JP2004144378A - Heat pump - Google Patents

Heat pump Download PDF

Info

Publication number
JP2004144378A
JP2004144378A JP2002308802A JP2002308802A JP2004144378A JP 2004144378 A JP2004144378 A JP 2004144378A JP 2002308802 A JP2002308802 A JP 2002308802A JP 2002308802 A JP2002308802 A JP 2002308802A JP 2004144378 A JP2004144378 A JP 2004144378A
Authority
JP
Japan
Prior art keywords
refrigerant
liquid
heat
heat pump
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002308802A
Other languages
Japanese (ja)
Inventor
Tetsuya Ishii
石井 徹哉
Susumu Yashiro
屋代 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2002308802A priority Critical patent/JP2004144378A/en
Publication of JP2004144378A publication Critical patent/JP2004144378A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat pump improving COP by improving the heat exchanging efficiency of a refrigerant and the heated fluid. <P>SOLUTION: This heat pump 20 is configurated by successively circularly connecting a decompression valve 21, an evaporator 22, a compressor 23 and a heat exchanger 24. The evaporator 22 stores the liquid refrigerant prepared by mixing a large amount of lubricant in liquid phase chlorofluorocarbon in an approximately full state. The compressor 23 sucks not only the evaporated chlorofluorocarbon (gas refrigerant) but also a large amount of liquid refrigerant. Whereby the dryness of the entire refrigerant is reduced in accompany with the compression. The countercurrent exchanger 24 transfers the sensible heat of the liquid refrigerant discharged from the compressor 23 to the heated fluid such as the water for hot-water supply. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、冷媒を蒸発させた後圧縮して熱を汲み上げ、この熱で例えば給湯用水等の被加熱流体を加温する圧縮式ヒートポンプに関する。
【0002】
【従来の技術】
一般に、圧縮式ヒートポンプは、膨張弁と蒸発器と圧縮機と凝縮器とを順次環状に接続することによって構成されている(例えば特許文献1参照)。冷媒には、フロン等が用いられている。この冷媒が、膨張弁で膨張、減圧された後、蒸発器で蒸発して気体状となる。この気体状冷媒が、圧縮機に吸い込まれて圧縮される。この時、冷媒は、ほぼ完全に乾いた状態であり、若干の液成分が混じっていたとしても圧縮の過程で気化される。圧縮機から吐出された気体状冷媒は、凝縮器で凝縮し、この凝縮熱により給湯用水等の被加熱流体が加熱される。
【0003】
【特許文献1】
特開2002−162123(第2頁、第1図)
【0004】
【発明が解決しようとする課題】
上記の従来構造では、圧縮機の内部で、気体状の冷媒が過度に高温になって分解や化学変化を起こす可能性がある。これを防ぐために圧縮度を抑える必要があり、例えば給湯器に適用した場合には高温の湯を得ることができなかった。また、凝縮器における冷媒の凝縮温度は一定であるのに対し、被加熱流体は凝縮器に沿って流れるにしたがって温度変化していくため、高温の冷媒と低温の被加熱流体との間に大きな温度差が形成され、エントロピーが増大して効率低下を招いていた。さらに、膨張弁においては、気化された冷媒と膨張弁のオリフィス(絞り通路)の内周面との間で摩擦が生じるため、ここでもエントロピーが増大して効率が低下していた。その結果、COP(成績係数)を高めるのが容易でなかった。
【0005】
【課題を解決するための手段】
上記問題点を解決するため、本発明は、冷媒を用いて熱を汲み上げて被加熱流体に与えるヒートポンプにおいて、減圧手段と蒸発手段と圧縮手段と熱交換手段とを順次環状に接続してなり、上記蒸発手段には、上記減圧手段で減圧後の液状の冷媒が貯えられるとともに、この液状冷媒の蒸発が起き、上記圧縮手段は、上記蒸発した気体状冷媒を吸込んで圧縮するだけでなく、上記液状冷媒をも吸込むように動作され、しかもこの液状冷媒の吸込み量が、圧縮に伴い冷媒全体の乾き度を減少させる程度に多く、これにより、冷媒全体が略液状になって圧縮手段から吐出され、上記熱交換手段では、上記液状冷媒と被加熱流体とが互いに対向する向きに流れ、液状冷媒の顕熱が被加熱流体に受け渡されることを特徴とする。この特徴構成によれば、圧縮手段において気体状の冷媒を凝縮させて、そのエンタルピーを液状冷媒に移すことができ、気体状冷媒の過度の高温化を防止できるとともに液状冷媒を加温することができる。そして、冷媒全体を殆ど液状にして圧縮手段から吐出することができ、この液状冷媒の顕熱を対向流型の熱交換手段において被加熱流体に受け渡すことにより、エントロピーの増大を抑え、熱交換効率を高めることができる。更に、減圧手段では、冷媒の気化割合を小さくして冷媒全体を略液状に維持でき、エントロピーの増大を抑え、効率を高めることができる。この結果、COPを高めることができる。
【0006】
上記冷媒は、フロン等の蒸発・凝縮可能な主冷媒と、圧縮手段用潤滑油等の不揮発性の液体とを含み、しかも、不揮発性液体の含有割合が、上記圧縮手段での乾き度を不揮発性液体単独で減少させ得る程度に大きいことが望ましい。これにより、フロン等の主冷媒の量を減らすことができ、環境に与える影響を小さくでき、コスト低減を図ることができる。
熱交換手段においては、液状冷媒(液相の主冷媒と不揮発性液体との混合液)の比熱流量が、被加熱流体の比熱流量と等しくなるようにするのが望ましい。これによって、熱交換効率を一層高めることができる。
【0007】
上記冷媒に、空気等の不凝縮性気体が混入されていることが望ましい。これにより、圧縮手段における液状冷媒に対する圧縮を防止して、圧縮手段を保護することができる。不凝縮性気体の混入量は、圧縮工程の最終段で液状冷媒と略同じ体積になる程度が望ましい。これにより、圧縮手段を確実に保護できるとともに、効率の低下を防止することができる。
【0008】
【発明の実施の形態】
以下、本発明の一実施形態を、図面を参照して説明する。
図1は、本発明を適用した給湯用ヒートポンプシステムS1を示したものである。システムS1は、貯湯タンク10と、ヒートポンプ20とを備えている。
【0009】
貯湯タンク10の下端部に、給水路(市水路)11が接続されている。この給水路11から貯湯タンク10内に市水が給湯用水として供給され、貯留されている。貯湯タンク10の下側部の水は、常温になり、上側部の水は、後述するヒートポンプ20の加熱操作によって高温になっている。この高温水が、貯湯タンク10の上端部から延びる給湯路12を介して浴槽や厨房などの給湯設備(温水利用設備)へ供給されるようになっている。
【0010】
次に、ヒートポンプ20について説明する。
ヒートポンプ20は、減圧弁21(減圧手段)と、蒸発器22(蒸発手段)と、圧縮機23(圧縮手段)と、熱交換器24(熱交換手段)を順次環状に接続してなる冷媒循環路を有している。ヒートポンプ20の冷媒は、フロン(蒸発・凝縮可能な主冷媒)に、圧縮機23用の潤滑油(不揮発性液体)を多量に混合することによって構成されている。
【0011】
詳細な図示は省略するが、減圧弁21は、オリフィス状の絞り通路に冷媒を通して減圧させるようになっている。冷媒と絞り通路の内周面との間では摩擦が生じることとなる。
【0012】
蒸発器22は、タンク状をなしている。この蒸発器22の下側部に減圧弁21の二次ポートが連なり、上側部に圧縮機23の吸込みポートが連なっている。蒸発器22の内部には、液相のフロンと潤滑油との混合液からなる液状冷媒がほぼ満杯に貯えられている。さらに、蒸発器22には、液相フロンの蒸気圧を高める熱源30が熱的に接続されている。すなわち、蒸発器22内に放熱管31が収容され、この放熱管31と熱源30との間で熱媒が循環されるようになっている。図において、符号32は、上記熱媒の循環用ポンプである。熱源30には、燃料電池や太陽熱集熱器を用いることができる。
【0013】
圧縮機23は、冷媒を蒸発器22から吸込んで圧縮・加圧し、熱交換器24へ吐出するようになっている。
【0014】
熱交換器24は、一対の伝熱路24a,24bを有している。一方の伝熱路24aの上流端は、圧縮機23の吐出ポートに連なるとともに、下流端は、減圧弁21の一次ポートに連なっている。これにより、圧縮機23から吐出された冷媒が、伝熱路24aに通された後、減圧弁21へ送られるようになっている。他方の伝熱路24bの上流端は、貯湯タンク10の下側部に連なり、下流端は、貯湯タンク10の上側部に連なっている。図において、符号13は、送水ポンプであり、この送水ポンプ13によって、貯湯タンク10の下側部の給湯用水が、伝熱路24bに通された後、貯湯タンク10の上側部へ送られる。伝熱路24a内における冷媒と、伝熱路24b内における給湯用水とは、互いに逆向き(対向方向)に流れる。これによって、対向流型熱交換器が構成されている。
【0015】
さらに、システムS1には、減圧弁21、圧縮機23、ポンプ13,32等を制御するコントローラ25(制御手段)が設けられている。
【0016】
上記のように構成された給湯用ヒートポンプシステムS1の動作を説明する。蒸発器22内の液状冷媒(液相フロンと潤滑油の混合液)は、熱源30から採熱して蒸気圧が高められる。これによって、液相フロンの蒸発が促進される。一方、潤滑油は、蒸発することなく、液状を維持している。これによって、蒸発器22内の液状冷媒の大半が、潤滑油で占められることになる。コントローラ25は、減圧弁21の開度を調節したり圧縮機23の回転数を調節したりすることによって、蒸発器22内の液状冷媒がほぼ満杯に維持されるように制御している。これにより、圧縮機23は、気体状冷媒(気相フロン)を吸込むだけでなく、ほぼ潤滑油だけになった液状冷媒をも多量に吸込む。
【0017】
圧縮機23は、この気液混合冷媒を圧縮、加圧する。このとき、気体状冷媒から圧縮熱が生じる。この圧縮熱は、多量の液状冷媒によって十分に吸収することができる。これによって、気体状冷媒が過度に高温化するのを防止でき、分解や化学変化が起きるのを防止できる。また、気体状冷媒を圧縮中に凝縮させ、冷媒全体の乾き度を減少させることができる。更に、気体状冷媒の凝縮熱で液状冷媒を加温することができる。このようにして、気体状冷媒のエンタルピーを液状冷媒に移すことができる。
【0018】
そして、略全体が高温の液状になった冷媒が、圧縮機23から吐出され、熱交換器24の伝熱路24aに導かれる。また、送水ポンプ13によって、貯湯タンク10の下側部の給湯用水が伝熱路24bに導かれる。これによって、液状冷媒と給湯用水が、互いに対向する向きに流れながら、液状冷媒の顕熱が給湯用水へ受け渡される。(ヒートポンプ20で汲み上げられた熱が給湯用水に渡される。)よって、液状冷媒は、伝熱路24a内を流れるにしたがって冷却され、給湯用水は、伝熱路24b内を液状冷媒とは逆方向に流れるにしたがって加温される。これによって、液状冷媒と給湯用水の温度差を伝熱路24a,24bの全長にわたってほぼ一定にすることができる。この結果、エントロピーの増大を抑制できるとともに、熱交換効率を向上させることができる。
【0019】
また、コントローラ25による圧縮機23や送水ポンプ13の制御によって、伝熱路24aにおける液状冷媒の比熱流量と、伝熱路24bにおける給湯用水の比熱流量とが略等しくなるように調節される。これによって、熱交換効率を一層向上させることができる。こうして、給湯用水を所望の温度まで加温して貯湯タンク10の上側部に送り、給湯に供することができる。
なお、圧縮機23からの吐出冷媒に、気相フロンが含まれていた場合には、伝熱路24aにおいて凝縮され、冷媒が完全に液状になる。
【0020】
その後、液状冷媒は、減圧弁21に導かれて減圧される。この冷媒には、不揮発性の潤滑油が多量に含まれているため、冷媒全体の減圧に伴う気化割合が、フロンだけで構成される場合より非常に小さい。これによって、冷媒と減圧弁21の絞り通路の内周面との間で摩擦が生じたとしても、エントロピーの増大量を極めて小さくすることができる。
この結果、ヒートポンプ20のCOPを大きく向上させることができる。本システムS1では、効率を原理的に可逆過程の効率まで高めることができる。
【0021】
ヒートポンプ20によれば、冷媒として、フロンに多量の潤滑油を混ぜることによって、フロン自体の量を減らすことができ、環境への影響を最小限に抑えることができる。しかも、潤滑油によって、圧縮機23の潤滑を図ることができるのは勿論、圧縮機23からのフロンの漏れ防止をも図ることができ、環境への影響を一層確実に防止することができる。
【0022】
本発明は、上記実施形態に限定されず、種々の形態を採用可能である。
例えば、フロン等の主冷媒と潤滑油等の不揮発性液体との混合冷媒に、更に、空気等の不凝縮性気体を混入することにしてもよい。この不凝縮性気体が冷媒と一緒に蒸発器22から圧縮機23に吸込まれることにより、圧縮機23が液状冷媒を圧縮しようとするのを防ぐことができ、圧縮機23の破損を防止できる。この不凝縮性気体の混入量は、圧縮機23による圧縮工程の最終段で液状冷媒と略同じ体積になる程度が望ましい。これにより、圧縮手段の破損を確実に防止できるとともに、効率の低下を防止することができる。
冷媒として水を用い、蒸発器22から水蒸気(気体状冷媒)だけでなく液相の水(液状冷媒)をも圧縮機23へ吸込ませることにしてもよい。
本発明は、給湯だけでなく、暖房用システムにも適用できる。この場合、ヒートポンプと暖房機との間を循環する熱媒が、被加熱流体となる。
【0023】
【発明の効果】
以上説明したように、本発明によれば、圧縮手段において気体状の冷媒を凝縮させて、そのエンタルピーを液状冷媒に移すことができ、気体状冷媒の過度の高温化を防止できるとともに液状冷媒を加温することができる。そして、冷媒全体を殆ど液状にして圧縮手段から吐出することができ、この液状冷媒の顕熱を対向流型の熱交換手段において被加熱流体に受け渡すことにより、エントロピーの増大を抑え、熱交換効率を高めることができる。更に、減圧手段では、冷媒の気化割合を小さくして冷媒全体を略液状に維持でき、エントロピーの増大を抑え、効率を高めることができる。この結果、COPを高めることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る給湯用ヒートポンプシステムの概略構成図である。
【符号の説明】
S1 給湯用ヒートポンプシステム
10 貯湯タンク
20 ヒートポンプ
21 減圧弁(減圧手段)
22 蒸発器(蒸発手段)
23 圧縮機(圧縮手段)
24 熱交換器(熱交換手段)
25 コントローラ(減圧手段や圧縮手段の制御手段)
[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compression heat pump in which a refrigerant is evaporated and then compressed to draw heat, and the heat heats a fluid to be heated such as hot water.
[0002]
[Prior art]
Generally, a compression heat pump is configured by sequentially connecting an expansion valve, an evaporator, a compressor, and a condenser in a ring shape (for example, see Patent Document 1). Freon or the like is used as the refrigerant. After the refrigerant is expanded and decompressed by the expansion valve, it evaporates in the evaporator to become gaseous. This gaseous refrigerant is sucked into the compressor and compressed. At this time, the refrigerant is almost completely dry, and is vaporized in the process of compression even if some liquid components are mixed. The gaseous refrigerant discharged from the compressor is condensed in the condenser, and the condensed heat heats the fluid to be heated such as hot-water supply water.
[0003]
[Patent Document 1]
JP-A-2002-162123 (page 2, FIG. 1)
[0004]
[Problems to be solved by the invention]
In the above-described conventional structure, the gaseous refrigerant may have an excessively high temperature inside the compressor to cause decomposition or chemical change. In order to prevent this, it is necessary to suppress the degree of compression. For example, when applied to a water heater, hot water could not be obtained. In addition, while the condensation temperature of the refrigerant in the condenser is constant, the temperature of the fluid to be heated changes as it flows along the condenser. A temperature difference was formed, entropy was increased and efficiency was reduced. Further, in the expansion valve, friction occurs between the vaporized refrigerant and the inner peripheral surface of the orifice (throttle passage) of the expansion valve, so that the entropy is increased and the efficiency is reduced. As a result, it was not easy to increase the COP (coefficient of performance).
[0005]
[Means for Solving the Problems]
In order to solve the above problems, the present invention is a heat pump that pumps up heat using a refrigerant and gives it to the fluid to be heated, in which a decompression unit, an evaporation unit, a compression unit, and a heat exchange unit are sequentially connected in a ring shape, In the evaporating means, a liquid refrigerant after decompression by the decompression means is stored, and evaporation of the liquid refrigerant occurs.The compression means not only sucks and compresses the evaporated gaseous refrigerant, but also compresses the gaseous refrigerant. The liquid refrigerant is operated so as to also suck the liquid refrigerant, and the suction amount of the liquid refrigerant is large enough to reduce the dryness of the entire refrigerant due to the compression, whereby the entire refrigerant becomes substantially liquid and is discharged from the compression means, In the heat exchange means, the liquid refrigerant and the fluid to be heated flow in opposite directions, and the sensible heat of the liquid refrigerant is transferred to the fluid to be heated. According to this characteristic configuration, it is possible to condense the gaseous refrigerant in the compression means, transfer the enthalpy to the liquid refrigerant, prevent the gaseous refrigerant from being excessively heated, and heat the liquid refrigerant. it can. Then, the entire refrigerant can be almost liquidized and discharged from the compression means. The sensible heat of the liquid refrigerant is transferred to the fluid to be heated in the counterflow type heat exchange means, thereby suppressing an increase in entropy, and Efficiency can be increased. Furthermore, in the decompression means, the refrigerant can be kept in a substantially liquid state by reducing the vaporization rate of the refrigerant, thereby suppressing an increase in entropy and increasing the efficiency. As a result, the COP can be increased.
[0006]
The refrigerant includes a main refrigerant that can be evaporated and condensed such as chlorofluorocarbon, and a non-volatile liquid such as a lubricating oil for a compression unit, and the content ratio of the non-volatile liquid determines the dryness of the compression unit. It is desirable that it is large enough to be reduced by the ionic liquid alone. Thereby, the amount of the main refrigerant such as chlorofluorocarbon can be reduced, the influence on the environment can be reduced, and the cost can be reduced.
In the heat exchange means, it is desirable that the specific heat flow rate of the liquid refrigerant (a mixed liquid of the liquid phase main refrigerant and the non-volatile liquid) is equal to the specific heat flow rate of the fluid to be heated. Thereby, the heat exchange efficiency can be further increased.
[0007]
It is desirable that a non-condensable gas such as air is mixed in the refrigerant. Thereby, the compression of the liquid refrigerant in the compression means can be prevented, and the compression means can be protected. The amount of the non-condensable gas mixed is desirably such that it becomes substantially the same volume as the liquid refrigerant in the final stage of the compression step. As a result, the compression means can be reliably protected, and a decrease in efficiency can be prevented.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows a hot water supply heat pump system S1 to which the present invention is applied. The system S1 includes a hot water storage tank 10 and a heat pump 20.
[0009]
A water supply channel (city water channel) 11 is connected to a lower end portion of the hot water storage tank 10. City water is supplied from the water supply channel 11 into the hot water storage tank 10 as hot water supply water and stored. The water on the lower side of the hot water storage tank 10 is at room temperature, and the water on the upper side is at a high temperature by a heating operation of the heat pump 20 described later. The high-temperature water is supplied to hot water supply equipment (hot water utilization equipment) such as a bathtub or a kitchen via a hot water supply path 12 extending from an upper end of the hot water storage tank 10.
[0010]
Next, the heat pump 20 will be described.
The heat pump 20 has a refrigerant circulation system in which a pressure reducing valve 21 (pressure reducing means), an evaporator 22 (evaporating means), a compressor 23 (compressing means), and a heat exchanger 24 (heat exchanging means) are sequentially connected in a ring shape. Have a road. The refrigerant of the heat pump 20 is configured by mixing a large amount of lubricating oil (nonvolatile liquid) for the compressor 23 with Freon (a main refrigerant that can be evaporated and condensed).
[0011]
Although not shown in detail, the pressure reducing valve 21 is configured to reduce the pressure of the refrigerant through an orifice-shaped throttle passage. Friction occurs between the refrigerant and the inner peripheral surface of the throttle passage.
[0012]
The evaporator 22 has a tank shape. The lower port of the evaporator 22 is connected to the secondary port of the pressure reducing valve 21, and the upper port is connected to the suction port of the compressor 23. Inside the evaporator 22, a liquid refrigerant composed of a mixed liquid of liquid fluorocarbon and lubricating oil is stored almost completely. Further, the evaporator 22 is thermally connected to a heat source 30 for increasing the vapor pressure of the liquid phase chlorofluorocarbon. That is, the radiator tube 31 is accommodated in the evaporator 22, and the heat medium is circulated between the radiator tube 31 and the heat source 30. In the figure, reference numeral 32 denotes a pump for circulating the heat medium. As the heat source 30, a fuel cell or a solar heat collector can be used.
[0013]
The compressor 23 sucks the refrigerant from the evaporator 22, compresses and pressurizes the refrigerant, and discharges the refrigerant to the heat exchanger 24.
[0014]
The heat exchanger 24 has a pair of heat transfer paths 24a and 24b. The upstream end of one heat transfer path 24 a is connected to the discharge port of the compressor 23, and the downstream end is connected to the primary port of the pressure reducing valve 21. Thereby, the refrigerant discharged from the compressor 23 is sent to the pressure reducing valve 21 after passing through the heat transfer path 24a. The upstream end of the other heat transfer path 24b is connected to the lower part of the hot water storage tank 10, and the downstream end is connected to the upper part of the hot water storage tank 10. In the drawing, reference numeral 13 denotes a water supply pump, and the water supply pump 13 sends hot water for water supply on the lower side of the hot water storage tank 10 to the upper side of the hot water storage tank 10 after passing through the heat transfer path 24b. The refrigerant in the heat transfer path 24a and the hot-water supply water in the heat transfer path 24b flow in opposite directions (opposing directions). Thus, a counter-flow heat exchanger is configured.
[0015]
Further, the system S1 is provided with a controller 25 (control means) for controlling the pressure reducing valve 21, the compressor 23, the pumps 13, 32, and the like.
[0016]
The operation of the hot water supply heat pump system S1 configured as described above will be described. The liquid refrigerant in the evaporator 22 (mixture of liquid phase Freon and lubricating oil) receives heat from the heat source 30 to increase the vapor pressure. Thereby, the evaporation of the liquid phase CFC is promoted. On the other hand, the lubricating oil maintains a liquid state without evaporating. As a result, most of the liquid refrigerant in the evaporator 22 is occupied by the lubricating oil. The controller 25 controls the liquid refrigerant in the evaporator 22 to be almost full by adjusting the opening of the pressure reducing valve 21 or adjusting the rotation speed of the compressor 23. Thus, the compressor 23 not only sucks the gaseous refrigerant (gas-phase fluorocarbon) but also sucks a large amount of the liquid refrigerant which is almost only lubricating oil.
[0017]
The compressor 23 compresses and pressurizes the gas-liquid mixed refrigerant. At this time, compression heat is generated from the gaseous refrigerant. This heat of compression can be sufficiently absorbed by a large amount of liquid refrigerant. Thereby, the gaseous refrigerant can be prevented from being excessively heated, and decomposition and chemical change can be prevented from occurring. Further, the gaseous refrigerant can be condensed during compression, and the dryness of the entire refrigerant can be reduced. Further, the liquid refrigerant can be heated by the heat of condensation of the gaseous refrigerant. In this way, the enthalpy of the gaseous refrigerant can be transferred to the liquid refrigerant.
[0018]
Then, the refrigerant, which is almost entirely in a high-temperature liquid state, is discharged from the compressor 23 and guided to the heat transfer path 24 a of the heat exchanger 24. In addition, the hot water supply water at the lower side of the hot water storage tank 10 is guided to the heat transfer path 24b by the water supply pump 13. Thus, the sensible heat of the liquid refrigerant is transferred to the hot water while the liquid refrigerant and the hot water supply flow in opposite directions. (The heat pumped by the heat pump 20 is passed to the hot water supply water.) Therefore, the liquid refrigerant is cooled as it flows through the heat transfer path 24a, and the hot water supply flows in the heat transfer path 24b in the opposite direction to the liquid refrigerant. Heated as it flows. As a result, the temperature difference between the liquid refrigerant and the hot-water supply water can be made substantially constant over the entire length of the heat transfer paths 24a and 24b. As a result, an increase in entropy can be suppressed, and the heat exchange efficiency can be improved.
[0019]
Further, by controlling the compressor 23 and the water pump 13 by the controller 25, the specific heat flow rate of the liquid refrigerant in the heat transfer path 24a is adjusted to be substantially equal to the specific heat flow rate of the hot water supply water in the heat transfer path 24b. Thereby, the heat exchange efficiency can be further improved. Thus, the hot-water supply water can be heated to a desired temperature, sent to the upper portion of the hot-water storage tank 10, and supplied to the hot-water supply.
When the refrigerant discharged from the compressor 23 contains gaseous fluorocarbon, it is condensed in the heat transfer path 24a, and the refrigerant becomes completely liquid.
[0020]
Thereafter, the liquid refrigerant is guided to the pressure reducing valve 21 and decompressed. Since this refrigerant contains a large amount of non-volatile lubricating oil, the vaporization rate accompanying the decompression of the entire refrigerant is much smaller than that in the case where only refrigerant is used. Thereby, even if friction occurs between the refrigerant and the inner peripheral surface of the throttle passage of the pressure reducing valve 21, the amount of increase in entropy can be extremely reduced.
As a result, the COP of the heat pump 20 can be greatly improved. In the present system S1, the efficiency can be increased in principle to the efficiency of the reversible process.
[0021]
According to the heat pump 20, by mixing a large amount of lubricating oil into Freon as a refrigerant, the amount of Freon itself can be reduced, and the effect on the environment can be minimized. In addition, the compressor 23 can be lubricated with the lubricating oil, and the leakage of CFCs from the compressor 23 can be prevented, and the effect on the environment can be prevented more reliably.
[0022]
The present invention is not limited to the above embodiment, but can adopt various modes.
For example, a non-condensable gas such as air may be further mixed into a mixed refrigerant of a main refrigerant such as Freon and a non-volatile liquid such as lubricating oil. When the non-condensable gas is sucked into the compressor 23 from the evaporator 22 together with the refrigerant, the compressor 23 can be prevented from trying to compress the liquid refrigerant, and the compressor 23 can be prevented from being damaged. . It is desirable that the mixed amount of the non-condensable gas be approximately the same as the volume of the liquid refrigerant in the final stage of the compression process by the compressor 23. This makes it possible to reliably prevent the compression means from being damaged and to prevent a decrease in efficiency.
Water may be used as the refrigerant, and not only water vapor (gas refrigerant) but also liquid water (liquid refrigerant) may be sucked into the compressor 23 from the evaporator 22.
The present invention can be applied not only to hot water supply but also to a heating system. In this case, the heat medium circulating between the heat pump and the heater becomes the fluid to be heated.
[0023]
【The invention's effect】
As described above, according to the present invention, the gaseous refrigerant can be condensed in the compression means, and its enthalpy can be transferred to the liquid refrigerant. Can be warmed. Then, the entire refrigerant can be almost liquidized and discharged from the compression means. The sensible heat of the liquid refrigerant is transferred to the fluid to be heated in the counterflow type heat exchange means, thereby suppressing an increase in entropy, and Efficiency can be increased. Further, in the decompression means, the refrigerant can be kept in a substantially liquid state by reducing the vaporization ratio of the refrigerant, and the increase in entropy can be suppressed and the efficiency can be increased. As a result, the COP can be increased.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a hot water supply heat pump system according to an embodiment of the present invention.
[Explanation of symbols]
S1 Hot water supply heat pump system 10 Hot water storage tank 20 Heat pump 21 Pressure reducing valve (pressure reducing means)
22 Evaporator (evaporation means)
23 Compressor (compression means)
24 heat exchanger (heat exchange means)
25 Controller (control means for decompression means and compression means)

Claims (3)

冷媒を用いて熱を汲み上げて被加熱流体に与えるヒートポンプにおいて、
減圧手段と蒸発手段と圧縮手段と熱交換手段とを順次環状に接続してなり、
上記蒸発手段には、上記減圧手段で減圧後の液状の冷媒が貯えられるとともに、この液状冷媒の蒸発が起き、
上記圧縮手段は、上記蒸発した気体状冷媒を吸込んで圧縮するだけでなく、上記液状冷媒をも吸込むように動作され、しかもこの液状冷媒の吸込み量が、圧縮に伴い冷媒全体の乾き度を減少させる程度に多く、これにより、冷媒全体が略液状になって圧縮手段から吐出され、
上記熱交換手段では、上記液状冷媒と被加熱流体とが互いに対向する向きに流れ、液状冷媒の顕熱が被加熱流体に受け渡されることを特徴とするヒートポンプ。
In a heat pump that pumps heat using a refrigerant and gives it to the fluid to be heated,
The decompression means, the evaporation means, the compression means, and the heat exchange means are sequentially connected in a ring,
In the evaporating means, a liquid refrigerant after decompression by the decompression means is stored, and evaporation of the liquid refrigerant occurs,
The compression means is operated not only to suck and compress the evaporated gaseous refrigerant, but also to suck the liquid refrigerant, and furthermore, the suction amount of the liquid refrigerant reduces the dryness of the entire refrigerant with the compression. As much as possible, whereby the entire refrigerant becomes substantially liquid and is discharged from the compression means,
In the heat pump, the liquid refrigerant and the fluid to be heated flow in opposite directions, and the sensible heat of the liquid refrigerant is transferred to the fluid to be heated.
上記冷媒は、蒸発・凝縮可能な主冷媒と不揮発性の液体とを含み、しかも、不揮発性液体の含有割合が、上記圧縮手段での乾き度を不揮発性液体単独で減少させ得る程度に大きいことを特徴とする請求項1に記載のヒートポンプ。The refrigerant contains a main refrigerant that can be evaporated and condensed and a non-volatile liquid, and the content ratio of the non-volatile liquid is large enough to reduce the dryness of the compression means by the non-volatile liquid alone. The heat pump according to claim 1, wherein: 上記冷媒に、不凝縮性気体が混入されていることを特徴とする請求項1又は2に記載のヒートポンプ。The heat pump according to claim 1, wherein an uncondensable gas is mixed in the refrigerant.
JP2002308802A 2002-10-23 2002-10-23 Heat pump Pending JP2004144378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002308802A JP2004144378A (en) 2002-10-23 2002-10-23 Heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002308802A JP2004144378A (en) 2002-10-23 2002-10-23 Heat pump

Publications (1)

Publication Number Publication Date
JP2004144378A true JP2004144378A (en) 2004-05-20

Family

ID=32454843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002308802A Pending JP2004144378A (en) 2002-10-23 2002-10-23 Heat pump

Country Status (1)

Country Link
JP (1) JP2004144378A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100460797C (en) * 2007-10-30 2009-02-11 吴荣华 Polluted water or ground surface water source heat pump flow passage type heat transfer system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100460797C (en) * 2007-10-30 2009-02-11 吴荣华 Polluted water or ground surface water source heat pump flow passage type heat transfer system

Similar Documents

Publication Publication Date Title
EP1121565B1 (en) heat exchange refrigerant subcool and/or precool system and method
CN107014015B (en) Recovery type heat evaporating condensation type handpiece Water Chilling Units
US9157684B2 (en) Refrigeration apparatus
KR101449899B1 (en) Economizer, Heat Pump and Cooling-heating System using thereof
CN110325806A (en) Heat pump for HVAC &amp; R system
JP2012167852A (en) Heat pump type vapor generator
JP2006517643A (en) Supercritical pressure regulation of vapor compression system
CN112228983B (en) Heat-humidity ratio adjustable radiation cooling and fresh air integrated system and operation method
JP2004216934A (en) Heater for air conditioner
JP2003156265A (en) Heat pump system
JP2004003804A (en) Vapor compression type refrigerating machine
CN109724284A (en) A kind of supercritical carbon dioxide refrigeration system of two-stage throttling
JP2004144378A (en) Heat pump
KR20100005736U (en) Heat pump system
CN209672629U (en) A kind of supercritical carbon dioxide refrigeration system of two-stage throttling
JPS6045328B2 (en) heating device
JP2772868B2 (en) Absorption refrigerator
JP2004340475A (en) Stream compression type refrigerating machine
JP2003194434A (en) Heat pump system
CN108759092A (en) Enclosed heat-pump water heater based on air circulation
TWI308632B (en)
JPH08247571A (en) Air-conditioner
CN206192001U (en) Refrigerating system of controllable refrigerant flow direction
KR101200645B1 (en) Apparatus and method for controlling fan of outdoor unit in gas heat pump system
WO2002077546A1 (en) Heat pump, and heat pump system