JP2004143426A - Ladder-type blue light-emitting polymer with excellent thermal stability - Google Patents

Ladder-type blue light-emitting polymer with excellent thermal stability Download PDF

Info

Publication number
JP2004143426A
JP2004143426A JP2003303391A JP2003303391A JP2004143426A JP 2004143426 A JP2004143426 A JP 2004143426A JP 2003303391 A JP2003303391 A JP 2003303391A JP 2003303391 A JP2003303391 A JP 2003303391A JP 2004143426 A JP2004143426 A JP 2004143426A
Authority
JP
Japan
Prior art keywords
blue light
polymer
emitting polymer
emitting
ladder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003303391A
Other languages
Japanese (ja)
Inventor
Gwang Hoon Kwag
郭廣勳
Eun Joo Park
朴恩珠
Ginichi Kim
金銀一
Jae Young Koh
高在榮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumho Petrochemical Co Ltd
Original Assignee
Kumho Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumho Petrochemical Co Ltd filed Critical Kumho Petrochemical Co Ltd
Publication of JP2004143426A publication Critical patent/JP2004143426A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/141Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/115Polyfluorene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/154Ladder-type polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1408Carbocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1408Carbocyclic compounds
    • C09K2211/1416Condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ladder-type blue light-emitting polymer brought to have excellent thermal stability by combining a blue light-emitting monomer with a polymer main chain of the polymer, subsequently polymerizing the monomer or polymerizing after adding fluorene to styrene monomer. <P>SOLUTION: The blue light-emitting polymer has ≥400°C high glass transition temperature and 5% mass reduction temperature. Therefore, the polymer is not only used as a blue light-emitting material for display but applied as a light-emitting case of domestic electric appliances and a light-emitting case for cellular phones through blends with resin polymers. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は発光高分子に関し、さらに詳しくは高分子主鎖に青色発光単量体を組み合わせて重合した、熱的安定性の優秀な梯子形青色発光高分子に関する。 The present invention relates to a light emitting polymer, and more particularly, to a ladder-shaped blue light emitting polymer having excellent thermal stability, which is polymerized by combining a polymer main chain with a blue light emitting monomer.

 高分子は一般的に不導体に分類され、電気的な材料として活用されることができなかった。しかし、ポリアニリン、ポリピロール、ポリチオフェン等の伝導性高分子が開発されるにつれ、金属の伝導度と高分子の軽量及び加工性を共に有した優秀な材料が現れはじめた。 Polymers are generally classified as nonconductors and could not be used as electrical materials. However, as conductive polymers such as polyaniline, polypyrrole, and polythiophene have been developed, excellent materials having both the conductivity of metal and the light weight and processability of polymers have begun to appear.

 電気的な性質及び光学特性を有した共役高分子は静電気防止剤、センサー、電極、トランジスター、発光材料、太陽電池、スマートカード、電子新聞、ディスプレーなどに利用されてきた。高分子発光材料においては1990年英国のケンブリッジ大学でポリ(1,4-フェニルビニレン)を利用した電気発光現象が初めて発表された以後、非常に発展してきた。これは半導体無機材料に比べて、軽量、薄膜、自体発光、低電圧駆動、速いスイッチ速度、容易な加工性と低い生産価格、低い誘電常数、多様な開発可能性などと共に次世代情報通信用発光素材として注目されている。また、分子構造の変換を通じて電気的、光学的な性質を調節しながら、容易に加工できる長所を持つ。 Conjugated polymers having electrical and optical properties have been used in antistatic agents, sensors, electrodes, transistors, luminescent materials, solar cells, smart cards, electronic newspapers, displays, and the like. Polymer light-emitting materials have made great strides since the first publication of an electroluminescent phenomenon using poly (1,4-phenylvinylene) at Cambridge University in the UK in 1990. Compared to semiconductor inorganic materials, it is lighter, thinner, self-luminous, low voltage drive, fast switching speed, easy processability and low production cost, low dielectric constant, various development possibilities, etc. It is attracting attention as a material. In addition, there is an advantage that processing can be easily performed while adjusting electrical and optical properties through conversion of a molecular structure.

 青色発光高分子は主にフルオレンあるいはスパイロフルオレンをはじめとするアロマチック化合物を主鎖の共役高分子として活用する。その例は米国特許第5593788号、第5597890号、第5763636号、第5900327号等によく示されている。米国特許第5998045号ではフルオレンとアントラセンを共重合させた高分子を用いて発光素子を製造した。また、フルオレンとアロマチックアミン化合物(例えば、カルバゾール)の共重合体はドイツ特許第198 46 766号、 特許第198 46 767号、 第198 46 768号等によく示されている。発光体と可視光線で吸収度の非常に低い高分子(例えば、ポリカーボネート、ポリスチレン、ポリメタアクリレート、ポリビニルカルバゾール等)の混合を通じて電気発光素子を製造する場合は、米国特許第6395410号に公知された。最近には薄膜を用いた有機半導体にまで応用が研究されている(Appl. Phys. Lett. 80(6)、1088)。 The blue light emitting polymer mainly utilizes an aromatic compound such as fluorene or spirofluorene as a conjugated polymer of the main chain. Examples are well shown in U.S. Patent Nos. 5,593,788, 5,597,890, 5,763,636, 5,903,027 and the like. In US Pat. No. 5,980,945, a light emitting device was manufactured using a polymer obtained by copolymerizing fluorene and anthracene. Further, copolymers of fluorene and an aromatic amine compound (for example, carbazole) are well shown in German Patent Nos. 19846766, 19846767, and 19846768. When manufacturing an electroluminescent device through a mixture of a luminous body and a polymer having a very low absorbance in visible light (e.g., polycarbonate, polystyrene, polymethacrylate, polyvinyl carbazole, etc.), it was disclosed in US Pat. . Recently, applications to organic semiconductors using thin films have been studied (Appl. Phys. Lett. 80 (6), 1088).

 しかし、現在まで発光機器応用において青色発光高分子は寿命と輝度面で改善する部分が多い。その主なる原因は熱によるものである。熱により高分子の運動が生じ、これにより発生される微細結晶や高分子凝集によるものであると推定されている。熱の発生は電気発光機器の使用時間によって比例して増加されるので、発光高分子のガラス遷移温度、溶融温度あるいは熱的安定性が300℃以下であると長い寿命を期待し難い。つまり、既存の発光高分子は分子が運動し始めるガラス遷移温度を100℃付近で有したため(Macromolecules; 1998; 31(4); 1099-1103)、上記の問題点等を示したのである。
米国特許第5593788号 米国特許第5597890号 米国特許第5763636号 米国特許第5900327号 米国特許第5998045号
However, to date, there have been many improvements in blue light-emitting polymers in terms of life and luminance in light-emitting device applications. The main cause is heat. It is presumed that the motion of the polymer is caused by the heat, and the motion is caused by fine crystals or polymer aggregation. Since the generation of heat is increased in proportion to the use time of the electroluminescent device, it is difficult to expect a long life if the glass transition temperature, melting temperature or thermal stability of the light emitting polymer is 300 ° C. or less. That is, since the existing light emitting polymer had a glass transition temperature at which molecules started to move around 100 ° C. (Macromolecules; 1998; 31 (4); 1099-1103), the above-mentioned problems and the like were exhibited.
U.S. Pat.No. 5,593,788 US Patent No. 5597890 US Patent No. 5763636 U.S. Pat.No. 5,900,327 US Patent No. 5998045

 本発明は上記のような問題点等を解決するために提案されたものであって、溶解度が高くて熱的安定性の優秀な青色発光高分子を製造することをその目的とする。 The present invention has been proposed to solve the above problems and the like, and has as its object to produce a blue light emitting polymer having high solubility and excellent thermal stability.

 本発明の上記のような目的は、高分子主鎖に青色発光単量体を組み合わせた後、これを重合したりスチレンモノマーにフルオレンをつけたあと重合させ、熱的安定性が優秀になった梯子形青色発光高分子により達成される。 The object of the present invention is to combine a blue light-emitting monomer with a polymer main chain, polymerize the polymer or attach fluorene to a styrene monomer, and then polymerize the resulting polymer, thereby improving thermal stability. Achieved by a ladder-shaped blue emitting polymer.

 上記のような本発明をさらに詳細に説明すると、次の通りである。
 本発明は熱的安定性の高い青色発光高分子を製造するためのものであって、従来の100℃以下のガラス遷移温度を有する発光高分子とは異なって、梯子の形態を持たせることにより熱的安定性を高めた、新しい発光高分子構造を提案する。特に分子の挙動表示であるガラス遷移温度が400℃以上と高く、熱分析(TGA)上で5%質量が減少される温度も450℃以上であり、有機溶媒によく溶解され薄膜の制作が容易である。主鎖の成分であるポリスチレンは可視光線領域で透明であり、他の高分子との相溶性を増大させ、梯子形高分子の一軸で分子の運動を阻止して熱的安定性を向上させる。
The present invention as described above will be described in more detail as follows.
The present invention is for producing a blue light emitting polymer having high thermal stability, and unlike a conventional light emitting polymer having a glass transition temperature of 100 ° C. or lower, by giving a ladder form. We propose a new luminescent polymer structure with improved thermal stability. In particular, the glass transition temperature, which indicates molecular behavior, is as high as 400 ° C or higher, and the temperature at which the mass is reduced by 5% on thermal analysis (TGA) is 450 ° C or higher. It is. Polystyrene, which is a component of the main chain, is transparent in the visible light region, increases compatibility with other polymers, and blocks molecular movement on one axis of the ladder-shaped polymer to improve thermal stability.

 既存のポリフルオレンやポリアリル高分子は図1(a)の形態構造を有していて、分子の運動が高温では活発になりガラス遷移温度を100℃以上持ちにくい。梯子形高分子は(b)のように構成されている。(b)で表れるようにAブロックは発光する部分であり、Bブロックは光学性能が優秀であり、熱的安定性が優秀で分子の運動を阻害するポリスチレンである。また、ポリスチレンブロックは溶媒によく溶解され薄膜の制作が容易である。
 従って、本発明では図1の(b)で表される青色発光高分子を提供する。
The existing polyfluorene or polyallyl polymer has the morphological structure shown in FIG. 1 (a), and the movement of the molecule becomes active at a high temperature, making it difficult to have a glass transition temperature of 100 ° C. or more. The ladder polymer is configured as shown in FIG. As shown in (b), the A block is a light emitting portion, and the B block is a polystyrene having excellent optical performance, excellent thermal stability, and inhibiting the movement of molecules. Further, the polystyrene block is well dissolved in a solvent, and it is easy to produce a thin film.
Therefore, the present invention provides a blue light emitting polymer represented by FIG. 1 (b).

 図1(b)の式において、Aはポリフルオレン(polyfluorene)、ポリチオフェン(polythiophene)、ポリピロール(polypyrrole)、ポリカルバゾール(polycarbazole)、ポリフェニレン(polyphenylene)、ポリアニリン(polyaniline)、ポリピリジン(polypyridine)であり;Bはポリスチレン(polystyrene)、ポリピロール(polypyrrol)、ポリチオフェン(polythiophene)、ポリフェニレン(polyphenylene)、ポリアニリン(polyaniline)、ポリピリジン(polypyridine)、ポリカルバゾール(polycarbazole)であり; nは5〜100の整数であり;及びmは2〜100の整数である。 In the formula of FIG. 1 (b), A is polyfluorene, polythiophene, polypyrrole, polycarbazole, polycarbazole, polyphenylene, polyaniline, polypyridine; B is polystyrene (polystyrene), polypyrrole (polypyrrol), polythiophene (polythiophene), polyphenylene (polyphenylene), polyaniline (polyaniline), polypyridine (polypyridine), polycarbazole (polycarbazole); n is an integer of 5 to 100; And m is an integer of 2 to 100.

 図1(b)の式において、 Aはポリフルオレン(polyfluorene)であり、Bはポリスチレン(polystyrene)である、下記化学式1の青色発光高分子が好ましい。

Figure 2004143426
 また、本発明は上記化学式1でAr化合物をさらに含有する、下記化学式2の青色発光高分子を提供する。
Figure 2004143426
 上記式において、Arはアロマチック化合物であって、フルオレン(fluorene)、フルオレン誘導体(fluorene derivatives)、ベンゼン(benzene)、ベンゼン誘導体(benzene derivatives)、チオフェン(thiophene)、チオフェン誘導体(thiophene derivatives)、カルバゾール(carbazole)、カルバゾール誘導体(carbazole derivatives)、ピリジン(pyridine)、ピリジン誘導体(pyridine derivatives)である。
 特に、上記化学式1または2において、Bはアタクチック(atactic)あるいはシンジオタクチック(syndiotactic)構造を有するポリスチレン(polystyrene)である青色発光高分子(ladder-type blue light emitting polymers )が好ましい。 In the formula of FIG. 1 (b), A is a polyfluorene, and B is a polystyrene.
Figure 2004143426
The present invention also provides a blue light emitting polymer represented by the following Chemical Formula 2, further comprising an Ar compound represented by the above Chemical Formula 1.
Figure 2004143426
In the above formula, Ar is an aromatic compound, fluorene (fluorene), fluorene derivatives (fluorene derivatives), benzene (benzene), benzene derivatives (benzene derivatives), thiophene (thiophene), thiophene derivatives (thiophene derivatives), carbazole (carbazole), carbazole derivatives, pyridine, and pyridine derivatives.
In particular, in Formula 1 or 2, B is preferably a ladder-type blue light emitting polymer, which is a polystyrene having an atactic or syndiotactic structure.

 上記のような梯子形青色発光高分子の製造方法は、様々な方法で製造することができる。
 第一方法は、エーテル溶媒下でノルマルブチルリチウムを用いてフルオレンやジブロモフルオレン9位の水素を除去した後、ポリビニルベンゼンクロライドに組み合わせて、鉄やニッケル触媒を用いてアリル重合を実施する方法である。
The method for producing the ladder-shaped blue light-emitting polymer as described above can be produced by various methods.
The first method is a method of removing fluorene or dibromofluorene at the 9-position hydrogen using normal butyl lithium under an ether solvent, and then combining with polyvinyl benzene chloride and performing allyl polymerization using an iron or nickel catalyst. .

 第二方法は、ビニルベンゼンクロライドのクロライドをフルオレンで置換させ、スチレン部位を重合した後、フルオレンを鉄やニッケル触媒で重合する方法である。他の方法としては、ビニルフルオレンを重合(化学式3)したり、スチレンとビニルフルオレンを共重合(化学式4)させた後、フルオレン基等を重合する方法である。

Figure 2004143426
Figure 2004143426
The second method is a method in which chloride of vinylbenzene chloride is substituted with fluorene, styrene is polymerized, and then fluorene is polymerized with an iron or nickel catalyst. Another method is to polymerize vinylfluorene (chemical formula 3) or copolymerize styrene and vinylfluorene (chemical formula 4), and then polymerize a fluorene group or the like.
Figure 2004143426
Figure 2004143426

 製造された高分子のUV-Visible吸光度は360nm波長台で得られ(図3)、P1とP2の青色発光波長は450〜540nm付近であると示された(図4)。又、P1とP2のTGA上で5%質量減少温度点が475と448であると示され、熱的安定性面で非常に優秀な結果を表した(図5、図6)。DSC分析によるとガラス遷移温度は400℃以上であり、溶融温度は観察されなかった。 UV The UV-Visible absorbance of the produced polymer was obtained at a wavelength of 360 nm (FIG. 3), and the blue emission wavelengths of P1 and P2 were shown to be around 450 to 540 nm (FIG. 4). In addition, the points of 5% weight loss on TGA of P1 and P2 were 475 and 448, respectively, which showed very excellent results in terms of thermal stability (FIGS. 5 and 6). According to DSC analysis, the glass transition temperature was 400 ° C. or higher, and no melting temperature was observed.

 上記のような方法で高分子発光素材を製造すると、発光効率を維持しながら相安定性(phase stability)と高い寿命を期待することができる。又、ディバイス製造時にスピン-コートを利用して電極上に高分子をコートすることができ、光学性能の良い高分子(例えば、ポリカーボネート、ポリメチルメタアクリレート、ポリスチレン)との相溶性を向上させることができる。 高分子 When the polymer light emitting material is manufactured by the above method, it is possible to expect a phase stability and a long life while maintaining the luminous efficiency. In addition, a polymer can be coated on the electrode by using spin-coating at the time of device manufacturing, and the compatibility with a polymer having good optical performance (for example, polycarbonate, polymethyl methacrylate, polystyrene) is improved. Can be.

 尚、アロマチック化合物と共重合することができる。この際、化合物はアロマチック化合物にフルオレン、フルオレン誘導体、ベンゼン、ベンゼン誘導体、チオフェン、チオフェン誘導体、カルバゾール、カルバゾール誘導体、ピリジン、ピリジン誘導体、スチレン、スチレン誘導体等になることができる。

Figure 2004143426
Incidentally, it can be copolymerized with an aromatic compound. At this time, the compound can be an aromatic compound such as fluorene, a fluorene derivative, benzene, a benzene derivative, a thiophene, a thiophene derivative, carbazole, a carbazole derivative, pyridine, a pyridine derivative, styrene, a styrene derivative, and the like.
Figure 2004143426

 製造された高分子分析に使用された機器は次の通りである。ゲル透過クロマトグラフィはビスコテック製品を使用し、ポリスチレンで矯正した後使用した。使用した溶媒はテトラハイドロフランであり、40℃で屈折率で測定した。UV-visible spectrumはJASCO V-570を利用して得て、1H-NMR spectrumはVarian Unit Inova 200(200MHz)を利用して得た。TGAはPerkin-Elmer社のTGC 7/7を使用して、窒素雰囲気下で1分当たり20℃を昇温させながら測定した。Photoluminescence spectraはActon社のSpctrapro 275iと300iをspectrometerに、W-lampを光源にし、CCDカメラが装着された装備を利用して測定した。 機器 The equipment used for the polymer analysis was as follows. Gel permeation chromatography was used after correcting with polystyrene using a Viscotec product. The solvent used was tetrahydrofuran, which was measured at 40 ° C. by the refractive index. UV-visible spectrum was obtained using JASCO V-570, and 1H-NMR spectrum was obtained using Varian Unit Inova 200 (200 MHz). TGA was measured using a Perkin-Elmer TGC # 7/7 while increasing the temperature at 20 ° C. per minute in a nitrogen atmosphere. Photoluminescence spectra was measured using a spctrapro 275i and 300i from Acton as spectrometer, W-lamp as light source, and equipment equipped with a CCD camera.

 以下では実施例を挙げて本発明をさらに具体化するが、本発明がこれにより限定されるものではない。 Hereinafter, the present invention will be further embodied with reference to examples, but the present invention is not limited thereto.

 1. 9-ビニルベンジルフルオレン
 フルオレン(10.0mmol)をt-ブチルリチウム(1.7M in pentane、10.0mol)とテトラハイドロフラン(10mL)で−78℃で2時間反応させてフルオレンリチウムを製造する。生成されたフルオレンリチウムを−78℃のビニルベンゼンクロライド(10mmol)テトラハイドロフラン溶液に徐々に投入した後、攪拌しながら16時間反応させる。水(100mL)とエーテル(100mL)を順に投入した後、攪拌させる。有機溶液層を抽出して乾燥した後、再結晶して象牙色の針状形固体を得た。1H-NMR(200 MHz, CDCl3)は、 7.77(2H, d, Fu-H), 7.39-7.20(10H, m, Fu-H, Bn-H), 6.80-6.66(1H, q, Vy-H), 5.80-5.70(1H, d, Vy-H), 5.27-5.21(1H, d, Vy-H), 4.23(1H, t, Fu-H), 3.10(1H, d, Bz)である。
1. 9-vinylbenzylfluorene Fluorene (10.0 mmol) is reacted with t-butyllithium (1.7 M in pentane, 10.0 mol) in tetrahydrofuran (10 mL) at -78 ° C for 2 hours to produce lithium fluorene. The resulting fluorene lithium is gradually added to a solution of vinylbenzene chloride (10 mmol) in tetrahydrofuran at −78 ° C., and is reacted for 16 hours with stirring. Water (100 mL) and ether (100 mL) are added in this order, followed by stirring. After extracting and drying the organic solution layer, it was recrystallized to obtain an ivory needle-like solid. 1 H-NMR (200 MHz, CDCl 3 ) is 7.77 (2H, d, Fu-H), 7.39-7.20 (10H, m, Fu-H, Bn-H), 6.80-6.66 (1H, q, Vy -H), 5.80-5.70 (1H, d, Vy-H), 5.27-5.21 (1H, d, Vy-H), 4.23 (1H, t, Fu-H), 3.10 (1H, d, Bz) is there.

 2. ポリビニルベンジルジブロモフルオレンの合成
 窒素雰囲気下でポリビニルベンジルクロライド(1.57g、Mw 55,000)をテトラハイドロフラン(20mL)に溶解させた。ジブロモフルオレン(3.24g)をテトラハイドロフラン(50mL)に溶かした後、ドライアイス/アセトン温度に下げた。ここにノルマルブチルリチウム(2.5M、ノルマルヘキサン溶液)4mLを加えた後、作られた溶液を徐々にポリビニルベンジルクロライド溶液に加えた。混合物を常温で6時間攪拌した後、水を加えた。ここにエチルエーテル(200mL)を用いて結果物を抽出した後、真空状態で乾燥させた。乾燥後、黄色固体の形態として得られた。分子量は272,900、分子量分布は5.71、UV-Vis(λmax、THF)は 298nmである。
2. Synthesis of polyvinylbenzyldibromofluorene Under a nitrogen atmosphere, polyvinylbenzylchloride (1.57 g, Mw 55,000) was dissolved in tetrahydrofuran (20 mL). After dibromofluorene (3.24 g) was dissolved in tetrahydrofuran (50 mL), the temperature was reduced to dry ice / acetone. After adding 4 mL of normal butyllithium (2.5 M, normal hexane solution), the resulting solution was gradually added to the polyvinylbenzyl chloride solution. After the mixture was stirred at room temperature for 6 hours, water was added. The resulting product was extracted with ethyl ether (200 mL) and dried under vacuum. After drying, it was obtained in the form of a yellow solid. The molecular weight is 272,900, the molecular weight distribution is 5.71, and the UV-Vis (λmax, THF) is 298 nm.

 3. ポリビニルベンジルフルオレンの合成
 窒素雰囲気下でポリビニルベンジルクロライド(1.57g、Mw 55,000)をテトラハイドロフラン(20mL)に溶解させた。フルオレン(1.67g)をテトラハイドロフラン(50mL)に溶かした後、ドライアイス/アセトン温度に下げた。ここにノルマルブチルリチウム(2.5M、ノルマルヘキサン溶液)4mLを加えた後、作られた溶液を徐々にポリビニルベンジルクロライド溶液に加えた。混合物を常温で6時間攪拌した後、水を加えた。ここにエチルエーテル(200mL)を用いて結果物を抽出した後、真空状態で乾燥させた。乾燥後、黄色固体が得られた。分子量は68,160、分子量分布は2.96、UV-Vis(λmax、THF)は 302nmである。
3. Synthesis of polyvinylbenzylfluorene Under a nitrogen atmosphere, polyvinylbenzylchloride (1.57 g, Mw 55,000) was dissolved in tetrahydrofuran (20 mL). After fluorene (1.67 g) was dissolved in tetrahydrofuran (50 mL), the temperature was reduced to dry ice / acetone. After adding 4 mL of normal butyllithium (2.5 M, normal hexane solution), the resulting solution was gradually added to the polyvinylbenzyl chloride solution. After the mixture was stirred at room temperature for 6 hours, water was added. The resulting product was extracted with ethyl ether (200 mL) and dried under vacuum. After drying, a yellow solid was obtained. The molecular weight is 68,160, the molecular weight distribution is 2.96, and the UV-Vis (λmax, THF) is 302 nm.

 4. ポリビニルベンジル-ポリフルオレンの合成(P1)
 窒素雰囲気下でポリビニルベンジルフルオレン(1.57g、Mw 55,000)とジヘキシルフルオレン(3g)をクロロホルム(20mL)に溶かした。ここにFeCl3 (5g)を投入した後、4時間常温で攪拌した。この混合物にメタノールを加えた後、生成された沈澱物を濾過した。得られた固体をテトラハイドロフランに溶かした後、溶けない固体は除去した。得られた溶液を真空を利用して乾燥させて、黄色粉末の生成物を得た。分子量は79,040、分子量分布は2.94、UV-Vis(λmax、THF)は 362nm、PL(λmax、THF)は 542nm、TGA(5%、℃)は475、ガラス遷移温度(℃)は421.8である。
4. Synthesis of polyvinylbenzyl-polyfluorene (P1)
Under a nitrogen atmosphere, polyvinylbenzylfluorene (1.57 g, Mw 55,000) and dihexylfluorene (3 g) were dissolved in chloroform (20 mL). After charging FeCl 3 (5 g), the mixture was stirred at room temperature for 4 hours. After methanol was added to the mixture, the resulting precipitate was filtered. After dissolving the obtained solid in tetrahydrofuran, the insoluble solid was removed. The resulting solution was dried using vacuum to yield the product as a yellow powder. The molecular weight is 79,040, the molecular weight distribution is 2.94, the UV-Vis (λmax, THF) is 362 nm, the PL (λmax, THF) is 542 nm, the TGA (5%, ° C) is 475, and the glass transition temperature (° C) is 421.8.

 5. ポリビニルベンジル-ポリフルオレンの合成(P2)
 窒素雰囲気下でポリビニルベンジルジブロモフルオレン(1.57g、Mw 55,000)とジヘキシルフルオレン(3g)をクロロホルム(20mL)に溶かした。ここにFeCl3(5g)を投入した後、4時間常温で攪拌した。この混合物にメタノールを加えた後、生成された沈澱物を濾過した。得られた固体をテトラハイドロフランに溶かした後、溶けない固体は除去した。得られた溶液を真空を利用して乾燥させて、黄色粉末の生成物を得た。分子量は132,200、分子量分布は2.07、UV-Vis(λmax、THF)は 362nm、PL(λmax、THF)は 514nm、TGA(5%、℃)は448、ガラス遷移温度(℃)は404.4である。
5. Synthesis of polyvinylbenzyl-polyfluorene (P2)
Under a nitrogen atmosphere, polyvinylbenzyldibromofluorene (1.57 g, Mw 55,000) and dihexylfluorene (3 g) were dissolved in chloroform (20 mL). After charging FeCl 3 (5 g), the mixture was stirred at room temperature for 4 hours. After methanol was added to the mixture, the resulting precipitate was filtered. After dissolving the obtained solid in tetrahydrofuran, the insoluble solid was removed. The resulting solution was dried using vacuum to yield the product as a yellow powder. The molecular weight is 132,200, the molecular weight distribution is 2.07, UV-Vis (λmax, THF) is 362 nm, PL (λmax, THF) is 514 nm, TGA (5%, ° C) is 448, and glass transition temperature (° C) is 404.4.

 6. ポリビニルベンジル-ポリフルオレンの合成(P3)
 窒素雰囲気下でポリビニルベンジルジブロモフルオレン(1.57g、Mw 55,000)とジヘキシルフルオレン(3g)をベンゼン(20mL)に溶かした。ここにPd(PPh3)4(5g)を投入した後、6時間沸点で攪拌した。この混合物にメタノールを加えた後、生成された沈澱物を濾過した。得られた固体をテトラハイドロフランに溶かした後、溶けない固体は除去した。得られた溶液を真空を利用して乾燥させて、黄色粉末の生成物を得た。分子量は159,300、分子量分布は4.34、UV-Vis(λmax、THF)は 330nm、PL(λmax、THF)は 445nmである。
6. Synthesis of polyvinylbenzyl-polyfluorene (P3)
Under a nitrogen atmosphere, polyvinylbenzyldibromofluorene (1.57 g, Mw 55,000) and dihexylfluorene (3 g) were dissolved in benzene (20 mL). After charging Pd (PPh 3 ) 4 ( 5 g), the mixture was stirred at the boiling point for 6 hours. After methanol was added to the mixture, the resulting precipitate was filtered. After dissolving the obtained solid in tetrahydrofuran, the insoluble solid was removed. The resulting solution was dried using vacuum to yield the product as a yellow powder. The molecular weight is 159,300, the molecular weight distribution is 4.34, UV-Vis (λmax, THF) is 330 nm, and PL (λmax, THF) is 445 nm.

 7. ポリビニルベンジル-ポリ(フルオレン-co-チオフェン)合成(P4)
 窒素雰囲気下でポリビニルベンジルジブロモフルオレン(500mg、Mw 55,000)と3-オクチルチオフェン(2g)をクロロホルム(20mL)に溶かした。ここにFeCl3 (2.5g)を投入した後、4時間常温で攪拌した。この混合物にメタノールを加えた後、生成された沈澱物を濾過した。得られた固体をテトラハイドロフランに溶かした後、溶けない固体は除去した。得られた溶液を真空を利用して乾燥させて、黄色粉末の生成物を得た。分子量は8,911、分子量分布は3.14、UV-Vis(λmax、THF)は 405nm、PL(λmax、THF)は 544、682nm、TGA(5%、℃)は280、ガラス遷移温度(℃)は384.8である。
7. Synthesis of polyvinylbenzyl-poly (fluorene-co-thiophene) (P4)
Under a nitrogen atmosphere, polyvinylbenzyldibromofluorene (500 mg, Mw 55,000) and 3-octylthiophene (2 g) were dissolved in chloroform (20 mL). After charging FeCl 3 (2.5 g), the mixture was stirred at room temperature for 4 hours. After methanol was added to the mixture, the resulting precipitate was filtered. After dissolving the obtained solid in tetrahydrofuran, the insoluble solid was removed. The resulting solution was dried using vacuum to yield the product as a yellow powder. The molecular weight is 8,911, the molecular weight distribution is 3.14, UV-Vis (λmax, THF) is 405 nm, PL (λmax, THF) is 544, 682 nm, TGA (5%, ° C) is 280, and glass transition temperature (° C) is 384.8. is there.

 8. シンジオタクチックポリビニルベンジルフルオレン
 100mlナス型ラウンドフラスコにマグネチックバーを入れて窒素で置換させた後、1-ビニル-4-(1-フルオレンリル)メチルベンゼン2mmol(0.52g)を入れて、トルエン(20ml)を入れて溶かした。ここに助触媒であるMAOを12.1mmol(2.43M、5ml)を徐々に入れた後、30分間攪拌した。次にこの溶液に主触媒であるCpTiCl3 10mmol(2.19mg)を1mlのトルエンに溶かした後、室温で徐々に滴加する。滴加後、室温で1時間攪拌した後、溶液をHClが添加されたメタノール200mlに注いで固体を得てメタノールで洗浄した後、数時間真空乾燥して0.3gの重合体を得た。分子量は2,500である。
8. After putting a magnetic bar into a 100 ml round-bottomed syndiotactic polyvinylbenzylfluorene flask and replacing with nitrogen, 2 mmol (0.52 g) of 1-vinyl-4- (1-fluorenyl) methylbenzene was added, Toluene (20 ml) was added and dissolved. 12.1 mmol (2.43 M, 5 ml) of MAO as a cocatalyst was gradually added thereto, followed by stirring for 30 minutes. Next, 10 mmol (2.19 mg) of CpTiCl 3 as a main catalyst is dissolved in 1 ml of toluene, and then slowly added dropwise at room temperature. After the dropwise addition, the mixture was stirred at room temperature for 1 hour, and the solution was poured into 200 ml of methanol to which HCl was added to obtain a solid. The solid was washed with methanol, and dried under vacuum for several hours to obtain 0.3 g of a polymer. The molecular weight is 2,500.

 9. シンジオタクチックポリビニルベンジルフルオレン-co-スチレン(P5)
 100mlナス型ラウンドフラスコにマグネチックバーを入れて窒素で置換させた後、スチレン20mmol(2.1g)、1-ビニル-4-(1-フルオレニル)メチルベンゼン2mmol(0.52g)を入れて、トルエン(20ml)を入れて溶かした。ここに助触媒であるMAOを12.1mmol(2.43M、5ml)を徐々に入れた後、30分間攪拌した。次にこの溶液に主触媒であるCpTiCl3 10mmol(2.19mg)を1mlのトルエンに溶かした後、室温で徐々に滴加する。滴加後、室温で2時間攪拌した後、溶液をHClが添加されたメタノール200mlに注いで固体を得てメタノールで洗浄した後、数時間真空乾燥して2.5gの共重合体を得た。分子量は8,000である。
9. Syndiotactic polyvinylbenzylfluorene-co-styrene (P5)
After a magnetic bar was placed in a 100 ml eggplant-shaped round flask and replaced with nitrogen, 20 mmol (2.1 g) of styrene and 2 mmol (0.52 g) of 1-vinyl-4- (1-fluorenyl) methylbenzene were added, and toluene ( 20 ml) and dissolved. 12.1 mmol (2.43 M, 5 ml) of MAO as a cocatalyst was gradually added thereto, followed by stirring for 30 minutes. Next, 10 mmol (2.19 mg) of CpTiCl 3 as a main catalyst is dissolved in 1 ml of toluene, and then slowly added dropwise at room temperature. After the dropwise addition, the mixture was stirred at room temperature for 2 hours, and the solution was poured into 200 ml of methanol to which HCl was added to obtain a solid. The solid was washed with methanol, and dried under vacuum for several hours to obtain 2.5 g of a copolymer. The molecular weight is 8,000.

 10.シンジオタクチックポリスチレン-ポリフルオレン(P6)
 窒素雰囲気下でP5(500mg、Mw 8,000)をクロロホルム(20mL)に溶かした。ここにFeCl3(2.5g)を投入した後、4時間常温で攪拌した。この混合物にメタノールを加えた後、生成された沈澱物を濾過した。得られた固体をテトラハイドロフランに溶かした後、溶けない固体は除去した。得られた溶液を真空を利用して乾燥させて、黄色粉末の生成物を得た。分子量は4,802、分子量分布は2.42。UV-Vis(λmax、THF)は 353nm、PL(λmax、THF)は 460nm、TGA(5%、℃)は232.8、ガラス遷移温度(℃)は413.5である。
10. Syndiotactic polystyrene-polyfluorene (P6)
Under a nitrogen atmosphere, P5 (500 mg, Mw 8,000) was dissolved in chloroform (20 mL). After charging FeCl 3 (2.5 g), the mixture was stirred at room temperature for 4 hours. After methanol was added to the mixture, the resulting precipitate was filtered. After dissolving the obtained solid in tetrahydrofuran, the insoluble solid was removed. The resulting solution was dried using vacuum to yield the product as a yellow powder. The molecular weight is 4,802 and the molecular weight distribution is 2.42. UV-Vis (λmax, THF) is 353 nm, PL (λmax, THF) is 460 nm, TGA (5%, ° C) is 232.8, and glass transition temperature (° C) is 413.5.

発明の効果
 以上で詳細に説明したように、本発明により製造された高分子量の青色発光高分子は、高いガラス遷移温度及び5%質量減少温度点を持っている。従って、これをディスプレー用青色発光材料として利用することができるだけではなく、樹脂高分子とのブレンドを通じて家電製品の発光ケース、携帯電話の発光ケースに応用することができる。
Effect of the Invention As described in detail above, the high molecular weight blue light emitting polymer prepared according to the present invention has a high glass transition temperature and a 5% weight loss temperature point. Therefore, it can be used not only as a blue light-emitting material for display but also as a light-emitting case for home appliances and a light-emitting case for mobile phones through blending with a resin polymer.

(a)は既存のアリル青色発光高分子、(b)は梯子形青色発光高分子の概念図である。(A) is a conceptual diagram of an existing allyl blue light emitting polymer, and (b) is a conceptual diagram of a ladder type blue light emitting polymer. 梯子形発光高分子の製造方法を示す図である。It is a figure which shows the manufacturing method of a ladder type light emitting polymer. UV-Visible吸光度を示す図である。It is a figure which shows UV-Visible absorbance. 発光スペクトルを示す図である。It is a figure which shows an emission spectrum. P1のTGA(熱分析)を示す図である。It is a figure which shows TGA (thermal analysis) of P1. P2のTGA(熱分析)を示す図である。It is a figure which shows TGA (thermal analysis) of P2.

Claims (4)

下記形態のような梯子構造を有する青色発光高分子。
Figure 2004143426
 上記式で、Aはポリフルオレン、ポリチオフェン、ポリピロール、ポリカルバゾール、ポリフェニレン、ポリアニリン、ポリピリジンであり;Bはポリスチレン、ポリピロール、ポリチオフェン, ポリフェニレン、ポリアニリン、ポリピリジン、ポリカルバゾールであり; nは5〜100の整数であり;及びmは2〜100の整数である。
A blue light emitting polymer having a ladder structure as shown below.
Figure 2004143426
In the above formula, A is polyfluorene, polythiophene, polypyrrole, polycarbazole, polyphenylene, polyaniline, polypyridine; B is polystyrene, polypyrrole, polythiophene, polyphenylene, polyaniline, polypyridine, polycarbazole; n is an integer of 5 to 100 And m is an integer from 2 to 100.
AはポロフルオレンでありながらBはポリスチレンである、下記構造式を有することを特徴とする請求項1記載の青色発光高分子。
Figure 2004143426
The blue light-emitting polymer according to claim 1, wherein A is porfluorene and B is polystyrene, having the following structural formula.
Figure 2004143426
Arをさらに含有する、下記構造式を有することを特徴とする請求項2記載の青色発光高分子。
Figure 2004143426
 上記式で、Arはアロマチック化合物であって、フルオレン、フルオレン誘導体、ベンゼン、ベンゼン誘導体、チオフェン、チオフェン誘導体、カルバゾール、カルバゾール誘導体、ピリジン、ピリジン誘導体である。
The blue light-emitting polymer according to claim 2, further comprising Ar and having the following structural formula.
Figure 2004143426
In the above formula, Ar is an aromatic compound, and is fluorene, a fluorene derivative, benzene, a benzene derivative, a thiophene, a thiophene derivative, a carbazole, a carbazole derivative, a pyridine, or a pyridine derivative.
特にBはアタクチックあるいはシンジオタクチック構造を有するポリスチレンであることを特徴とする、請求項2または3記載の青色発光高分子。 4. The blue light-emitting polymer according to claim 2, wherein B is a polystyrene having an atactic or syndiotactic structure.
JP2003303391A 2002-10-25 2003-08-27 Ladder-type blue light-emitting polymer with excellent thermal stability Pending JP2004143426A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20020065464 2002-10-25

Publications (1)

Publication Number Publication Date
JP2004143426A true JP2004143426A (en) 2004-05-20

Family

ID=32105644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003303391A Pending JP2004143426A (en) 2002-10-25 2003-08-27 Ladder-type blue light-emitting polymer with excellent thermal stability

Country Status (3)

Country Link
US (1) US20040079924A1 (en)
JP (1) JP2004143426A (en)
KR (1) KR100596464B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100379836C (en) * 2006-04-10 2008-04-09 武汉大学 Process for preparing green light emitting materials polyalkyl fluorene
CN102725878A (en) * 2010-01-29 2012-10-10 住友化学株式会社 Light-emitting material, ink composition, thin film, light-emitting element, and method for manufacturing a light-emitting element
WO2024029292A1 (en) * 2022-08-01 2024-02-08 Jsr株式会社 Composition, compound, and method for manufacturing semiconductor substrate

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100581179B1 (en) * 2003-12-12 2006-05-17 금호석유화학 주식회사 A new type of norbornene monomers and polymers for blue light emitting material
CN102300890B (en) 2009-01-30 2014-03-26 惠普开发有限公司 Block copolymers and block copolymer nanoparticle compositions
CN102300902B (en) 2009-01-30 2014-07-02 惠普开发有限公司 UV Light-emissive Fluorene-based Copolymers
CN102372664B (en) * 2010-08-20 2014-02-26 清华大学 Fluorene compound containing pyridyl and application thereof
FR2974810B1 (en) * 2011-05-02 2014-07-25 Univ Bordeaux 1 COMPOSITION FOR PHOTOVOLTAIC CELLS OF A PHOTOVOLTAIC MODULE
US10273329B2 (en) 2016-03-11 2019-04-30 Lei Fang Organic semiconductor polymer
KR102176877B1 (en) * 2018-02-28 2020-11-10 주식회사 엘지화학 Polymer, coating compositions comprising the same, and organic light emitting device using the same
KR102290296B1 (en) * 2020-07-27 2021-08-17 연세대학교 산학협력단 Polyfluorene derivatives and polyvinylidene fluoride graft copolymers and device including the same
CN114276551B (en) * 2020-09-28 2023-10-10 Tcl科技集团股份有限公司 Composite nano material, preparation method thereof and quantum dot light emitting diode
CN114621417B (en) * 2022-03-28 2024-04-09 合肥工业大学 Optically active spiral polyfluorene block polyisonitrile copolymer and preparation method and application thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5597890A (en) * 1993-11-01 1997-01-28 Research Corporation Technologies, Inc. Conjugated polymer exciplexes and applications thereof
US5593788A (en) * 1996-04-25 1997-01-14 Eastman Kodak Company Organic electroluminescent devices with high operational stability
US5763636A (en) * 1995-10-12 1998-06-09 Hoechst Aktiengesellschaft Polymers containing spiro atoms and methods of using the same as electroluminescence materials
WO1997033323A1 (en) * 1996-03-04 1997-09-12 Uniax Corporation Polyfluorenes as materials for photoluminescence and electroluminescence
US5998045A (en) * 1997-07-03 1999-12-07 International Business Machines Corporation Polymeric light-emitting device
DE19825765A1 (en) * 1998-06-09 1999-12-16 Bayer Ag Electroluminescent devices using glare systems
US6103459A (en) * 1999-03-09 2000-08-15 Midwest Research Institute Compounds for use as chemical vapor deposition precursors, thermochromic materials light-emitting diodes, and molecular charge-transfer salts and methods of making these compounds
US6429040B1 (en) * 2000-04-06 2002-08-06 Agere Systems Guardian Corp. Device comprising a bipolar semi-conducting film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100379836C (en) * 2006-04-10 2008-04-09 武汉大学 Process for preparing green light emitting materials polyalkyl fluorene
CN102725878A (en) * 2010-01-29 2012-10-10 住友化学株式会社 Light-emitting material, ink composition, thin film, light-emitting element, and method for manufacturing a light-emitting element
US8922109B2 (en) 2010-01-29 2014-12-30 Sumitomo Chemical Company, Limited Light emitting material, ink composition, thin film, light emitting device and method for manufacturing light emitting device
WO2024029292A1 (en) * 2022-08-01 2024-02-08 Jsr株式会社 Composition, compound, and method for manufacturing semiconductor substrate

Also Published As

Publication number Publication date
KR100596464B1 (en) 2006-07-03
US20040079924A1 (en) 2004-04-29
KR20040036539A (en) 2004-04-30

Similar Documents

Publication Publication Date Title
US7834136B2 (en) Conjugated polymers and blends containing carbazole, representation and use thereof
Jin et al. High-efficiency poly (p-phenylenevinylene)-based copolymers containing an oxadiazole pendant group for light-emitting diodes
Lu et al. Polyfluorene-based light-emitting rod− coil block copolymers
Wu et al. Synthesis and characterization of poly (fluorene)-based copolymers containing various 1, 3, 4-oxadiazole dendritic pendants
JP5016781B2 (en) Triarylamine-containing monomer for electro-optical devices
Meng et al. Facile synthetic route to a novel electroluminescent polymer− poly (p-phenylenevinylene) containing a fully conjugated aromatic oxadiazole side chain
Lee et al. Enhanced efficiency of polyfluorene derivatives: Organic–inorganic hybrid polymer light‐emitting diodes
KR101237139B1 (en) Electroactive polymer, device made therefrom and method
Jin et al. Jacketed polymers with dendritic carbazole side groups and their applications in blue light-emitting diodes
Chuang et al. Polymers with alkyl main chain pendent biphenyl carbazole or triphenylamine unit as host for polymer light emitting diodes
JP2004143426A (en) Ladder-type blue light-emitting polymer with excellent thermal stability
EP1263837A1 (en) Copolymer
Lin et al. Novel fluorene-based light-emitting copolymers containing cyanophenyl pendants and carbazole-triphenylamines: Synthesis, characterization and their PLED application
Zhang et al. Deep blue light-emitting polymers with fluorinated backbone for enhanced color purity and efficiency
Lim et al. Improved EL efficiency of fluorene‐thieno [3, 2‐b] thiophene‐based conjugated copolymers with hole‐transporting or electron‐transporting units in the main chain
JP4960576B2 (en) ORGANIC COMPOUND HAVING CORE-SHELL STRUCTURE, PROCESS FOR PRODUCING THE SAME, USE THEREOF AND ELECTRONIC COMPONENT CONTAINING THE COMPOUND
Shin et al. Sterically hindered and highly thermal stable spirobifluorenyl-substituted poly (p-phenylenevinylene) for light-emitting diodes
WO2007142252A1 (en) Polymer compound and polymer light-emitting device
Chen et al. Novel fluorene-alt-thienylenevinylene-based copolymers: tuning luminescent wavelength via thiophene substitution position
Jiang et al. Poly (aryl ether) s containing ter-and pentafluorene pendants for efficient blue light emission
Tsai et al. Hyperbranched and thermally cross‐linkable oligomer from a new 2, 5, 7‐tri‐functional fluorene monomer
Yeh et al. Vinyl copolymers containing pendant 1, 4‐distyrylbenzene and 1, 3, 4‐oxadiazole chromophores: Preparation and optoelectronic properties
Jiang et al. Novel photoluminescent polymers containing fluorene and 2, 4, 6-triphenyl pyridine moieties: Effects of noncoplanar molecular architecture on the electro-optical properties of parent matrix
JP6983460B2 (en) New polymer and organic light emitting device containing it
Kim et al. Design and synthesis of new fluorene-based blue light emitting polymer containing electron donating alkoxy groups and electron withdrawing oxadiazole

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061208

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070306

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071016