piece 45 is insulated by a mat. The mat 43 is formed on the mat-like heat insulating material 34A by bonding the end face of the cut portion 44 of the material 43 with an adhesive. In the illustrated example, the end portion 47 opposite to the one end portion 35 is also cut at the cut portion 48 at the position of the same length W8 as the thickness W8 of the end portion 47 to form an end piece 49, as shown by an arrow X, It is rotated by an angle of 90 degrees, and the upper surface of the end piece 49 is bonded to the end surface of the cut portion 48 of the mat-like heat insulating material 43 with an adhesive to form the end portion 39 shown in FIG. 39 is formed as needed, and the presence or absence thereof is not particularly limited as a configuration of the invention.
[0025]
The mat-shaped heat insulating material 34A shown in FIG. 8 utilizes the fact that the thickness of the region 36 including the one end 35 is thicker than the other regions 38 and 40, and the corner portion of the space where the mat-shaped heat insulating material 34A is disposed. When there is a notch, a recess, or the like, the notch, the recess, or the like can be filled by utilizing the elastic deformability and the rebound resilience of the thick region 36. Can be easily eliminated.
[0026]
In the invention of claim 4, the region 15 including the center 14 shown in FIG. 5, the region 20 including one end 19, the center region 34 and the regions 28 and 29 including the ends 26 and 27 shown in FIG. In the area 38 including the center 37 and the areas 36 and 40 including the ends 35 and 39, the stacking density of the inorganic fibers in the area including the center and the area including the ends is determined by the weather conditions in the construction area, In the case of the embodiment shown in FIG. 7, the laminated fiber density of the inorganic fibers in each region is varied so that the required heat insulating performance and the required function of preventing the occurrence of the cold bridge can be exhibited in accordance with the material structure and the like. In the central region 34, the density is set to 32 kg / m 3 , and in the region including the ends, the density is set to 24 kg / m 3. In the structure shown in FIG. 8, in the region 38 including the center, the density is 32 kg / m 3 , the ends 35, Regions 36, 40 containing 39 It is set to a density 24 kg / m 3.
[0027]
In the implementation of the invention according to claim 4, the mat-like inorganic fiber heat insulating material forming each region is assembled by cutting and bonding a material manufactured to a required lamination density to a required size. .
[0028]
The standard dimensions are 900 mm for the unit width W1, 42 mm for the thickness and width W2, and 1820 mm for the length L0 in the structures shown in FIGS. 5 and 6, and in the case of the embodiment shown in FIG. The length L1 is 910 mm, the thickness W3 is 50 mm, the width W4 is 455 mm, the widths W5 and W6 of the regions 28 and 29 are each 50 mm, and in the case of the embodiment shown in FIG. 8, the length L2 is 910 mm and the thickness W7 Is 100 mm, the thickness W8 is 50 mm, and the width W9 is 455 mm. These numerical values are set according to the structure of the installation space of the mat-like heat insulating material.
[0029]
3, 4, 10 and 11 schematically show different embodiments of the invention of claim 5, and FIG. 3 shows a space 3 between opposing side surfaces 101 and 102 of columns 1 and 2. Then, a mat-like inorganic fiber heat insulating material 8 having a width W10 shown in FIG. 5 slightly longer than the interval is inserted in a state where the region 20 including the end portion 19 is compressed, and the region 20 This shows a heat insulating structure in which both sides of the mat-shaped heat insulating material 8 are elastic, and both sides of the mat-shaped heat insulating material 8 are in close contact with the opposing side surfaces 101 and 102 of the columns 1 and 2 so that a cold bridge does not occur. When there is a gap between the pillars 1 and 2 or a stud between the pillars and the gap between these members has a dimensional difference of about several cm due to the existence of the incidental structure or the like, FIG. As shown in the figure, the laminating directions 30 and 31 in the regions 28 and 29 including the both ends 26 and 27 are set to the directions orthogonal to the mat-shaped front surface 32 and the back surface 33, and the elastic deformability and the rebound resilience performance of both ends are large. A slightly longer mat-like heat insulating material is assembled.
[0030]
FIG. 4 shows a heat insulating structure in which a mat-like heat insulating material 34A having a structure shown in FIG. 8 is fixed to a space 7 between purlins 4 and 5 and a rafter 6 constituting a roof of a building as shown in FIG. The mat-like heat insulating material 34A is arranged such that the flat bottom surface 34B is in contact with the rafter 6, and the region 40 including the end portion 39 is strongly pressed against the vertical surface 4A on the downslope side of the upper purlin 4 and When the region 36 having a high thickness W7 including the other end portion 35 is strongly pressed against the vertical surface 5A on the upslope side of the lower purlin 5 and pushed in, the regions 36 and 40 have a laminating direction of the inorganic fibers in a mat shape. This is a direction orthogonal to the laminating direction of the inorganic fibers in the region including the center of the heat insulating material 34A, and has a large elastic deformability in this direction, so that it can adapt to the shapes of the purlins 4, 5 and the rafters 6 and the continuous corners. Elastically deforms, completely fills the continuous corners and restores rebound Accordingly, the mat-like thermal insulation member 34A, it is held in place. Further, by completely filling the continuous corners, the occurrence of a cold bridge is completely prevented at the same time when the mat-like heat insulating material 34A is completely attached. In a normal state, the mat-shaped heat insulating material 34A does not fall off only by this mounting structure. However, in order to prepare for vibration due to a strong earthquake, it is necessary to fix the rafter 6 to the rafter 6 with about one nail. In addition, displacement due to strong vibration can be prevented.
[0031]
FIG. 10 shows that when the step 52 exists in the floor between the columns 50 and 51, the mat-shaped inorganic fiber heat insulating material 8 shown in FIG. In this embodiment, the step 52 is absorbed and eliminated to prevent the occurrence of a cold bridge.
[0032]
FIG. 11 shows an example in which a mat-like inorganic fiber heat insulating material 8 having the same structure as shown in FIG. 5 is disposed between the girders 53 and 54 before the flooring. Not only does a dimensional difference of about a few millimeters occur, but there are various types of large cross-sections such as 90 mm square, 105 mm square, 120 mm square, etc. This is an embodiment in which the large dimensional difference used is absorbed and eliminated by the elastic deformation ability and restoration elasticity of the mat-like inorganic fiber heat insulating material 8 having the structure shown in FIG.
Reference numerals 55 and 56 in the figure denote stoppers for preventing the displacement of the mat-shaped heat insulating material 8 at the time of severe vertical movement such as an earthquake.
[0033]
The mat-like inorganic fiber heat insulating material according to the present invention does not require cutting and shaping work at the time of construction. Therefore, in the mat-like heat insulating material according to any one of claims 1 to 4, both upper and lower surfaces or both side surfaces are required. , Or all six surfaces including the front and rear end surfaces can be covered with a synthetic resin film or the like, and can be directly attached to a building. Therefore, in each of the illustrated embodiments, the two regions in which the laminating directions of the inorganic fibers differ by an angle of 90 degrees were both bonded with an adhesive. Needless to say, a structure in which each of the means is packed may be used, or both means may be used in combination.
[0034]
In both the thermal insulation for the roof and the thermal insulation for the wall, the surface of the covering material facing the outside of the building preferably has a heat radiation shielding property such as aluminum vapor deposition and a moisture permeability. The surface of the coating material to be coated may be coated with a nonwoven fabric of an organic or inorganic material, or may be a spray-coated surface of an organic or inorganic material.
[0035]
【The invention's effect】
According to the invention of claim 1, in the region including the center of the mat-shaped heat insulating material, the laminating direction of the inorganic fibers is a direction parallel to the front and back surfaces of the mat shape, and the heat insulating property in the direction penetrating the front and back surfaces is large. In the region including at least one end, the laminating direction of the inorganic fibers is a direction orthogonal to the front and back surfaces, and the elastic deformation amount with respect to pressing in a direction parallel to the front and back surfaces is large, and the restoring elasticity is also large. If it is within the range of the amount of elastic deformation and the amount of elastic restoration in the area including the end, it deforms and adapts to the deformation with any dimensional difference in the corresponding installation space, so that the occurrence of cold bridge is elastically deformed. It can be prevented only by press-fitting, and it can be installed in any installation space only by a simple push-in operation, and it is locked only by elastic restoring force. Size Cutting corresponding to the difference or irregular shape, it becomes unnecessary as a work as well in principle work of fixing the heat insulating material for buildings such as molding, the effect of work efficiency, may aim to improve the heat insulating effect.
[0036]
According to the second aspect of the present invention, since the region including the central portion and the region including at least one end are formed to have the same thickness, the mat-like inorganic fiber heat insulating material according to the first aspect of the present invention is formed. As a general rule, it can be constructed in a rectangular space, like the space between struts, studs, between the gallery and the joist, or between the main building and the rafters. And the effect of preventing the heat insulation effect from deteriorating due to a dimensional error can be achieved.
[0037]
According to the third aspect of the present invention, even if there is a deformed portion concave portion, a step portion, or the like on at least one side or one corner of the heat insulating material installation space, the region where the heat insulating material is thick has the deformed portion, the concave portion, and the step portion. The thick region is pushed into the irregularly shaped portion or the like by filling it in by incorporating and pushing as a posture capable of contacting the portion or the like, so that the effect of being able to satisfactorily prevent the occurrence of an unexpected cold bridge or the like can be obtained. Play.
[0038]
According to the invention of claim 4, for example, in order to improve the heat insulating effect in a cold region, when the lamination density of the mat-shaped heat insulating material is increased, the flexibility becomes small, and a strong force action is required for elastic deformation. In the case where the effect of the invention of the third aspect cannot be exhibited, according to the invention of the fourth aspect, the lamination density of the inorganic fibers in the region including at least one end is made smaller than the lamination density of the region including the center. Due to this, the elastic deformation ability of the region including one end portion having a low lamination density has an effect of reliably preventing the occurrence of cold bridges even when using a mat-like heat insulating material having a high lamination density and a large heat insulation effect. sell.
[0039]
According to the fifth aspect of the present invention, any one of the first to fourth aspects of the present invention is provided in a space or the like in which structural members such as pillars, studs, pulling girders, purlins, rafters and the like of a building face each other. The elastic deformability of a region including at least one end portion in which the lamination direction of the inorganic fibers is set to a direction orthogonal to the front and back surfaces of the mat-like heat insulating material only by press-fitting the mat-like inorganic fiber heat insulating material according to the present invention. In the unevenness of the structural material facing the space, the unevenness, the notch, etc. are deformed in conformity with the notch, and the unevenness, the notch, etc. are filled, and are locked in the space by the restoring elasticity of the mat-shaped heat insulating material. Insulation of mat-shaped inorganic fiber insulation such as forming processing such as cutting of mat-shaped heat insulating material corresponding to the irregularities and cutouts of the space, fixing of processed products to structural members, fixing of mat-shaped heat insulating material itself to buildings, etc. Work on materials on site can be omitted, significantly improving work efficiency Achieve the results.
[0040]
The structural material facing the heat insulating material assembling space by elastic deformation of a region including at least one end of the heat insulating material in which the laminating direction of the inorganic fibers is perpendicular to the front and back surfaces of the heat insulating material. Since irregularities, notches, etc. generated by the filling are filled, the occurrence of cold bridge is achieved only by incorporating the mat-like inorganic fiber heat insulating material with elastic deformation, so that no special cold bridge prevention processing is required. In addition to the effect of the heat insulating material, the heat insulating material is locked in the space portion of the building to be incorporated by the restoring elasticity accompanying the elastic deformation of the mat-shaped heat insulating material. There is also an effect that omission or simplification of the stopping operation can be realized.
[Brief description of the drawings]
FIG. 1 is an explanatory perspective view showing a space in which a mat-like heat insulating material is provided between pillars of a building.
FIG. 2 is a schematic side view showing a space where a mat-like heat insulating material is provided between a main building and a rafter of a building.
FIG. 3 is a schematic longitudinal sectional view showing an arrangement structure of a mat-like heat insulating material according to the present invention in an arrangement space shown in FIG.
FIG. 4 is a schematic longitudinal sectional view showing an arrangement structure of a mat-like heat insulating material according to the present invention in an arrangement space shown in FIG. 2;
FIG. 5 is a schematic perspective view of an embodiment to which both the first and second aspects of the invention are applied.
FIG. 6 is a schematic perspective view showing a procedure for manufacturing the mat-like heat insulating material shown in FIG.
FIG. 7 is a schematic perspective view of another embodiment to which both the first and second aspects of the invention are applied.
FIG. 8 is a schematic perspective view of an embodiment to which both the first and third aspects of the invention are applied.
FIG. 9 is a schematic perspective view showing a procedure for manufacturing the mat-like heat insulating material shown in FIG.
FIG. 10 is a schematic perspective view showing an example of construction of the mat-like heat insulating material shown in FIG.
FIG. 11 is a schematic longitudinal sectional view of another example of construction of the mat-like heat insulating material shown in FIG.
FIG. 12 is a schematic longitudinal sectional view showing an example of another construction of a conventional mat-like heat insulating material.
FIG. 13 is a schematic longitudinal sectional view of another example of construction of a conventional mat-like heat insulating material.
[Explanation of symbols]
4, 5 Purlin 6 Rafter 9 Mat-like inorganic fiber heat insulating material 36 Thick region including one end 38 Region including center 40 Region including other end 41, 42 Stacking direction

Claims (5)

マット状に積層されている無機質繊維の積層方向が、マット形状の断熱材の中央を含む領域では、マット形状の表裏面と平行する方向であり、該断熱材の少なくとも1端部を含む領域では、無機質繊維の積層方向が前記表裏面と直交する方向とされているマット状無機質繊維断熱材。In the region including the center of the mat-shaped heat insulating material, the laminating direction of the inorganic fibers laminated in the mat shape is a direction parallel to the front and back surfaces of the mat shape, and in the region including at least one end of the heat insulating material. And a mat-like inorganic fiber heat insulating material, wherein the laminating direction of the inorganic fibers is set to a direction orthogonal to the front and back surfaces. 中央部を含む領域と少なくとも1端部を含む領域とが同じ厚さに形成されている請求項1記載のマット状無機質繊維断熱材。2. The mat-like inorganic fiber heat insulating material according to claim 1, wherein the region including the central portion and the region including at least one end are formed to have the same thickness. 少なくとも1端部を含む領域の厚さが中央を含む領域及び他の端部を含む領域の厚さより厚く形成されている請求項1記載のマット状無機質繊維断熱材。2. The mat-like inorganic fiber heat insulating material according to claim 1, wherein the thickness of the region including at least one end is formed thicker than the thickness of the region including the center and the region including the other end. 中央を含む領域と、少なくとも1端部を含む領域との無機質繊維の積層密度が異なる請求項1ないし請求項3のいずれかに記載のマット状無機質繊維断熱材。The mat-like inorganic fiber heat insulating material according to any one of claims 1 to 3, wherein the region including the center and the region including at least one end have different lamination densities of the inorganic fibers. マット状に積層されている無機質繊維の積層方向がマット形状の断熱材の中央を含む領域では、マット形状の表裏面と平行する方向であり、該断熱材の少なくとも1端部を含む領域では、無機質繊維の積層方向が前記表裏面と直交する方向とされているマット状無機質繊維断熱材が、建造物の支柱、間柱、大引、根太、母屋、垂木等の構造材が対峙して構成された空間内等に圧入され、前記1端部を含む領域の無機質繊維の積層方向と直交する方向の弾性変形によって、前記空間に臨む構造材等の凹凸、切欠等に順応して変形し、かつ復元弾性によって前記空間内に係止されているマット状無機質繊維断熱材の断熱構造。In the region including the center of the mat-shaped heat insulating material, the laminating direction of the inorganic fibers laminated in the mat shape is a direction parallel to the front and back surfaces of the mat shape, and in the region including at least one end of the heat insulating material, A mat-like inorganic fiber heat insulating material in which the laminating direction of the inorganic fibers is set to a direction orthogonal to the front and back surfaces is constituted by struts of a building, studs, large pulls, joists, purlins, rafters, and other structural materials facing each other. Is press-fitted into a space or the like, and is elastically deformed in a direction orthogonal to the laminating direction of the inorganic fibers in a region including the one end portion, thereby deforming in conformity with irregularities of the structural material facing the space, notches, and the like, and A heat insulating structure of a mat-like inorganic fiber heat insulating material locked in the space by restoring elasticity.
JP2002319382A 2002-11-01 2002-11-01 Mat-shape inorganic fiber heat-insulating material and heat insulation structure Pending JP2004148771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002319382A JP2004148771A (en) 2002-11-01 2002-11-01 Mat-shape inorganic fiber heat-insulating material and heat insulation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002319382A JP2004148771A (en) 2002-11-01 2002-11-01 Mat-shape inorganic fiber heat-insulating material and heat insulation structure

Publications (1)

Publication Number Publication Date
JP2004148771A true JP2004148771A (en) 2004-05-27

Family

ID=32462250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002319382A Pending JP2004148771A (en) 2002-11-01 2002-11-01 Mat-shape inorganic fiber heat-insulating material and heat insulation structure

Country Status (1)

Country Link
JP (1) JP2004148771A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101280611B1 (en) 2011-07-07 2013-06-28 유한회사 에스와이 Wooden House And Manufacturing Method Thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101280611B1 (en) 2011-07-07 2013-06-28 유한회사 에스와이 Wooden House And Manufacturing Method Thereof

Similar Documents

Publication Publication Date Title
US20080176014A1 (en) Mat-shaped inorganic fiber thermal insulator, package thereof and thermal insulation structure thereof
WO2012149630A1 (en) Natural rock panel, natural rock veneer panel and panel support apparatus
US20110107721A1 (en) Insulation panel for a building system and a method and apparatus for producing such insulation panel
KR101293734B1 (en) Aseismatic reinforcing structure for masonry construction and constructing method thereof
JP2004148771A (en) Mat-shape inorganic fiber heat-insulating material and heat insulation structure
JP5300351B2 (en) Architectural vacuum insulation board
JPH10169016A (en) Building unit connecting structure
WO2005045148A1 (en) A material
JPH048166Y2 (en)
JP7464368B2 (en) Thermal insulation construction and thermal insulation construction method
WO2024047941A1 (en) Intersection-portion structure of building wall
KR102569527B1 (en) spacing bar of one-body type for wall finishing
JPH11350776A (en) Vibration-damping building
JPS6238502B2 (en)
US20240175255A1 (en) Composite framing member comprising elements that provide a thermal break
JP3051796B2 (en) Mounting structure for flooring material
JP2570434Y2 (en) Thermal insulation panels and partitions used for partitions, etc.
JP3878472B2 (en) Seismic structure of joints
JP2526111B2 (en) Non-combustible partition panel
JPH06220921A (en) Unit building
JP3552808B2 (en) Upper mounting structure of composite partition
JP2973414B2 (en) How to install wall insulation
JPH07116670B2 (en) Inorganic fiber mat
JP2863120B2 (en) Underfloor insulation
JP2000144916A (en) Thermal insulating material and thermal insulation structure of unit building

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080610