JP2004143947A - Air-fuel ratio control device of internal combustion engine - Google Patents

Air-fuel ratio control device of internal combustion engine Download PDF

Info

Publication number
JP2004143947A
JP2004143947A JP2002306581A JP2002306581A JP2004143947A JP 2004143947 A JP2004143947 A JP 2004143947A JP 2002306581 A JP2002306581 A JP 2002306581A JP 2002306581 A JP2002306581 A JP 2002306581A JP 2004143947 A JP2004143947 A JP 2004143947A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
exhaust air
exhaust
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002306581A
Other languages
Japanese (ja)
Inventor
Yasuki Tamura
田村 保樹
Kazuhito Kawashima
川島 一仁
Kazuhide Iwasa
岩佐 和英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2002306581A priority Critical patent/JP2004143947A/en
Publication of JP2004143947A publication Critical patent/JP2004143947A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen

Abstract

<P>PROBLEM TO BE SOLVED: To surely maintain purification performance of a catalyst by holding the average air-fuel ratio of a prescribed period constant even if disturbance is caused in an air-fuel ratio control device of an internal combustion engine. <P>SOLUTION: The exhaust air-fuel ratio AF<SB>1</SB>is detected by a linear A/F sensor 22 so that the average exhaust air-fuel ratio AF with every prescribed period T is set as the prescribed target average air-fuel ratio AF<SB>0</SB>for preventing reduction in purification efficiency of a three way catalyst 23 by turbulence of the exhaust air-fuel ratio. The target average exhaust air-fuel ratio AF<SB>0</SB>is determined by distributing a correction quantity to the past error in the middle of the prescribed period T in a residual period of the prescribed period T. The exhaust air-fuel ratio is adjusted and controlled by operating a driver 26 by arithmetically operating a fuel injection quantity and the ignition timing on the basis of the target average exhaust air-fuel ratio AF<SB>0</SB>. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、排気経路の検出空燃比に基づいて空燃比を目標空燃比に制御する内燃機関の空燃比制御装置に関する。
【0002】
【従来の技術】
一般に、内燃機関の空燃比制御装置では、排気経路に排気センサを設け、この排気センサの検出結果に基づいて燃料噴射量を制御し、空燃比が目標空燃比(例えば、ストイキ)となるようにリッチとリーンとの間で変調させるようにフィードバック制御している。この場合、排気経路には排気ガスに含有する有害物質を浄化する三元触媒が設けられており、この変調により三元触媒に担持されてるセリウム等の酸素吸蔵機能を有効的に活用することができ、三元触媒の浄化性能を向上することができる。
【0003】
【特許文献1】
特公平7−092011号公報
【0004】
【発明が解決しようとする課題】
ところが、上述した従来の内燃機関の空燃比制御装置にて、排気経路にセリウム等が担持された三元触媒が設けられているものでは、このセリウムが排気ガスの熱により劣化した場合、三元触媒がリーン時に酸素を吸蔵することができず、リッチ時にNOxを浄化することができず、この変調が逆に三元触媒の浄化性能を悪化させてしまうことがある。
【0005】
また、セリウムが熱劣化せずに酸素吸蔵機能が持続してる場合であっても、加速あるいは減速時などの過渡時に燃料壁面付着や燃料噴射量の演算誤差などの外乱が生じると、空燃比が一時的に目標値から外れてしまうことがある。従来は、この外乱により生じた過去の誤差に対して特に補正することなく、その後の空燃比を目標値となるように制御していた。即ち、フィードバック制御は、排気センサ(O2 センサ)の出力反転時(リッチ−リーン)の空燃比(例えば、ストイキ)を中心に変調させているため、中心空燃比は常時ストイキ近傍に制御することとなるが、外乱が生じたとき、一時的に所定期間の平均空燃比がストイキからリッチ側あるいはリーン側に外れてしまう。すると、三元触媒は十分に機能することができなくなり、NOxスパイクあるいはTHCスパイクが発生してしまう。
【0006】
更に、空燃比の強制変調制御では、中心空燃比をA/Fセンサの検出結果に基づいて制御するものがあるが、この場合であっても、外乱により一時的に所定期間の平均空燃比がストイキから外れてしまうという問題がある。また、従来の空燃比の変調制御では、O2 センサの出力に基づいて空燃比を常にリッチとリーンとの間で反転することになるため、この変調振幅が大きい場合、これ自体が燃費悪化の要因となっており、できるだけ変調しないように、あるいは変調振幅を小さくしたいとの要望もある。
【0007】
本発明はこのような問題を解決するものであって、外乱が発生しても所定期間の平均空燃比を一定に保持することで触媒の浄化性能を確実に維持する内燃機関の空燃比制御装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
上述の目的を達成するための請求項1の発明の内燃機関の空燃比制御装置は、内燃機関の排気経路に触媒を設け、この触媒に流入する排気の排気空燃比を検出する排気空燃比検出手段と、排気空燃比を調整可能な排気空燃比調整手段とを設け、制御手段は、排気空燃比の乱れによる触媒の浄化効率の低下を防止すべく所定期間ごとの排気空燃比の平均値を所定の目標平均空燃比とするように排気空燃比検出手段により検出される排気空燃比に基づいて排気空燃比調整手段の作動を制御するようにしている。
【0009】
従って、排気空燃比の所定期間ごとの平均値を所定の目標平均空燃比とするように排気空燃比を調整することで、排気空燃比の乱れによる触媒の浄化効率の低下を防止しており、外乱などで排気空燃比が目標値から外れたような場合でも、所定期間内に外乱に応じた排気空燃比の調整が行われて所定期間ごとの平均値を所定の目標平均空燃比に維持することができ、触媒の浄化性能を確実に維持することができる。
【0010】
請求項2の発明の内燃機関の空燃比制御装置では、制御手段が、所定期間の途中における所定期間内の過去の誤差の積算値相当値を求め、過去の誤差の積算値相当値に対して必要な補正量を残りの期間で分配して求めた補正値に基づいて残りの期間における排気空燃比調整手段の作動を制御するようにしている。従って、空燃比誤差の積算値相当値を所定期間の残りの期間で分配して求めた補正値に基づいて排気空燃比の乱れによる触媒の浄化効率の低下を防止しており、排気空燃比を大きく補正することなく、効率よく触媒の浄化性能を維持することができる。
【0011】
請求項3の発明の内燃機関の空燃比制御装置では、制御手段が、排気空燃比検出手段により検出された排気空燃比に乱れがない場合、排気空燃比を一定に保持して目標平均空燃比とするように排気空燃比調整手段の作動を制御するようにしている。従って、排気空燃比の乱れが生じなければ空燃比を変調させることがないため、燃費を向上することができる。
【0012】
請求項4の発明の内燃機関の空燃比制御装置では、触媒のHCとNOxの浄化効率におけるクロスオーバーポイントの空燃比が理論空燃比近傍となる変調周期を所定期間として設定するようにしている。従って、排気空燃比の乱れに対して効率よく触媒の浄化性能を確実に維持することができる。
【0013】
請求項5の発明の内燃機関の空燃比制御装置では、制御手段が、排気空燃比検出手段により検出される排気空燃比と目標平均空燃比との誤差をフィルタ処理した値に基づいて排気空燃比調整手段の作動を制御することにより排気空燃比の所定期間ごとの平均値を目標平均空燃比とするようにしている。従って、排気空燃比の乱れが生じた直後の補正量を大きく、その後の補正量を小さくすることができ、早期に効率よく触媒の浄化性能を維持することができる。
【0014】
【発明の実施の形態】
以下、図面に基づいて本発明の実施の形態を詳細に説明する。
【0015】
図1に本発明の第1実施例形態に係る内燃機関の空燃比制御装置を表す概略構成、図2に外乱の発生状況を説明するためのグラフ、図3に所定期間に対する有害物質の浄化効率を表すグラフ、図4に平均排気空燃比に対する有害物質の浄化効率を表すグラフ、図5に変調周期に対する排気空燃比を表すグラフ、図6に第1実施形態の内燃機関の空燃比制御装置による制御のフローチャート、図7に第1実施形態の内燃機関の空燃比制御装置による制御のタイムチャートを示す。
【0016】
本実施形態の内燃機関の空燃比制御装置は、図1に示すように、4気筒エンジンに適用したものであって、エンジン11には各気筒(燃焼室)に対応して吸気ポート及び排気ポートが設けられており、図示しない吸気バルブ及び排気バルブにより開閉自在となっている。上流部にエアクリーナ12が装着された吸気管13の下流側は、サージタンク14を介して吸気マニホールド15に連結され、この吸気マニホールド15に形成された4つのマニホールド部がエンジン11の各吸気ポートに連結されている。そして、この吸気管13の上流側にはエアフローセンサ16が装着されると共に、スロットルバルブ17及びスロットル開度センサ18が設けられている。また、吸気マニホールド15の各マニホールド部には、燃料を噴射するインジェクタ19がそれぞれ設けられている。
【0017】
一方、排気経路としての排気管20の上流側には排気マニホールド21が連結され、この排気マニホールド21に形成された4つのマニホールド部がエンジン11の各排気ポートに連結されている。そして、この排気管20の上流部、つまり、排気マニホールド21のマニホールド部が合流した下流側には排気空燃比検出手段としてのリニアA/Fセンサ22が装着され、この排気管20の下流部には三元触媒23が装着されている。また、エンジン11には各気筒のクランク位置を検出するクランク角センサ24が設けられている。
【0018】
また、車両には入出力装置、記憶装置(ROM、RAM、不揮発性RAM等)、中央処理装置(CPU)、タイマカウンタ等を有する制御装置としてのECU(電子制御ユニット)25が設けられており、このECU25によりエンジン11を含めた総合的な制御が行われる。即ち、ECU25の入力側には、前述した各種センサ類16,18,22,24等が接続されており、これらセンサ類からの検出情報が入力する。一方、ECU25の出力側には、インジェクタ19のドライバ26等が接続されており、このインジェクタ19のドライバ26等には、各種センサ類からの検出情報に基づき演算された燃料噴射量や点火時期等の最適値がそれぞれ出力され、ECU25は、このインジェクタ19等を駆動制御する。
【0019】
ところで、このように構成されたエンジン11における空燃比制御にて、ECU25はリニアA/Fセンサ22の検出出力に基づいて排気空燃比が目標空燃比となるようにフィードバック制御している。ところが、エンジン11から三元触媒23に流入する排気ガスは、エンジン11の加減速時などの過渡時における燃料壁面付着、燃焼室に流入する空気量やインジェクタ19から噴射される燃料噴射量等の演算誤差により外乱により、排気空燃比が一時的に目標空燃比から外れてしまうことがある。
【0020】
一般に、リニアA/Fセンサ22が三元触媒23に流入する排気ガスの空燃比を検出し、ECU25はこの検出結果に基づいて排気空燃比が目標空燃比(例えば、ストイキ)となるようにインジェクタ19が噴射する燃料量を決定している。しかし、燃料の壁面付着や噴射量の演算誤差などの外乱が発生すると、一時的に所定期間の排気空燃比がストイキからリッチ側あるいはリーン側に外れてしまい、三元触媒23は排気ガスに含まれるNOxやTHCなどの有害物質を効率よく浄化することができなくなる。
【0021】
そこで、本実施形態の内燃機関の空燃比制御装置にあって、ECU25は、排気空燃比の乱れによる三元触媒23の浄化効率の低下を防止すべく、所定期間ごとの排気空燃比の平均値(平均排気空燃比)を所定の目標平均空燃比とするように、リニアA/Fセンサ(排気空燃比検出手段)22により検出される排気空燃比に基づいて燃料噴射量や点火時期等を演算してドライバ(排気空燃比調整手段)26の作動を制御するようにしている。
【0022】
図2に示すように、ECU25はリニアA/Fセンサ22の検出出力に基づいて所定期間の平均排気空燃比が目標平均空燃比、例えば、ストイキになるようにリッチとリーンの間で変調制御している。このとき、前述したリッチ側の外乱が発生すると、この外乱が発生した期間の平均排気空燃比が一時的にリッチ側に外れて三元触媒23はNOxやTHCなどの浄化効率が低下する。
【0023】
ここで、所定期間内の平均排気空燃比が一定で外乱がないときの所定期間の長さに対する三元触媒23による浄化効率をの特性を図3に示す。なお、図3のグラフは、本技術を概念的に説明するため、実施形態と同一か否かを問わず、三元触媒23はセリウム等の酸素吸蔵機能は有しておらず、その容量を1リットルとし、排気空燃比を振幅±1.0A/F、反転比50%の矩形波で強制変調した場合の特性である。図3に示すように、三元触媒23によるNOxとTHCの浄化効率を例にあげると、所定期間が長くなるに伴ってNOxとTHCの浄化効率が低下しており、所定期間が短く、この場合は、所定期間T=0.2sec 以内が最適であることはわかる。即ち、外乱が発生して排気空燃比に変動があったとしても、外乱発生時を含むこの所定期間(この場合は、0.2sec 以内)の平均空燃比が一定となるように過去の誤差(外乱)に対して将来に向かって補正すれば三元触媒23は高い浄化性能を維持することができる。
【0024】
一方、平均排気空燃比に対する三元触媒23によるNOxとTHCの浄化効率を計測してみる。図4に示すように、ある所定の平均排気空燃比の位置でNOxとTHCの浄化効率のグラフがクロス(クロスオーバーポイント:COP)している。即ち、このクロスオーバーポイントでの平均排気空燃比近傍に制御することで、三元触媒23はNOxとTHCとの浄化効率をほぼ同時に高い浄化効率とすることができる。
【0025】
そして、変調周期(所定期間)に対するNOx−THCのクロスオーバーポイントでの排気空燃比を計測してみる。図5に示すように、変調周期が長くなると、目標平均排気空燃比に対してクロスオーバーポイント(排気空燃比)がリッチ側に移行しており、燃費が悪化しており、この場合、所定期間T=0.2sec 以内が最適であることはわかる。即ち、所定期間T=0.2sec 以内で変調すれば、所定期間内の平均排気空燃比が目標平均排気空燃比に近似して燃費の悪化を抑制することができる。なお、所定期間の最適値は、0.2sec に限るものではなく、使用する触媒に応じてクロスオーバーポイントが理論空燃比近傍となる変調周期を所定期間として選択する。
【0026】
ここで、本実施形態の内燃機関の空燃比制御装置による空燃比制御について、図6のフローチャート及び図7のタイムチャートに基づいて説明する。
【0027】
図6に示すように、まず、ステップS1において、ECU25はリニアA/Fセンサ22のLAFS出力信号(電圧)を所定時間間隔でサンプリングし、実排気空燃比AF1 を求める。ステップS2では、排気空燃比の積算値AF[t−T]を下記数式1により算出する。
AF[t−T]=N・AFave −AF[0−t]     ・・・(1)
【0028】
この場合、図7に示すように、所定期間Tに対して時間tで外乱が発生したと想定しており、Nは所定期間内の積算回数、AFave は目標とする所定期間内の平均排気空燃比、AF[0−t]は0から時間tまでの排気空燃比の積算値である。
【0029】
ステップS2にて、所定期間Tでの残りの排気空燃比の積算値AF[t−T]が算出されると、ステップS3では、残りの期間(時間tからTまで)の目標平均排気空燃比AF0 を下記数式2により算出する。
AF0 =AF[t−T]/(N−n)          ・・・(2)
なお、nは所定期間Tにおける時間tまでの排気空燃比の積算回数である。
【0030】
そして、ステップS3にて、所定期間Tでの目標平均排気空燃比AF0 が算出されると、ステップS4で、ECU25はこの目標平均排気空燃比AF0 に基づいてドライバ26を制御する。
【0031】
即ち、図7に示すように、時間tでリッチ側に外乱が発生すると、所定期間Tの途中における所定期間T内の過去の誤差の積算値相当値として排気空燃比AF1 の積算値AF[t−T]を求め、この過去の誤差の積算値AF[t−T]に対して必要な補正量を所定期間Tの残りの積算回数で除して分配し補正値相当としての目標平均排気空燃比AF0 を求め、所定期間Tでの目標平均排気空燃比AFave よりリーン側に移行したこの目標平均排気空燃比AF0 に基づいて残りの期間における空燃比制御を行うようにしている。
【0032】
なお、所定期間T内で外乱が発生しないときは、排気空燃比を一定に保持して目標平均排気空燃比AFave とするようにドライバ26を制御する。
【0033】
このように第1実施形態の内燃機関の空燃比制御装置にあっては、排気空燃比の乱れによる三元触媒23の浄化効率の低下を防止すべく、所定期間Tごとの平均排気空燃比AFを所定の目標平均空燃比AF0 とするように、リニアA/Fセンサ22により検出される排気空燃比AF1 に基づいて燃料噴射量や点火時期等を演算してドライバ26の作動して排気空燃比を調整制御している。具体的には、所定期間Tの途中における排気空燃比の積算値AF[0−t]と目標平均空燃比の積算値N・AFave との差を所定期間Tの残りの期間で除して補正値として目標平均排気空燃比AF0 を求め、この目標平均排気空燃比AF0 に基づいて残りの期間の空燃比制御を実行する。
【0034】
従って、排気空燃比の乱れによる三元触媒23の浄化効率の低下を防止し、外乱などで排気空燃比が目標値から外れたような場合でも、所定期間T内に外乱に応じた排気空燃比の調整が行われて所定期間Tごとの平均値を所定の目標平均空燃比に維持することができ、三元触媒23の浄化性能を維持することができると共に、燃費の悪化を抑制することができる。
【0035】
図8に本発明の第2実施例形態に係る内燃機関の空燃比制御装置による制御のフローチャート、図9に第2実施形態の内燃機関の空燃比制御装置による制御のタイムチャートを示す。なお、前述した実施形態で説明したものと同様の機能を有する部材には同一の符号を付して重複する説明は省略する。
【0036】
第2実施例形態の内燃機関の空燃比制御装置による空燃比制御について、図8に示すように、まず、ステップS11において、ECU25はリニアA/Fセンサ22の検出結果に基づいて実排気空燃比AF1 を求める。ステップS12では、排気空燃比の制御誤差ΔAFを下記数式3により算出する。
ΔAF=AF1 −AFave                               ・・・(3)
ここで、AF1 は実排気空燃比、AFave は目標平均排気空燃比である。
【0037】
次に、ステップS13では、排気空燃比補正量dAF[t]を下記数式4により算出する。
dAF[t]=K・dAF[t−1]+(1−K)・ΔAF ・・(4)
なお、Kは反映係数であって1以下の値、好ましくは0.5、dAF[t−1]は前回の排気空燃比補正量である。
【0038】
ステップS14では、目標平均排気空燃比AF0 を下記数式5により算出する。
AF0 =AFave −dAF[t]             ・・・(5)
そして、目標平均排気空燃比AF0 が算出されると、ステップS15で、ECU25はこの目標平均排気空燃比AF0 に基づいてドライバ26を制御する。
【0039】
即ち、図9に示すように、制御誤差などの外乱が発生して実排気空燃比AF1 がリーン側に移行すると、所定の検出遅れ時間を経てリニアA/Fセンサ22はこれを検出する。そして、実排気空燃比AF1 と目標平均排気空燃比AFave の差から制御誤差ΔAFを求め、この制御誤差ΔAFをフィルタ処理(分配)、即ち、過去の誤差の積算値相当値である排気空燃比補正量dAF[t−1]をフィルタ処理を通して残りの期間で分配して排気空燃比補正量dAF[t]を求め、この目標平均排気空燃比AFave から排気空燃比補正量dAF[t]を減算して目標平均排気空燃比AF0 を求め、所定期間Tでの目標平均排気空燃比AFave よりリッチ側に移行した目標平均排気空燃比AF0 に基づいて残りの期間における空燃比制御を行うようにしている。
【0040】
この場合、外乱の制御誤差ΔAFに対する排気空燃比補正量dAF[t]は、反映係数K(好ましくは、0.5)に応じて減衰して分配されるため、反映係数Kは所定期間Tがこの減衰期間よりも大きくなるように設定する必要がある。
【0041】
このように第2実施形態の内燃機関の空燃比制御装置にあっては、所定期間Tごとの実平均排気空燃比AFを所定の目標平均空燃比AF0 とするように、リニアA/Fセンサ22により検出される排気空燃比AF1 と目標平均排気空燃比AFave との制御誤差ΔAFをフィルタ処理した値に基づいて燃料噴射量や点火時期等を演算してドライバ26の作動して排気空燃比を調整制御している。
【0042】
従って、排気空燃比AFの乱れが生じた直後の排気空燃比補正量dAF[t]を大きく、その後の補正量dAF[t]を小さくすることができ、外乱の検出遅れが大きい場合に、早期に効率よく三元触媒23の浄化性能を維持することができる。即ち、所定期間Tの補正の効果が、この所定期間Tの実排気空燃比AF1 に輸送遅れとして現れない場合、過剰な補正となる可能性があり、これを有効的に防止することができる。これは、前述した第1実施形態のように、積算した情報に対して補正するのではなく、瞬間的な情報に対して補正するためである。よって、請求項2の「積算値相当値」歯積算1回の瞬時値も含むものである。
【0043】
補正期間Tとの関係にて、(1−K)で反映される各補正値(1−K)・ΔAFは、各ルーチンごとに積算されるが、反映係数Kに応じて減衰するため、この減衰期間を所定期間Tとすることにより達成できる。この場合、本来移動積算が望ましいが、ECU25に限られたメモリ上で実現させる必要があるため、この減衰積算形式により対応することができる。
【0044】
なお、上述の実施形態にて、排気空燃比としてA/F(空気に対する燃料の重量比)を制御したが、F/A(燃料に対する空気の重量比)、燃料噴射量。二次エア量であってもよく、その他、これらと相関する値のものを用いてもよい。また、所定期間ごとに所定期間リーン運転あるいはリッチ運転あるいは両運転を行うようにしてもよく、この場合、リーン運転あるいはリッチ運転後に、実排気空燃比の検出遅れを考慮して、所定期間にわたって本実施形態を実施しないようにすることが望ましく、これは意図的な変動に対して補正する必要がないからである。
【0045】
また、時間tで外乱が発生したとき、過去の誤差(外乱)の積算に対する補正量を残りの期間(時間tからT)で均等に分配して排気空燃比が目標平均排気空燃比AF0 となるように補正したが、外乱に対する補正の分配時期はこれに限るものではなく、所定期間T内で均等でなくてもよく、例えば、外乱が発生した直後や所定期間Tが完了する直前に集中して行ってもよい。また、この所定期間Tは時間に限るものではなく、サイクルであってもよい。即ち、リニアA/Fセンサ22は所定時間間隔で排気空燃比をサンプリングしており、所定サイクル数(サンプリング回数)としてもよく、この場合、所定期間Tをサイクル数の整数倍とすることが望ましい。
【0046】
また、この所定時間Tを固定値とせずに、エンジン11の運転条件(エンジン回転速度、体積効率、排気温度、触媒温度、排気流量、冷却水温、正味平均有効圧、車速の少なくとも一つ)に応じて異なる値を用いても良く、これにより使用する触媒の種類に対して最適値が得られる。具体的には、前述したように、酸素吸蔵機能を有しておらず、容量が1リットルの触媒を用い、排気空燃比を振幅±1.0A/F、反転比50%の矩形波で強制変調したときのNOx、THCの浄化効率のクロスオーバーポイントの排気空燃比が目標平均排気空燃比近傍になる変調周期を予め求め、制御分解性能を向上させるためにこの条件を満たす変調周期のうち最長の周期を所定期間Tとし、例えば、T=0.2sec とすることで、予め所定期間を最適化することにより制御が容易となる。
【0047】
更に、排気空燃比検出手段としてリニアA/Fセンサ22を用いたが、通常のλ−O2 センサを用いて推定してもよい。また、エンジン11の運転条件(エンジン回転速度、体積効率、排気温度、触媒温度、排気流量、冷却水温、正味平均有効圧、車速の少なくとも一つ)から予め求めてもよい。
【0048】
また、目標平均排気空燃比をストイキとしたが、エンジン11の運転条件(エンジン回転速度、体積効率、排気温度、触媒温度、排気流量、冷却水温、正味平均有効圧、車速)や三元触媒23の種類などに応じてリーン設定となったり、リッチ設定となったりするものである。そして、空燃比制御はフィードバック制御に限らず、開ループ制御や閉ループ制御であってもよく、閉ループ制御の場合、かなるセンサ出力をフィードバックしてもよく、O2 センサ、空燃比センサ、NOxセンサ、THCセンサであってもよい。更に、制御理論歯PID制御や現代理論制御を使用してもよい。
【0049】
また、三元触媒23は酸素吸蔵機能を有していないものとしたが、酸素吸蔵機能を有していてもよい。そして、インジェクタ19による噴射量や噴射時期のばらつき、吸入空気流量のばらつき、気筒間のばらつきなどを補正する学習制御と組み合わせることが有効的である。更に、燃費より排気ガスの低減を重視する場合には、外乱がない場合でも空燃比を変調させることが望ましい。また、本実施形態では、空燃比を直接制御するようにしたが、空燃比に代えて燃料噴射量を制御するようにしてもよい。
【0050】
【発明の効果】
以上、実施形態において詳細に説明したように請求項1の発明の内燃機関の空燃比制御装置によれば、排気空燃比の所定期間ごとの平均値を所定の目標平均空燃比とするように排気空燃比を調整することで、排気空燃比の乱れによる触媒の浄化効率の低下を防止しており、外乱などで排気空燃比が目標値から外れたような場合でも、所定期間内に外乱に応じた排気空燃比の調整が行われて所定期間ごとの平均値を所定の目標平均空燃比に維持することができ、触媒の浄化性能を確実に維持することができる。
【0051】
請求項2の発明の内燃機関の空燃比制御装置によれば、制御手段が、所定期間の途中における所定期間内の過去の誤差の積算値相当値を求め、過去の誤差の積算値相当値に対して必要な補正量を残りの期間で分配して求めた補正値に基づいて残りの期間における排気空燃比調整手段の作動を制御するので、過去の空燃比誤差の積算値相当値を所定期間の残りの期間で分配して求めた補正値に基づいて排気空燃比の乱れによる触媒の浄化効率の低下を防止しており、排気空燃比を大きく補正することなく、効率よく触媒の浄化性能を維持することができる。
【0052】
請求項3の発明の内燃機関の空燃比制御装置によれば、制御手段が、排気空燃比検出手段により検出された排気空燃比に乱れがない場合、排気空燃比を一定に保持して目標平均空燃比とするように排気空燃比調整手段の作動を制御するので、排気空燃比の乱れが生じなければ空燃比を変調させることがないため、燃費を向上することができる。
【0053】
請求項4の発明の内燃機関の空燃比制御装置によれば、触媒のHCとNOxの浄化効率におけるクロスオーバーポイントの空燃比が理論空燃比近傍となる変調周期を所定期間として設定するので、排気空燃比の乱れに対して効率よく触媒の浄化性能を確実に維持することができる。
【0054】
請求項5の発明の内燃機関の空燃比制御装置によれば、制御手段が、排気空燃比検出手段により検出される排気空燃比と目標平均空燃比との誤差をフィルタ処理した値に基づいて排気空燃比調整手段の作動を制御することにより排気空燃比の所定期間ごとの平均値を目標平均空燃比とするので、排気空燃比の乱れが生じた直後の補正量を大きく、その後の補正量を小さくすることができ、早期に効率よく触媒の浄化性能を維持することができる。
【図面の簡単な説明】
【図1】本発明の第1実施例形態に係る内燃機関の空燃比制御装置を表す概略構成図である。
【図2】外乱の発生状況を説明するためのグラフである。
【図3】所定期間に対する有害物質の浄化効率を表すグラフである。
【図4】平均排気空燃比に対する有害物質の浄化効率を表すグラフである。
【図5】変調周期に対する排気空燃比を表すグラフである。
【図6】第1実施形態の内燃機関の空燃比制御装置による制御のフローチャートである。
【図7】第1実施形態の内燃機関の空燃比制御装置による制御のタイムチャートである。
【図8】本発明の第2実施例形態に係る内燃機関の空燃比制御装置による制御のフローチャートである。
【図9】第2実施形態の内燃機関の空燃比制御装置による制御のタイムチャートである。
【符号の説明】
11 エンジン
13 吸気管
19 インジェクタ
20 排気管
22 リニアA/Fセンサ(空燃比検出手段)
25 電子制御ユニット(ECU、排気空燃比検出手段、制御手段)
26 ドライバ(排気空燃比調整手段)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an air-fuel ratio control device for an internal combustion engine that controls an air-fuel ratio to a target air-fuel ratio based on a detected air-fuel ratio in an exhaust path.
[0002]
[Prior art]
Generally, in an air-fuel ratio control device for an internal combustion engine, an exhaust sensor is provided in an exhaust path, and a fuel injection amount is controlled based on a detection result of the exhaust sensor so that the air-fuel ratio becomes a target air-fuel ratio (for example, stoichiometric). Feedback control is performed so as to modulate between rich and lean. In this case, a three-way catalyst for purifying harmful substances contained in the exhaust gas is provided in the exhaust path, and by this modulation, the oxygen storage function of cerium or the like carried on the three-way catalyst can be effectively used. As a result, the purification performance of the three-way catalyst can be improved.
[0003]
[Patent Document 1]
Japanese Patent Publication No. Hei 7-092011
[0004]
[Problems to be solved by the invention]
However, in the above-described conventional air-fuel ratio control apparatus for an internal combustion engine, in which the three-way catalyst carrying cerium or the like is provided in the exhaust path, if the cerium is deteriorated by the heat of the exhaust gas, the three-way catalyst The catalyst cannot occlude oxygen when lean, and cannot purify NOx when rich, and this modulation may adversely degrade the purification performance of the three-way catalyst.
[0005]
Even when cerium does not thermally degrade and the oxygen storage function is maintained, if disturbance such as fuel wall adhesion or calculation error of fuel injection occurs during transients such as acceleration or deceleration, the air-fuel ratio will decrease. It may temporarily deviate from the target value. Conventionally, the subsequent air-fuel ratio has been controlled to be a target value without particularly correcting the past error caused by the disturbance. That is, the feedback control is performed by the exhaust sensor (O 2 Since the air-fuel ratio (e.g., stoichiometric) at the time of output reversal (rich-lean) of the sensor) is modulated at the center, the central air-fuel ratio is constantly controlled near stoichiometric. As a result, the average air-fuel ratio during the predetermined period deviates from the stoichiometric side to the rich side or the lean side. Then, the three-way catalyst cannot function sufficiently, and a NOx spike or a THC spike occurs.
[0006]
Further, in the forced modulation control of the air-fuel ratio, there is a method in which the center air-fuel ratio is controlled based on the detection result of the A / F sensor. Even in this case, the average air-fuel ratio for a predetermined period is temporarily reduced due to disturbance. There is a problem that it comes off the stoichiometric. In the conventional air-fuel ratio modulation control, O 2 Since the air-fuel ratio is always inverted between rich and lean based on the output of the sensor, if this modulation amplitude is large, it is itself a cause of fuel consumption deterioration, so as not to modulate as much as possible, or There is also a demand for reducing the modulation amplitude.
[0007]
The present invention solves such a problem, and an air-fuel ratio control apparatus for an internal combustion engine that reliably maintains the purification performance of a catalyst by maintaining a constant average air-fuel ratio for a predetermined period even when disturbance occurs. The purpose is to provide.
[0008]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided an air-fuel ratio control apparatus for an internal combustion engine, wherein a catalyst is provided in an exhaust path of the internal combustion engine, and an exhaust air-fuel ratio detecting device detects an exhaust air-fuel ratio of exhaust gas flowing into the catalyst. Means, and an exhaust air-fuel ratio adjusting means capable of adjusting the exhaust air-fuel ratio.The control means calculates an average value of the exhaust air-fuel ratio for each predetermined period in order to prevent a reduction in the purification efficiency of the catalyst due to the disturbance of the exhaust air-fuel ratio. The operation of the exhaust air-fuel ratio adjusting means is controlled based on the exhaust air-fuel ratio detected by the exhaust air-fuel ratio detecting means so as to obtain a predetermined target average air-fuel ratio.
[0009]
Therefore, by adjusting the exhaust air-fuel ratio so that the average value of the exhaust air-fuel ratio every predetermined period becomes a predetermined target average air-fuel ratio, it is possible to prevent a reduction in the purification efficiency of the catalyst due to the disturbance of the exhaust air-fuel ratio. Even when the exhaust air-fuel ratio deviates from the target value due to disturbance or the like, the exhaust air-fuel ratio is adjusted in accordance with the disturbance within a predetermined period to maintain the average value for each predetermined period at a predetermined target average air-fuel ratio. And the purification performance of the catalyst can be reliably maintained.
[0010]
In the air-fuel ratio control apparatus for an internal combustion engine according to the second aspect of the present invention, the control means obtains a value corresponding to an integrated value of a past error within a predetermined period in the middle of the predetermined period, and The operation of the exhaust air-fuel ratio adjusting means in the remaining period is controlled based on the correction value obtained by distributing the necessary correction amount in the remaining period. Therefore, a reduction in the purification efficiency of the catalyst due to the disturbance of the exhaust air-fuel ratio is prevented based on the correction value obtained by distributing the value corresponding to the integrated value of the air-fuel ratio error in the remaining period of the predetermined period. It is possible to efficiently maintain the purification performance of the catalyst without making large corrections.
[0011]
In the air-fuel ratio control device for an internal combustion engine according to the third aspect of the present invention, the control means keeps the exhaust air-fuel ratio constant when the exhaust air-fuel ratio detected by the exhaust air-fuel ratio detection means is not disturbed. Thus, the operation of the exhaust air-fuel ratio adjusting means is controlled. Therefore, the air-fuel ratio is not modulated unless the exhaust air-fuel ratio is disturbed, so that the fuel efficiency can be improved.
[0012]
In the air-fuel ratio control apparatus for an internal combustion engine according to the fourth aspect of the present invention, the modulation period in which the air-fuel ratio at the crossover point in the purification efficiency of HC and NOx of the catalyst becomes close to the stoichiometric air-fuel ratio is set as the predetermined period. Therefore, it is possible to reliably maintain the purification performance of the catalyst efficiently with respect to the disturbance of the exhaust air-fuel ratio.
[0013]
In the air-fuel ratio control apparatus for an internal combustion engine according to a fifth aspect of the present invention, the control means controls the exhaust air-fuel ratio based on a value obtained by filtering an error between the exhaust air-fuel ratio detected by the exhaust air-fuel ratio detection means and the target average air-fuel ratio. By controlling the operation of the adjusting means, the average value of the exhaust air-fuel ratio for each predetermined period is set as the target average air-fuel ratio. Therefore, the correction amount immediately after the occurrence of the disturbance of the exhaust air-fuel ratio can be increased and the subsequent correction amount can be reduced, and the purification performance of the catalyst can be efficiently maintained at an early stage.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0015]
FIG. 1 is a schematic configuration showing an air-fuel ratio control device for an internal combustion engine according to a first embodiment of the present invention, FIG. 2 is a graph for explaining the state of occurrence of disturbance, and FIG. 3 is a purification efficiency of harmful substances for a predetermined period. , FIG. 4 is a graph showing the purification efficiency of harmful substances with respect to the average exhaust air-fuel ratio, FIG. 5 is a graph showing the exhaust air-fuel ratio with respect to the modulation period, and FIG. 6 is a graph showing the air-fuel ratio control apparatus for the internal combustion engine according to the first embodiment. FIG. 7 shows a flowchart of the control, and FIG. 7 shows a time chart of the control by the air-fuel ratio control device for the internal combustion engine of the first embodiment.
[0016]
As shown in FIG. 1, the air-fuel ratio control device for an internal combustion engine according to the present embodiment is applied to a four-cylinder engine, and an engine 11 has an intake port and an exhaust port corresponding to each cylinder (combustion chamber). Which can be opened and closed by an intake valve and an exhaust valve (not shown). The downstream side of the intake pipe 13 in which the air cleaner 12 is mounted on the upstream portion is connected to an intake manifold 15 via a surge tank 14, and four manifold portions formed in the intake manifold 15 are connected to each intake port of the engine 11. Are linked. An air flow sensor 16 is mounted on the upstream side of the intake pipe 13, and a throttle valve 17 and a throttle opening sensor 18 are provided. Further, each manifold of the intake manifold 15 is provided with an injector 19 for injecting fuel.
[0017]
On the other hand, an exhaust manifold 21 is connected to an upstream side of an exhaust pipe 20 as an exhaust path, and four manifold portions formed in the exhaust manifold 21 are connected to respective exhaust ports of the engine 11. A linear A / F sensor 22 as exhaust air-fuel ratio detecting means is mounted on an upstream portion of the exhaust pipe 20, that is, on a downstream side where the manifold portion of the exhaust manifold 21 joins. Is equipped with a three-way catalyst 23. Further, the engine 11 is provided with a crank angle sensor 24 for detecting a crank position of each cylinder.
[0018]
The vehicle is provided with an input / output device, a storage device (ROM, RAM, nonvolatile RAM, etc.), a central processing unit (CPU), and an ECU (electronic control unit) 25 as a control device having a timer counter and the like. The ECU 25 performs comprehensive control including the engine 11. That is, the above-mentioned various sensors 16, 18, 22, 24 and the like are connected to the input side of the ECU 25, and detection information from these sensors is input. On the other hand, a driver 26 and the like of the injector 19 are connected to an output side of the ECU 25. The driver 26 and the like of the injector 19 are connected to a fuel injection amount, an ignition timing, and the like calculated based on detection information from various sensors. Are output, and the ECU 25 controls the driving of the injector 19 and the like.
[0019]
By the way, in the air-fuel ratio control of the engine 11 configured as described above, the ECU 25 performs feedback control based on the detection output of the linear A / F sensor 22 so that the exhaust air-fuel ratio becomes the target air-fuel ratio. However, the exhaust gas flowing from the engine 11 into the three-way catalyst 23 may have a fuel wall adhesion during transients such as acceleration and deceleration of the engine 11, an amount of air flowing into the combustion chamber, a fuel injection amount injected from the injector 19, and the like. The exhaust air-fuel ratio may temporarily deviate from the target air-fuel ratio due to a disturbance due to a calculation error.
[0020]
Generally, the linear A / F sensor 22 detects the air-fuel ratio of the exhaust gas flowing into the three-way catalyst 23, and the ECU 25 determines the injector air-fuel ratio based on the detection result such that the exhaust air-fuel ratio becomes the target air-fuel ratio (for example, stoichiometric). 19 determines the amount of fuel to be injected. However, when disturbances such as fuel wall adhesion and injection amount calculation errors occur, the exhaust air-fuel ratio for a predetermined period temporarily deviates from the stoichiometric side to the rich side or the lean side, and the three-way catalyst 23 is contained in the exhaust gas. Harmful substances such as NOx and THC cannot be efficiently purified.
[0021]
Therefore, in the air-fuel ratio control device for an internal combustion engine according to the present embodiment, the ECU 25 determines the average value of the exhaust air-fuel ratio for each predetermined period in order to prevent a reduction in the purification efficiency of the three-way catalyst 23 due to the disturbance of the exhaust air-fuel ratio. The fuel injection amount and the ignition timing are calculated based on the exhaust air-fuel ratio detected by the linear A / F sensor (exhaust air-fuel ratio detecting means) 22 so that (average exhaust air-fuel ratio) becomes a predetermined target average air-fuel ratio. In this way, the operation of the driver (exhaust air-fuel ratio adjusting means) 26 is controlled.
[0022]
As shown in FIG. 2, the ECU 25 performs modulation control between rich and lean based on the detection output of the linear A / F sensor 22 so that the average exhaust air-fuel ratio for a predetermined period becomes a target average air-fuel ratio, for example, stoichiometry. ing. At this time, if the above-described disturbance on the rich side occurs, the average exhaust air-fuel ratio during the period in which the disturbance occurs temporarily deviates to the rich side, and the three-way catalyst 23 decreases the purification efficiency of NOx and THC.
[0023]
Here, the characteristics of the purification efficiency by the three-way catalyst 23 with respect to the length of the predetermined period when the average exhaust air-fuel ratio within the predetermined period is constant and there is no disturbance are shown in FIG. In addition, the graph of FIG. 3 illustrates the present technology conceptually, so that the three-way catalyst 23 does not have an oxygen storage function of cerium or the like regardless of whether it is the same as the embodiment or not. This is a characteristic when the air-fuel ratio is forcibly modulated with a rectangular wave having an amplitude of ± 1.0 A / F and a reversal ratio of 50%. As shown in FIG. 3, taking the purification efficiency of NOx and THC by the three-way catalyst 23 as an example, the purification efficiency of NOx and THC decreases as the predetermined period becomes longer, and the predetermined period becomes shorter. In this case, it can be seen that the optimum is within the predetermined period T = 0.2 sec. In other words, even if a disturbance occurs and the exhaust air-fuel ratio fluctuates, a past error (such as 0.2 seconds or less in this case) including the time when the disturbance occurs so that the average air-fuel ratio becomes constant is maintained. If the three-way catalyst 23 is corrected for the future (disturbance) in the future, the three-way catalyst 23 can maintain high purification performance.
[0024]
On the other hand, the purification efficiency of NOx and THC by the three-way catalyst 23 with respect to the average exhaust air-fuel ratio will be measured. As shown in FIG. 4, the graphs of the NOx and THC purification efficiencies cross each other (crossover point: COP) at a position of a predetermined average exhaust air-fuel ratio. That is, by controlling the average exhaust air-fuel ratio in the vicinity of the crossover point near the three-way catalyst 23, the purification efficiency of NOx and THC can be increased substantially simultaneously.
[0025]
Then, the exhaust air-fuel ratio at the NOx-THC crossover point with respect to the modulation cycle (predetermined period) is measured. As shown in FIG. 5, when the modulation period becomes longer, the crossover point (exhaust air-fuel ratio) shifts to the rich side with respect to the target average exhaust air-fuel ratio, and the fuel efficiency deteriorates. It can be seen that the optimum is within T = 0.2 sec. That is, if the modulation is performed within the predetermined period T = 0.2 sec, the average exhaust air-fuel ratio within the predetermined period approximates to the target average exhaust air-fuel ratio, and the deterioration of fuel efficiency can be suppressed. Note that the optimum value of the predetermined period is not limited to 0.2 sec, and a modulation period in which the crossover point is close to the stoichiometric air-fuel ratio is selected as the predetermined period according to the catalyst used.
[0026]
Here, the air-fuel ratio control by the air-fuel ratio control device for an internal combustion engine of the present embodiment will be described based on the flowchart of FIG. 6 and the time chart of FIG.
[0027]
As shown in FIG. 6, first, in step S1, the ECU 25 samples the LAFS output signal (voltage) of the linear A / F sensor 22 at predetermined time intervals to obtain the actual exhaust air-fuel ratio AF. 1 Ask for. In step S2, the integrated value AF [t-T] of the exhaust air-fuel ratio is calculated by the following equation (1).
AF [t−T] = N · AF ave -AF [0-t] (1)
[0028]
In this case, as shown in FIG. 7, it is assumed that a disturbance has occurred at a time t with respect to a predetermined period T, and N is the number of integrations within the predetermined period, AF ave Is an average exhaust air-fuel ratio within a target predetermined period, and AF [0-t] is an integrated value of the exhaust air-fuel ratio from 0 to time t.
[0029]
In step S2, when the integrated value AF [t-T] of the remaining exhaust air-fuel ratio in the predetermined period T is calculated, in step S3, the target average exhaust air-fuel ratio in the remaining period (from time t to T). AF 0 Is calculated by the following equation (2).
AF 0 = AF [t-T] / (N-n) (2)
Here, n is the number of times of integration of the exhaust air-fuel ratio up to time t in the predetermined period T.
[0030]
Then, in step S3, the target average exhaust air-fuel ratio AF in the predetermined period T 0 Is calculated in step S4, the ECU 25 calculates the target average exhaust air-fuel ratio AF. 0 The driver 26 is controlled based on.
[0031]
That is, as shown in FIG. 7, when disturbance occurs on the rich side at the time t, the exhaust air-fuel ratio AF is determined as a value corresponding to an integrated value of a past error in the predetermined period T in the middle of the predetermined period T. 1 Is obtained by dividing the necessary integrated value AF [t-T] by the remaining integrated number of the predetermined period T with respect to the integrated value AF [t-T] of the past error. Target exhaust air-fuel ratio AF as 0 To obtain the target average exhaust air-fuel ratio AF in the predetermined period T. ave This target average exhaust air-fuel ratio AF shifted to the lean side 0 , The air-fuel ratio control for the remaining period is performed.
[0032]
When no disturbance occurs within the predetermined period T, the exhaust air-fuel ratio is kept constant and the target average exhaust air-fuel ratio AF is maintained. ave The driver 26 is controlled as follows.
[0033]
As described above, in the air-fuel ratio control device for the internal combustion engine according to the first embodiment, in order to prevent the purification efficiency of the three-way catalyst 23 from decreasing due to the disturbance of the exhaust air-fuel ratio, the average exhaust air-fuel ratio AF for each predetermined period T is reduced. To a predetermined target average air-fuel ratio AF 0 The exhaust air-fuel ratio AF detected by the linear A / F sensor 22 1 The fuel injection amount, the ignition timing, and the like are calculated on the basis of the above, and the driver 26 is operated to adjust and control the exhaust air-fuel ratio. Specifically, the integrated value AF [0-t] of the exhaust air-fuel ratio and the integrated value N · AF of the target average air-fuel ratio in the middle of the predetermined period T ave Is divided by the remaining period of the predetermined period T to obtain a target average exhaust air-fuel ratio AF 0 And obtain the target average exhaust air-fuel ratio AF 0 , The air-fuel ratio control for the remaining period is executed.
[0034]
Accordingly, it is possible to prevent a reduction in the purification efficiency of the three-way catalyst 23 due to the disturbance of the exhaust air-fuel ratio, and even if the exhaust air-fuel ratio deviates from the target value due to disturbance or the like, the exhaust air-fuel ratio corresponding to the disturbance within the predetermined period T Is adjusted, the average value for each predetermined period T can be maintained at the predetermined target average air-fuel ratio, the purification performance of the three-way catalyst 23 can be maintained, and deterioration of fuel efficiency can be suppressed. it can.
[0035]
FIG. 8 is a flowchart of the control by the air-fuel ratio control device for the internal combustion engine according to the second embodiment of the present invention, and FIG. 9 is a time chart of the control by the air-fuel ratio control device for the internal combustion engine of the second embodiment. Note that members having the same functions as those described in the above-described embodiment are denoted by the same reference numerals, and redundant description will be omitted.
[0036]
As for the air-fuel ratio control by the air-fuel ratio control device for an internal combustion engine according to the second embodiment, first, in step S11, the ECU 25 determines the actual exhaust air-fuel ratio based on the detection result of the linear A / F sensor 22, as shown in FIG. AF 1 Ask for. In step S12, a control error ΔAF of the exhaust air-fuel ratio is calculated by the following equation (3).
ΔAF = AF 1 -AF ave ... (3)
Where AF 1 Is the actual exhaust air-fuel ratio, AF ave Is a target average exhaust air-fuel ratio.
[0037]
Next, in step S13, the exhaust air-fuel ratio correction amount dAF [t] is calculated by the following equation (4).
dAF [t] = K · dAF [t−1] + (1−K) · ΔAF (4)
Note that K is a reflection coefficient and is a value of 1 or less, preferably 0.5, and dAF [t-1] is a previous exhaust air-fuel ratio correction amount.
[0038]
In step S14, the target average exhaust air-fuel ratio AF 0 Is calculated by the following equation (5).
AF 0 = AF ave −dAF [t] (5)
Then, the target average exhaust air-fuel ratio AF 0 Is calculated, the ECU 25 determines in step S15 that the target average exhaust air-fuel ratio AF 0 The driver 26 is controlled based on.
[0039]
That is, as shown in FIG. 9, a disturbance such as a control error occurs and the actual exhaust air-fuel ratio AF 1 Moves to the lean side, the linear A / F sensor 22 detects this after a predetermined detection delay time. Then, the actual exhaust air-fuel ratio AF 1 And target average exhaust air-fuel ratio AF ave The control error ΔAF is obtained from the difference between the two, and the control error ΔAF is filtered (distributed), that is, the exhaust air-fuel ratio correction amount dAF [t−1], which is a value corresponding to the integrated value of the past error, is filtered through the filter processing for the remaining period. To calculate the exhaust air-fuel ratio correction amount dAF [t]. ave The target average exhaust air-fuel ratio AF is obtained by subtracting the exhaust air-fuel ratio correction amount dAF [t] from 0 To obtain the target average exhaust air-fuel ratio AF in the predetermined period T. ave Target average exhaust air-fuel ratio AF shifted to richer side 0 , The air-fuel ratio control for the remaining period is performed.
[0040]
In this case, the exhaust air-fuel ratio correction amount dAF [t] for the disturbance control error ΔAF is attenuated and distributed according to the reflection coefficient K (preferably 0.5). It is necessary to set so as to be longer than this decay period.
[0041]
As described above, in the air-fuel ratio control apparatus for the internal combustion engine according to the second embodiment, the actual average exhaust air-fuel ratio AF for each predetermined period T is changed to the predetermined target average air-fuel ratio AF. 0 The exhaust air-fuel ratio AF detected by the linear A / F sensor 22 1 And target average exhaust air-fuel ratio AF ave The fuel injection amount and the ignition timing are calculated based on the filtered value of the control error ΔAF, and the driver 26 operates to adjust and control the exhaust air-fuel ratio.
[0042]
Therefore, it is possible to increase the exhaust air-fuel ratio correction amount dAF [t] immediately after the disturbance of the exhaust air-fuel ratio AF occurs, and reduce the subsequent correction amount dAF [t]. The purification performance of the three-way catalyst 23 can be maintained efficiently. That is, the effect of the correction in the predetermined period T is the actual exhaust air-fuel ratio AF in the predetermined period T. 1 If it does not appear as a transport delay, there is a possibility that excessive correction will occur, and this can be effectively prevented. This is to correct not for the integrated information but for the instantaneous information as in the first embodiment described above. Therefore, the “integrated value equivalent value” of claim 2 includes the instantaneous value of one tooth integration.
[0043]
In relation to the correction period T, each correction value (1-K) .multidot..DELTA.AF reflected in (1-K) is integrated for each routine, but attenuates according to the reflection coefficient K. This can be achieved by setting the decay period to a predetermined period T. In this case, although the movement integration is originally desirable, it is necessary to realize the movement integration on a memory limited to the ECU 25. Therefore, it is possible to cope with this attenuation integration form.
[0044]
In the above embodiment, A / F (weight ratio of fuel to air) is controlled as the exhaust air-fuel ratio, but F / A (weight ratio of air to fuel) and fuel injection amount are used. The secondary air amount may be used, or a value correlated with these may be used. In addition, the lean operation or the rich operation or both operations may be performed for a predetermined period every predetermined period. In this case, after the lean operation or the rich operation, the actual operation is performed over a predetermined period in consideration of the detection delay of the actual exhaust air-fuel ratio. It is desirable not to implement the embodiments, because it is not necessary to correct for intentional variations.
[0045]
Further, when a disturbance occurs at time t, the correction amount for the integration of the past error (disturbance) is evenly distributed over the remaining period (from time t to T), and the exhaust air-fuel ratio is set to the target average exhaust air-fuel ratio AF. 0 However, the distribution timing of the correction for the disturbance is not limited to this, and may not be uniform within the predetermined period T. For example, immediately after the disturbance occurs or immediately before the predetermined period T is completed. You may concentrate. Further, the predetermined period T is not limited to time, but may be a cycle. That is, the linear A / F sensor 22 samples the exhaust air-fuel ratio at predetermined time intervals, and may set a predetermined cycle number (sampling number). In this case, it is desirable that the predetermined period T be an integral multiple of the cycle number. .
[0046]
In addition, the predetermined time T is not set to a fixed value, but is set according to the operating conditions of the engine 11 (at least one of engine rotation speed, volumetric efficiency, exhaust temperature, catalyst temperature, exhaust flow rate, cooling water temperature, net average effective pressure, and vehicle speed). Depending on the type of catalyst used, different values may be used, depending on the type of catalyst used. Specifically, as described above, a catalyst that does not have an oxygen storage function and has a capacity of 1 liter is used, and the exhaust air-fuel ratio is forced by a rectangular wave having an amplitude of ± 1.0 A / F and an inversion ratio of 50%. A modulation cycle at which the exhaust air-fuel ratio at the crossover point of the NOx and THC purification efficiencies when modulated becomes close to the target average exhaust air-fuel ratio is determined in advance, and the longest modulation cycle among the modulation cycles satisfying this condition is used to improve the control resolution performance. Is set to a predetermined period T, for example, T = 0.2 sec, so that the control is facilitated by optimizing the predetermined period in advance.
[0047]
Further, the linear A / F sensor 22 is used as the exhaust air-fuel ratio detecting means. 2 The estimation may be performed using a sensor. Alternatively, it may be obtained in advance from operating conditions of the engine 11 (at least one of engine speed, volume efficiency, exhaust temperature, catalyst temperature, exhaust flow rate, cooling water temperature, net average effective pressure, and vehicle speed).
[0048]
Although the target average exhaust air-fuel ratio is set to stoichiometric, the operating conditions of the engine 11 (engine speed, volumetric efficiency, exhaust temperature, catalyst temperature, exhaust flow rate, cooling water temperature, net average effective pressure, vehicle speed) and the three-way catalyst 23 The setting may be a lean setting or a rich setting depending on the type of the setting. The air-fuel ratio control is not limited to feedback control, and may be open-loop control or closed-loop control. In the case of closed-loop control, such a sensor output may be fed back. 2 It may be a sensor, an air-fuel ratio sensor, a NOx sensor, or a THC sensor. Further, control theory tooth PID control or modern theory control may be used.
[0049]
Further, although the three-way catalyst 23 does not have the oxygen storage function, it may have the oxygen storage function. Then, it is effective to combine it with learning control for correcting variations in the injection amount and injection timing by the injector 19, variations in the intake air flow rate, variations among the cylinders, and the like. Further, when the reduction of exhaust gas is more important than fuel efficiency, it is desirable to modulate the air-fuel ratio even when there is no disturbance. Further, in the present embodiment, the air-fuel ratio is directly controlled, but the fuel injection amount may be controlled instead of the air-fuel ratio.
[0050]
【The invention's effect】
As described above in detail in the embodiment, according to the air-fuel ratio control apparatus for an internal combustion engine according to the first aspect of the present invention, the exhaust gas is set such that the average value of the exhaust air-fuel ratio for each predetermined period is set to the predetermined target average air-fuel ratio. By adjusting the air-fuel ratio, it is possible to prevent a reduction in the purification efficiency of the catalyst due to disturbances in the exhaust air-fuel ratio.Even if the exhaust air-fuel ratio deviates from the target value due to external disturbance, etc. The exhaust air-fuel ratio is adjusted, and the average value for each predetermined period can be maintained at the predetermined target average air-fuel ratio, so that the purification performance of the catalyst can be reliably maintained.
[0051]
According to the air-fuel ratio control apparatus for an internal combustion engine according to the second aspect of the present invention, the control means obtains a value equivalent to an integrated value of a past error within a predetermined period in the middle of the predetermined period, and calculates the value equivalent to the integrated value of a past error. On the other hand, the operation of the exhaust air-fuel ratio adjusting means in the remaining period is controlled based on the correction value obtained by distributing the necessary correction amount in the remaining period. The reduction of the catalyst purification efficiency due to the disturbance of the exhaust air-fuel ratio is prevented based on the correction value obtained by distributing during the rest of the period, and the purification efficiency of the catalyst can be efficiently improved without making a large correction to the exhaust air-fuel ratio. Can be maintained.
[0052]
According to the air-fuel ratio control apparatus for an internal combustion engine according to the third aspect of the present invention, when the exhaust air-fuel ratio detected by the exhaust air-fuel ratio detection means is not disturbed, the control means keeps the exhaust air-fuel ratio constant and sets the target average. Since the operation of the exhaust air-fuel ratio adjusting means is controlled to obtain the air-fuel ratio, the air-fuel ratio is not modulated unless the exhaust air-fuel ratio is disturbed, so that the fuel efficiency can be improved.
[0053]
According to the air-fuel ratio control apparatus for an internal combustion engine according to the fourth aspect of the present invention, the modulation period in which the air-fuel ratio at the crossover point in the purification efficiency of HC and NOx of the catalyst becomes close to the stoichiometric air-fuel ratio is set as the predetermined period. It is possible to reliably maintain the purification performance of the catalyst efficiently with respect to the disturbance of the air-fuel ratio.
[0054]
According to the air-fuel ratio control apparatus for an internal combustion engine according to the fifth aspect of the present invention, the control means controls the exhaust gas based on a value obtained by filtering an error between the exhaust air-fuel ratio detected by the exhaust air-fuel ratio detection means and the target average air-fuel ratio. Since the average value of the exhaust air-fuel ratio for each predetermined period is set as the target average air-fuel ratio by controlling the operation of the air-fuel ratio adjusting means, the correction amount immediately after the disturbance of the exhaust air-fuel ratio occurs is increased, and the subsequent correction amount is reduced. The catalyst can be reduced in size, and the purification performance of the catalyst can be efficiently maintained at an early stage.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram illustrating an air-fuel ratio control device for an internal combustion engine according to a first embodiment of the present invention.
FIG. 2 is a graph for explaining a state of occurrence of disturbance.
FIG. 3 is a graph showing a purification efficiency of harmful substances with respect to a predetermined period.
FIG. 4 is a graph showing a purification efficiency of harmful substances with respect to an average exhaust air-fuel ratio.
FIG. 5 is a graph showing an exhaust air-fuel ratio with respect to a modulation period.
FIG. 6 is a flowchart of control performed by the air-fuel ratio control device for the internal combustion engine according to the first embodiment.
FIG. 7 is a time chart of control by the air-fuel ratio control device for the internal combustion engine of the first embodiment.
FIG. 8 is a flowchart of control by an air-fuel ratio control device for an internal combustion engine according to a second embodiment of the present invention.
FIG. 9 is a time chart of control by an air-fuel ratio control device for an internal combustion engine according to a second embodiment.
[Explanation of symbols]
11 Engine
13 Intake pipe
19 Injector
20 exhaust pipe
22 Linear A / F sensor (air-fuel ratio detecting means)
25 Electronic control unit (ECU, exhaust air-fuel ratio detection means, control means)
26 Driver (Exhaust air-fuel ratio adjusting means)

Claims (5)

内燃機関の排気経路に設けられた触媒と、該触媒に流入する排気の排気空燃比を検出する排気空燃比検出手段と、前記排気空燃比を調整可能に設けられた排気空燃比調整手段と、前記排気空燃比の乱れによる前記触媒の浄化効率の低下を防止すべく所定期間ごとの排気空燃比の平均値を所定の目標平均空燃比とするように前記排気空燃比検出手段により検出される排気空燃比に基づいて前記排気空燃比調整手段の作動を制御する制御手段とを具えたことを特徴とする内燃機関の空燃比制御装置。A catalyst provided in an exhaust path of the internal combustion engine, exhaust air-fuel ratio detecting means for detecting an exhaust air-fuel ratio of exhaust flowing into the catalyst, exhaust air-fuel ratio adjusting means provided so as to adjust the exhaust air-fuel ratio, Exhaust gas detected by the exhaust air-fuel ratio detection means so that the average value of the exhaust air-fuel ratio every predetermined period is set to a predetermined target average air-fuel ratio in order to prevent a reduction in the purification efficiency of the catalyst due to the disturbance of the exhaust air-fuel ratio. Control means for controlling operation of said exhaust air-fuel ratio adjusting means based on the air-fuel ratio. 請求項1の内燃機関の空燃比制御装置において、前記制御手段は、前記所定期間の途中における該所定期間内の過去の誤差の積算値相当値を求め、該過去の誤差の積算値相当値に対して必要な補正量を残りの期間で分配して求めた補正値に基づいて前記残りの期間における前記排気空燃比調整手段の作動を制御することを特徴とする内燃機関の空燃比制御装置。2. The air-fuel ratio control apparatus for an internal combustion engine according to claim 1, wherein the control means obtains a value corresponding to an integrated value of a past error in the predetermined period in the middle of the predetermined period, and calculates a value equivalent to the integrated value of the past error. An air-fuel ratio control device for an internal combustion engine, wherein an operation of the exhaust air-fuel ratio adjusting means in the remaining period is controlled based on a correction value obtained by distributing a necessary correction amount in the remaining period. 請求項1の内燃機関の空燃比制御装置において、前記制御手段は、前記排気空燃比検出手段により検出された排気空燃比に乱れがない場合、該排気空燃比を一定に保持して前記目標平均空燃比とするように前記排気空燃比調整手段の作動を制御することを特徴とする内燃機関の空燃比制御装置。2. An air-fuel ratio control apparatus for an internal combustion engine according to claim 1, wherein said control means keeps said exhaust air-fuel ratio constant and maintains said target average value when there is no disturbance in said exhaust air-fuel ratio detected by said exhaust air-fuel ratio detection means. An air-fuel ratio control device for an internal combustion engine, wherein the operation of the exhaust air-fuel ratio adjusting means is controlled so as to obtain an air-fuel ratio. 請求項1の内燃機関の空燃比制御装置において、前記触媒のHCとNOxの浄化効率におけるクロスオーバーポイントの空燃比が理論空燃比近傍となる変調周期を前記所定期間として設定することを特徴とする内燃機関の空燃比制御装置。2. The air-fuel ratio control device for an internal combustion engine according to claim 1, wherein a modulation cycle in which an air-fuel ratio at a crossover point in the purification efficiency of HC and NOx of the catalyst becomes close to a stoichiometric air-fuel ratio is set as the predetermined period. An air-fuel ratio control device for an internal combustion engine. 請求項1の内燃機関の空燃比制御装置において、前記制御手段は、前記排気空燃比検出手段により検出される排気空燃比と前記目標平均空燃比との誤差をフィルタ処理した値に基づいて前記排気空燃比調整手段の作動を制御することにより排気空燃比の所定期間ごとの平均値を前記目標平均空燃比とすることを特徴とする内燃機関の空燃比制御装置。2. The air-fuel ratio control apparatus for an internal combustion engine according to claim 1, wherein the control unit is configured to control the exhaust gas based on a value obtained by filtering an error between the exhaust air-fuel ratio detected by the exhaust air-fuel ratio detection unit and the target average air-fuel ratio. An air-fuel ratio control apparatus for an internal combustion engine, wherein an average value of an exhaust air-fuel ratio every predetermined period is set as the target average air-fuel ratio by controlling an operation of an air-fuel ratio adjusting unit.
JP2002306581A 2002-10-22 2002-10-22 Air-fuel ratio control device of internal combustion engine Withdrawn JP2004143947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002306581A JP2004143947A (en) 2002-10-22 2002-10-22 Air-fuel ratio control device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002306581A JP2004143947A (en) 2002-10-22 2002-10-22 Air-fuel ratio control device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2004143947A true JP2004143947A (en) 2004-05-20

Family

ID=32453290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002306581A Withdrawn JP2004143947A (en) 2002-10-22 2002-10-22 Air-fuel ratio control device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2004143947A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7779621B2 (en) 2006-12-25 2010-08-24 Mitsubishi Electric Corporation Air fuel ratio control apparatus for an internal combustion engine
CN110552807A (en) * 2018-06-01 2019-12-10 丰田自动车株式会社 Control device for internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7779621B2 (en) 2006-12-25 2010-08-24 Mitsubishi Electric Corporation Air fuel ratio control apparatus for an internal combustion engine
CN110552807A (en) * 2018-06-01 2019-12-10 丰田自动车株式会社 Control device for internal combustion engine

Similar Documents

Publication Publication Date Title
JP4016905B2 (en) Control device for internal combustion engine
JPH0718368B2 (en) Catalyst deterioration detection device for internal combustion engine
JPH0726578B2 (en) Air-fuel ratio controller for internal combustion engine
JP3768780B2 (en) Air-fuel ratio control device for internal combustion engine
JP3156534B2 (en) Air-fuel ratio control device for internal combustion engine
JPS63120835A (en) Air-fuel ratio control device for internal combustion engine
JP2004143947A (en) Air-fuel ratio control device of internal combustion engine
JP2001304018A (en) Air/fuel ratio control device for internal combustion engine
JP2004019568A (en) Discharge gas cleaning device of internal combustion engine
JP2681965B2 (en) Air-fuel ratio control device for internal combustion engine
JP3213091B2 (en) Engine fuel control device
JP2526595B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0726577B2 (en) Air-fuel ratio controller for internal combustion engine
JPH0617660B2 (en) Air-fuel ratio controller for internal combustion engine
JP2518252B2 (en) Air-fuel ratio control device for internal combustion engine
JP2600749B2 (en) Air-fuel ratio control device for internal combustion engine
JP2600771B2 (en) Air-fuel ratio control device for internal combustion engine
JPS63134835A (en) Air-fuel ratio control device for internal combustion engine
JP2002180875A (en) Exhaust emission control system for internal combustion engine
JP2518259B2 (en) Air-fuel ratio control device for internal combustion engine
JP2000054895A (en) Fuel injection controller for multicylinder internal combustion engine
JP2623667B2 (en) Air-fuel ratio control device for internal combustion engine
JPS61212643A (en) Air-fuel ratio control device of internal-combustion engine
JP2701336B2 (en) Air-fuel ratio control device for internal combustion engine
JP2600811B2 (en) Air-fuel ratio control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050113

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20061020