JP2004144857A - Retroreflection function member - Google Patents

Retroreflection function member Download PDF

Info

Publication number
JP2004144857A
JP2004144857A JP2002307553A JP2002307553A JP2004144857A JP 2004144857 A JP2004144857 A JP 2004144857A JP 2002307553 A JP2002307553 A JP 2002307553A JP 2002307553 A JP2002307553 A JP 2002307553A JP 2004144857 A JP2004144857 A JP 2004144857A
Authority
JP
Japan
Prior art keywords
function member
retroreflective
lens body
concave portion
retroreflective function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002307553A
Other languages
Japanese (ja)
Inventor
Osamu Tsutsui
筒井 修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TO Co KK
TO Co KK
Original Assignee
TO Co KK
TO Co KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TO Co KK, TO Co KK filed Critical TO Co KK
Priority to JP2002307553A priority Critical patent/JP2004144857A/en
Publication of JP2004144857A publication Critical patent/JP2004144857A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a member having no incident angle restriction and exhibiting sufficient retroreflection functions with one glass bulb (a spherical lens). <P>SOLUTION: A recessed housing part 11 of a holder 1 comprises a large-diameter recessed part 12 and a small-diameter recessed part 13 continuously forming a two-stepped recessed part. The inside face of the large-diameter recessed part 12 has a tapered shape expanding upward with the upper half of the inside face being a reflection face of aluminum foil or aluminum evaporation deposition etc., and the lower half being a retroreflection face 15 of a retroreflection sheet or the like. The boundary part between the large-diameter recessed part 12 and the small-diameter recessed part 13 serves as a seat part 21 on which the glass bulb 2 is seated. A cushion material 22 is arranged in the small-diameter recessed part 13, and a long afterglow photoluminescent material sheet 23 is provided on the cushion material 22 and, further, a drainage hole 24 is formed in the small-diameter recessed part 13 around the cushion material 22. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は視線誘導標識などとして用いる再帰反射機能部材に関する。
【0002】
【従来技術】
ガラスビーズ(レンズ)の持つ光の再帰反射(入射した方向に反射光が帰る性質)を利用して、道路のトラフィックペイントにガラスビーズを混ぜる技術、或いはベース布地の一面に塗料層を設けこの塗料層にガラスビーズを半分ほど埋設した反射クロス、ガラスビーズを埋設した透明樹脂プレートの一面側に接着剤層を設けた反射シートが知られている。(非特許文献1)
【0003】
また、微小空間内にガラスビーズを配置したり、微小空間を構成する保護フィルム表面にキューブコーナ型再帰反射性要素を設けた先行技術(特許文献1)、前記非特許文献1に示された反射シートの外側面に更に屈折要素と滑り止め粒子を設けた先行技術(特許文献2)、キューブコーナ型再帰反射シートの形状に改良を加えた先行技術(特許文献3)も知られている。
【0004】
(非特許文献1)
ガラスの辞典(朝倉書店 1985年9月20日発行)P168〜P171
(特許文献1)
特開平8−234006号公報、
【0003】〜
【0005】
(特許文献2)
特表平11−508653号公報、図4及びその関連説明
(特許文献3)
WO98−18028号公報、
【0005】
【発明が解決しようとする課題】
上記先行技術のタイプ別反射性能として、封入レンズ型(ビーズ樹脂埋込型)反射シートの反射輝度は100cd/lxm程度、カプセルレンズ型反射シートの反射輝度は300cd/lxm程度、プリズムレンズ型(キューブコーナー型)反射シートの反射輝度は900cd/lxm程度とされ、現状の商品ではプリズムレンズ型反射シートが最もすぐれている反射材料であり、価格が高いためデリネーター等の視線誘導標識として主に使用されている。
上記先行技術のうち、封入レンズ型反射シートの再帰反射効率を計算するため前記封入レンズ型反射シートの再帰反射状態図を図12に示す。ここで再帰反射効率とは、入射した光線の内で入射した方向に概略戻っていると考えられる反射光線の比率とした。
この図12に示すように樹脂層の屈折率は通常1.5程度であるのでガラスビーズがレンズとして作用するには、この屈折率よりも大きな屈折率が必要になる。例えば、屈折率が2.2の高屈折ガラスを用いた場合でも2.2/1.5=1.467であるので、空気中における低屈折ガラスからなるガラスビーズと同じになる。
非特許文献に示されるように屈折率1.5のガラスビーズの集合位置は、ビーズ半球(R)の1.38倍の個所に反射面をもってくることで再帰反射を最も効率よく行うことができる。因みに屈折率1.93のガラスビーズの場合にはビーズ表面を反射面とするのが最も効率がよい。
【0006】
したがって、封入レンズ型反射シートの場合、ビーズ半球(R)の約1.38倍の個所に反射面がくるようにしている。しかしながら集光位置は図12に示すように光線の入射高さ角(ガラスビーズ中心に対する角度)によってずれてくる。即ち入射高さ角0°〜30°位迄は集光位置はそれ程変化しないが、30°を超えると集光位置が手前側に移動し、反射光の出射方向が入射光の入射方向から大きくずれて再帰反射しなくなる。
【0007】
ここで図12の再帰反射状態図で示すように0°〜30°の入射高さ角の光のみが再帰反射するとして計算すると

Figure 2004144857
となり反射効率は25%程度となる。
【0008】
次に反射効率に影響するのは、ガラスビーズの粒径のバラツキである。適正な再帰反射を得るためには、反射膜を各ビーズの粒径の焦点位置に合せる必要があり、従ってビーズの粒径は一定であることが好ましく、50〜100μmの範囲内でよく分級したものを使用しているが、理想的な同じ粒径のビーズを使用した場合より、粒径のバラツキのため反射効率は、50%以上効率ダウンすると考えられる。
【0009】
次に反射効率に影響するのは反射シート単位面積当たりのガラスビーズの面積である。焦点距離を1.38Rとし、理想的な成形でガラスビーズを充填できたと仮定すると、反射シートの単位面積当たりのガラスビーズの面積比率は、
πR/(2×1.38R)=0.4となり、更に40%程度効率ダウンすると考えられる。
【0010】
以上の結果をまとめると最終的には、0.25×0.5×0.4=0.05となり、5%程度の極めて低い反射効率となってしまう。
封入レンズ型反射シートの反射効率を5%程度とすると再帰反射輝度の値よりみて、カプセルレンズ型反射シートで15%程度、プリズムレンズ型反射シートで45%程度になると考えられる。
【0011】
上記のようにプリズムレンズ型反射シートを筆頭に優れた反射性能を持つ反射材料は開発されているが、上記再帰反射材料の欠点は光の入射角度制限があり、特定の範囲の角度からの光にしか有効でないことである。
例えばカプセルレンズ型反射シートの場合、観測角12′で入射角度が5°の場合は250cd/lxm程度であるが、入射角30°では150cd/lxm程度に減少する。更に入射角度が60〜70°と大きくなるに従って反射性能が著しく弱くなり、最終的には再帰反射性能を持たなくなる。
【0012】
以上の欠点のため、上記従来技術を利用した視線誘導標識は車の進行方向に面するように設置せざるを得ず、例えばフェリー埠頭等で車がいろいろな方向から海へ近づく場所に設置しても、特定の方向からの車の進行に対してのみ有効であるため、街灯が無い場合には車の海への転落防止事故を防ぐ事ができない。
また、中央分離帯などに設置する場合は、進行方向に反射シート面を設置すると共に逆方向に対しても反射シートを別に設ける必要があり、不経済なことになっている。
【0013】
以上の現状を踏まえて今回発明が解決しようとする課題は、入射角度制限がなく、更に現状もっともすぐれた反射性能を持つプリズムレンズ型反射シートと同等以上の反射性能を持つ反射機能部材を安く提供することである。
【0014】
【課題を解決するための手段】
上記の課題を解決するため、本発明に係る再帰反射機能部材は保持体内に球状、若しくは半球の下部に円柱をつぎたした形状、若しくは球の一部を切断した形状をなすレンズ体を上半部が保持体から露出するように配置し、前記保持体にはレンズ体よりも大径の大径凹部を設け、前記大径凹部の内側面は外側に向かって広がると共に反射機能を有するテーパ面とし、且つ保持体を水平に設置する構造とした。
上記構成品を例えば車止めのブロック上に水平に設置することで、レンズ球の全周方向からの入射光に対して一様な再帰反射性能を持つことが可能となる。
【0015】
上記構成とすることで、図9の再帰反射状態図に示すようにレンズ体への入射高さ角(水平な入射光のレンズ中心に対する角度)が15〜45°の角度の光に対して再帰反射する事が可能となる。
この時反射効率は
πR×(sin45‐sin15)/πR=0.5−0.067=0.433
と非常に高い値となる。
尚、レンズ体の材料としては、ガラスの他にプラスチックでもよい。またレンズ体の径としては、使用目的にもよるが道路鋲として用いる場合には直径2cm以上とするのが好ましい。
【0016】
また、ガラスレンズの材料には、ビンや窓ガラスのカレットを用いるのがコスト的に有利であり、このような材料を用いた場合の屈折率は、1.51前後である。そして屈折率1.51の場合にガラス球が空気中にあるとその焦光点はガラス球の半径をRとすると1.38Rの位置となる。そこで大径凹部の反射面は、図10に示すように、レンズ中心部からレンズ体の半径(R)の1.3〜1.5倍の範囲に少なくともその一部が入る逆円錐面にすることが好ましい。この時テーパ面を適切な傾きに設計することにより、反射効率が良くなる。
【0017】
また、反射面となる大径凹部の内側面の上部分をアルミ蒸着膜等により通常の反射面とし、下部分を再帰反射シート等により再帰反射面とすることで図9に示すようにレンズ体への入射高さ角(水平な入射角のレンズ中心に対する角度)が60〜75°程度の大きな入射高さ角の光の1部についても再帰反射面での反射により再帰反射することになる。
以上の効果によりトータルで50%程度の反射効率となり、従来技術の中で最もすぐれた再帰反射性能を持つプリズムレンズ型反射シートと同等以上の反射性能を持つ事が可能となる。
【0018】
また、前記大径凹部の内側面の再帰反射面には橙色やブルー色などの着色が施してもよい。
このようにすることで、例えば自動車と再帰反射機能部材との距離が遠い時には、光線の入射角度が小さく、再帰反射光の大部分はAl蒸着面で反射された光線となり、反射光は反射輝度が強い白色光で、近づくにつれて光線の入射角が大きくなり、再帰反射光の大部分は着色された再帰反射面で反射された光線となり、視認性が強い橙色や目にやさしい(まぶしくない)ブルーの色に反射光が変化し、運転者への注意喚起機能に優れる。
一般に反射性能は、反射体の色調に大きく左右され、橙色では白色の65%程度の反射輝度に低下する。更にブルー色では白色の10%程度の反射輝度に低下する。従って自動車と再帰反射機能部材との距離が大きい時には、反射機能部材に当るヘッドライトの光が暗いため、反射輝度の強い白色光が有効になり、距離が近くなると距離の2乗に逆比例して反射機能部材に当るヘッドライトの光が明るくなるため、反射輝度は弱いが視認性の強い橙色等が安全運転に有効となる。この時、着色した再帰反射シートの上端位置を上にしておくと、少し遠い距離から橙色に変っていき、また上端位置を下にしておくと、かなり接近した距離になって橙色に変わることになる。
【0019】
レンズ体の保持体に対する固定方法は任意であるが、例えばレンズ体の一部が突出する円形穴を形成したカバーにて上方から押え付ける手段が考えられる。
この時、レンズ体の底部にクッション材を設け、前記レンズ体を弾性支持する構成とすれば、レンズ球の寸法に多少の誤差が生じた場合でも確実に固定する事ができる。
更に前記クッション材の上面に蓄光シートを設けておけば、夜間等の歩行者の安全性を向上せしめることができる。
また、地震等の非常災害の暗闇時の安全避難にも有効となる。
【0020】
その他の方法としても、図7に示すようにカップ状の透明プラスチックカバーをレンズ体の上部より被せ、或いは光線の入る窓を設けたアルミダイキャスト製のカバーを使用し、車が乗り上げた時の衝撃に耐える構造にすることが考えられる。尚、レンズ体の上端の一部を切断した形状にしておくと、部材の高さを低くできる。
【0021】
特にレンズ体の形状を半球の下部に円柱を継ぎ足した形状にした場合、図11(a)に示すように光線が入射する方向の保持体のテーパ部分をレンズ体の大部分が露出するように低くすると通常は再帰反射効率しない入社角(水平な入射光のレンズ中心に対する角度)が50〜55°の光線に対してもレンズ体下部の円柱部を通して再帰反射することになり、再帰反射効率が大きくなる。
また図11(b)に示すように、レンズ体の下部から入射した光線もレンズ体の上部から水平に出射(再帰反射)するため、更に再帰反射効率は向上する。
【0022】
但しこの場合は光線の入射角度には制限がでてくることになり、レンズ体の全周方向に対し最大180°までの入射角度に対してのみ再帰反射機能を持つことになる。したがってレンズ体の全周方向(360°まで)の入射角度に対して再帰反射機能を要求される用途や、180°までの入射角度に対する再帰反射で充分な用途などの異なる用途に対応するためには、保持体の高さをレンズ体の大部分が露出するように低くするとともに、反射フィルムの高さ及び形状を任意に設計して貼りつける方法が有効となる。
【0023】
【発明の実施の形態】
以下に本発明の実施の形態を添付図面に基づいて説明する。図1は本発明に係る平板状カバーを用いた再帰反射機能部材の断面図、図2は同再帰反射機能部材の平面図、図3は再帰反射機能部材の平板状カバーを外した状態の平面図である。
【0024】
再帰反射機能部材はカップ状をなす保持体1内にレンズ体としてのガラス球2を配置してなる。この状態で、ガラス球2の略上半部が保持体1上端から上方に露出している。
保持体1は陶磁器あるいはプラスチックからなり、上方に向かって開放される収納凹部11を有する。この収納凹部11は上方の大径凹部12と下方の小径凹部13とが連続した2段状凹部となっており、大径凹部12の内側面は上方に向かって広がるテーパ状をなし、その内面のうち上半部はアルミ箔あるいはアルミ蒸着などによる反射面14とされ、下半部は再帰反射シートなどによる再帰反射面15とされている。また大径凹部12の上端縁には雨水の浸入を低減するための堰16を形成している。
【0025】
図示例にあっては、大径凹部12の内側面を直線状のテーパ面としたが、上方に向かって広がる放物曲面でもよい。また再帰反射シートを貼着せず、大径凹部12の内側面の全面を単純な反射面としてもよい。
また、大径凹部12は全周に亘って設けず、略半周のみに設け、大径凹部12を設けない部分はガラス球2が露出するようにしてもよい。
【0026】
また、大径凹部12の上縁部には等間隔で3箇所凸部17を設け、この凸部17に平板状カバー18をネジ19にて固着している。平板状カバー18は中央部にガラス球2の一部が突出する円形穴20が形成されている。
【0027】
一方、大径凹部12と小径凹部13との境界部はガラス球2が着座するシート部21とされ、また小径凹部13内にはクッション材22を配置し、このクッション材22の上面には蓄光材シート23を設け、更にクッション材22周囲の小径凹部13には水抜き穴24を形成している。
【0028】
このようにクッション材22を敷くことで、カバー18との間でガラス球2を隙間なく弾性的に保持することができる。尚、小径凹部13内にクッション材を設けず蓄光材のみ或いは何も設けなくてもよい。
【0029】
図4は同再帰反射機能部材の再帰反射状態図であり、図12の従来例と比較すれば明らかなように、本発明に係る再帰反射部材にあっては、入射角75°の場合であっても、再帰反射する。尚、入射角75°の入射光の全てが再帰反射するのではなく、所定の割合で再帰反射するのは前記した通りである。
【0030】
図5及び図6は別実施例を示す図1と同様の断面図であり、このうち図5に示す実施例は、小径凹部13を小さくして全高を抑えており、図6に示す実施例にあってはレンズ2の形状を半球の下部に円柱を継ぎ足した形状にして全高を抑えるとともに小径凹部13を扁平にし内部に蓄光材シート23を配置し、更に小径凹部13の外側には位置決め用の突条を設けている。
【0031】
図7はカップ状カバーを用いた再帰反射機能部材の断面図である。かのカバー25は外部から光が入れるように、透明プラスチック材にて形成されている。また、レンズ体2の形状は半球の下部に円柱を継ぎ足し更にレンズ体半球部の上端の一部を水平に切断した形状になっている。
このようにレンズ体上端の一部を水平に切断することでレンズ体の高さを低くすることができる。
また図中、左側の光線が入射する部分の保持体は、レンズ体2の大部分が露出するように低くなっており、逆サイドの反射面には反射フィルムがレンズ体の略上半分が露出するように貼り付けられており、これにより入射高さ角(水平な入射光のレンズ中心に対する角度)が50〜55°の光線に対しても再帰反射可能となり、再帰反射効率が高くなる。
【0032】
また、カバーの材質をアルミダイキャストなどの金属材にすることも可能である。このときには光線が入る窓を別途設ける。
【0033】
【発明の効果】
以上に説明したように本発明によれば、1個のガラス球(球状レンズ)で入射角度制限がなく、且つ充分な再帰反射機能を発揮する部材を得ることができる。特に従来にあっては微小なガラスビーズを用いているため、再帰反射に関与しない表面が多く無駄があったが、本発明によれば無駄がなくなる。
【図面の簡単な説明】
【図1】平板状カバーを用いた再帰反射機能部材の断面図
【図2】同再帰反射機能部材の平面図
【図3】再帰反射機能部材の平板状カバーを外した状態の平面図
【図4】同再帰反射機能部材の再帰反射状態図
【図5】同再帰反射機能部材の再帰反射状態図
【図6】別実施例を示す図1と同様の断面図
【図7】カップ状透明カバーを用いた再帰反射機能部材の断面図
【図8】本発明に係る再帰反射機能部材の再帰反射状態図(光線の入射高さ角0〜45°の場合)
【図9】本発明に係る再帰反射機能部材の再帰反射状態図(光線の入射高さ角50〜75°の場合)
【図10】本発明に係る再帰反射機能部材の反射面の位置図
【図11】(a)及び(b)は別実施例の図9と同様の図
【図12】従来の再帰反射機能部材の再帰反射状態図
【符号の説明】
1…保持体、2…ガラス球、11…収納凹部、12…大径凹部、13…小径凹部、14…反射面、15…再帰反射面、16…堰、17…凸部、18…カバー、19…ネジ、20…円形穴、21…シート部、22…クッション材、23…蓄光材シート、24…水抜き穴、25…反射シート、26…カップ状カバー。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a retroreflective function member used as a gaze guide sign or the like.
[0002]
[Prior art]
The technology of mixing glass beads with road traffic paint using the retroreflection of light (the property of reflected light returning in the direction of incidence) possessed by glass beads (lens), or a paint layer provided on one surface of a base fabric There are known a reflection cloth in which glass beads are buried in a layer about half, and a reflection sheet in which an adhesive layer is provided on one surface side of a transparent resin plate in which glass beads are buried. (Non-Patent Document 1)
[0003]
Further, prior art (Patent Document 1) in which glass beads are arranged in a minute space or a cube-corner type retroreflective element is provided on the surface of a protective film constituting the minute space; A prior art in which a refractive element and anti-slip particles are further provided on the outer surface of the sheet (Patent Document 2) and a prior art in which the shape of a cube-corner retroreflective sheet is improved (Patent Document 3) are also known.
[0004]
(Non-Patent Document 1)
Dictionary of Glass (Asakura Shoten, September 20, 1985) P168-P171
(Patent Document 1)
JP-A-8-234006,
[0003]
[0005]
(Patent Document 2)
Japanese Unexamined Patent Publication No. Hei 11-508653, FIG. 4 and related description (Patent Document 3)
WO98-18028,
[0005]
[Problems to be solved by the invention]
As Type reflection performance of the prior art, encapsulated lens type (bead resin implantable) reflection luminance of the reflective sheet is 100 cd / LXM 2 about, encapsulated lens reflective brightness of the reflective sheet 300 cd / LXM 2 mm, prism lens type (Cube corner type) The reflection luminance of the reflection sheet is about 900 cd / lxm 2, and the prism lens type reflection sheet is the most excellent reflection material in the current products. Used in
FIG. 12 is a diagram showing the retroreflection state of the encapsulated lens-type reflective sheet for calculating the retroreflection efficiency of the encapsulated lens-type reflective sheet. Here, the retroreflection efficiency is defined as a ratio of reflected light rays that are considered to be substantially returned in the incident direction among incident light rays.
As shown in FIG. 12, the refractive index of the resin layer is usually about 1.5, so that the glass beads need a refractive index larger than this refractive index in order to function as a lens. For example, even when a high refractive index glass having a refractive index of 2.2 is used, the ratio is 2.2 / 1.5 = 1.467, which is the same as glass beads made of low refractive index glass in the air.
As shown in the non-patent literature, the collection position of the glass beads having a refractive index of 1.5 can be retroreflected most efficiently by providing a reflective surface at a location 1.38 times as large as the bead hemisphere (R). . In the case of glass beads having a refractive index of 1.93, it is most efficient to use the bead surface as a reflection surface.
[0006]
Therefore, in the case of the encapsulated lens type reflection sheet, the reflection surface is set to be about 1.38 times as large as the bead hemisphere (R). However, as shown in FIG. 12, the light condensing position shifts depending on the incident height angle of the light beam (the angle with respect to the center of the glass bead). That is, the condensing position does not change so much from about 0 ° to 30 ° of the incident height angle, but when the angle exceeds 30 °, the condensing position moves to the near side, and the emission direction of the reflected light is larger than the incident direction of the incident light. It is shifted and no retroreflection occurs.
[0007]
Here, as shown in the retroreflection state diagram of FIG. 12, calculation is performed assuming that only light having an incident height angle of 0 ° to 30 ° is retroreflected.
Figure 2004144857
And the reflection efficiency is about 25%.
[0008]
Next, the influence on the reflection efficiency is the variation in the particle diameter of the glass beads. In order to obtain proper retroreflection, it is necessary to adjust the reflection film to the focal position of the particle size of each bead. Therefore, the particle size of the bead is preferably constant, and the particles are well classified within the range of 50 to 100 μm. However, it is considered that the reflection efficiency is reduced by 50% or more due to the variation in particle diameter as compared with the case where ideal beads having the same particle diameter are used.
[0009]
The next factor that affects the reflection efficiency is the area of the glass beads per unit area of the reflection sheet. Assuming that the focal length is 1.38R and the glass beads can be filled by ideal molding, the area ratio of the glass beads per unit area of the reflection sheet is:
πR 2 /(2×1.38R) 2 = 0.4, and it is considered that the efficiency is further reduced by about 40%.
[0010]
Summarizing the above results, finally, 0.25 × 0.5 × 0.4 = 0.05, resulting in an extremely low reflection efficiency of about 5%.
Assuming that the reflection efficiency of the encapsulated lens type reflection sheet is about 5%, the value of the retroreflection luminance is considered to be about 15% for the capsule lens type reflection sheet and about 45% for the prism lens type reflection sheet.
[0011]
As described above, a reflective material having excellent reflection performance has been developed with a prism lens type reflective sheet at the top, but the disadvantage of the retroreflective material is that there is a limit on the incident angle of light, and light from a specific range of angles is limited. It is effective only for
For example, in the case of a capsule lens type reflection sheet, when the incident angle is 5 ° and the observation angle is 12 ′, it is about 250 cd / lxm 2 , but when the incident angle is 30 °, it decreases to about 150 cd / lxm 2 . Further, as the incident angle increases to 60 to 70 °, the reflection performance becomes significantly weaker, and eventually the retroreflection performance is lost.
[0012]
Due to the drawbacks described above, the gaze guidance signs using the above-described conventional technology must be installed so as to face the traveling direction of the car, for example, at a place where the car approaches the sea from various directions such as a ferry wharf. However, since it is effective only for the traveling of the vehicle from a specific direction, it is not possible to prevent the accident of preventing the vehicle from falling into the sea without a streetlight.
In addition, when it is installed in a median strip or the like, it is necessary to provide a reflection sheet surface in the traveling direction and separately provide a reflection sheet in the opposite direction, which is uneconomical.
[0013]
The problem to be solved by the present invention based on the above current situation is that there is no limit on the incident angle, and at the same time, a reflective function member having a reflection performance equal to or higher than that of the prism lens type reflection sheet having the best reflection performance at present is provided at a low price. It is to be.
[0014]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the retroreflective function member according to the present invention is configured such that a lens body having a spherical shape in a holding body, or a shape obtained by cutting a hemisphere into a cylinder, or a shape obtained by cutting a part of a sphere is used as an upper half. The holder is disposed so as to be exposed from the holding body, and the holding body is provided with a large-diameter concave portion having a larger diameter than the lens body, and the inner side surface of the large-diameter concave portion expands outward and has a tapered surface having a reflection function. And the holder is set horizontally.
By arranging the above components horizontally, for example, on a block of a car stop, it is possible to have uniform retroreflective performance with respect to incident light from all directions around the lens ball.
[0015]
With the above configuration, as shown in the retroreflection state diagram of FIG. 9, light having an incident height angle (angle of horizontal incident light with respect to the lens center) of the lens body of 15 to 45 ° is retroreflected. It is possible to reflect.
At this time, the reflection efficiency is πR 2 × (sin 45 2 −sin 15 2 ) / πR 2 = 0.5−0.067 = 0.433.
And a very high value.
The lens body may be made of plastic in addition to glass. The diameter of the lens body is preferably 2 cm or more when used as a road tack, though it depends on the purpose of use.
[0016]
Further, it is advantageous in terms of cost to use a cullet of a bottle or a window glass as a material of the glass lens, and the refractive index when such a material is used is around 1.51. When the glass sphere is in the air with a refractive index of 1.51, the focal point is located at 1.38R, where R is the radius of the glass sphere. Therefore, as shown in FIG. 10, the reflection surface of the large-diameter concave portion is an inverted conical surface at least part of which is within a range of 1.3 to 1.5 times the radius (R) of the lens body from the lens center. Is preferred. At this time, the reflection efficiency is improved by designing the taper surface to have an appropriate inclination.
[0017]
Further, the upper portion of the inner surface of the large-diameter concave portion serving as the reflecting surface is formed as a normal reflecting surface using an aluminum vapor-deposited film or the like, and the lower portion is formed as a retroreflecting surface using a retroreflective sheet or the like. Part of the light having a large incident height angle of about 60 to 75 [deg.] (The angle of the horizontal incident angle with respect to the lens center) is also retroreflected by the retroreflective surface.
With the above effects, the reflection efficiency becomes about 50% in total, and it is possible to have the reflection performance equal to or higher than that of the prism lens type reflection sheet having the best retroreflection performance among the prior arts.
[0018]
The retroreflective surface on the inner surface of the large-diameter concave portion may be colored orange or blue.
By doing so, for example, when the distance between the automobile and the retroreflective function member is long, the incident angle of the light beam is small, most of the retroreflected light is a light beam reflected on the Al-deposited surface, and the reflected light is a reflection luminance. Is an intense white light, the angle of incidence of the light rays increases as approaching, and most of the retroreflected light is reflected by the colored retroreflective surface, and orange with strong visibility or blue that is easy on the eyes (not dazzling) The reflected light changes to the color of the vehicle, which is excellent in alerting the driver.
In general, the reflection performance largely depends on the color tone of the reflector, and the reflection luminance of orange is reduced to about 65% of white. Further, in the case of the blue color, the reflection luminance is reduced to about 10% of the white luminance. Therefore, when the distance between the automobile and the retroreflective function member is large, the light of the headlights hitting the reflective function member is dark, and white light with high reflection luminance is effective. When the distance is short, the white light is inversely proportional to the square of the distance. As a result, the light of the headlights hitting the reflection function member becomes brighter, so that orange or the like with low reflection luminance but high visibility is effective for safe driving. At this time, if the top position of the colored retroreflective sheet is set to the top, it will change from a little distance to orange, and if the top position is set to down, it will become a very close distance and change to orange. Become.
[0019]
The fixing method of the lens body to the holding body is arbitrary. For example, a means for pressing the lens body from above with a cover formed with a circular hole from which a part of the lens body protrudes is considered.
At this time, if a cushion material is provided at the bottom of the lens body to elastically support the lens body, the lens ball can be securely fixed even when a slight error occurs in the dimension of the lens ball.
Further, if a phosphorescent sheet is provided on the upper surface of the cushion material, the safety of pedestrians at night or the like can be improved.
It is also effective for safe evacuation in the dark of an emergency disaster such as an earthquake.
[0020]
As another method, as shown in FIG. 7, a cup-shaped transparent plastic cover is put on from the upper part of the lens body, or an aluminum die-cast cover having a window through which light rays enter is used. It is conceivable to make the structure resistant to impact. If a part of the upper end of the lens body is cut, the height of the member can be reduced.
[0021]
In particular, when the shape of the lens body is formed by adding a cylinder to the lower part of the hemisphere, as shown in FIG. 11A, the tapered portion of the holding body in the direction in which the light beam enters so that most of the lens body is exposed. If the angle is low, light rays having an entry angle (angle of horizontal incident light with respect to the lens center) of 50 to 55 °, which does not normally have retroreflection efficiency, will be retroreflected through the cylindrical portion below the lens body, and the retroreflection efficiency will be reduced. growing.
Also, as shown in FIG. 11B, the light rays incident from the lower part of the lens body are also horizontally emitted from the upper part of the lens body (retroreflection), so that the retroreflection efficiency is further improved.
[0022]
However, in this case, the incident angle of the light beam is limited, and the lens has a retroreflective function only at an incident angle of up to 180 ° with respect to the entire circumferential direction of the lens body. Therefore, in order to cope with different applications such as an application requiring a retroreflection function for an incident angle in the entire circumferential direction (up to 360 °) of the lens body and an application requiring retroreflection for an incident angle of up to 180 °. It is effective to reduce the height of the holder so that most of the lens body is exposed, and to arbitrarily design and attach the height and shape of the reflection film.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. 1 is a cross-sectional view of a retroreflective function member using a flat cover according to the present invention, FIG. 2 is a plan view of the retroreflective function member, and FIG. 3 is a plan view of the retroreflective function member with the flat cover removed. FIG.
[0024]
The retroreflective function member is formed by disposing a glass ball 2 as a lens body in a holder 1 having a cup shape. In this state, a substantially upper half of the glass ball 2 is exposed upward from the upper end of the holder 1.
The holder 1 is made of ceramic or plastic, and has a storage recess 11 that is opened upward. The storage recess 11 is a two-step recess in which an upper large-diameter recess 12 and a lower small-diameter recess 13 are continuous. The inner surface of the large-diameter recess 12 has a tapered shape that expands upward. The upper half is a reflective surface 14 made of aluminum foil or aluminum vapor deposition, and the lower half is a retroreflective surface 15 made of a retroreflective sheet or the like. In addition, a weir 16 for reducing infiltration of rainwater is formed at the upper edge of the large-diameter recess 12.
[0025]
In the illustrated example, the inner side surface of the large-diameter concave portion 12 is a linear tapered surface, but may be a parabolic curved surface extending upward. Further, the entire inner surface of the large-diameter concave portion 12 may be formed as a simple reflective surface without attaching the retroreflective sheet.
Further, the large-diameter concave portion 12 may not be provided over the entire circumference, but may be provided only on substantially a half circumference, and the glass ball 2 may be exposed at a portion where the large-diameter concave portion 12 is not provided.
[0026]
Further, three convex portions 17 are provided at equal intervals on the upper edge portion of the large-diameter concave portion 12, and a flat cover 18 is fixed to the convex portions 17 with screws 19. The flat cover 18 has a circular hole 20 at the center where a part of the glass bulb 2 protrudes.
[0027]
On the other hand, a boundary portion between the large-diameter concave portion 12 and the small-diameter concave portion 13 is a seat portion 21 on which the glass ball 2 is seated, and a cushion material 22 is arranged in the small-diameter concave portion 13. A material sheet 23 is provided, and a drain hole 24 is formed in the small-diameter concave portion 13 around the cushion material 22.
[0028]
By laying the cushion material 22 in this manner, the glass ball 2 can be elastically held between the cover 18 and the cover 18 without any gap. In addition, it is not necessary to provide only a light storage material or nothing at all in the small-diameter concave portion 13 without providing a cushion material.
[0029]
FIG. 4 is a diagram showing a retroreflection state of the retroreflective function member. As is clear from comparison with the conventional example of FIG. 12, the retroreflective member according to the present invention has an incident angle of 75 °. Even retroreflects. As described above, not all the incident light having an incident angle of 75 ° is retroreflected at a predetermined ratio, instead of being retroreflected.
[0030]
5 and 6 are cross-sectional views similar to FIG. 1 showing another embodiment. In the embodiment shown in FIG. 5, the small-diameter recess 13 is made smaller to reduce the overall height, and the embodiment shown in FIG. In this case, the shape of the lens 2 is formed by adding a cylinder to the lower part of the hemisphere, the overall height is suppressed, the small-diameter recess 13 is flattened, and the light-storing material sheet 23 is disposed inside. Ridges are provided.
[0031]
FIG. 7 is a sectional view of a retroreflective function member using a cup-shaped cover. The cover 25 is formed of a transparent plastic material so that light can enter from outside. The shape of the lens body 2 is such that a column is added to the lower part of the hemisphere, and a part of the upper end of the hemisphere part of the lens body is cut horizontally.
By cutting a part of the upper end of the lens body horizontally in this way, the height of the lens body can be reduced.
In the drawing, the holder on the left side where the light beam enters is low so that most of the lens body 2 is exposed, and the reflection film on the opposite side has a reflection film that exposes almost the upper half of the lens body. As a result, retroreflection is possible even for light rays having an incident height angle (angle of horizontal incident light with respect to the lens center) of 50 to 55 °, and the retroreflection efficiency is increased.
[0032]
Further, the cover may be made of a metal material such as aluminum die cast. At this time, a window through which light rays enter is separately provided.
[0033]
【The invention's effect】
As described above, according to the present invention, a single glass ball (spherical lens) having no incident angle limitation and capable of exhibiting a sufficient retroreflective function can be obtained. In particular, in the prior art, since minute glass beads are used, many surfaces that do not participate in retroreflection are wasted. However, according to the present invention, there is no waste.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a retroreflective function member using a flat cover. FIG. 2 is a plan view of the retroreflective function member. FIG. 3 is a plan view of the retroreflective function member with the flat cover removed. 4 Retroreflective state diagram of the retroreflective function member. FIG. 5 Retroreflective state diagram of the retroreflective function member. FIG. 6 Cross-sectional view similar to FIG. 1 showing another embodiment. FIG. 7 Cup-shaped transparent cover. FIG. 8 is a cross-sectional view of a retroreflective function member according to an embodiment of the present invention.
FIG. 9 is a diagram showing a retroreflective state of the retroreflective function member according to the present invention (in the case where the incident height angle of light rays is 50 to 75 °).
FIG. 10 is a view showing the position of the reflection surface of the retroreflective function member according to the present invention. FIGS. 11 (a) and (b) are similar to FIG. 9 of another embodiment. FIG. Retroreflection state diagram of [Description of symbols]
DESCRIPTION OF SYMBOLS 1 ... Holder, 2 ... Glass ball, 11 ... Storage concave part, 12 ... Large diameter concave part, 13 ... Small diameter concave part, 14 ... Reflection surface, 15 ... Retroreflection surface, 16 ... Weir, 17 ... Convex part, 18 ... Cover, 19: Screw, 20: Circular hole, 21: Seat part, 22: Cushion material, 23: Luminescent material sheet, 24: Drain hole, 25: Reflective sheet, 26: Cup-shaped cover.

Claims (11)

保持体内に球状、半球の下部に円柱をつぎたした形状若しくは、球の1部を切断した形状をなすレンズ体を上半部が保持体から露出するように配置してなる再帰反射機能部材において、前記保持体には、レンズ体よりも大径の大径凹部が全周若しくは周方向の一部に設けられ、前記大径凹部の内側面は外側に向かって広がると共に反射機能を有するテーパ面とされていることを特徴とする再帰反射機能部材。A retroreflective function member in which a lens body having a spherical shape in a holding body, a shape in which a cylinder is inserted in a lower part of a hemisphere, or a shape obtained by cutting a part of a sphere is arranged so that an upper half portion is exposed from the holding body. A large-diameter concave portion having a diameter larger than that of the lens body is provided on the entire circumference or a part of the circumferential direction, and an inner surface of the large-diameter concave portion extends outward and has a tapered surface having a reflection function. A retroreflective function member characterized in that: 請求項1に記載の再帰反射機能部材において、前記大径凹部の内側にアルミ蒸着膜等を施すことにより反射機能を有するようにしたことを特徴とする再帰反射機能部材。The retroreflective function member according to claim 1, wherein a reflective function is provided by applying an aluminum vapor-deposited film or the like inside the large-diameter concave portion. 請求項1に記載の再帰反射機能部材において、前記大径凹部の内側にアルミ蒸着膜等などを有する反射フィルムを貼り付けることにより反射機能を有するようにしたことを特徴とする再帰反射機能部材。2. The retroreflective function member according to claim 1, wherein the reflective function is provided by attaching a reflective film having an aluminum vapor deposition film or the like inside the large-diameter concave portion. 請求項3に記載の再帰反射機能部材において、前記レンズ体の大部分が保持体から露出するように大径凹部の内側のテーパ面を低くするとともに、任意の高さ及び形状に切断した反射フィルムを貼り付けることにより、任意の高さ形状の反射機能を有するテーパ面を形成したことを特徴とする再帰反射機能部材。4. The retroreflective function member according to claim 3, wherein the tapered surface inside the large-diameter concave portion is lowered so that most of the lens body is exposed from the holder, and the reflective film is cut into an arbitrary height and shape. A retroreflective function member characterized in that a tapered surface having a reflecting function of an arbitrary height shape is formed by sticking. 請求項2乃至請求項4に記載の再帰反射機能部材において、前記大径凹部の内側の反射機能を有するテーパ面の下部に白色若しくは着色された再帰反射シートが貼られていることを特徴とする再帰反射機能部材。5. The retroreflective function member according to claim 2, wherein a white or colored retroreflective sheet is attached to a lower portion of the tapered surface having a reflective function inside the large-diameter concave portion. 6. Retroreflective function member. 請求項1乃至請求項5に記載の再帰反射機能部材において、前記大径凹部の内側には小径凹部が設けられ、この小径凹部の縁部若しくは小径凹部の底部がレンズ体の着座するシート部とされていることを特徴とする再帰反射機能部材。6. The retroreflective function member according to claim 1, wherein a small-diameter concave portion is provided inside the large-diameter concave portion, and an edge of the small-diameter concave portion or a bottom portion of the small-diameter concave portion corresponds to a seat portion on which a lens body is seated. A retroreflective function member characterized by being made. 請求項1乃至請求項6に記載の再帰反射機能部材において、前記レンズ体の屈折率は約1.51とし、前記大径凹部の内側の反射面がレンズ中心部からレンズ体の半径(R)の1.3〜1.5倍の範囲に入ることを特徴とする再帰反射機能部材。7. The retroreflective function member according to claim 1, wherein a refractive index of the lens body is about 1.51, and a reflection surface inside the large-diameter concave portion is a radius (R) of the lens body from a center of the lens. The retroreflective function member, which falls within a range of 1.3 to 1.5 times of the above. 請求項1乃至請求項7に記載の再帰反射機能部材において、前記レンズ体を透明樹脂からなるカップ状カバーにて覆ったことを特徴とする再帰反射機能部材。The retroreflective function member according to claim 1, wherein the lens body is covered with a cup-shaped cover made of a transparent resin. 請求項1乃至請求項8に記載の再帰反射機能部材において、前記レンズ体は上端部を水平面に沿って切断した形状をしていることを特徴とする再帰反射機能部材。9. The retroreflective function member according to claim 1, wherein the lens body has a shape in which an upper end portion is cut along a horizontal plane. 請求項1乃至請求項9に記載の再帰反射機能部材において、前記レンズ体はレンズ体の一部が突出する円形穴が形成された平板状カバーにて保持体に固定されていることを特徴とする再帰反射機能部材。The retroreflective function member according to any one of claims 1 to 9, wherein the lens body is fixed to the holder by a flat cover having a circular hole from which a part of the lens body protrudes. Retroreflective function member. 請求項1乃至請求項10に記載の再帰反射機能部材において、前記レンズ体の底部に蓄光シート、クッション材若しくは蓄光シートを貼り付けたクッション材が設けられていることを特徴とする再帰反射機能部材。The retroreflective function member according to claim 1, wherein a light-storing sheet, a cushion material, or a cushion material to which a light-storing sheet is attached is provided on a bottom portion of the lens body. .
JP2002307553A 2002-10-22 2002-10-22 Retroreflection function member Pending JP2004144857A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002307553A JP2004144857A (en) 2002-10-22 2002-10-22 Retroreflection function member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002307553A JP2004144857A (en) 2002-10-22 2002-10-22 Retroreflection function member

Publications (1)

Publication Number Publication Date
JP2004144857A true JP2004144857A (en) 2004-05-20

Family

ID=32453979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002307553A Pending JP2004144857A (en) 2002-10-22 2002-10-22 Retroreflection function member

Country Status (1)

Country Link
JP (1) JP2004144857A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014070010A1 (en) 2012-11-01 2014-05-08 Tauw B.V. Signalling device
KR101726778B1 (en) * 2016-01-14 2017-04-13 김재문 Apparatus for road sign stud

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014070010A1 (en) 2012-11-01 2014-05-08 Tauw B.V. Signalling device
KR101726778B1 (en) * 2016-01-14 2017-04-13 김재문 Apparatus for road sign stud

Similar Documents

Publication Publication Date Title
US4208090A (en) Reflector structure
JP2004144857A (en) Retroreflection function member
JP4099403B2 (en) Self-luminous gaze guidance mark
JP4099318B2 (en) Reflector for sticking the support
KR101931685B1 (en) Delineator improved visibility using phosphorescent plate and reflector
JP3900092B2 (en) Guidance display component and line-of-sight guidance display device
JP3256092B2 (en) Light-emitting road tack
KR20050006029A (en) Signal of traffic
KR101145338B1 (en) Road stud
JP2000242889A (en) Signal
CN213952027U (en) Municipal administration road pile of holding up traffic
JPH10266144A (en) Selfluminous type road rivet
KR200272022Y1 (en) Road reflector block
KR200272931Y1 (en) Indicator for Boundary Stone
JP3097952B2 (en) Delineator with light emitting ring
JPH08220315A (en) Variable color reflection element
JPH10280339A (en) Self-illumination type road lighting
JP3019321U (en) Gaze guide
JPH02235001A (en) Embedment type retroreflective road rivet
JPH0723011U (en) Self-luminous warning indicator light
JPH08326022A (en) Buried type traffic sign device
JP4223974B2 (en) Road fence
JP3013738U (en) Buried road sign device
JP2923287B1 (en) Light reflector for road sign
JP2987764B2 (en) Light-emitting tack