JP2004146444A - Wiring board - Google Patents

Wiring board Download PDF

Info

Publication number
JP2004146444A
JP2004146444A JP2002307127A JP2002307127A JP2004146444A JP 2004146444 A JP2004146444 A JP 2004146444A JP 2002307127 A JP2002307127 A JP 2002307127A JP 2002307127 A JP2002307127 A JP 2002307127A JP 2004146444 A JP2004146444 A JP 2004146444A
Authority
JP
Japan
Prior art keywords
layer
wiring layer
bonding wire
wiring
board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002307127A
Other languages
Japanese (ja)
Inventor
Koichi Nakahara
中原 光一
Hiroshi Tsukamoto
塚本 弘志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002307127A priority Critical patent/JP2004146444A/en
Publication of JP2004146444A publication Critical patent/JP2004146444A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wiring board which is capable of firmly connecting a thick bonding wire having a diameter of 100 μm or above to a wiring layer without causing cracking in the coating layer deposited on the surface of the wiring layer. <P>SOLUTION: The wiring board 4 is composed of a board 1 formed of electric insulating material, a wiring layer 2 which is formed on the board 1 at the same time with the board 1 by baking by the use of, at least, one element selected out of Au, Ag, Cu, Pd, and Pt and provided with a region where the bonding wire 5 having a diameter of 100 to 500 μm is bonded, an Ni layer which is formed of particles having a size of 5 to 30 μm and deposited on the region of the wiring layer 2 where the bonding wire 5 is bonded, a Pd layer having a thickness of 0.03 to 0.3 μm, and an Au layer having a thickness of 005 to 0.3 μm. The wiring layer 2 is formed of, at least, an element selected out of Au (gold), Cu (copper), Pd (palladium), and Pt (platinum), has a low electric resistance, and is capable of transmitting electrical signals accurately without causing a large voltage drop to electric signals. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は半導体素子や容量素子、抵抗器等の電子部品が搭載される配線基板に関し、より詳細には大きな電流の流れを許容する直径の大きなボンディングワイヤが配線層に接続される配線基板に関するものである。
【0002】
【従来の技術】
従来、半導体素子や容量素子、抵抗器等の電子部品が搭載される配線基板は酸化アルミニウム質焼結体等の電気絶縁材料から成り、表面に電子部品搭載部を有する基板と、該基板に形成されたタングステン、モリブデン等の高融点金属材料から成る配線層とで形成されており、基板の搭載部に半導体素子や容量素子、抵抗器等の電子部品を搭載するとともに各電子部品の電極を配線層にボンディングワイヤを介して電気的に接続するようになっている。
【0003】
かかる配線基板は、配線層の一部を外部電気回路基板の配線導体に錫−鉛半田等の低融点ろう材を介し接続することによって外部電気回路基板上に実装され、同時に配線基板に搭載されている電子部品の各電極が所定の外部電気回路に電気的に接続されることとなる。
【0004】
なお、前記電子部品の各電極を配線層に接続するボンディングワイヤの材料としては、一般にアルミニウム、金が使用されており、特に大電流を流すためにボンディングワイヤの径を大きくする必要があるような場合には経済性を重視してアルミニウム製のボンディングワイヤが多用され、また、ボンディング速度を重視するような場合には金製のボンディングワイヤが多用される。
【0005】
また前記配線層と電子部品の電極とのボンディングワイヤを介しての接続は、一般に超音波ボンダーを使用することによって行われており、具体的には配線層の表面にボンディングワイヤの一端を当接摺動させ、ボンディングワイヤと配線層表面との間に摩擦エネルギーを発生させるとともに該摩擦エネルギーでボンディングワイヤと配線層表面部分との間に金属拡散を行わせることによってボンディングワイヤは配線層に接続される。
【0006】
この場合、従来のボンディングワイヤの直径は約30μm程度であり、ボンディングワイヤは配線層の表面に対して約30gf〜50gf(0.294N〜0.49N)の荷重で押し付けられ、摺動により摩擦エネルギーが効率よく発生するようにされている。
【0007】
更に前記配線基板の配線層は、通常、その表面に平均の厚さが約3μmのNi層および平均の厚さが約1.5μm強のAu層から成る被覆層がめっき法等により順次被着されており、超音波ボンダーを使用してのボンディングワイヤの接続性を良好としている。なお、前記Ni層は、一般に、次亜リン酸ナトリウム等のリン系還元剤やジメチルアミンボラン等のホウ素系還元剤を用いる無電解Niめっき液を用いることによって形成され、Ni層は、Ni粒子の大きさが、通常、約0.1μm乃至4μm程度である。
【0008】
しかしながら、この従来の配線基板においては、タングステンやモリブデン等で形成されている配線層の電気抵抗値が高く、配線層を伝わる電気信号に電圧降下を招来させて配線層に接続されている半導体素子等の電子部品に電気信号を正確に入出力させることができないという欠点があった。特に配線層を伝わる電気信号の電流値が大きくなるほど、この欠点が顕著となる。
【0009】
そこで上記欠点を解消するために、配線層をCu(銅)やAg(銀)、Au(金)等の電気抵抗値が低い金属材料で形成し、表面にNi層およびAu層から成る被覆層を被着させた配線基板が提案されている。
【0010】
かかる配線基板によれば、配線層が電気抵抗値の低いCuやAg、Au等で形成されていることから配線層に電気信号を伝搬させた場合、配線層で電気信号に大きな電圧降下を招来することはなく電子部品に電気信号を正確に伝えることが可能となる。
【0011】
【特許文献1】
特開2002−124590号公報
【0012】
【発明が解決しようとする課題】
しかしながら、近年、配線基板はECU(Electronic Control Unit)用の基板等、約5A以上という大電流の電気信号を流す必要のある用途での使用が増加しつつあり、この場合、配線基板上に搭載されている電子部品に大電流を流すために配線層と電子部品とを接続させるボンディングワイヤの直径を100μm以上と非常に大きくする必要があり、このような直径の大きなボンディングワイヤを超音波ボンダーにより配線層に接続させようとすると、配線層の表面に被着されているNi層中やNi層とPd層との接合界面等の被覆層中にクラックが発生し、ボンディングワイヤの配線層への接続信頼性が大きく低下するという欠点を有していた。
【0013】
このようなNi層中やNi層とPd層との接合界面等の被覆層中にクラックが発生する原因としては、Ni層が次亜リン酸ナトリウム等のリン系還元剤やジメチルアミンボラン等のホウ素系還元剤を用いた無電解Niめっき液により形成されており、還元剤の作用によりNiの結晶成長が抑制されて粒子径は小さく、粒界が極めて多いものとなっているのに対し、直径が100μm以上と大きなボンディングワイヤを配線層に接続する場合、ボンディングワイヤと配線層との間に大きな摩擦エネルギーを発生させる必要があり、この大きな摩擦エネルギーを発生させるためにボンディングワイヤを配線層表面に対して約90gf〜600gf(0.882N〜5.88N)という非常に大きな荷重をかけなければならず、大きな荷重によってNi粒子間の粒界に破壊が発生するためであると考えられる。
【0014】
また、配線層の表面を被覆するAu層の厚さが平均で約1.5μm強と厚いため配線層に直径が100μm以上という大きな径のアルミニウム製のボンディングワイヤを接続させる際、Au層とボンディングワイヤとの接合部分またはその周辺に脆弱なアルミニウムと金の金属間化合物が多量に形成され、その結果、ボンディングワイヤ等に外力が印加されるとボンディングワイヤが配線層より容易に外れ、電子部品と配線層との電気的接続の信頼性が低いものとなる欠点も誘発してしまう。
【0015】
本発明は、上記諸欠点に鑑み案出されたもので、その目的は、配線層表面に被着されている被覆層にクラックを発生させることなく直径が100μm以上と大きな径のボンディングワイヤを配線層に強固に接続させることができる配線基板を提供することにある。
【0016】
【課題を解決するための手段】
本発明の配線基板は、電気絶縁材料から成る基板と、Au、Ag、Cu、Pd、Ptの少なくとも1種より成り、前記基板に同時焼成により形成され、かつ直径が100μm以上のボンディングワイヤが接合される領域を有する配線層と、前記配線層の少なくともボンディングワイヤが接合される領域に被着され、粒子の大きさが5μm乃至30μmのNi層と、厚さが0.03μm乃至0.3μmのPd層と、厚さが0.05μm乃至0.3μmのAu層とから成る被覆層とで形成されたことを特徴とするものである。
【0017】
また本発明の配線基板は、前記Ni層の厚みが4μm乃至13μmであることを特徴とするものである。
【0018】
更に本発明の配線基板は、前記Ni層の硬さがビッカース硬度で200Hv以上であることを特徴とするものである。
【0019】
また更に本発明の配線基板は、前記Au層の表面粗さが算術平均粗さ(Ra)で0.1μm乃至0.3μmであることを特徴とするものである。
【0020】
本発明の配線基板によれば、配線層がAu(金)、Ag(銀)、Cu(銅)、Pd(パラジウム)、Pt(白金)の少なくとも1種より成り、低電気抵抗であることから配線層に電気信号を伝搬させた際、配線層で電気信号に大きな電圧降下を招来することはなく電気信号を正確に伝えることができる。
【0021】
また本発明の配線基板によれば、前記配線層のボンディングワイヤが接続される領域に粒子の大きさが5μm乃至30μmのNi層と、厚さが0.03μm乃至0.3μmのPd層と、厚さが0.05μm乃至0.3μmのAu層とから成る被覆層を被着させ、Ni層のNi粒子の大きさを、5μm乃至30μmの適度な大きさとしたことから、Ni粒子の粒界が少ないものとなり、直径が100μm以上と大きなボンディングワイヤを配線層に接続する際、ボンディングワイヤと配線層との間に大きな摩擦エネルギーを発生させるためにボンディングワイヤを配線層表面に対して約90gf〜600gf(0.882N〜5.88N)という非常に大きな荷重をかけたとしてもNi粒子間の粒界に破壊を発生させることは有効に防止され、その結果、直径が100μm以上の大きなボンディングワイヤを配線層に確実強固に接続させることができる。
【0022】
更に本発明の配線基板によれば、Ni層とAu層との間にNi層、Au層に対し接合強度が強いPd層を介在させ、かつこのPd層にNi層の酸化を防止するとともにボンディングワイヤの接続性を補助する作用をさせることからAu層の厚さを0.05μm乃至0.3μmと薄くすることができ、その結果、配線層に直径が100μm以上という大きな径のアルミニウム製のボンディングワイヤを接続させる際、Au層とボンディングワイヤとの接合部分またはその周辺に脆弱なアルミニウムと金の金属間化合物が多量に生成されることはなく、これによってボンディングワイヤ等に外力が印加されてもボンディングワイヤが配線層より容易に外れることはなく、電子部品と配線層との電気的接続の信頼性を高いものとなすことができる。
【0023】
更に本発明の配線基板によれば、前記配線層のボンディングワイヤが接続される領域に被着される被覆層のNi層の厚みを4μm乃至13μmと厚くしておくと、配線層に直径が100μm以上と大きなボンディングワイヤを接続させる場合、ボンディングワイヤを配線層表面に押し付ける荷重、ボンディングワイヤと配線層との摺動にともなって発生する機械的応力はNi層で吸収・緩和されて小さくなり、その結果、配線層と基板との界面に大きな応力が作用することはなく、配線層と基板との間で亀裂やハガレ等の不具合が発生するのを有効に防止して配線層を基板に強固に接合させておくことが可能となる。
【0024】
また更に本発明の配線基板によれば、配線層の表面に被着されている被覆層のうち最上層のAu層の表面の粗さを算術平均粗さ(Ra)で0.1μm乃至0.3μmとし、適度に平滑にしておくと、配線層に直径が100μm以上と大きなボンディングワイヤを超音波ボンダーで接続する場合、被覆層とボンディングワイヤとを接合面の全面で良好に密着させ、両者間の全面にわたって均一に大きな摩擦エネルギーを発生させてボンディングワイヤと配線層との間に十分な金属拡散を行わせることができ、これによって配線層へのボンディングワイヤの接続信頼性を高いものとなすことができる。
【0025】
【発明の実施の形態】
次に本発明を添付図面に基づき詳細に説明する。
【0026】
図1及び図2は本発明の配線基板をECU(Electronic Control Unit)基板等の半導体素子搭載用の基板に適用した場合の一実施例を示し、1は基板、2は配線層である。この基板1と配線層2とで半導体素子3を搭載するための配線基板4が形成される。
【0027】
前記配線基板4の基板1は半導体素子3を支持する支持部材として作用し、上面の略中央部に半導体素子3がガラス、ロウ材、樹脂等の接着材を介して取着固定される。
【0028】
前記基板1は、ガラスセラミック焼結体や結晶性ガラス、マンガン化合物を添加すること等により1200℃の低温焼成を可能とした酸化アルミニウム質焼結体等の電気絶縁材料から成り、例えば、ガラスセラミック焼結体から成る場合であれば、酸化珪素、酸化ホウ素、酸化カルシウム等のガラス粉末と、酸化アルミニウム、ムライト等のセラミック粉末とから成るガラスセラミック原料粉末に適当な有機バインダ、溶剤等を添加混合して泥漿物を作るとともに該泥漿物をドクターブレード法やカレンダーロール法を採用することによってガラスセラミックグリーンシート(ガラスセラミック生シート)と成し、しかる後、前記ガラスセラミックグリーンシートに適当な打ち抜き加工を施すとともに必要に応じてこれを複数枚積層し、約900℃の温度で焼成することによって製作される。
【0029】
また前記基板1はその上面で半導体素子3が搭載実装される領域周辺から下面にかけて複数の配線層2が形成してあり、該配線層2の基板1上面に露出する部位には半導体素子3の電極がボンディングワイヤ5を介して接続され、また基板1の下面に導出する部位は外部の電気回路基板に半田等の導電性接続材を介して接続される。
【0030】
前記配線層2は半導体素子3の各電極を外部電気回路に接続するための導電路として作用し、半導体素子3の各電極をボンディングワイヤ5を介し配線層2に接続することによって半導体素子3の各電極は配線層2を介して外部電気回路に接続されることとなる。
【0031】
前記配線層2は、Au、Ag、Cu、Pd、Ptの少なくとも1種より成り、このようなAu、Ag、Cu、Pd、Pt等から成る配線層2は電気抵抗値が小さいことから配線層2に電気信号を伝搬させた場合、配線層2で電気信号に大きな電圧降下を招来することはなく半導体素子3に電気信号を正確に伝えることが可能となる。
【0032】
前記配線層2は、例えば、Agから成る場合であれば、Ag粉末に適当な有機バインダ及び溶剤を添加混合して金属ペーストを作成し、この金属ペーストを基板1となるガラスセラミックグリーンシートの表面に所定パターンに印刷塗布することによって基板1の上面から下面にかけて所定パターンに形成される。
【0033】
また前記配線層2は、基板1の上面に露出する領域に半導体素子3の電極が、直径が100μm以上のボンディングワイヤ5を介して接続され、これによって半導体素子3の各電極がボンディングワイヤ5を介して配線層2に電気的に接続されることとなる。
【0034】
前記ボンディングワイヤ5はその直径が100μm以上と大きいことからボンディングワイヤ5を介して配線層2から半導体素子3に約5A以上という大電流の電気信号を流した場合、大電流の電気信号は何ら支障をきたすことなく半導体素子3に伝搬させることができる。
【0035】
前記ボンディングワイヤ5はその直径が100μm未満となると5A以上の大電流の電気信号を伝搬させることが困難となる。従って、前記ボンディングワイヤ5はその直径が100μm以上に特定される。
【0036】
なお、前記配線層2へのボンディングワイヤ5の接続は、配線層2の表面にボンディングワイヤ5の一端を約90gf〜600gf(0.882N〜5.88N)という大きな荷重で押し付けて摺動させ、ボンディングワイヤ5と配線層2表面との間に摩擦エネルギーを発生させるとともに該摩擦エネルギーでボンディングワイヤ5と配線層2表面部分との間に金属拡散を行わせることによって行われる。
【0037】
また前記配線層2は更に少なくともボンディングワイヤ5が接続される領域に、図2に示す如く、粒子の大きさが5μm乃至30μmのNi層と、厚さが0.03μm乃至0.3μmのPd層と、厚さが0.05μm乃至0.3μmのAu層とから成る被覆層9が被着されており、該被覆層9は配線層2の酸化等を有効に防止するとともにボンディングワイヤ5を配線層に強固に接続させる作用を為す。
【0038】
前記Ni層6は、Au、Ag、Cu、Pd、Ptの少なくとも1種より成る配線層2と後述するPd層7との密着性、被着強度がともに良好であり、Pd層7を配線層2に強固に被着させる下地層として作用するとともに応力を吸収・緩和させる作用をなす。
【0039】
また前記Ni層6はNi粒子の大きさが5μm乃至30μmとなっている。
【0040】
前記Ni層はそのNi粒子の大きさが5μm乃至30μmであり適度な大きさであることから、Ni粒子の粒界が少ないものとなり、直径が100μm以上と大きなボンディングワイヤ5を配線層2に接続する際、ボンディングワイヤ5と配線層2との間に大きな摩擦エネルギーを発生させるためにボンディングワイヤ5を配線層2表面に対して約90gf〜600gf(0.882N〜5.88N)という非常に大きな荷重をかけたとしてもNi粒子間の粒界に破壊を発生することは有効に防止され、その結果、直径が100μm以上の大きなボンディングワイヤを配線層2に確実強固に接続させることができる。
【0041】
前記Ni粒子の大きさが5μm乃至30μmであるNi層6は、例えば、次亜リン酸ナトリウム等のリン系還元剤やジメチルアミンボラン等のホウ素系還元剤を用いる無電解Niめっき液中に配線層2を所定時間浸漬して配線層2の表面にNi粒子を被着させ、しかる後、約300℃の温度で120分乃至180分程度加熱処理を行なうことによって形成される。
【0042】
なお、前記Niから成る被覆層6はNi粒子の大きさが5μm未満であるとNi粒子間の粒界が多いものとなって配線層2に直径が100μm以上の大きなボンディングワイヤ5を接続する際の荷重のよってNiから成る被覆層6にクラックが発生してしまい、また30μmを超えると、Ni粒子間の粒界の化学的、物理的結合力が極めて小さいことから、直径が100μm以上の大きなボンディングワイヤ5を大きな荷重で押し付け摺動させた際に、Ni粒子そのものがNiから成る被覆層6から脱離してしまい、ボンディングワイヤ5を配線層2に確実強固に接続させることができなくなってしまう。従って、前記Ni層6はNi粒子の大きさが5μm乃至30μmの範囲に特定される。
【0043】
また、前記Ni層6はその厚みを4μm乃至13μmと厚くしておくと、配線層2を完全に被覆して配線層2の酸化等を有効に防止することができるとともに配線層2に直径が100μm以上と大きなボンディングワイヤ5を接続させる場合、ボンディングワイヤ5を配線層2表面に押し付ける荷重、ボンディングワイヤ5と配線層2との摺動にともなって発生する機械的応力は被覆層6で吸収・緩和されて小さな値となり、その結果、配線層2と基板1との界面に大きな力が作用することはなく、配線層2と基板1との間で亀裂やハガレ等の不具合が発生するのを有効に防止して配線層2を基板1に強固に接合させておくことが可能となる。
【0044】
前記Ni層6は、その厚さが4μm未満では、ボンディングワイヤ5を配線層2表面に押し付ける荷重、ボンディングワイヤ5と配線層2との摺動にともなって発生する機械的応力を十分に吸収緩和することが困難となり、配線層2と基板1との界面に亀裂やハガレ等の不具合が生じてしまう危険性があり、また、13μmを超えると、その皮膜内部応力が非常に大きくなりNi層6と配線層2との間や、配線層2と基板1との間での接合強度が劣化し、Ni層6が配線層2より剥離したり、配線層2が基板1より剥離したりしてしまう危険性がある。従って、前記Ni層6は、その厚さを4μm乃至13μmの範囲としておくことが好ましい。
【0045】
また、前記Ni層6は、その厚みを5μm乃至10μmの範囲としておくと、ボンディングワイヤ5を配線層2により一層確実、強固に接続させることができるできるとともにNi層6が配線層2より剥離したり、配線層2が基板1より剥離したりしてしまうのを完全に防止して配線基板としての信頼性をより一層良好となすことができる。したがって、前記Ni層6は、その厚さを5μm乃至10μmの範囲としておくことがより一層好ましい。
【0046】
更に前記Ni層6は、その硬さをビッカース硬度で200Hv以上としておくと、ボンディングワイヤ5を配線層2表面に押し付ける荷重で大きく変形することはなく、これによって前記荷重は配線層2と基板1との界面に伝わることが効果的に遮断され、その結果、配線層2と基板1との界面に大きな力が作用することはなく、配線層2と基板1との間で亀裂やハガレ等の不具合が発生するのをより一層有効に防止し配線層2を基板1により強固に接合させておくことが可能となる。したがって、前記Ni層6は、その硬さをビッカース硬度で200Hv以上としておくことが好ましい。
【0047】
前記Ni層6の硬さをビッカース硬度で200Hv以上と硬くするには、厚さが4μm乃至13μmとなるようにしてNi層をめっき法等で配線層2の表面に被着させた後、熱処理を加え、NiPやNiBなどの金属間化合物を析出させることによる析出硬化を行なったり、Niの結晶を緻密化させて、硬さが200Hv以上となるようにする方法や、無電解めっき法でNi層を形成する過程で、めっき時間を長くすることによりNiの結晶の緻密化を図り硬さを200Hv以上と硬くする等の方法を用いることができる。
【0048】
なお、めっき法等でNiを配線層2の表面に被着させ、Ni層6を形成する場合、その硬さをビッカース硬度で500Hvを超えるようなものとしようとすると、必要以上にめっき時間を長くしたり、高温でNiを熱処理したりする必要が生じ、生産性や経済性を低下させるおそれがある。したがって、前記Ni層6は、その硬さを、ビッカース硬度で200Hv乃至500Hvの範囲とすることがより一層好ましい。
【0049】
更に前記Ni層6の表面にはPd層7が被着されており、該Pd層7はNi層6の酸化腐蝕を防止し、かつAu層8をNi層6に強固に被着させる作用をなすとともにAu層8の厚さを薄くしてもボンディングワイヤ5が強固に接続されるように補助する作用をなす。
【0050】
前記Pd層7は、電解法や無電解法等のめっき法により形成することができ、例えば、次亜リン酸ナトリウム等のリン系還元剤やジメチルアミンボラン等のホウ素系の還元剤を用いる無電解Pdめっき液中に、Ni層6を被着させた配線層2を所定時間浸漬することにより形成される。
【0051】
前記Pd層7はまたその厚さが0.03μm未満ではNi層6の酸化腐蝕を効果的に防止することができず、0.3μmを超えるとめっき皮膜応力により配線層2に対する被覆層9の被着強度を劣化させてしまう。従って、前記Pd層7の厚さは0.03μm乃至0.3μmの範囲に特定される。
【0052】
更に前記Pd層7はその表面にAu層8が被着されており、該Au層8はNi層6およびPd層7の酸化腐蝕を防止するとともに、ボンディングワイヤ5との間で金属拡散してボンディングワイヤ5を配線層2に強固に接合させる作用をなす。
【0053】
前記Au層8は、無電解法や電解法等のめっき法により形成することができ、例えば、無電解法により形成する場合であれば、シアン化金カリウムを主成分とし、EDTA(エチレンジアミン四酢酸)等の還元剤やpH調整剤等を添加して成る置換型の無電解Auめっき液や、水素化ホウ素カリウムやジメチルアミンボラン等の還元剤を用いる還元型の無電解Auめっき液等の周知の無電解Auめっき液中に、Ni層6およびPd層7を被着させた配線層2を所定時間浸漬することにより形成される。
【0054】
前記Au層8は、その下部にボンディングワイヤ5の接続を補助させるPd層7が配されていることから厚さを0.05μm乃至0.3μmと薄くすることができ、その結果、配線層2に直径が100μm以上という大きな径のアルミニウム製のボンディングワイヤ5を接続させる際、Au層8とボンディングワイヤ5との接合部分またはその周辺に脆弱なアルミニウムと金の金属間化合物が多量に生成されることはなく、これによってボンディングワイヤ5等に外力が印加されてもボンディングワイヤ5が配線層2より容易に外れることはなく、半導体素子3と配線層2との電気的接続の信頼性を高いものとなすことができる。
【0055】
前記Au層8は、その厚さが0.05μm未満ではNi層6等の酸化腐蝕を効果的に防止することができずNiの酸化物が形成されるとこれがAu層8表面に析出して酸化物層を形成しボンディングワイヤ5の接続が弱くなったり、ボンディングワイヤ5とAu層8との間での金属拡散が不十分となってボンディングワイヤ5の接続が弱くなってしまったりし、また0.3μmを超えるとAu層8とボンディングワイヤ8との接合部分またはその周辺に脆弱なアルミニウムと金の金属間化合物が多量に生成され、その結果、ボンディングワイヤ5等に外力が印加されるとボンディングワイヤ5が配線層2より容易に外れ、半導体素子3と配線層2との電気的接続の信頼性が低いものとなってしまう。従って、前記Au層8の厚さは0.05μm乃至0.3μmの範囲に特定される。
【0056】
また前記Au層8は、その表面の粗さを算術平均粗さ(Ra)で0.1μm乃至0.3μmの範囲としておくことが好ましい。
【0057】
前記Au層8の表面粗さを算術平均粗さ(Ra)で0.1μm乃至0.3μmとし適度に平滑にしておくと、配線層2に直径が100μm以上と大きなボンディングワイヤ5を超音波ボンダーで接続する場合、Au層8とボンディングワイヤ5とを接合面の全面にわたって良好に密着させることができ、両者間の全面で大きな摩擦エネルギーを発生させてボンディングワイヤ5と配線層2との間に十分な金属拡散を行わせることができ、これによって配線層2へのボンディングワイヤ5の接続信頼性をより一層高いものとなすことができる。
【0058】
前記Au層8はその表面の粗さが算術平均粗さ(Ra)で0.1μm未満となると、平滑になるため、Au層8とボンディングワイヤ5との間で発生する摩擦エネルギーが低下する傾向があり、ボンディングワイヤ5と配線層2との間での金属拡散が減少して、配線層2とボンディングワイヤ5との接続信頼性が低下するおそれがある。また表面の粗さが算術平均粗さ(Ra)で0.3μmを超えると、配線層2に直径が100μm以上と大きなボンディングワイヤ5を超音波ボンダーで接続する場合、Au層8とボンディングワイヤ5との広い接合面の全面にわたって良好かつ均一に両者を密着させることが困難となり、部分的に摩擦エネルギーが不十分となって、ボンディングワイヤ5とAu層8との間での金属拡散が部分的に不十分となり、配線層2に対するボンディングワイヤ5の接続強度が低下するおそれがある。従って、前記Au層8はその表面の粗さが算術平均粗さ(Ra)で0.1μm乃至0.3μmの範囲としておくことが好ましい。
【0059】
前記Au層8の表面を算術平均粗さ(Ra)で0.1μm乃至0.3μmの範囲とするには、例えば、上述のように配線層2に無電解めっき法によりNi層6を形成する場合、無電解Niめっき液中に結晶調整剤(光沢剤)として硫黄化合物等やBi、Se、Te等を適量添加したり、NiおよびNiと共析するリンやボロンとの安定度定数(錯化力)が異なる錯化剤を2〜3種類組み合わせたり、pH,液温,撹拌スピード等のめっき条件を、配線層2の表面状態等に応じて調整したりすることによって、配線層2表面の凹凸を埋めて平滑化させるようにしてNiを析出・被着させ、これによりNi層6の表面の粗さを算術平均粗さ(Ra)で0.1μm乃至0.3μmの範囲としておき、このNi層6の表面に順次被着されるPd層7およびAu層8の表面の粗さをそれぞれ算術平均粗さ(Ra)で0.1μm乃至0.3μmの範囲とする等の方法を用いることができる。
【0060】
かくして半導体素子3が搭載された配線基板4は、半導体素子3を蓋体や封止樹脂等の封止材(不図示)を用いて封止するとともに、MOS−FET、コンデンサー等の電子部品(不図示)を搭載し、その電極を配線層2に接続することにより製品としてのECU(Electronic Control Unit)基板が完成する。
【0061】
なお本発明は上述の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば種々の変更は可能であり、例えば、上述の実施例において前記配線層2の外周上端の角(稜線)部分を円弧状に面取りしておくと、この角部分で、配線層2と被覆層6との被着界面に応力が集中し、被覆層6に亀裂等の機械的な破壊が生じることを効果的に防止することができる。したがって、前記配線層2は、その外周上端の角(稜線)部分を円弧状に面取りしておくことが好ましい。
【0062】
【発明の効果】
本発明の配線基板によれば、配線層がAu(金)、Ag(銀)、Cu(銅)、Pd(パラジウム)、Pt(白金)の少なくとも1種より成り、低電気抵抗であることから配線層に電気信号を伝搬させた際、配線層で電気信号に大きな電圧降下を招来することはなく電気信号を正確に伝えることができる。
【0063】
また本発明の配線基板によれば、前記配線層のボンディングワイヤが接続される領域に粒子の大きさが5μm乃至30μmのNi層と、厚さが0.03μm乃至0.3μmのPd層と、厚さが0.05μm乃至0.3μmのAu層とから成る被覆層を被着させ、Ni層のNi粒子の大きさを、5μm乃至30μmの適度な大きさとしたことから、Ni粒子の粒界が少ないものとなり、直径が100μm以上と大きなボンディングワイヤを配線層に接続する際、ボンディングワイヤと配線層との間に大きな摩擦エネルギーを発生させるためにボンディングワイヤを配線層表面に対して約90gf〜600gf(0.882N〜5.88N)という非常に大きな荷重をかけたとしてもNi粒子間の粒界に破壊を発生させることは有効に防止され、その結果、直径が100μm以上の大きなボンディングワイヤを配線層に確実強固に接続させることができる。
【0064】
更に本発明の配線基板によれば、Ni層とAu層との間にNi層、Au層に対し接合強度が強いPd層を介在させ、かつこのPd層にNi層の酸化を防止するとともにボンディングワイヤの接続性を補助する作用をさせることからAu層の厚さを0.05μm乃至0.3μmと薄くすることができ、その結果、配線層に直径が100μm以上という大きな径のアルミニウム製のボンディングワイヤを接続させる際、Au層とボンディングワイヤとの接合部分またはその周辺に脆弱なアルミニウムと金の金属間化合物が多量に生成されることはなく、これによってボンディングワイヤ等に外力が印加されてもボンディングワイヤが配線層より容易に外れることはなく、電子部品と配線層との電気的接続の信頼性を高いものとなすことができる。
【0065】
更に本発明の配線基板によれば、前記配線層のボンディングワイヤが接続される領域に被着される被覆層のNi層の厚みを4μm乃至13μmと厚くしておくと、配線層に直径が100μm以上と大きなボンディングワイヤを接続させる場合、ボンディングワイヤを配線層表面に押し付ける荷重、ボンディングワイヤと配線層との摺動にともなって発生する機械的応力はNi層で吸収・緩和されて小さくなり、その結果、配線層と基板との界面に大きな応力が作用することはなく、配線層と基板との間で亀裂やハガレ等の不具合が発生するのを有効に防止して配線層を基板に強固に接合させておくことが可能となる。
【0066】
また更に本発明の配線基板によれば、配線層の表面に被着されている被覆層のうち最上層のAu層の表面の粗さを算術平均粗さ(Ra)で0.1μm乃至0.3μmとし、適度に平滑にしておくと、配線層に直径が100μm以上と大きなボンディングワイヤを超音波ボンダーで接続する場合、被覆層とボンディングワイヤとを接合面の全面で良好に密着させ、両者間の全面にわたって均一に大きな摩擦エネルギーを発生させてボンディングワイヤと配線層との間に十分な金属拡散を行わせることができ、これによって配線層へのボンディングワイヤの接続信頼性を高いものとなすことができる。
【図面の簡単な説明】
【図1】本発明の配線基板の一実施例を示す断面図である。
【図2】本発明の配線基板の一実施例の要部拡大断面図である。
【符号の説明】
1・・・・基板
2・・・・配線層
3・・・・半導体素子
4・・・・配線基板
5・・・・ボンディングワイヤ
6・・・・Ni層
7・・・・Pd層
8・・・・Au層
9・・・・被覆層
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a wiring board on which electronic components such as a semiconductor element, a capacitance element, and a resistor are mounted, and more particularly, to a wiring board in which a large-diameter bonding wire allowing a large current flow is connected to a wiring layer. It is.
[0002]
[Prior art]
Conventionally, a wiring board on which electronic components such as a semiconductor element, a capacitance element, and a resistor are mounted is made of an electrically insulating material such as an aluminum oxide sintered body, and has a substrate having an electronic component mounting portion on a surface and a wiring board formed on the substrate. And a wiring layer made of a refractory metal material such as tungsten or molybdenum. The electronic parts such as semiconductor elements, capacitance elements, and resistors are mounted on the mounting portion of the substrate and the electrodes of each electronic part are wired. The layers are electrically connected via bonding wires.
[0003]
Such a wiring board is mounted on an external electric circuit board by connecting a part of a wiring layer to a wiring conductor of the external electric circuit board via a low melting point brazing material such as tin-lead solder, and is simultaneously mounted on the wiring board. Each of the electrodes of the electronic component is electrically connected to a predetermined external electric circuit.
[0004]
In addition, aluminum and gold are generally used as a material of a bonding wire for connecting each electrode of the electronic component to a wiring layer. In particular, it is necessary to increase the diameter of the bonding wire in order to flow a large current. In this case, an aluminum bonding wire is frequently used with an emphasis on economy, and a gold bonding wire is often used when a bonding speed is important.
[0005]
The connection between the wiring layer and the electrode of the electronic component via a bonding wire is generally performed by using an ultrasonic bonder. Specifically, one end of the bonding wire is brought into contact with the surface of the wiring layer. The bonding wire is connected to the wiring layer by sliding to generate frictional energy between the bonding wire and the wiring layer surface and to cause metal diffusion between the bonding wire and the wiring layer surface portion with the frictional energy. You.
[0006]
In this case, the diameter of the conventional bonding wire is about 30 μm, and the bonding wire is pressed against the surface of the wiring layer with a load of about 30 gf to 50 gf (0.294 N to 0.49 N), and the frictional energy is generated by sliding. Are generated efficiently.
[0007]
Further, the wiring layer of the wiring board is usually provided with a coating layer composed of a Ni layer having an average thickness of about 3 μm and an Au layer having an average thickness of slightly more than about 1.5 μm on the surface by plating or the like. Thus, the connectivity of the bonding wire using an ultrasonic bonder is improved. Note that the Ni layer is generally formed by using an electroless Ni plating solution using a phosphorus-based reducing agent such as sodium hypophosphite or a boron-based reducing agent such as dimethylamine borane. Is usually about 0.1 μm to 4 μm.
[0008]
However, in this conventional wiring board, a wiring layer formed of tungsten, molybdenum, or the like has a high electric resistance, and causes a voltage drop in an electric signal transmitted through the wiring layer, thereby causing a semiconductor element connected to the wiring layer to have a low voltage. There is a drawback that electric signals cannot be accurately input / output to / from such electronic components. In particular, the larger the current value of the electric signal transmitted through the wiring layer, the more remarkable this disadvantage.
[0009]
Therefore, in order to solve the above-mentioned disadvantage, the wiring layer is formed of a metal material having a low electric resistance such as Cu (copper), Ag (silver), or Au (gold), and a coating layer composed of a Ni layer and an Au layer is formed on the surface. Has been proposed.
[0010]
According to such a wiring board, since the wiring layer is formed of Cu, Ag, Au, or the like having a low electric resistance, when an electric signal is transmitted to the wiring layer, a large voltage drop occurs in the electric signal in the wiring layer. It is possible to accurately transmit the electric signal to the electronic component without performing the operation.
[0011]
[Patent Document 1]
JP, 2002-124590, A
[Problems to be solved by the invention]
However, in recent years, the use of wiring boards for applications requiring a large current of about 5 A or more, such as a board for an ECU (Electronic Control Unit), is increasing. In this case, the wiring board is mounted on the wiring board. In order to allow a large current to flow through the electronic component, the diameter of the bonding wire connecting the wiring layer and the electronic component needs to be very large, such as 100 μm or more. The bonding wire having such a large diameter is formed by an ultrasonic bonder. If an attempt is made to connect to the wiring layer, cracks occur in the Ni layer adhered to the surface of the wiring layer or in the coating layer such as the joint interface between the Ni layer and the Pd layer, and the bonding wire is not connected to the wiring layer. There is a disadvantage that connection reliability is greatly reduced.
[0013]
The cause of the cracks in the Ni layer or in the coating layer such as the bonding interface between the Ni layer and the Pd layer is that the Ni layer is caused by a phosphorus-based reducing agent such as sodium hypophosphite or dimethylamine borane. It is formed by an electroless Ni plating solution using a boron-based reducing agent, and the action of the reducing agent suppresses the crystal growth of Ni, resulting in a small particle diameter and an extremely large number of grain boundaries. When a bonding wire having a diameter as large as 100 μm or more is connected to the wiring layer, it is necessary to generate a large frictional energy between the bonding wire and the wiring layer. , A very large load of about 90 gf to 600 gf (0.882 N to 5.88 N) must be applied. Destruction in the grain boundary between the i-particle is considered to be due to occur.
[0014]
Also, since the thickness of the Au layer covering the surface of the wiring layer is as thick as about 1.5 μm on average, when connecting a large-diameter aluminum bonding wire having a diameter of 100 μm or more to the wiring layer, the Au layer is bonded to the Au layer. A large amount of fragile intermetallic compound of aluminum and gold is formed at or around the junction with the wire, and as a result, when an external force is applied to the bonding wire or the like, the bonding wire is easily detached from the wiring layer, and the electronic component and A disadvantage that the reliability of the electrical connection with the wiring layer is low is also induced.
[0015]
The present invention has been devised in view of the above-mentioned drawbacks, and has as its object to wire a bonding wire having a diameter as large as 100 μm or more without generating a crack in a coating layer applied to the surface of a wiring layer. An object of the present invention is to provide a wiring board that can be firmly connected to a layer.
[0016]
[Means for Solving the Problems]
The wiring board of the present invention is made of a board made of an electrically insulating material and at least one of Au, Ag, Cu, Pd, and Pt, and bonded to the board by bonding wires having a diameter of 100 μm or more formed by simultaneous firing. A wiring layer having a region to be bonded, a Ni layer having a particle size of 5 μm to 30 μm, and a Ni layer having a particle size of 5 μm to 30 μm and a thickness of 0.03 μm to 0.3 μm. It is characterized by being formed of a Pd layer and a coating layer composed of an Au layer having a thickness of 0.05 μm to 0.3 μm.
[0017]
In the wiring board according to the present invention, the Ni layer has a thickness of 4 μm to 13 μm.
[0018]
Further, the wiring board of the present invention is characterized in that the hardness of the Ni layer is not less than 200 Hv in Vickers hardness.
[0019]
Still further, in the wiring substrate according to the present invention, the Au layer has an arithmetic average roughness (Ra) of 0.1 μm to 0.3 μm.
[0020]
According to the wiring board of the present invention, the wiring layer is made of at least one of Au (gold), Ag (silver), Cu (copper), Pd (palladium), and Pt (platinum) and has a low electric resistance. When the electric signal is propagated to the wiring layer, the electric signal can be accurately transmitted without causing a large voltage drop in the electric signal in the wiring layer.
[0021]
Further, according to the wiring board of the present invention, a Ni layer having a particle size of 5 μm to 30 μm, a Pd layer having a thickness of 0.03 μm to 0.3 μm in a region of the wiring layer to which the bonding wire is connected; A coating layer consisting of an Au layer having a thickness of 0.05 μm to 0.3 μm was deposited, and the size of the Ni particles in the Ni layer was adjusted to an appropriate size of 5 μm to 30 μm. When connecting a bonding wire having a diameter as large as 100 μm or more to the wiring layer, a large amount of frictional energy is generated between the bonding wire and the wiring layer. Even if a very large load of 600 gf (0.882 N to 5.88 N) is applied, it is possible to effectively prevent the fracture at the grain boundary between the Ni particles, and as a result, It can be connected reliably firmly large bonding wire 100μm or more in diameter to the wiring layer.
[0022]
Further, according to the wiring board of the present invention, a Ni layer and a Au layer are interposed between the Ni layer and the Au layer, and a Pd layer having a high bonding strength to the Au layer is interposed between the Ni layer and the Au layer. Since the function of assisting the connection of the wires is provided, the thickness of the Au layer can be reduced to 0.05 μm to 0.3 μm, and as a result, a large-diameter aluminum bonding having a diameter of 100 μm or more is formed on the wiring layer. When connecting the wires, a large amount of fragile intermetallic compound of aluminum and gold is not generated at or around the bonding portion between the Au layer and the bonding wire, so that even if an external force is applied to the bonding wire or the like. The bonding wire does not easily come off the wiring layer, and the reliability of the electrical connection between the electronic component and the wiring layer can be increased.
[0023]
Further, according to the wiring board of the present invention, when the thickness of the Ni layer of the coating layer applied to the region of the wiring layer to which the bonding wire is connected is made as thick as 4 μm to 13 μm, the diameter of the wiring layer becomes 100 μm. When connecting a bonding wire as large as above, the load for pressing the bonding wire against the wiring layer surface, and the mechanical stress generated due to the sliding between the bonding wire and the wiring layer are absorbed and relaxed by the Ni layer, and become small. As a result, a large stress does not act on the interface between the wiring layer and the substrate, and the occurrence of defects such as cracks and peeling between the wiring layer and the substrate is effectively prevented, and the wiring layer is firmly attached to the substrate. It is possible to keep them joined.
[0024]
Further, according to the wiring board of the present invention, the surface roughness of the uppermost Au layer among the coating layers adhered to the surface of the wiring layer is calculated as an arithmetic average roughness (Ra) of 0.1 μm to 0.1 μm. 3 μm, if it is moderately smooth, when a bonding wire having a diameter of 100 μm or more is connected to the wiring layer with an ultrasonic bonder, the covering layer and the bonding wire are brought into good contact with the entire surface of the bonding surface. A large amount of frictional energy is generated uniformly over the entire surface of the bonding wire to allow sufficient metal diffusion between the bonding wire and the wiring layer, thereby increasing the reliability of connection of the bonding wire to the wiring layer. Can be.
[0025]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the present invention will be described in detail with reference to the accompanying drawings.
[0026]
1 and 2 show an embodiment in which the wiring board of the present invention is applied to a board for mounting a semiconductor element such as an ECU (Electronic Control Unit) board, and 1 is a board and 2 is a wiring layer. The substrate 1 and the wiring layer 2 form a wiring substrate 4 on which the semiconductor element 3 is mounted.
[0027]
The substrate 1 of the wiring board 4 functions as a support member for supporting the semiconductor element 3, and the semiconductor element 3 is attached and fixed to a substantially central portion of the upper surface via an adhesive such as glass, brazing material, resin, or the like.
[0028]
The substrate 1 is made of an electrically insulating material such as a glass ceramic sintered body, crystalline glass, or an aluminum oxide sintered body that can be fired at a low temperature of 1200 ° C. by adding a manganese compound. In the case of a sintered body, an appropriate organic binder, a solvent, etc. are added to a glass-ceramic raw material powder composed of glass powder of silicon oxide, boron oxide, calcium oxide, etc. and ceramic powder of aluminum oxide, mullite, etc., and mixed. To form a glass ceramic green sheet (glass ceramic green sheet) by employing a doctor blade method or a calender roll method, and then appropriately punching the glass ceramic green sheet. And, if necessary, laminating a plurality of the It is manufactured by firing at a temperature of 0 ° C..
[0029]
On the upper surface of the substrate 1, a plurality of wiring layers 2 are formed from the periphery of the area where the semiconductor element 3 is mounted and mounted to the lower surface. The electrodes are connected via bonding wires 5, and a portion extending to the lower surface of the board 1 is connected to an external electric circuit board via a conductive connecting material such as solder.
[0030]
The wiring layer 2 functions as a conductive path for connecting each electrode of the semiconductor element 3 to an external electric circuit, and connects each electrode of the semiconductor element 3 to the wiring layer 2 via a bonding wire 5 to thereby form the semiconductor element 3. Each electrode is connected to an external electric circuit via the wiring layer 2.
[0031]
The wiring layer 2 is made of at least one of Au, Ag, Cu, Pd, and Pt. Since the wiring layer 2 made of such Au, Ag, Cu, Pd, and Pt has a small electric resistance value, When the electric signal is propagated to the semiconductor element 3, the electric signal can be accurately transmitted to the semiconductor element 3 without causing a large voltage drop in the electric signal in the wiring layer 2.
[0032]
When the wiring layer 2 is made of, for example, Ag, an appropriate organic binder and a solvent are added to and mixed with Ag powder to form a metal paste, and the metal paste is applied to the surface of the glass ceramic green sheet to be the substrate 1. Is formed in a predetermined pattern from the upper surface to the lower surface of the substrate 1 by printing and applying a predetermined pattern.
[0033]
In the wiring layer 2, the electrodes of the semiconductor element 3 are connected to the regions exposed on the upper surface of the substrate 1 via bonding wires 5 having a diameter of 100 μm or more, whereby each electrode of the semiconductor element 3 connects the bonding wires 5. The wiring is electrically connected to the wiring layer 2 through the wiring.
[0034]
Since the bonding wire 5 has a diameter as large as 100 μm or more, when an electric signal of a large current of about 5 A or more flows from the wiring layer 2 to the semiconductor element 3 through the bonding wire 5, the electric signal of the large current does not cause any problem. Can be propagated to the semiconductor element 3 without causing the problem.
[0035]
When the diameter of the bonding wire 5 is less than 100 μm, it becomes difficult to transmit a large-current electric signal of 5 A or more. Therefore, the diameter of the bonding wire 5 is specified to be 100 μm or more.
[0036]
The connection of the bonding wire 5 to the wiring layer 2 is performed by pressing one end of the bonding wire 5 against the surface of the wiring layer 2 with a large load of about 90 gf to 600 gf (0.882 N to 5.88 N). This is performed by generating frictional energy between the bonding wire 5 and the surface of the wiring layer 2 and diffusing the metal between the bonding wire 5 and the surface of the wiring layer 2 by the frictional energy.
[0037]
As shown in FIG. 2, the wiring layer 2 further includes a Ni layer having a particle size of 5 μm to 30 μm and a Pd layer having a thickness of 0.03 μm to 0.3 μm, at least in a region where the bonding wire 5 is connected. And an Au layer having a thickness of 0.05 μm to 0.3 μm, and the coating layer 9 effectively prevents oxidation of the wiring layer 2 and connects the bonding wires 5. It acts to firmly connect to the layer.
[0038]
The Ni layer 6 has good adhesion and adhesion strength between the wiring layer 2 made of at least one of Au, Ag, Cu, Pd, and Pt and a Pd layer 7 described later. 2 acts as an underlayer to be firmly adhered to, and acts to absorb and relax stress.
[0039]
The Ni layer 6 has a Ni particle size of 5 μm to 30 μm.
[0040]
Since the Ni layer has an appropriate size of Ni particles having a size of 5 μm to 30 μm, the grain boundaries of the Ni particles are small, and the bonding wire 5 having a diameter as large as 100 μm or more is connected to the wiring layer 2. At this time, in order to generate a large frictional energy between the bonding wire 5 and the wiring layer 2, the bonding wire 5 is very large, about 90 gf to 600 gf (0.882 N to 5.88 N) with respect to the surface of the wiring layer 2. Even when a load is applied, it is possible to effectively prevent the breakage at the grain boundaries between the Ni particles, and as a result, a large bonding wire having a diameter of 100 μm or more can be securely and firmly connected to the wiring layer 2.
[0041]
The Ni layer 6 in which the size of the Ni particles is 5 μm to 30 μm is formed, for example, by wiring in an electroless Ni plating solution using a phosphorus-based reducing agent such as sodium hypophosphite or a boron-based reducing agent such as dimethylamine borane. The layer 2 is formed by immersing the layer 2 for a predetermined time to deposit Ni particles on the surface of the wiring layer 2 and then performing a heat treatment at a temperature of about 300 ° C. for about 120 to 180 minutes.
[0042]
When the size of the Ni particles is less than 5 μm, the coating layer 6 made of Ni has a large number of grain boundaries between the Ni particles, so that the large bonding wire 5 having a diameter of 100 μm or more is connected to the wiring layer 2. Cracks occur in the coating layer 6 made of Ni due to the load described above, and when the thickness exceeds 30 μm, the chemical and physical bonding force at the grain boundaries between Ni particles is extremely small. When the bonding wire 5 is pressed and slid with a large load, the Ni particles themselves are detached from the coating layer 6 made of Ni, and the bonding wire 5 cannot be securely and firmly connected to the wiring layer 2. . Therefore, the size of the Ni particles in the Ni layer 6 is specified in the range of 5 μm to 30 μm.
[0043]
When the thickness of the Ni layer 6 is set to 4 μm to 13 μm, it is possible to completely cover the wiring layer 2 and effectively prevent oxidation and the like of the wiring layer 2 and to reduce the diameter of the wiring layer 2. When a bonding wire 5 as large as 100 μm or more is connected, a load for pressing the bonding wire 5 against the surface of the wiring layer 2 and a mechanical stress generated due to sliding between the bonding wire 5 and the wiring layer 2 are absorbed and absorbed by the coating layer 6. As a result, a large force does not act on the interface between the wiring layer 2 and the substrate 1, and a problem such as cracking or peeling occurs between the wiring layer 2 and the substrate 1. It is possible to effectively prevent the wiring layer 2 from being firmly joined to the substrate 1 in advance.
[0044]
When the thickness of the Ni layer 6 is less than 4 μm, the load for pressing the bonding wire 5 against the surface of the wiring layer 2 and the mechanical stress generated due to the sliding between the bonding wire 5 and the wiring layer 2 are sufficiently absorbed and relaxed. There is a risk that defects such as cracks and peeling may occur at the interface between the wiring layer 2 and the substrate 1. If the thickness exceeds 13 μm, the internal stress of the film becomes extremely large and the Ni layer 6 The bonding strength between the wiring layer 2 and the wiring layer 2 or between the wiring layer 2 and the substrate 1 is deteriorated, and the Ni layer 6 is separated from the wiring layer 2 or the wiring layer 2 is separated from the substrate 1. There is a danger that it will. Therefore, it is preferable that the Ni layer 6 has a thickness in the range of 4 μm to 13 μm.
[0045]
When the thickness of the Ni layer 6 is in the range of 5 μm to 10 μm, the bonding wire 5 can be more securely and firmly connected to the wiring layer 2, and the Ni layer 6 is separated from the wiring layer 2. Also, it is possible to completely prevent the wiring layer 2 from being peeled off from the substrate 1 and to further improve the reliability as a wiring substrate. Therefore, it is more preferable that the thickness of the Ni layer 6 be in the range of 5 μm to 10 μm.
[0046]
Further, if the hardness of the Ni layer 6 is set to Vickers hardness of 200 Hv or more, the Ni layer 6 is not greatly deformed by the load pressing the bonding wire 5 against the surface of the wiring layer 2. The transmission to the interface between the wiring layer 2 and the substrate 1 is effectively blocked, and as a result, a large force does not act on the interface between the wiring layer 2 and the substrate 1. It is possible to prevent the occurrence of a defect more effectively, and to bond the wiring layer 2 to the substrate 1 more firmly. Therefore, it is preferable that the Ni layer 6 has a hardness of 200 Hv or more in Vickers hardness.
[0047]
In order to increase the hardness of the Ni layer 6 to 200 Hv or more in Vickers hardness, the Ni layer is applied to the surface of the wiring layer 2 by plating or the like so as to have a thickness of 4 μm to 13 μm. A precipitation hardening by precipitating an intermetallic compound such as Ni 3 P or Ni 3 B, a method of densifying a crystal of Ni so that the hardness becomes 200 Hv or more, an electroless method. In the process of forming the Ni layer by the plating method, it is possible to use a method of increasing the plating time to increase the density of the Ni crystal and increase the hardness to 200 Hv or more.
[0048]
In the case where Ni is deposited on the surface of the wiring layer 2 by plating or the like to form the Ni layer 6, if the hardness is to exceed 500 Hv in Vickers hardness, the plating time will be longer than necessary. It is necessary to lengthen or heat-treat Ni at a high temperature, which may reduce productivity and economic efficiency. Therefore, the hardness of the Ni layer 6 is more preferably in the range of 200 to 500 Hv in Vickers hardness.
[0049]
Further, a Pd layer 7 is adhered on the surface of the Ni layer 6, and the Pd layer 7 has a function of preventing oxidation corrosion of the Ni layer 6 and a function of firmly adhering the Au layer 8 to the Ni layer 6. In addition, even if the thickness of the Au layer 8 is reduced, the function of assisting the bonding wire 5 to be firmly connected is achieved.
[0050]
The Pd layer 7 can be formed by a plating method such as an electrolytic method or an electroless method. For example, the Pd layer 7 can be formed by using a phosphorus-based reducing agent such as sodium hypophosphite or a boron-based reducing agent such as dimethylamine borane. The wiring layer 2 on which the Ni layer 6 is adhered is immersed in an electrolytic Pd plating solution for a predetermined period of time.
[0051]
If the thickness of the Pd layer 7 is less than 0.03 μm, the oxidative corrosion of the Ni layer 6 cannot be effectively prevented, and if the thickness exceeds 0.3 μm, the coating layer 9 with respect to the wiring layer 2 due to plating film stress. The adhesion strength is degraded. Therefore, the thickness of the Pd layer 7 is specified in the range of 0.03 μm to 0.3 μm.
[0052]
Further, the Pd layer 7 has an Au layer 8 adhered to the surface thereof. The Au layer 8 prevents the Ni layer 6 and the Pd layer 7 from being oxidized and corroded, and diffuses metal between the Ni layer 6 and the bonding wire 5. The bonding wire 5 functions to firmly join the wiring layer 2 to the wiring layer 2.
[0053]
The Au layer 8 can be formed by a plating method such as an electroless method or an electrolytic method. For example, when the Au layer 8 is formed by an electroless method, it is mainly composed of potassium potassium cyanide and EDTA (ethylenediaminetetraacetic acid). ), And a substitution type electroless Au plating solution obtained by adding a reducing agent such as a pH adjuster, and a reduction type electroless Au plating solution using a reducing agent such as potassium borohydride or dimethylamine borane. The wiring layer 2 on which the Ni layer 6 and the Pd layer 7 are adhered is immersed in the electroless Au plating solution for a predetermined time.
[0054]
The Au layer 8 can be reduced to a thickness of 0.05 μm to 0.3 μm since the Pd layer 7 for assisting the connection of the bonding wire 5 is provided below the Au layer 8. When a large diameter aluminum bonding wire 5 having a diameter of 100 μm or more is connected to the substrate, a large amount of fragile aluminum and gold intermetallic compounds are generated at or near the junction between the Au layer 8 and the bonding wire 5. Therefore, even when an external force is applied to the bonding wire 5 or the like, the bonding wire 5 does not easily come off the wiring layer 2, and the reliability of the electrical connection between the semiconductor element 3 and the wiring layer 2 is high. Can be made.
[0055]
If the thickness of the Au layer 8 is less than 0.05 μm, the oxidative corrosion of the Ni layer 6 or the like cannot be effectively prevented, and when an oxide of Ni is formed, this deposits on the surface of the Au layer 8. An oxide layer is formed to weaken the connection of the bonding wire 5, or the metal diffusion between the bonding wire 5 and the Au layer 8 becomes insufficient to weaken the connection of the bonding wire 5. If the thickness exceeds 0.3 μm, a large amount of fragile intermetallic compound of aluminum and gold is generated at or around the junction between the Au layer 8 and the bonding wire 8. As a result, when an external force is applied to the bonding wire 5 or the like. The bonding wire 5 is easily detached from the wiring layer 2, and the reliability of the electrical connection between the semiconductor element 3 and the wiring layer 2 becomes low. Therefore, the thickness of the Au layer 8 is specified in the range of 0.05 μm to 0.3 μm.
[0056]
The Au layer 8 preferably has a surface roughness in the range of 0.1 μm to 0.3 μm in arithmetic average roughness (Ra).
[0057]
When the surface roughness of the Au layer 8 is set to be 0.1 μm to 0.3 μm in terms of arithmetic average roughness (Ra) and is appropriately smooth, the bonding wire 5 having a diameter of 100 μm or more is formed on the wiring layer 2 by an ultrasonic bonder. In the case of connection by Au, the Au layer 8 and the bonding wire 5 can be satisfactorily adhered over the entire surface of the bonding surface, and a large frictional energy is generated on the entire surface between them, so that the bonding wire 5 and the wiring layer 2 Sufficient metal diffusion can be performed, whereby the connection reliability of the bonding wire 5 to the wiring layer 2 can be further improved.
[0058]
When the surface roughness of the Au layer 8 is less than 0.1 μm in arithmetic average roughness (Ra), the Au layer 8 becomes smooth, so that the friction energy generated between the Au layer 8 and the bonding wire 5 tends to decrease. There is a possibility that metal diffusion between the bonding wire 5 and the wiring layer 2 is reduced, and the connection reliability between the wiring layer 2 and the bonding wire 5 is reduced. When the surface roughness exceeds 0.3 μm in arithmetic average roughness (Ra), when the bonding wire 5 having a large diameter of 100 μm or more is connected to the wiring layer 2 by an ultrasonic bonder, the Au layer 8 and the bonding wire 5 It is difficult to make good and uniform contact between the bonding wire 5 and the Au layer 8 over the entire surface of the wide bonding surface, and the frictional energy becomes partially insufficient. And the connection strength of the bonding wire 5 to the wiring layer 2 may be reduced. Therefore, it is preferable that the surface roughness of the Au layer 8 be in the range of 0.1 μm to 0.3 μm in terms of arithmetic average roughness (Ra).
[0059]
To make the surface of the Au layer 8 have an arithmetic mean roughness (Ra) in the range of 0.1 μm to 0.3 μm, for example, the Ni layer 6 is formed on the wiring layer 2 by the electroless plating method as described above. In this case, an appropriate amount of a sulfur compound or the like, Bi, Se, Te, or the like is added as a crystal modifier (brightening agent) to the electroless Ni plating solution, or a stability constant (complexity with Ni and phosphorus or boron coeutecting with Ni) is added. By combining two or three types of complexing agents having different chemical conversion powers, or by adjusting plating conditions such as pH, solution temperature, and stirring speed according to the surface condition of the wiring layer 2, the surface of the wiring layer 2 is formed. Ni is deposited and deposited in such a manner as to fill and smooth the irregularities of the Ni layer 6 so that the surface roughness of the Ni layer 6 is in the range of 0.1 μm to 0.3 μm in arithmetic average roughness (Ra). A Pd layer 7 and a Pd layer 7 sequentially deposited on the surface of the Ni layer 6 It is possible to use a method such as in the range of 0.1μm to 0.3μm roughness of the surface of the Au layer 8 at respective arithmetic average roughness (Ra).
[0060]
Thus, the wiring board 4 on which the semiconductor element 3 is mounted seals the semiconductor element 3 using a sealing material (not shown) such as a lid or a sealing resin, and also includes electronic components such as a MOS-FET and a capacitor. (Not shown) and connecting the electrodes to the wiring layer 2 to complete an ECU (Electronic Control Unit) substrate as a product.
[0061]
It should be noted that the present invention is not limited to the above-described embodiment, and various changes can be made without departing from the spirit of the present invention. If the corners (ridges) are chamfered in an arc shape, stress concentrates on the adhered interface between the wiring layer 2 and the coating layer 6 at the corners, and mechanical destruction such as cracks occurs in the coating layer 6. This can be effectively prevented. Therefore, it is preferable that the corners (ridges) of the upper end of the outer periphery of the wiring layer 2 be chamfered in an arc shape.
[0062]
【The invention's effect】
According to the wiring board of the present invention, the wiring layer is made of at least one of Au (gold), Ag (silver), Cu (copper), Pd (palladium), and Pt (platinum) and has a low electric resistance. When the electric signal is propagated to the wiring layer, the electric signal can be accurately transmitted without causing a large voltage drop in the electric signal in the wiring layer.
[0063]
Further, according to the wiring board of the present invention, a Ni layer having a particle size of 5 μm to 30 μm, a Pd layer having a thickness of 0.03 μm to 0.3 μm in a region of the wiring layer to which the bonding wire is connected; A coating layer consisting of an Au layer having a thickness of 0.05 μm to 0.3 μm was deposited, and the size of the Ni particles in the Ni layer was adjusted to an appropriate size of 5 μm to 30 μm. When connecting a bonding wire having a diameter as large as 100 μm or more to the wiring layer, a large amount of frictional energy is generated between the bonding wire and the wiring layer. Even if a very large load of 600 gf (0.882 N to 5.88 N) is applied, it is possible to effectively prevent the fracture at the grain boundary between the Ni particles, and as a result, It can be connected reliably firmly large bonding wire 100μm or more in diameter to the wiring layer.
[0064]
Further, according to the wiring board of the present invention, a Ni layer and a Au layer are interposed between the Ni layer and the Au layer, and a Pd layer having a high bonding strength to the Au layer is interposed between the Ni layer and the Au layer. Since the function of assisting the connection of the wires is provided, the thickness of the Au layer can be reduced to 0.05 μm to 0.3 μm, and as a result, a large-diameter aluminum bonding having a diameter of 100 μm or more is formed on the wiring layer. When connecting the wires, a large amount of fragile intermetallic compound of aluminum and gold is not generated at or around the bonding portion between the Au layer and the bonding wire, so that even if an external force is applied to the bonding wire or the like. The bonding wire does not easily come off the wiring layer, and the reliability of the electrical connection between the electronic component and the wiring layer can be increased.
[0065]
Further, according to the wiring board of the present invention, when the thickness of the Ni layer of the coating layer applied to the region of the wiring layer to which the bonding wire is connected is made as thick as 4 μm to 13 μm, the diameter of the wiring layer becomes 100 μm. When connecting a bonding wire as large as above, the load for pressing the bonding wire against the wiring layer surface, and the mechanical stress generated due to the sliding between the bonding wire and the wiring layer are absorbed and relaxed by the Ni layer, and become small. As a result, a large stress does not act on the interface between the wiring layer and the substrate, and the occurrence of defects such as cracks and peeling between the wiring layer and the substrate is effectively prevented, and the wiring layer is firmly attached to the substrate. It is possible to keep them joined.
[0066]
Further, according to the wiring board of the present invention, the surface roughness of the uppermost Au layer among the coating layers adhered to the surface of the wiring layer is calculated as an arithmetic average roughness (Ra) of 0.1 μm to 0.1 μm. 3 μm, if it is moderately smooth, when a bonding wire having a diameter of 100 μm or more is connected to the wiring layer with an ultrasonic bonder, the covering layer and the bonding wire are brought into good contact with the entire surface of the bonding surface. A large amount of frictional energy is generated uniformly over the entire surface of the bonding wire to allow sufficient metal diffusion between the bonding wire and the wiring layer, thereby increasing the reliability of connection of the bonding wire to the wiring layer. Can be.
[Brief description of the drawings]
FIG. 1 is a sectional view showing one embodiment of a wiring board of the present invention.
FIG. 2 is an enlarged sectional view of a main part of an embodiment of the wiring board of the present invention.
[Explanation of symbols]
1, a substrate 2, a wiring layer 3, a semiconductor element 4, a wiring board 5, a bonding wire 6, a Ni layer 7, a Pd layer 8, ... Au layer 9 ... Coating layer

Claims (4)

電気絶縁材料から成る基板と、Au、Ag、Cu、Pd、Ptの少なくとも1種より成り、前記基板に同時焼成により形成され、かつ直径が100μm以上のボンディングワイヤが接合される領域を有する配線層と、前記配線層の少なくともボンディングワイヤが接合される領域に被着され、粒子の大きさが5μm乃至30μmのNi層と、厚さが0.03μm乃至0.3μmのPd層と、厚さが0.05μm乃至0.3μmのAu層とから成る被覆層とで形成された配線基板。A wiring layer comprising a substrate made of an electrically insulating material and at least one of Au, Ag, Cu, Pd, and Pt, formed on the substrate by co-firing, and having a region to which a bonding wire having a diameter of 100 μm or more is bonded. A Ni layer having a particle size of 5 μm to 30 μm, a Pd layer having a thickness of 0.03 μm to 0.3 μm, and a Pd layer having a thickness of 0.03 μm to 0.3 μm. A wiring board formed of a covering layer made of a 0.05 μm to 0.3 μm Au layer; 前記Ni層の厚みが4μm乃至13μmであることを特徴とする請求項1に記載の配線基板。2. The wiring board according to claim 1, wherein the thickness of the Ni layer is 4 μm to 13 μm. 前記Ni層の硬さがビッカース硬度で200Hv以上であることを特徴とする請求項1または2に記載の配線基板。The wiring board according to claim 1, wherein the hardness of the Ni layer is 200 Hv or more in Vickers hardness. 前記Au層の表面粗さが算術平均粗さ(Ra)で0.1μm乃至0.3μmであることを特徴とする請求項1乃至3に記載の配線基板。4. The wiring substrate according to claim 1, wherein the surface roughness of the Au layer is 0.1 to 0.3 [mu] m in arithmetic average roughness (Ra).
JP2002307127A 2002-10-22 2002-10-22 Wiring board Withdrawn JP2004146444A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002307127A JP2004146444A (en) 2002-10-22 2002-10-22 Wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002307127A JP2004146444A (en) 2002-10-22 2002-10-22 Wiring board

Publications (1)

Publication Number Publication Date
JP2004146444A true JP2004146444A (en) 2004-05-20

Family

ID=32453676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002307127A Withdrawn JP2004146444A (en) 2002-10-22 2002-10-22 Wiring board

Country Status (1)

Country Link
JP (1) JP2004146444A (en)

Similar Documents

Publication Publication Date Title
JP5293185B2 (en) Manufacturing method of electronic parts
JP2000340912A (en) Ceramic circuit board
JP2004200644A (en) Wiring board
JPH11245083A (en) Solder and circuit substrate using it
JP2004146444A (en) Wiring board
JP2005072282A (en) Wiring board
JP2004140108A (en) Wiring board
JPH0730244A (en) Bump electrode, and method of forming bump electrode
JP3495773B2 (en) Circuit board
JP3935026B2 (en) Wiring board
JP2004172297A (en) Circuit board
JP2004119440A (en) Wiring board
JP2005183462A (en) Wiring board
JP2004119438A (en) Wiring board
JP2004119439A (en) Wiring board
JP4683768B2 (en) Wiring board
JP2001102733A (en) Mounting method of electronic component
JP2004140105A (en) Wiring board
JP3898482B2 (en) Wiring board
JP2005203722A (en) Wiring board
JP3740407B2 (en) Wiring board
JP4427467B2 (en) Wiring board and electric element module using the same
JP3466452B2 (en) Manufacturing method of wiring board
JP3771854B2 (en) Wiring board
JP2004087830A (en) Wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050614

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20051110

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A761 Written withdrawal of application

Effective date: 20060904

Free format text: JAPANESE INTERMEDIATE CODE: A761

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20070703