JP2004144545A - Inspection method of color irregularity - Google Patents

Inspection method of color irregularity Download PDF

Info

Publication number
JP2004144545A
JP2004144545A JP2002308105A JP2002308105A JP2004144545A JP 2004144545 A JP2004144545 A JP 2004144545A JP 2002308105 A JP2002308105 A JP 2002308105A JP 2002308105 A JP2002308105 A JP 2002308105A JP 2004144545 A JP2004144545 A JP 2004144545A
Authority
JP
Japan
Prior art keywords
color
chromaticity
frequency
threshold
color difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002308105A
Other languages
Japanese (ja)
Inventor
Osamu Hirose
廣瀬 修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2002308105A priority Critical patent/JP2004144545A/en
Publication of JP2004144545A publication Critical patent/JP2004144545A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for performing quantitatively and quickly quality determination of color irregularity agreeing well with visual determination. <P>SOLUTION: This method is characterized as follows: reflected light acquired by irradiating the surface of an inspection object with light is photographed by a color camera; the output signal thereof is converted into chromaticity; the color difference between the determined chromaticity and a reference chromaticity and the frequency distribution thereof are determined relative to the whole inspection region; the frequency distribution is compared with a threshold curve wherein a frequency threshold is high in a small color difference set beforehand and the frequency threshold is suddenly decreased up to zero following increase in the color difference; and when the whole frequency distribution is below the threshold curve, it is determined that the color irregularity does not exist in the inspection object, and when the distribution has a part not below the threshold curve, it is determined that the color irregularity exists. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、色むらの検査方法に関する。詳しくは、塗装被膜、フィルム、ガラス基板、多層薄膜等の検査対象物の色むらを、目視判定と良く合う判定を、定量的かつ迅速に行う色むらの検査方法に関する。
【0002】
【従来の技術】
色むらの検査方法として、検査対象物を撮影して得られる画像データを使用する方法が広く用いられており、カラーCCDカメラによって検査対象物の一次画像を撮像し三原色の色光量に応じた三原色データを画素毎に生成し、この三原色データを画素毎に演算処理して色むら分布データを算出し、この色むら分布データに基づき一次画像の色むら分布を表す二次画像をモニター表示し、目視可能にする方法(特許文献1参照)、得られた画素毎の三原色データと基準色との色差を画素毎に算出し、この画素毎の色差データを所定数の画素行列からなる格子に切り分け、その各格子内の各画素の色差データを加算し、各格子間での色差データの加算値の変化量を水平方向および垂直方向のそれぞれについて求め、この変化量が所定量より多い場合に、色むらと判定する方法(特許文献2参照)等が提案されている。
【0003】
【特許文献1】
特開平5−332838号公報(段落[0005])
【0004】
【特許文献2】
特開平8−138052号公報(段落[0008])
【0005】
【発明が解決しようとする課題】
しかしながら、特許文献1に記載の方法は、色むら分布を目視可能にすることはできるが、色むらの判定は目視によるものであり、不鮮明な色むらの場合、判定し難く、判定に時間を要し、また判定者によるばらつきがでる方法である。また、特許文献2に記載の方法は、画素間の差からは検出できない僅かな色むらを強調して検出し易くする方法であって、色むらの程度と頻度を考慮した目視判定と良く合う判定を定量的かつ迅速に行う方法ではない。
【0006】
本発明の目的は、検査対象物の色むらについて、色むらの程度と頻度を考慮した目視判定と良く合う判定を定量的かつ迅速に行う方法を提供することにある。
本発明者らは、かかる課題を解決するために色むらの検査方法について鋭意検討した結果、検査対象物の色度と基準色度との色差の度数分布を求め、この度数分布と、小さい色差では度数の閾値が高く、大きい色差になるに従って度数の閾値が急激に減少してゼロになる閾値曲線とを比較、判定することによって、目的を達成できることを見出し、本発明に至った。
【0007】
【課題を解決するための手段】
すなわち本発明は、検査対象物の表面に光を照射して得られる反射光をカラーカメラで撮影し、その出力信号を色度に変換し、
検査領域全体について、この求めた色度と基準色度との色差およびその度数分布を求め、
この度数分布と、予め設定しておいた小さい色差では度数の閾値が高く、大きい色差になるに従って度数の閾値が急激に減少してゼロになる閾値曲線とを比較し、
度数分布の全体が閾値曲線以下であれば、検査対象物に色むらはないと判定し、閾値曲線に収まらない部分があれば、色むらがあると判定することを特徴とする色むらの検査方法である。
この方法によって、目視判定と良く合う色むらの判定を定量的かつ迅速に行うことができる。
【0008】
【発明の実施の形態】
図1は本発明の色むらの検査方法に使用する装置構成の一例を示す図である
図2は本発明の色むらを検査する工程の一例を示す流れ図である。
検査対象物1に光源2から光21を照射する。光源としては、通常、ハロゲンランプ、蛍光灯、キセノンランプ等が使用される。
検査対象物からの反射光22をカラーカメラ3で撮影する(S2)。カメラとしては、通常、カラーCCDカメラが用いられる。カラーCCDカメラで撮影した反射光は、通常、赤色、緑色、青色の3原色(RGB)の電気信号23として出力される。
【0009】
電気信号は検査演算部5の画像入力部11に送られる。検査演算部は、通常、コンピュータ・システムを利用してソフトウェア的に構築されている。画像入力部では出力信号23がデジタル化される。次に色度演算部12で出力信号が色度に変換される(S3)。なお、カラーCCDカメラからの出力信号がデジタル信号である場合、そのまま色度演算部で色度に変換される。
なお、反射光の分光分布から、その時知覚される色度が一意に求められる(例えば、桑原五郎ほか著「光学技術」共立出版発行)。
色度表示に使用する表色系は特に限定されるものではなく、xy色度、u’v’色度、L色空間などが挙げられる。
【0010】
この色度は、通常、検査領域全体の画素毎に求められる。検査領域として、カメラで撮影した画像全体、連続撮影した場合の全画像、または撮影した画像のうちの一部を設定しても良く、目的によって適宜選択される。
【0011】
基準色度設定部14では、予め基準色度が設定される(S1)。基準色度としては、検査対象物に要求される、すなわち予め設定される色度、または標準試料について求めた色度が用いられる。
次に検査領域全体の画素毎に求めた色度と基準色度との色差およびその分布が求められる(S4)。
得られる色差の分布から、色差の度数分布が求められる(S5)。
【0012】
目視で色むらを評価する場合、色差が大きい個所が1箇所でもあれば色むらがあると判定され、また色差が比較的小さく、そのような個所が少なければ色むらはないとされ、そのような個所が多数ある場合は色むらがあると判定される。
本発明では、予め、小さい色差では度数の閾値が高く、大きい色差になるに従って度数の閾値が急激に減少してゼロになる閾値曲線を設定しておき、先に求めた色差の度数分布とこの閾値曲線とを比較し、度数分布の全体が閾値曲線以下であれば、色むらはないと判定し、度数分布に閾値曲線内に収まらない部分があれば、色むらがあると判定し、その結果が出力される(S6)。
この出力を基に検査対象物の仕分けが行われる。
なお、閾値曲線の具体的な値は、判定基準によって適宜設定される。
また、これらの演算および判定は、コンピューターシステムによって迅速に行われ、閾値曲線によって定量的に判定される。
【0013】
【実施例】
以下、本発明を実施例で具体的に説明するが、本発明はこれに限定されるものではない。
【0014】
実施例1
アクリルフィルム基板(設定厚さ:1mm、屈折率1.49)上に、順次、基板側から、ZrO微粒子を含有する紫外線硬化型樹脂からなる第2層(設定厚さ:90nm、屈折率:1.72)、熱硬化型シラン樹脂からなる第1層(設定厚さ:80nm、屈折率:1.44)を形成してなる二層膜について、色むらの検査を行った。
この二層膜の表面を、光源として蛍光灯面光源を用いて照射し、その反射光を二層膜の表面の法線から0度の角度からカラーCCDカメラ(SONY社製:XC−003)で撮影した。カラーCCDカメラからのデジタル信号を色度に変換し、次に予め標準試料について求めた色度(基準色度)との色差について、撮影画像全体(検査領域)の画素毎に求め、その分布を得た。その結果を図3に示す。
次にこの色差の度数分布を求めた。その結果を図4に示す。
【0015】
図4には、予め求めておいた小さい色差では度数の閾値が高く、大きい色差になるに従って度数の閾値が急激に減少してゼロになる閾値曲線を点線で示してある。具体的には、色差が0.12以下では度数の閾値が200、色差が0.14では度数の閾値が100、色差が0.16では度数の閾値が50、色差が0.18では度数の閾値が25、色差が0.20では度数の閾値が12、色差が0.22では度数の閾値が6、色差が0.24以上では度数の閾値が0に設定されている。この場合、色差の度数分布に閾値曲線以下にならない部分があるので色むらがあると判定される。
【0016】
別の二層膜について同様に行った結果を図5、図6に示す。図5は画素毎の色差を示し、図6は色差の度数分布および閾値曲線を示す図である。この場合、度数分布全体が閾値曲線以下になっているので色むらはないと判定される。
【0017】
参考例1
コンピューターグラフィックスによって、色むら強度が3種類、色むら本数が3種類、色むら領域幅が3種類の計27種類の色むら画像と、基準となる良品の画像との合計28種類の画像を作製し、目視で一対毎に比較評価を行った。
色むらが強いと感じる方を2点、同等と感じる場合は双方を1点、色むらが弱いと感じる方を0点とし、評価点を加算して各画像の色むらを数値化した。良品の評価点は10点であり、最も色むらが強く感じられる画像の評価点は49点であった。評価点が10〜15点の画像は、色むらが殆ど感じられず良好であり、評価点が40以上の画像は、色むらが強く感じられ明らかに悪いと判定されるものである。
【0018】
次に、色むらのある27種の画像の色度と良品の画像の色度(基準色度)との色差の度数分布を求めた。代表的な幾つかの例を図7〜図9に示す。図中、横軸は色差を表し、縦軸は度数(画像中の画素数)を表す。また、例えば図7中の上段の色差の度数分布図において、M112は、色むらの本数が1本(最初の1がそれを示す)で、その強度が3種のうちで一番弱い強度(次の1がそれを示す)で、その色むら領域幅が3種のうちで中間幅(2がそれを示す)である画像のものであることを示しており、評価/12はその画像の上記比較評価法による評価点が12点であったことを示している。同様に、図9中の下段の色差の度数分布図において、M332は、色むらの本数が3本で、その強度が3種のうちで一番強い強度で、その色むら領域幅が3種のうち中間幅である画像のものであることを示しており、評価/45はその画像の上記比較評価法による評価点が45点であったことを示している。
【0019】
大きい色差の度数が少しでもある(図の右の方に低い山がある)と、評価点は大きく、目視では色むらがあると判定される。小さい色差の度数が多少多くあっても(グラフの裾野付近に多少高い山があっても)評価点は小さく、目視では色むらが少なく良品なみに判定される。中間の色差および度数のものは、概ね中程度の評価点となっている。
図10は上記比較評価における評価者による差を示す図である。評価者による差はほとんどないことを示している。
これらのことから、小さい色差では度数の閾値が高く、大きい色差になるに従って度数の閾値が急激に減少してゼロになる閾値曲線を設定しておくことにより、目視判定と同じ判定を行うことができる。
【0020】
【発明の効果】
本発明の方法によれば、検査対象物の色むらの有無について、目視判定と良く合う判定を、判定者によるばらつきもなく、定量的かつ迅速に行うことができる。
【図面の簡単な説明】
【図1】本発明の色むらの検査方法に使用する装置の構成の一例を示す図である。
【図2】本発明の色むらを検査する工程の一例を示す流れ図である。
【図3】実施例の二層膜について、検査領域全体の画素毎に求めた色差を示す図である。
【図4】実施例の二層膜について、色差の度数分布と閾値曲線を示す図である。
【図5】実施例のもう一方の二層膜について、検査領域全体の画素毎に求めた色差を示す図である。
【図6】実施例のもう一方の二層膜について、色差の度数分布と閾値曲線を示す図である。
【図7】参考例の画像についての色差の度数分布を示す図である。
【図8】参考例の他の画像についての色差の度数分布を示す図である。
【図9】参考例の更に他の画像についての色差の度数分布を示す図である。
【図10】参考例の比較評価における評価者による差を示す図である。
【符号の説明】
1 検査対象物
2 光源
3 カメラ
4 検査演算部
11 画像入力部
12 色度演算部
13 色差演算部
14 基準色度設定部
15 度数分布演算部
16 色むら良否判定部
17 閾値曲線設定部
21 照射光
22 反射光
23 出力信号
24 判定出力信号
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for inspecting color unevenness. More specifically, the present invention relates to a method for inspecting color unevenness of an object to be inspected such as a paint film, a film, a glass substrate, a multilayer thin film, etc., which quantitatively and quickly makes a determination that matches well with visual determination.
[0002]
[Prior art]
As a method for inspecting color unevenness, a method using image data obtained by photographing an inspection target is widely used. A primary image of the inspection target is captured by a color CCD camera, and three primary colors corresponding to three primary color light amounts are used. Data is generated for each pixel, the three primary color data is processed for each pixel to calculate uneven color distribution data, and a secondary image representing the uneven color distribution of the primary image is displayed on the monitor based on the uneven color distribution data, A method for making it visible (refer to Patent Document 1), calculating a color difference between the obtained three primary color data and a reference color for each pixel, and dividing the color difference data for each pixel into a grid composed of a predetermined number of pixel matrices. , Add the chrominance data of each pixel in each of the grids, and determine the change amount of the added value of the chrominance data between the respective grids in each of the horizontal direction and the vertical direction, and this change amount is larger than a predetermined amount. The case, the method determines that the color unevenness (see Patent Document 2) are proposed.
[0003]
[Patent Document 1]
JP-A-5-332838 (paragraph [0005])
[0004]
[Patent Document 2]
JP-A-8-138052 (Paragraph [0008])
[0005]
[Problems to be solved by the invention]
However, the method described in Patent Literature 1 can make the color unevenness distribution visible, but the determination of the color unevenness is based on visual observation. In other words, this is a method in which there is variation depending on the judge. Further, the method described in Patent Document 2 is a method for enhancing slight color unevenness that cannot be detected from a difference between pixels to facilitate detection, and is well suited to visual determination in consideration of the degree and frequency of color unevenness. It is not a method to make a judgment quantitatively and quickly.
[0006]
An object of the present invention is to provide a method for quantitatively and quickly performing a determination that is well suited to a visual determination in consideration of the degree and frequency of color unevenness of an inspection target.
The present inventors have intensively studied an inspection method of color unevenness in order to solve such a problem, and as a result, obtained a frequency distribution of a color difference between a chromaticity of an inspection object and a reference chromaticity, and obtained this frequency distribution and a small color difference. The present inventors have found that the object can be achieved by comparing and judging a threshold curve in which the frequency threshold is high and the threshold of the frequency rapidly decreases as the color difference becomes large and becomes zero, and the present invention has been achieved.
[0007]
[Means for Solving the Problems]
That is, the present invention captures reflected light obtained by irradiating light on the surface of the inspection object with a color camera, converts the output signal into chromaticity,
For the entire inspection area, the color difference between the obtained chromaticity and the reference chromaticity and the frequency distribution thereof are obtained,
This frequency distribution is compared with a threshold curve in which the threshold of the frequency is high in a small color difference set in advance and the threshold of the frequency rapidly decreases to zero as the color difference becomes large,
If the entire frequency distribution is equal to or less than the threshold curve, it is determined that there is no color unevenness in the inspection object, and if there is a portion that does not fit in the threshold curve, it is determined that there is color unevenness. Is the way.
With this method, it is possible to quantitatively and promptly determine color unevenness that matches well with visual determination.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a diagram showing an example of an apparatus configuration used in the method for inspecting color unevenness of the present invention. FIG. 2 is a flowchart showing an example of a process for inspecting color unevenness of the present invention.
The inspection object 1 is irradiated with light 21 from the light source 2. As a light source, a halogen lamp, a fluorescent lamp, a xenon lamp or the like is usually used.
The reflected light 22 from the inspection object is photographed by the color camera 3 (S2). Usually, a color CCD camera is used as the camera. The reflected light captured by the color CCD camera is normally output as an electrical signal 23 of three primary colors (RGB) of red, green, and blue.
[0009]
The electric signal is sent to the image input unit 11 of the inspection operation unit 5. The check operation unit is usually constructed as software using a computer system. In the image input unit, the output signal 23 is digitized. Next, the output signal is converted into chromaticity by the chromaticity calculation unit 12 (S3). If the output signal from the color CCD camera is a digital signal, it is directly converted into chromaticity by the chromaticity calculation unit.
The chromaticity perceived at that time is uniquely determined from the spectral distribution of the reflected light (for example, Goro Kuwahara et al., "Optical Technology" published by Kyoritsu Shuppan).
The color system used for the chromaticity display is not particularly limited, and includes xy chromaticity, u'v 'chromaticity, L * a * b * color space, and the like.
[0010]
This chromaticity is usually obtained for each pixel in the entire inspection area. As the inspection area, the entire image captured by the camera, the entire image obtained by continuous imaging, or a part of the captured image may be set, and is appropriately selected depending on the purpose.
[0011]
In the reference chromaticity setting unit 14, a reference chromaticity is set in advance (S1). As the reference chromaticity, a chromaticity required for an inspection object, that is, a chromaticity set in advance or a chromaticity obtained for a standard sample is used.
Next, the color difference between the chromaticity obtained for each pixel of the entire inspection area and the reference chromaticity and its distribution are obtained (S4).
From the obtained color difference distribution, a color difference frequency distribution is obtained (S5).
[0012]
When visually evaluating color unevenness, it is determined that there is color unevenness if there is at least one place where the color difference is large, and it is determined that the color difference is relatively small, and if there are few such places, there is no color unevenness. If there are a large number of locations, it is determined that there is color unevenness.
In the present invention, in advance, the threshold value of the frequency is high for a small color difference, and the threshold value of the frequency is rapidly reduced and becomes zero as the color difference becomes large. Compare with the threshold curve, if the entire frequency distribution is equal to or less than the threshold curve, it is determined that there is no color unevenness, and if there is a portion of the frequency distribution that does not fall within the threshold curve, it is determined that there is color unevenness, The result is output (S6).
The inspection target is sorted based on this output.
The specific value of the threshold curve is appropriately set according to the criterion.
These calculations and determinations are quickly performed by a computer system, and are quantitatively determined by a threshold curve.
[0013]
【Example】
Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto.
[0014]
Example 1
On an acrylic film substrate (set thickness: 1 mm, refractive index: 1.49), a second layer (set thickness: 90 nm, refractive index: made of an ultraviolet-curable resin containing ZrO 2 microparticles) sequentially from the substrate side. 1.72), a two-layer film formed of a first layer (set thickness: 80 nm, refractive index: 1.44) made of a thermosetting silane resin was inspected for color unevenness.
The surface of the two-layer film is irradiated using a fluorescent light source as a light source, and the reflected light is emitted from a color CCD camera (manufactured by SONY Corporation: XC-003) from an angle of 0 degrees from the normal to the surface of the two-layer film. Taken in. The digital signal from the color CCD camera is converted into chromaticity, and then the color difference from the chromaticity (reference chromaticity) previously obtained for the standard sample is obtained for each pixel of the entire photographed image (inspection area), and the distribution is obtained. Obtained. The result is shown in FIG.
Next, the frequency distribution of this color difference was determined. The result is shown in FIG.
[0015]
In FIG. 4, a dotted line indicates a threshold curve in which the threshold value of the frequency is high for a small color difference obtained in advance, and the threshold value of the frequency rapidly decreases to zero as the color difference increases. Specifically, if the color difference is 0.12 or less, the frequency threshold is 200; if the color difference is 0.14, the frequency threshold is 100; if the color difference is 0.16, the frequency threshold is 50; When the threshold is 25 and the color difference is 0.20, the frequency threshold is set to 12, when the color difference is 0.22, the frequency threshold is set to 6, and when the color difference is 0.24 or more, the frequency threshold is set to 0. In this case, since there is a portion in the frequency distribution of the color difference that does not fall below the threshold curve, it is determined that there is color unevenness.
[0016]
FIGS. 5 and 6 show the results obtained in the same manner for another two-layer film. FIG. 5 shows a color difference for each pixel, and FIG. 6 shows a frequency distribution of the color difference and a threshold curve. In this case, since the entire frequency distribution is equal to or smaller than the threshold curve, it is determined that there is no color unevenness.
[0017]
Reference Example 1
Using computer graphics, a total of 27 types of color shading images, including three types of color shading intensity, three types of color shading, and three types of color shading area width, and a reference non-defective image, for a total of 28 types of images. They were prepared and visually evaluated for each pair.
Two people felt that the color unevenness was strong, 1 point when they felt the color unevenness was 0, and 0 when they felt the color unevenness was weak. The evaluation score was added to quantify the color unevenness of each image. A non-defective evaluation score was 10 points, and an image in which color unevenness was most strongly felt was 49 points. An image with an evaluation point of 10 to 15 points is good with almost no color unevenness, and an image with an evaluation point of 40 or more has a strong color unevenness and is judged to be clearly bad.
[0018]
Next, the frequency distribution of the color difference between the chromaticity of 27 types of images having color unevenness and the chromaticity of a non-defective image (reference chromaticity) was determined. Some typical examples are shown in FIGS. In the figure, the horizontal axis represents the color difference, and the vertical axis represents the frequency (the number of pixels in the image). Also, for example, in the frequency distribution diagram of the color difference in the upper part of FIG. 7, M112 has one color unevenness (the first 1 indicates it), and its intensity is the weakest intensity ( The next 1 indicates that), and the color unevenness region width is that of an image having an intermediate width (2 indicates it) among the three types. It shows that the evaluation score by the above comparative evaluation method was 12 points. Similarly, in the frequency distribution diagram of the color difference in the lower part of FIG. 9, M332 indicates that the number of color unevenness is three, the intensity is the strongest of the three types, and the color unevenness region width is three. Of the images having an intermediate width, and evaluation / 45 indicates that the evaluation point of the image by the above-described comparative evaluation method was 45 points.
[0019]
If the frequency of the large color difference is small (there is a low mountain on the right side of the figure), the evaluation point is large, and it is determined visually that there is color unevenness. Even if the frequency of the small color difference is somewhat large (even if there is a slightly high mountain near the base of the graph), the evaluation score is small, and the color is visually judged to be small and the quality is good. Intermediate color differences and frequencies are generally moderately rated.
FIG. 10 is a diagram showing a difference between evaluators in the comparative evaluation. It shows that there is almost no difference between evaluators.
From these facts, the threshold value of the frequency is high in the small color difference, and the threshold value of the frequency decreases rapidly as the color difference becomes large. it can.
[0020]
【The invention's effect】
According to the method of the present invention, it is possible to quantitatively and quickly determine whether or not there is color unevenness in an inspection object, which is in good agreement with the visual determination, without variation among the determiners.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of the configuration of an apparatus used for a method for inspecting color unevenness according to the present invention.
FIG. 2 is a flowchart showing an example of a process for inspecting color unevenness according to the present invention.
FIG. 3 is a diagram illustrating a color difference obtained for each pixel of the entire inspection area for the two-layer film of the example.
FIG. 4 is a diagram showing a frequency distribution of color differences and a threshold curve for a two-layer film of an example.
FIG. 5 is a diagram showing a color difference obtained for each pixel in the entire inspection area for the other two-layer film of the example.
FIG. 6 is a diagram showing a frequency distribution of color differences and a threshold curve for the other two-layer film of the example.
FIG. 7 is a diagram showing a frequency distribution of color differences for an image of a reference example.
FIG. 8 is a diagram showing a frequency distribution of color differences for another image of the reference example.
FIG. 9 is a diagram illustrating a frequency distribution of color differences for still another image of the reference example.
FIG. 10 is a diagram showing a difference between evaluators in a comparative evaluation of a reference example.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 inspection object 2 light source 3 camera 4 inspection operation unit 11 image input unit 12 chromaticity operation unit 13 color difference operation unit 14 reference chromaticity setting unit 15 frequency distribution operation unit 16 color unevenness determination unit 17 threshold curve setting unit 21 irradiation light 22 reflected light 23 output signal 24 judgment output signal

Claims (3)

検査対象物の表面に光を照射して得られる反射光をカラーカメラで撮影し、その出力信号を色度に変換し、
検査領域全体について、この求めた色度と基準色度との色差およびその度数分布を求め、
この度数分布と、予め設定しておいた小さい色差では度数の閾値が高く、大きい色差になるに従って度数の閾値が急激に減少してゼロになる閾値曲線とを比較し、
度数分布の全体が閾値曲線以下であれば、検査対象物に色むらはないと判定し、閾値曲線に収まらない部分があれば、色むらがあると判定することを特徴とする色むらの検査方法。
The reflected light obtained by irradiating the surface of the inspection object with light is captured by a color camera, and the output signal is converted into chromaticity,
For the entire inspection area, the color difference between the obtained chromaticity and the reference chromaticity and the frequency distribution thereof are obtained,
This frequency distribution is compared with a threshold curve in which the threshold of the frequency is high at a small color difference set in advance and the threshold of the frequency rapidly decreases to zero as the color difference increases,
If the entire frequency distribution is equal to or less than the threshold curve, it is determined that there is no color unevenness in the inspection object, and if there is a portion that does not fit in the threshold curve, it is determined that there is color unevenness. Method.
基準色度が、標準試料について求めた色度である請求項1記載の色むらの検査方法。The method for inspecting color unevenness according to claim 1, wherein the reference chromaticity is a chromaticity determined for a standard sample. 基準色度が、検査対象物に予め設定された色度である請求項1記載の色むらの検査方法。2. The method for inspecting color unevenness according to claim 1, wherein the reference chromaticity is a chromaticity preset for the inspection object.
JP2002308105A 2002-10-23 2002-10-23 Inspection method of color irregularity Pending JP2004144545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002308105A JP2004144545A (en) 2002-10-23 2002-10-23 Inspection method of color irregularity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002308105A JP2004144545A (en) 2002-10-23 2002-10-23 Inspection method of color irregularity

Publications (1)

Publication Number Publication Date
JP2004144545A true JP2004144545A (en) 2004-05-20

Family

ID=32454332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002308105A Pending JP2004144545A (en) 2002-10-23 2002-10-23 Inspection method of color irregularity

Country Status (1)

Country Link
JP (1) JP2004144545A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006250640A (en) * 2005-03-09 2006-09-21 Ricoh Co Ltd Surface state measuring method and surface state measuring instrument
DE102014100594A1 (en) * 2014-01-20 2015-07-23 Isra Surface Vision Gmbh Device for inspection of a material provided with a coated surface and corresponding method
JP2016164559A (en) * 2016-02-29 2016-09-08 有限会社パパラボ Image color distribution inspection device and image color distribution inspection method
JP2016217865A (en) * 2015-05-20 2016-12-22 株式会社島津製作所 Inspection device, and inspection method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006250640A (en) * 2005-03-09 2006-09-21 Ricoh Co Ltd Surface state measuring method and surface state measuring instrument
JP4481850B2 (en) * 2005-03-09 2010-06-16 株式会社リコー Surface state measuring method and surface state measuring apparatus
DE102014100594A1 (en) * 2014-01-20 2015-07-23 Isra Surface Vision Gmbh Device for inspection of a material provided with a coated surface and corresponding method
JP2015155895A (en) * 2014-01-20 2015-08-27 イスラ サーフィス ヴィズィオーン ゲーエムベーハー Device and method for inspecting material having coated surface
US9535002B2 (en) 2014-01-20 2017-01-03 Isra Surface Vision Gmbh Device for inspecting a material provided with a coated surface and related method
JP2016217865A (en) * 2015-05-20 2016-12-22 株式会社島津製作所 Inspection device, and inspection method
JP2016164559A (en) * 2016-02-29 2016-09-08 有限会社パパラボ Image color distribution inspection device and image color distribution inspection method

Similar Documents

Publication Publication Date Title
US7978903B2 (en) Defect detecting method and defect detecting device
US9995630B2 (en) Unevenness inspection apparatus and unevenness inspection method
US20090207274A1 (en) Apparatus and method for adjusting white balance in a digital imaging device
JP5471306B2 (en) Color unevenness inspection apparatus and color unevenness inspection method
JP5499779B2 (en) Color unevenness inspection apparatus and color unevenness inspection method
JP2004294202A (en) Defect detection method and device of screen
KR20190014275A (en) Mura detection device and detection method of mura detection device
WO2014136561A1 (en) Unevenness inspection system, unevenness inspection method, and unevenness inspection program
JP2009175041A (en) Method for estimating glare of displayed image
JP2005249415A (en) Stain defect detecting method and stain defect detector
JP2004212311A (en) Method and apparatus for detecting unevenness defect
JP2004144545A (en) Inspection method of color irregularity
JP2005043174A (en) Color irregularity inspection apparatus
US7668344B2 (en) Stain inspection method and apparatus
JP2017203622A (en) Color unevenness checking method, and color unevenness checking device
JP2004219176A (en) Method and apparatus for detecting pixel irregulality failing
JP2004226272A (en) Method and apparatus for detecting stain defect
JPH08327497A (en) Method for inspecting color liquid crystal display panel
KR100416775B1 (en) Method to Measure a Brightness of an Display Device
JP2528929B2 (en) Automatic white uniformity evaluation method for color cathode ray tubes
JP3941403B2 (en) Image density unevenness detection method and inspection apparatus
JP2007198850A (en) Irregularity inspection method and apparatus
JP2004170109A (en) Apparatus and method for inspecting irregular color
JP3912063B2 (en) Detection method of image shading unevenness
JP2004219072A (en) Method and apparatus for detecting streak defect of screen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071002