JP2004143023A - Rare earth solid solution ceria poly crystalline body having high conductivity and transport number of oxide ion - Google Patents

Rare earth solid solution ceria poly crystalline body having high conductivity and transport number of oxide ion Download PDF

Info

Publication number
JP2004143023A
JP2004143023A JP2002344644A JP2002344644A JP2004143023A JP 2004143023 A JP2004143023 A JP 2004143023A JP 2002344644 A JP2002344644 A JP 2002344644A JP 2002344644 A JP2002344644 A JP 2002344644A JP 2004143023 A JP2004143023 A JP 2004143023A
Authority
JP
Japan
Prior art keywords
ceria
solid solution
rare earth
oxide ion
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002344644A
Other languages
Japanese (ja)
Inventor
Yoshihiro Hirata
平田 好洋
Soichiro Samejima
鮫島 宗一郎
Yuka Ehira
江平 由佳
Kazuki Koushio
小牛尾 和樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002344644A priority Critical patent/JP2004143023A/en
Publication of JP2004143023A publication Critical patent/JP2004143023A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a rare earth solid solution ceria polycrystalline body exhibiting a high oxide ion conductivity and an oxide ion transport number at ≤800°C operation temperature of a solid electrolyte type fuel cell under 1×10<SP>-30</SP>-1×10<SP>-15</SP>oxygen partial pressure, and to provide the polycrystalline body as a fuel cell electrolyte. <P>SOLUTION: A multiple oxalate is synthesized from a water soluble salt of a rare earth element of ytterbium, yttrium, gadolinium. samarium, neodymium or lanthanum and a water soluble salt of cerium by the co-precipitation method. The multiple oxalate is thermally decomposed to obtain high purity ceria powder in which the rare earth element forms solid solution by 10-30 mol%. The powder is molded and sintered at ≥1200°C to be densified to have ≥96% relative density. A 2nd phase is not observed in the sintered compact structure and the added rare earth element is uniformly distributed in the grain and the grain boundary. The high purity rare earth solid solution ceria having the structure has the high oxide ion conductivity and the oxide ion transport number. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明が属する技術分野】
本発明は、広い酸素分圧下で高い酸化物イオン電導度と高い酸化物イオン輸率が要求される固体酸化物形燃料電池の電解質に関するものである。
【0002】
【従来の技術】
従来の固体酸化物形燃料電池(Solid Oxide Fuel Cell,SOFCと略す)の電解質には、イットリアをジルコニアに固溶させ、その立方晶構造を安定化させたイットリア安定化ジルコニア(Yttria−stabilized Zirconia,YSZと略す)を用いている。この電解質を用いた燃料電池の作動温度は約1000℃である。1000℃以下ではYSZの酸化物イオン電導度が著しく低下し、燃料電池の発電効率が低下する。
【0003】
SOFCの低温作動を目的に、YSZ電解質の薄膜化が検討されている。Willらは厚さ10μmの電解質膜の製造法を報告している(J.Will, A.Mitterdorfer, C.Kleinlogel, D.Perednis and L.J.Gauckler, Solid State Ionics, 131, 79−96(2000))(先行技術1)。
【0004】
YSZにかわる酸化物イオン導電体材料も検討されている。例えば、スカンジア安定化ジルコニア(特開2000−340240、特開2002−134121)、ランタンガレート系電解質(特開平10−114520)の製造法と特性が報告されている。(先行技術2)。
【0005】
YSZと同じホタル石型構造をもつセリア(酸化セリウム)系電解質は、YSZよりも高い酸化物イオン導電度を示すことが古くから報告されている。セリア系電解質の中でも、希土類元素を固溶させた希土類固溶セリアが最も注目されている。Gerhardtらは、セリア粉体と希土類酸化物粉体を混合後、成形し、1550℃で焼結して希土類固溶セリアを得ている(R.Gerhardt, A.S.Nowick, M.E.Mochel and I. Dumler, J.Am.Ceram.Soc., 69(9)647−651(1986))(先行技術3)。
【0006】
Steeleらは、共沈法でセリアにガドリニウムを20mol%固溶させた粉体を得た。これから作製した電解質材料は800℃、酸素分圧0.21−10−15atmの範囲で0.1 S・cm−1の高い電気伝導度を示すことを報告している(B.C.H.Steel, K.Zheng, R.A.Rudkin, N.Kiratzis and M.Christie, Proceedings of the Fourth International Symposium on Solid Oxide Fuel Cells (SOFC−IV), June 1995, edited by M.Dokiya, O.Yamamoto, H.Tagawa and S.C.Singhal (The Electrochem.Soc., Inc., NewJersey, 1995) pp.1028−1038.)(先行技術4)。
【0007】
Moriらは、希土類固溶セリアにアルカリ金属を添加し、(Sm0.936Cs0.06Li0.04) 0.25Ce0.751.86 が800℃、酸素分圧10−15atmで0.09S・cm−1の高い電気伝導度を示すことを報告している(T.Mori, T.Ikegami and H.Yamamura, J.Electrochem.Soc.,146,4380−4385(1999))(先行技術5)。
【0008】
ガドリニウム固溶セリアを電解質に用いた燃料電池の発電性能の評価が行われた。空気極の電極材料にLa0.9Sr0.4Fe0.8Co0.2を用いた電池は、500℃で140mW/cmの出力を示した(R.Doshi, V.L.Richards, J.D.Carter, X.Wang and M.Krumpet, J.Electrochem. Soc., 146,
1273−1278(1999))(先行技術6)。
【0009】
その他、SOFCの電解質材料について、以下の特許も報告されている。希土類固溶セリアにSrまたはBaから選ばれた1種または2種の元素を含むホタル石型セリア化合物は、800℃における電導度が0.19S・cm−1以上であり、酸素分圧10−16atm〜大気圧下での導電率の変動が1%以内である(特開2000−109318)(先行技術7)。
【0010】
ガドリニウム固溶セリア電解質、Ni−セリアールテニウム系燃料極からなるSOFCは、600℃で800mW/cmの出力を示すことが新聞にて報道された(日刊工業新聞2002/7/19)(先行技術8)。
【0011】
【発明が解決しようとする課題】
先行技術1の薄膜化は、SOFCの低温作動には有力な方法であるが、薄膜化する必要があるという問題点がある。
【0012】
YSZに換わる酸化物イオン導電体として、スカンジア安定化ジルコニア電解質やランタンガレート系電解質が注目されている(先行技術2)。前者ではスカンジウムが高価であり、工業化のためには低コスト元素で高性能化を達成するのが望ましい。後者では電解質作製時にガリウム成分が揮発し易いために、組成制御が難しくなる。
【0013】
先行技術3では、原料粉体に含まれる不純物および粉体混合時に導入される不純物のため、焼結体の粒界に不純物による第二相が形成され、酸化物イオン電導度が低下する問題点がある。
【0014】
先行技術4による酸化物イオン輸率は、800℃、酸素分圧1x10−17atmにおいて0.5と報告されている。電子導電性が高く、燃料電池として十分な出力を得ることができないという問題点がある。
【0015】
先行技術5においては、酸素分圧1x10−15atm未満での電気伝導度、イオン輸率は報告されていない。低酸素分圧下での電子伝導度の抑制方法として、プラセオジウムの添加が検討されているが、その効果については未だ明確な結論は得られていない(D.L.Maricle, T.E.Swarr and S.Karavolis, Soloid State Ionics, 52, 173−182(1992))。
【0016】
本発明は、SOFCの作動温度800℃以下において、1x10−30〜1x10−15atmの酸素分圧下で高い酸化物イオン電導度と酸化物イオン輸率を与える希土類固溶セリア多結晶体を製造すること、そしてこの多結晶体を燃料電池電解質として提供することを目的としている。
【0017】
【課題を解決するための手段】
本発明者は、鋭意研究の結果、
(1) 電子電導性の原因となる不純物酸化物の混入を排除したシュウ酸塩共沈法による高純度希土類固溶セリア粉体の合成法を確立すること、
(2) シュウ酸塩共沈法粉体から作製した焼結体の粒内、粒界に希土類固溶セリア以外の第二相を含まない高純度の微構造を実現すること、
により上記の課題を解決した。さらに、水素と酸素を原料として1000℃以下で発電を行うことが可能であることを見出した。
【0018】
本発明にいう希土類元素とは、イットリウム(Y)およびランタノイド系列元素のイッテルビウム(Yb)、ガドリニウム(Gd)、サマリウム(Sm)、ネオジウム(Nd)もしくはランタン(La)をいう。
【0019】
希土類元素のイッテルビウム(Yb)、イットリウム(Y)、ガドリニウム(Gd)、サマリウム(Sm)、ネオジウム(Nd)もしくはランタン(La)から選ばれた少なくとも一つをセリアに含有させてなるセリア固溶体であって、希土類元素が0.3原子比を超えない希土類固溶セリアである。
【0020】
本発明における希土類固溶セリアは、酸化物イオン電導度を低下させる不純物による第二相を粒内および粒界に含まない焼結体である。
【0021】
本発明におけるシュウ酸塩共沈法とは、セリウムおよび希土類元素の水溶性塩を水溶液中で混合し、これをシュウ酸水溶液に滴下して、難水溶性の複合シュウ酸塩として沈殿させることをいう。
【0022】
本発明の希土類元素を固溶したセリアは、酸素分圧10−30〜0.2atmの下、温度400〜800℃での電気伝導度6.5x10−3〜0.14S・cm−1と酸化物イオン輸率0.6〜0.85とを有し、かつ化学式Iの化学組成で示される。
【化2】
Ce1−(x+y+z)2−(x+y+z)/2  (I)
ここで、Ceはセリウムで、A,B,Cはそれぞれイッテルビウム(Yb)、イットリウム(Y)、ガドリニウム(Gd)、サマリウム(Sm)、ネオジウム(Nd)もしくはランタン(La)の希土類元素の中のいずれか1つであり、x、y、zの範囲は、0≦x≦0.3、0≦y≦0.3、0≦z≦0.3、0.1≦(x+y+z)≦0.3である。
本発明のセリア固溶体は、上記の固溶したセリアが多結晶体であるものも含まれる。
本発明のセリア固溶体は、希土類元素を固溶したセリア以外の第二相を粒内および/または粒界に含まない高純度の微構造を構成するものである。
本発明の燃料電池電解質は、上記のいずれかに記載のセリア固溶体を用いてなる。
【0023】
本発明の高純度の希土類固溶セリアの多結晶体を製造する方法は、セリウムおよび希土類元素の水溶性塩を水溶液中で混合し、これをシュウ酸水溶液に滴下し、難水溶性の複合シュウ酸塩として沈殿させ、その後、このシュウ酸塩を1000℃以下で熱分解し、生成した希土類固溶セリアの粉体を成形し、1200〜1600℃で焼結することからなる。
【0024】
【発明の実施の形態】
本発明におけるシュウ酸塩共沈法の一例を記述する。まず、シュウ酸水溶液の濃度0.025〜0.75mol/l、好ましくは、0.2〜0.55mol/lのものを用意する。また、セリウムと希土類元素の水溶性塩を用いて、セリウムと希土類元素の濃度が0.01〜1.0mol/l好ましくは、0.05〜0.4mol/lである混合水溶液を用意する。その後、セリウムおよび希土類元素の混合水溶液を前述のシュウ酸水溶液に滴下し、セリウムと希土類元素の複合シュウ酸塩を沈殿させる。この複合シュウ酸塩を1000℃以下で熱分解し、希土類固溶セリア粉体に変化させる。熱処理後の希土類固溶セリアの純度は99.98mass%以上である。
シュウ酸塩共沈法から生成した希土類固溶セリア粉体を成形する。その後これを1200〜1600℃で焼結する。透過型電子顕微鏡とエネルギー分散型X線分光法を用いて、微構造を観察する。その結果を図1、2および表1に示す。粒子内および粒界に非晶質相などの第二相は存在せず、希土類元素は粒内と粒界に均一に固溶していることがわかる。
【0025】
【表1】

Figure 2004143023
【0026】
固体酸化物形燃料電池の電解質として、イッテルビウム、イットリウム、ガドリニウム、サマリウム、ネオジウムもしくはランタンの少なくともひとつを10〜30モル%固溶させたセリアを用いる。硝酸セリウムと希土類元素(R=Y,Yb,Gd,Sm,Nd,La)の硝酸塩を出発原料とする。0.05〜0.4mol/lに調整された硝酸塩水溶液をCe/R=9/1〜7/3(モル比)となるように混合し、これを0.025〜0.75mol/lのシュウ酸水溶液に滴下し複合シュウ酸塩として沈殿させる。生成した複合シュウ酸塩をろ過し蒸留水で洗浄した後、40℃で24時間乾燥させる。これを空気中、400〜600℃、1時間の加熱で熱分解し、希土類酸化物固溶セリア粉体を得る。サマリウム固溶セリアの場合、粉体の比表面積は20〜63m/gで、これから計算した1次粒子のサイズは13〜42nmとなる。透過型電子顕微鏡で観察した一次粒子のサイズは15〜60nmである。
【0027】
生成粉体は1次粒子が凝集した二次粒子(1.6〜2.8μm)を形成している。これを破壊するために、粉体をポリエチレン製容器(内径55mm,容積280ml)に入れ、アルミナボール(直径3mm)を用いて乾式で粉砕処理を行う。粉砕を24h行うと、二次粒子のメディアン径を0.88μmまで減少させる。粉砕した希土類固溶セリア粉体を一軸プレス(49MPa)した後、さらに等方プレス(294MPa)により円板状(直径10mmx厚さ1mm)に成形する。これはテストピースの形状である。別に燃料電池電解質として使用するときには、粉砕した希土類固溶セリア粉体を直径20mmの大きさに鋳込み成形する。
【0028】
これを空気中、1500℃あるいは1600℃で4時間焼結し、相対密度96%以上の緻密焼結体を得る。焼結体を鏡面に研磨し、スパッタリング法で金を蒸着し、さらにその上に金ペーストを塗布する。これを940℃で30分加熱し、電極を焼き付ける。
この材料の複素インピーダンスを300〜870℃の交流二端子法(100−110MHz)で測定する。酸素分圧はH−HO系で制御し、安定化ジルコニア酸素センサーで測定する。また、カソード極に空気、アノード極にH−HO−Ar系ガス(酸素分圧10−3−10−30 atm)を流し、希土類固溶セリアを電解質とする燃料電池の起電力を測定する。この値を酸素分圧比から求めた理論起電力(ネルンスト式による計算)で除して、酸化物イオン輸率を決定する。
【0029】
シュウ酸塩共沈法により、希土類元素とセリウムが原子レベルで均一に混合した高純度希土類固溶セリア粉体を得る。この粉体を成形・焼結すると、粒内および粒界に第二相の存在しないクリーンな構造を実現する。構成粒子のメディアン径は3.0〜5.0μmで、希土類元素は粒内と粒界に均一に固溶している。
【0030】
【実施例】
〔実施例1〕
硝酸セリウムと硝酸ガドリニウムを原料とし、0.20mol/lに調整された硝酸塩水溶液をCe/R=4/1(モル比)となるように混合した。これを0.4mol/lのシュウ酸水溶液に滴下し複合シュウ酸塩として沈殿させた。生成した複合シュウ酸塩をろ過し蒸留水で洗浄した後、40℃で24時間乾燥させた。これを空気中、600℃、1時間の加熱で熱分解し、Ce/Gd=4/1のモル比を有するガドリニウム固溶セリア粉体(Ce0.8Gd0.21.9)を得た。この粉体を1600℃で4時間焼結すると相対密度99.4%に緻密化した。この試料の酸素分圧0.21atmにおける電導度と活性化エネルギーを表2に示した。空気中、600℃における電導度は5.81x10−2S・cm−1であった。活性化エネルギーは78.5kJ/molであった。
【0031】
【表2】
Figure 2004143023
【0032】
〔実施例2〕
実施例1と同様に作製しネオジウム固溶セリア粉体(Ce0.8Nd0.21.9)を得た。この粉体を1600℃で4時間焼結すると相対密度99.4%に緻密化した。この試料の酸素分圧0.21atmにおける電導度と活性化エネルギーを表2に示した。600℃、空気中における電導度は1.98x10−2S・cm−1であった。活性化エネルギーは80.2kJ/molであった。
【0033】
〔実施例3〕
実施例1と同様に作製したランタン固溶セリア粉体(Ce0.8La0.2 .9)を得た。この粉体を1600℃で4時間焼結すると相対密度99.4%に緻密化した。この試料の酸素分圧0.21atmにおける電導度と活性化エネルギーを表2に示す。600℃、空気中における電導度は1.31x10−2S・cm−1であった。活性化エネルギーは82.6kJ/molであった。
【0034】
〔実施例4〕
実施例1と同様に作製したイットリウム固溶セリア粉体(Ce0.80.21.9)を得た。この粉体を1500℃で4時間焼結すると相対密度98%に緻密化した。この試料の酸素分圧0.21atm〜1x10−23atmにおける電導度と活性化エネルギーを表3および図3に示す。電導度と活性化エネルギーに及ぼす酸素分圧の影響は小さいことがわかる。600℃、空気中における電導度は1.41x10−2S・cm−1であった。活性化エネルギーは99.0kJ/molであった。780℃,酸素分圧1x10−23atmにおける電導度は0.083S・cm−1であった。
【0035】
【表3】
Figure 2004143023
【0036】
〔実施例5〕
実施例1と同様に作製したイッテルビウム固溶セリア粉体を1500℃で焼結した試料の酸素分圧0.21−1x10−23atmにおける電導度を表3に示す。600℃、空気中における電導度は1.29x10−2S・cm−1であった。活性化エネルギーは96.0kJ/molであった。780℃,酸素分圧1x10−23atmにおける電導度は0.078S・cm−1であった。
【0037】
〔実施例6〕
実施例1と同様に作製したサマリウム固溶セリア粉体を1500℃で焼結した試料の酸素分圧0.21〜1x10−23atmにおける電導度を表3に示す。600℃、空気中における電導度は1.82x10−2S・cm−1であった。活性化エネルギーは79.7kJ/molであった。720℃,酸素分圧1x10−23atmにおける電導度は0.088S・cm−1であった。
【0038】
〔実施例7〕
実施例1と同様に作製したサマリウム固溶セリア粉体を1500℃で焼結した試料の酸素分圧1x10−18〜1x10−3atmにおける酸化物イオン輸率を表3および図4に示す。酸素分圧の増加にともない、輸率は増加する傾向を示した。802℃,酸素分圧1x10−17 atmにおけるイオン輸率は0.58で先行技術4に比べ高い値を示した。
【0039】
〔実施例8〕
実施例1と同様に作製したサマリウム固溶セリア粉体を1500℃で焼結した試料の酸素分圧1x10−17〜1x10−3atmにおける酸化物イオン輸率を表3および図4に示す。実施例7に比べて760℃での輸率は高くなった。すなわち、希土類固溶セリアの酸化物イオン輸率は低温では1に近づく。このことはSOFCの低温作動に大きく寄与する。
【0040】
〔実施例9〕
実施例1と同様に作製したサマリウム固溶セリア粉体を鋳込み成形し、その後1500℃で焼結して、直径16mmで相対密度98%の緻密な焼結体を得た。411−911℃、酸素分圧4x10−17〜3x10−31atmにおける酸化物イオン輸率を表4および図5に示す。表4の幅広い酸素分圧下において、輸率は0.6以上を示した。
【0041】
【表4】
Figure 2004143023
【0042】
〔実施例9〕
固体酸化物形燃料電池の電解質について、実施例1と同様に作製したサマリウム固溶セリアを鋳込み成形し、その後1500℃で焼結して、相対密度98%の緻密な焼結体を得た。また、サマリウム固溶セリア粉体とニッケル粉体を重量比45対55で混合し、アンモニアでpH10.5に調整した水を用いて混合粉砕した後、ペースト状にしたものを電解質の負極側に塗布した。また、正極側には白金ペーストを塗布後、空気中、1000℃で焼き付けた。正極側には空気、負極側にはHO12%とH4.4%とAr83.6%との混合ガスを200ml/min流し、電池の発電特性(電圧(V)−電流(I)特性)を400〜900℃で測定した。V−I特性を図5、電力と電流密度の関係を図6に示す。800〜900℃において7mW/cmの電力が取り出せた。YSZに比べて希土類固溶セリアでは、燃料電池の低温作動が可能であることが示された。
【0043】
【発明の効果】
以上説明したように本発明で開発した高純度希土類固溶セリア多結晶体は、800℃以下において、1x10−30〜1x10−15atm の酸素分圧下で高い酸化物イオン電導度と酸化物イオン輸率を示した。低温作動が可能な固体酸化物形燃料電池の電解質に要求される条件(高いイオン電導度、高い酸化物イオン輸率)を満足することが明らかとなった。
この材料を固体酸化物形燃料電池電解質に適用すると、従来のYSZに比べ低い温度である(800℃以下)での発電性能を向上させることができる。このことにより、地球環境の保全に役立つ固体電解質形燃料電池の普及が増進される。
【図面の簡単な説明】
【図1】本発明の希土類固溶セリア焼結体の粒内組織を表す透過型電子顕微鏡写真である。
(a)Ce0.8Yb0.21.9
(b)Ce0.80.21.9
(c)Ce0.8Gd0.21.9
(d)Ce0.8Sm0.21.9
(e)Ce0.8Nd0.21.9
(f)Ce0.8La0.21.9
【図2】本発明の希土類固溶セリア焼結体の粒界組織を表す透過型電子顕微鏡写真である。
(a)Ce0.8Yb0.21.9
(b)Ce0.80.21.9
(c)Ce0.8Gd0.21.9
(d)Ce0.8Sm0.21.9
(e)Ce0.8Nd0.21.9
(f)Ce0.8La0.21.9
【図3】本発明のサマリウム固溶セリア(Ce0.80.21.9)の酸素分圧1x10−23−0.21atmにおける電導度を示すグラフである。
【図4】本発明のサマリウム固溶セリア(Ce0.8Sm0.21.9)の酸化物イオン輸率の760℃及び802℃での酸素分圧依存性を示すグラフである。
【図5】本発明のサマリウム固溶セリア(Ce0.8Sm0.21.9)の酸化物イオン輸率の412−911℃での酸素分圧依存性を示すグラフである。
【図6】本発明のサマリウム固溶セリア(Ce0.8Sm0.21.9)を電解質とした燃料電池の電流密度と起電力の関係を示すグラフである。
【図7】本発明のサマリウム固溶セリア(Ce0.8Sm0.21.9)を電解質とした燃料電池の電流密度と電力の関係を示すグラフである。
【符号の説明】
1、2、3、4、5、6 エネルギー分散型X線分光法の分析測定個所[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electrolyte for a solid oxide fuel cell that requires a high oxide ion conductivity and a high oxide ion transport number under a wide oxygen partial pressure.
[0002]
[Prior art]
As an electrolyte of a conventional solid oxide fuel cell (Solid Oxide Fuel Cell, abbreviated as SOFC), yttria is solid-dissolved in zirconia, and the cubic structure of the yttria-stabilized zirconia is stabilized. YSZ). The operating temperature of a fuel cell using this electrolyte is about 1000 ° C. If the temperature is lower than 1000 ° C., the oxide ion conductivity of YSZ is remarkably reduced, and the power generation efficiency of the fuel cell is reduced.
[0003]
For the purpose of operating a SOFC at a low temperature, thinning of a YSZ electrolyte has been studied. Will et al. Report a method for producing a 10 μm thick electrolyte membrane (J. Will, A. Mitterdorfer, C. Kleinlogel, D. Perednis and L. J. Gauckler, Solid State Ionics, 131, 79-96 ( 2000)) (Prior art 1).
[0004]
An oxide ion conductor material instead of YSZ is also being studied. For example, production methods and characteristics of scandia-stabilized zirconia (JP-A-2000-340240, JP-A-2002-134121) and lanthanum gallate-based electrolytes (JP-A-10-114520) are reported. (Prior art 2).
[0005]
It has long been reported that a ceria (cerium oxide) -based electrolyte having the same fluorite structure as YSZ exhibits higher oxide ion conductivity than YSZ. Among the ceria-based electrolytes, rare-earth solute ceria, in which a rare-earth element is dissolved, has received the most attention. Gerhardt et al. Obtained a rare earth solid solution ceria by mixing ceria powder and rare earth oxide powder, molding and sintering at 1550 ° C. (R. Gerhardt, AS Nowick, ME. Mochel and I. Dumler, J. Am. Ceram. Soc., 69 (9) 647-651 (1986)) (Prior Art 3).
[0006]
Steele et al. Obtained a powder in which 20 mol% of gadolinium was dissolved in ceria by coprecipitation. It has been reported that the electrolyte material produced from the material exhibits a high electrical conductivity of 0.1 S · cm −1 in the range of 800 ° C. and oxygen partial pressure of 0.21-10 −15 atm (BCH). Steel, K. Zheng, R. A. Rudkin, N. Kiratzis and M. Christie, Proceedings of the Fourth International Symposium on Solid Oxide Fuel Cell Diesel Fuel Cell Diesel Cell Fid Cell Cellular Materials. , H. Tagawa and SC Singhal (The Electrochem. Soc., Inc., New Jersey, 1995) pp. 1028-1038.) (Prior Art 4).
[0007]
Mori et al. Added an alkali metal to rare earth solid solution ceria and added (Sm 0.936 Cs 0.06 Li 0.04 ) 0.25 Ce 0.75 O 1.86 at 800 ° C. and an oxygen partial pressure of 10 −15. It has been reported that atm exhibits a high electrical conductivity of 0.09 S · cm −1 (T. Mori, T. Ikegami and H. Yamamura, J. Electrochem. Soc., 146, 4380-4385 (1999)). ) (Prior art 5).
[0008]
The power generation performance of a fuel cell using gadolinium solid solution ceria as the electrolyte was evaluated. A battery using La 0.9 Sr 0.4 Fe 0.8 Co 0.2 O 3 as the electrode material of the air electrode showed an output of 140 mW / cm 2 at 500 ° C. (R. Doshi, VL). Richards, JD Carter, X. Wang and M. Krumpet, J. Electrochem. Soc., 146
1273-1278 (1999)) (Prior Art 6).
[0009]
In addition, the following patents have been reported for the electrolyte material of the SOFC. A fluorite-type ceria compound containing one or two elements selected from Sr and Ba in rare-earth solid-solution ceria has an electrical conductivity at 800 ° C. of 0.19 S · cm −1 or more and an oxygen partial pressure of 10 −. The variation in conductivity from 16 atm to atmospheric pressure is within 1% (JP-A-2000-109318) (Prior Art 7).
[0010]
It was reported in a newspaper that an SOFC comprising a gadolinium solid solution ceria electrolyte and a Ni-ceria ruthenium-based fuel electrode exhibited an output of 800 mW / cm 2 at 600 ° C. (Nikkan Kogyo Shimbun 2002/7/19) Technology 8).
[0011]
[Problems to be solved by the invention]
The thinning of the prior art 1 is an effective method for the low-temperature operation of the SOFC, but has a problem that the thinning is required.
[0012]
Scandia-stabilized zirconia electrolytes and lanthanum gallate-based electrolytes have attracted attention as oxide ion conductors replacing YSZ (Prior Art 2). In the former, scandium is expensive, and it is desirable to achieve high performance with low cost elements for industrialization. In the latter, the gallium component tends to volatilize during the preparation of the electrolyte, making it difficult to control the composition.
[0013]
In prior art 3, the second phase due to the impurities is formed at the grain boundaries of the sintered body due to the impurities contained in the raw material powder and the impurities introduced at the time of powder mixing, and the oxide ion conductivity is reduced. There is.
[0014]
The oxide ion transport number according to Prior Art 4 is reported to be 0.5 at 800 ° C. and 1 × 10 −17 atm of oxygen partial pressure. There is a problem that the electronic conductivity is high and a sufficient output cannot be obtained as a fuel cell.
[0015]
Prior art 5 does not report electrical conductivity and ion transport number at an oxygen partial pressure of less than 1 × 10 −15 atm. Addition of praseodymium has been studied as a method of suppressing the electron conductivity under a low oxygen partial pressure, but no clear conclusion has been obtained as to the effect thereof (DL Mary, TE Swarr and). S. Karavolis, Solid State Ionics, 52, 173-182 (1992)).
[0016]
The present invention produces a rare-earth solid solution ceria polycrystal that gives high oxide ion conductivity and oxide ion transport number under an oxygen partial pressure of 1 × 10 −30 to 1 × 10 −15 atm at an operating temperature of 800 ° C. or lower of the SOFC. And to provide the polycrystal as a fuel cell electrolyte.
[0017]
[Means for Solving the Problems]
As a result of earnest research, the inventor
(1) To establish a method for synthesizing high-purity rare earth-dissolved ceria powder by oxalate coprecipitation method in which impurity oxides that cause electron conductivity are excluded.
(2) realizing a high-purity microstructure that does not contain a second phase other than rare earth solid solution ceria in the grains and grain boundaries of the sintered body produced from the oxalate coprecipitated powder;
Solved the above problem. Furthermore, they have found that it is possible to generate power at 1000 ° C. or less using hydrogen and oxygen as raw materials.
[0018]
The rare earth element referred to in the present invention means yttrium (Y) and lanthanoid series elements ytterbium (Yb), gadolinium (Gd), samarium (Sm), neodymium (Nd) or lanthanum (La).
[0019]
A ceria solid solution containing at least one selected from the rare earth elements ytterbium (Yb), yttrium (Y), gadolinium (Gd), samarium (Sm), neodymium (Nd) or lanthanum (La). Is rare earth solid solution ceria whose rare earth element does not exceed 0.3 atomic ratio.
[0020]
The rare earth solid solution ceria in the present invention is a sintered body that does not contain a second phase due to impurities that lower the oxide ion conductivity in the grains and in the grain boundaries.
[0021]
The oxalate coprecipitation method in the present invention means that a water-soluble salt of cerium and a rare earth element is mixed in an aqueous solution, and this is dropped into an aqueous oxalic acid solution to precipitate as a poorly water-soluble composite oxalate. Say.
[0022]
The ceria in which the rare earth element of the present invention is solid-dissolved has an electric conductivity of 6.5 × 10 −3 to 0.14 S · cm −1 at a temperature of 400 to 800 ° C. under an oxygen partial pressure of 10 −30 to 0.2 atm and oxidation. It has a substance ion transport number of 0.6 to 0.85 and is represented by the chemical composition of Formula I.
Embedded image
Ce 1- (x + y + z ) A x B y C z O 2- (x + y + z) / 2 (I)
Here, Ce is cerium, and A, B and C are among the rare earth elements of ytterbium (Yb), yttrium (Y), gadolinium (Gd), samarium (Sm), neodymium (Nd) or lanthanum (La), respectively. Any one of x, y, and z ranges from 0 ≦ x ≦ 0.3, 0 ≦ y ≦ 0.3, 0 ≦ z ≦ 0.3, 0.1 ≦ (x + y + z) ≦ 0. 3.
The ceria solid solution of the present invention includes those in which the solid solution of ceria is a polycrystal.
The ceria solid solution of the present invention constitutes a high-purity microstructure that does not contain a second phase other than ceria in which a rare earth element is dissolved in the grains and / or in the grain boundaries.
The fuel cell electrolyte of the present invention uses the ceria solid solution described in any of the above.
[0023]
The method for producing a high-purity rare-earth-dissolved ceria polycrystal of the present invention comprises mixing a water-soluble salt of cerium and a rare-earth element in an aqueous solution and dropping the mixture in an aqueous oxalic acid solution to form a poorly water-soluble composite oxalate. Then, the oxalate is thermally decomposed at a temperature of 1000 ° C. or less, and the resulting rare earth solid solution ceria powder is formed and sintered at 1200 to 1600 ° C.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
An example of the oxalate coprecipitation method in the present invention will be described. First, an oxalic acid aqueous solution having a concentration of 0.025 to 0.75 mol / l, preferably 0.2 to 0.55 mol / l is prepared. Also, a mixed aqueous solution having a concentration of cerium and rare earth element of 0.01 to 1.0 mol / l, preferably 0.05 to 0.4 mol / l is prepared using a water-soluble salt of cerium and rare earth element. Thereafter, a mixed aqueous solution of cerium and a rare earth element is dropped into the above-mentioned oxalic acid aqueous solution to precipitate a composite oxalate of cerium and the rare earth element. The composite oxalate is thermally decomposed at a temperature of 1000 ° C. or lower to change into rare earth solid solution ceria powder. The purity of the rare earth solid solution ceria after the heat treatment is 99.98 mass% or more.
A rare earth solid solution ceria powder produced from the oxalate coprecipitation method is formed. Thereafter, it is sintered at 1200 to 1600 ° C. The microstructure is observed using a transmission electron microscope and energy dispersive X-ray spectroscopy. The results are shown in FIGS. No second phase such as an amorphous phase is present in the grains and at the grain boundaries, indicating that the rare earth element is uniformly dissolved in the grains and at the grain boundaries.
[0025]
[Table 1]
Figure 2004143023
[0026]
As an electrolyte of the solid oxide fuel cell, ceria in which at least one of ytterbium, yttrium, gadolinium, samarium, neodymium, and lanthanum is solid-dissolved in 10 to 30 mol% is used. Cerium nitrate and a nitrate of a rare earth element (R = Y, Yb, Gd, Sm, Nd, La) are used as starting materials. A nitrate aqueous solution adjusted to 0.05 to 0.4 mol / l is mixed so that Ce / R = 9/1 to 7/3 (molar ratio), and this is mixed with 0.025 to 0.75 mol / l. The solution is dropped into an aqueous oxalic acid solution to precipitate as a complex oxalate. The resulting composite oxalate is filtered, washed with distilled water, and dried at 40 ° C. for 24 hours. This is thermally decomposed by heating at 400 to 600 ° C. for 1 hour in the air to obtain a rare earth oxide solid solution ceria powder. In the case of samarium solid solution ceria, the specific surface area of the powder is 20 to 63 m 2 / g, and the size of the primary particles calculated from this is 13 to 42 nm. The size of the primary particles observed with a transmission electron microscope is 15 to 60 nm.
[0027]
The resulting powder forms secondary particles (1.6 to 2.8 μm) in which the primary particles are aggregated. In order to break this, the powder is put into a polyethylene container (inner diameter 55 mm, volume 280 ml) and pulverized in a dry manner using alumina balls (diameter 3 mm). When grinding is performed for 24 hours, the median diameter of the secondary particles is reduced to 0.88 μm. After the pulverized rare earth solid solution ceria powder is uniaxially pressed (49 MPa), it is further formed into a disk shape (diameter 10 mm × thickness 1 mm) by an isotropic press (294 MPa). This is the shape of the test piece. When separately used as a fuel cell electrolyte, the pulverized rare earth solid solution ceria powder is cast into a size of 20 mm in diameter.
[0028]
This is sintered in air at 1500 ° C. or 1600 ° C. for 4 hours to obtain a dense sintered body having a relative density of 96% or more. The sintered body is polished to a mirror surface, gold is deposited by a sputtering method, and a gold paste is further applied thereon. This is heated at 940 ° C. for 30 minutes to bake the electrodes.
The complex impedance of this material is measured by the AC two-terminal method (100-110 MHz) at 300-870 ° C. The oxygen partial pressure is controlled by a H 2 —H 2 O system and measured by a stabilized zirconia oxygen sensor. Further, the cathode air and anode H 2 -H 2 O-Ar-based flow of gas (oxygen partial pressure 10 -3 -10 -30 atm), the electromotive force of the fuel cell to the electrolyte rare earth solid solution of ceria Measure. This value is divided by the theoretical electromotive force (calculated by the Nernst equation) obtained from the oxygen partial pressure ratio to determine the oxide ion transport number.
[0029]
By the oxalate coprecipitation method, a high purity rare earth solid solution ceria powder in which the rare earth element and cerium are uniformly mixed at the atomic level is obtained. By molding and sintering this powder, a clean structure in which the second phase does not exist in the grains and at the grain boundaries is realized. The median diameter of the constituent particles is 3.0 to 5.0 μm, and the rare earth element is uniformly dissolved in the grains and at the grain boundaries.
[0030]
【Example】
[Example 1]
Using cerium nitrate and gadolinium nitrate as raw materials, a nitrate aqueous solution adjusted to 0.20 mol / l was mixed so that Ce / R = 4/1 (molar ratio). This was dropped into a 0.4 mol / l oxalic acid aqueous solution to precipitate as a complex oxalate. The resulting composite oxalate was filtered, washed with distilled water, and then dried at 40 ° C. for 24 hours. This is thermally decomposed by heating at 600 ° C. for 1 hour in air to obtain gadolinium solid solution ceria powder (Ce 0.8 Gd 0.2 O 1.9 ) having a molar ratio of Ce / Gd = 4/1. Obtained. When this powder was sintered at 1600 ° C. for 4 hours, the powder was densified to a relative density of 99.4%. The conductivity and activation energy of this sample at an oxygen partial pressure of 0.21 atm are shown in Table 2. The conductivity at 600 ° C. in air was 5.81 × 10 −2 S · cm −1 . The activation energy was 78.5 kJ / mol.
[0031]
[Table 2]
Figure 2004143023
[0032]
[Example 2]
It was prepared in the same manner as in Example 1 to obtain neodymium solid solution of ceria powder and (Ce 0.8 Nd 0.2 O 1.9) . When this powder was sintered at 1600 ° C. for 4 hours, the powder was densified to a relative density of 99.4%. The conductivity and activation energy of this sample at an oxygen partial pressure of 0.21 atm are shown in Table 2. The conductivity in air at 600 ° C. was 1.98 × 10 −2 S · cm −1 . The activation energy was 80.2 kJ / mol.
[0033]
[Example 3]
Was obtained lanthanum solid solution of ceria powder prepared in the same manner as in Example 1 a (Ce 0.8 La 0.2 O 1 .9 ). When this powder was sintered at 1600 ° C. for 4 hours, the powder was densified to a relative density of 99.4%. Table 2 shows the conductivity and activation energy of this sample at an oxygen partial pressure of 0.21 atm. The conductivity in air at 600 ° C. was 1.31 × 10 −2 S · cm −1 . The activation energy was 82.6 kJ / mol.
[0034]
[Example 4]
Obtain yttrium dissolved ceria powder prepared in the same manner as in Example 1 a (Ce 0.8 Y 0.2 O 1.9) . When this powder was sintered at 1500 ° C. for 4 hours, it was densified to a relative density of 98%. The conductivity and activation energy of this sample at an oxygen partial pressure of 0.21 atm to 1 × 10 −23 atm are shown in Table 3 and FIG. It can be seen that the effect of oxygen partial pressure on conductivity and activation energy is small. The conductivity in air at 600 ° C. was 1.41 × 10 −2 S · cm −1 . The activation energy was 99.0 kJ / mol. The conductivity at 780 ° C. and an oxygen partial pressure of 1 × 10 −23 atm was 0.083 S · cm −1 .
[0035]
[Table 3]
Figure 2004143023
[0036]
[Example 5]
Table 3 shows the electrical conductivity of the sample obtained by sintering the ytterbium solid solution ceria powder produced at 1500 ° C. in the same manner as in Example 1 at an oxygen partial pressure of 0.21-1 × 10 −23 atm. The conductivity in air at 600 ° C. was 1.29 × 10 −2 S · cm −1 . The activation energy was 96.0 kJ / mol. The conductivity at 780 ° C. and an oxygen partial pressure of 1 × 10 −23 atm was 0.078 S · cm −1 .
[0037]
[Example 6]
Table 3 shows the electrical conductivity at a partial pressure of oxygen of 0.21 to 1 × 10 −23 atm of a sample obtained by sintering the samarium solid solution ceria powder produced at 1500 ° C. in the same manner as in Example 1. The conductivity in air at 600 ° C. was 1.82 × 10 −2 S · cm −1 . The activation energy was 79.7 kJ / mol. The conductivity at 720 ° C. and an oxygen partial pressure of 1 × 10 −23 atm was 0.088 S · cm −1 .
[0038]
[Example 7]
Table 3 and FIG. 4 show oxide ion transport numbers at oxygen partial pressures of 1 × 10 −18 to 1 × 10 −3 atm of a sample obtained by sintering the samarium solid solution ceria powder produced at 1500 ° C. in the same manner as in Example 1. The transport number showed a tendency to increase with the increase of the oxygen partial pressure. The ion transport number at 802 ° C. and an oxygen partial pressure of 1 × 10 −17 atm was 0.58, which was higher than that of the prior art 4.
[0039]
Example 8
Table 3 and FIG. 4 show the oxide ion transport numbers at oxygen partial pressures of 1 × 10 −17 to 1 × 10 −3 atm of a sample obtained by sintering the samarium solid solution ceria powder produced at 1500 ° C. in the same manner as in Example 1. The transport number at 760 ° C. was higher than that in Example 7. That is, the oxide ion transport number of rare earth solid solution ceria approaches 1 at low temperatures. This greatly contributes to the low-temperature operation of the SOFC.
[0040]
[Example 9]
A samarium solid solution ceria powder produced in the same manner as in Example 1 was cast and molded, and then sintered at 1500 ° C. to obtain a dense sintered body having a diameter of 16 mm and a relative density of 98%. Table 4 and FIG. 5 show the oxide ion transport numbers at 411-911 ° C. and an oxygen partial pressure of 4 × 10 −17 to 3 × 10 −31 atm. Under a wide range of oxygen partial pressures in Table 4, the transport numbers showed 0.6 or more.
[0041]
[Table 4]
Figure 2004143023
[0042]
[Example 9]
As for the electrolyte of the solid oxide fuel cell, samarium solid solution ceria produced in the same manner as in Example 1 was cast and then sintered at 1500 ° C. to obtain a dense sintered body having a relative density of 98%. In addition, samarium solid solution ceria powder and nickel powder were mixed at a weight ratio of 45:55, mixed and pulverized using water adjusted to pH 10.5 with ammonia, and then made into a paste, and the paste was placed on the negative electrode side of the electrolyte. Applied. Further, a platinum paste was applied to the positive electrode side and baked at 1000 ° C. in air. Air was supplied to the positive electrode side, and a mixed gas of H 2 O 12%, H 2 4.4% and Ar 83.6% was supplied to the negative electrode side at a flow rate of 200 ml / min, and the power generation characteristics of the battery (voltage (V) −current (I)) Properties) were measured at 400-900 ° C. FIG. 5 shows the VI characteristic, and FIG. 6 shows the relationship between the power and the current density. A power of 7 mW / cm 2 was obtained at 800 to 900 ° C. It was shown that rare earth solid solution ceria can operate the fuel cell at a lower temperature than YSZ.
[0043]
【The invention's effect】
As described above, the high-purity rare earth solid solution ceria polycrystal developed in the present invention has a high oxide ion conductivity and oxide ion transport under an oxygen partial pressure of 1 × 10 −30 to 1 × 10 −15 atm at 800 ° C. or less. Rate. It has been clarified that the conditions (high ionic conductivity, high oxide ion transport number) required for the electrolyte of the solid oxide fuel cell capable of operating at low temperature are satisfied.
When this material is applied to a solid oxide fuel cell electrolyte, it is possible to improve the power generation performance at a lower temperature (800 ° C. or lower) than the conventional YSZ. As a result, the spread of solid oxide fuel cells useful for preserving the global environment is promoted.
[Brief description of the drawings]
FIG. 1 is a transmission electron micrograph showing an intragranular structure of a rare earth solid solution ceria sintered body of the present invention.
(A) Ce 0.8 Yb 0.2 O 1.9
(B) Ce 0.8 Y 0.2 O 1.9
(C) Ce 0.8 Gd 0.2 O 1.9
(D) Ce 0.8 Sm 0.2 O 1.9
(E) Ce 0.8 Nd 0.2 O 1.9
(F) Ce 0.8 La 0.2 O 1.9
FIG. 2 is a transmission electron micrograph showing a grain boundary structure of a rare earth solid solution ceria sintered body of the present invention.
(A) Ce 0.8 Yb 0.2 O 1.9
(B) Ce 0.8 Y 0.2 O 1.9
(C) Ce 0.8 Gd 0.2 O 1.9
(D) Ce 0.8 Sm 0.2 O 1.9
(E) Ce 0.8 Nd 0.2 O 1.9
(F) Ce 0.8 La 0.2 O 1.9
FIG. 3 is a graph showing the electrical conductivity of samarium solid solution ceria (Ce 0.8 Y 0.2 O 1.9 ) of the present invention at an oxygen partial pressure of 1 × 10 −23 −0.21 atm.
FIG. 4 is a graph showing the oxygen partial pressure dependence at 760 ° C. and 802 ° C. of the oxide ion transport number of samarium solid solution ceria (Ce 0.8 Sm 0.2 O 1.9 ) of the present invention.
FIG. 5 is a graph showing the oxygen partial pressure dependence of the oxide ion transport number of samarium-dissolved ceria (Ce 0.8 Sm 0.2 O 1.9 ) of the present invention at 412-911 ° C.
FIG. 6 is a graph showing the relationship between the current density and the electromotive force of a fuel cell using samarium solid solution ceria (Ce 0.8 Sm 0.2 O 1.9 ) of the present invention as an electrolyte.
FIG. 7 is a graph showing the relationship between the current density and the power of a fuel cell using samarium solid solution ceria (Ce 0.8 Sm 0.2 O 1.9 ) of the present invention as an electrolyte.
[Explanation of symbols]
1,2,3,4,5,6 Energy dispersive X-ray spectroscopy analytical measurement locations

Claims (5)

酸素分圧10−30〜0.2atmの下、温度400〜800℃での電気伝導度6.5x10−3〜0.14S・cm−1と酸化物イオン輸率0.6〜0.85とを有し、かつ化学式Iの化学組成で示される希土類元素を固溶したセリア。
Figure 2004143023
ここで、Ceはセリウムで、A,B,Cはそれぞれイッテルビウム(Yb)、イットリウム(Y)、ガドリニウム(Gd)、サマリウム(Sm)、ネオジウム(Nd)もしくはランタン(La)の希土類元素の中のいずれか1つであり、x、y、zの範囲は、0≦x≦0.3、0≦y≦0.3、0≦z≦0.3、0.1≦(x+y+z)≦0.3である。
With an electrical conductivity of 6.5 × 10 −3 to 0.14 S · cm −1 at an oxygen partial pressure of 10 −30 to 0.2 atm and a temperature of 400 to 800 ° C., and an oxide ion transport number of 0.6 to 0.85, And a solid solution of a rare earth element represented by the chemical composition of Chemical Formula I.
Figure 2004143023
Here, Ce is cerium, and A, B and C are among the rare earth elements of ytterbium (Yb), yttrium (Y), gadolinium (Gd), samarium (Sm), neodymium (Nd) or lanthanum (La), respectively. Any one of x, y, and z ranges from 0 ≦ x ≦ 0.3, 0 ≦ y ≦ 0.3, 0 ≦ z ≦ 0.3, 0.1 ≦ (x + y + z) ≦ 0. 3.
請求項1に記載の固溶したセリアが多結晶体であるセリア固溶体。A ceria solid solution, wherein the ceria solid solution according to claim 1 is a polycrystal. 希土類元素を固溶したセリア以外の第二相を粒内および/または粒界に含まない高純度の微構造を構成する請求項1または請求項2に記載のセリア固溶体。3. The ceria solid solution according to claim 1, wherein the ceria solid solution has a high-purity microstructure that does not include a second phase other than ceria in which a rare-earth element is dissolved in the grains and / or in the grain boundaries. 請求項1から3のいずれかに記載のセリア固溶体を用いてなる燃料電池電解質。A fuel cell electrolyte comprising the ceria solid solution according to claim 1. セリウムおよび希土類元素の水溶性塩を水溶液中で混合し、これをシュウ酸水溶液に滴下し、難水溶性の複合シュウ酸塩として沈殿させ、その後、このシュウ酸塩を1000℃以下で熱分解し、生成した希土類固溶セリアの粉体を成形し、1200〜1600℃で焼結することからなる高純度の希土類固溶セリアの多結晶体を製造する方法。A water-soluble salt of cerium and a rare earth element is mixed in an aqueous solution, and the mixture is dropped into an aqueous oxalic acid solution to precipitate as a poorly water-soluble composite oxalate. A method for producing a polycrystalline rare earth solid solution ceria of high purity, which comprises forming the resulting rare earth solid solution ceria powder and sintering the powder at 1200 to 1600 ° C.
JP2002344644A 2002-10-23 2002-10-23 Rare earth solid solution ceria poly crystalline body having high conductivity and transport number of oxide ion Pending JP2004143023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002344644A JP2004143023A (en) 2002-10-23 2002-10-23 Rare earth solid solution ceria poly crystalline body having high conductivity and transport number of oxide ion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002344644A JP2004143023A (en) 2002-10-23 2002-10-23 Rare earth solid solution ceria poly crystalline body having high conductivity and transport number of oxide ion

Publications (1)

Publication Number Publication Date
JP2004143023A true JP2004143023A (en) 2004-05-20

Family

ID=32462802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002344644A Pending JP2004143023A (en) 2002-10-23 2002-10-23 Rare earth solid solution ceria poly crystalline body having high conductivity and transport number of oxide ion

Country Status (1)

Country Link
JP (1) JP2004143023A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008260673A (en) * 2007-03-20 2008-10-30 National Institute For Materials Science Rare earth element-doped ceria sintered body and its producing method
CN100449834C (en) * 2006-12-22 2009-01-07 清华大学 Anode-electrolyte-cathode assembly of middly temp SOFC and preparation method thereof
CN100449835C (en) * 2006-12-22 2009-01-07 清华大学 Composite doped cerium oxide electrolyte and preparation method thereof
JP2011003343A (en) * 2009-06-17 2011-01-06 Nippon Telegr & Teleph Corp <Ntt> Method of manufacturing solid oxide fuel cell
JP2011213588A (en) * 2010-03-31 2011-10-27 Toyota Motor Corp High ion-conductive solid electrolyte
US9564653B2 (en) 2010-03-31 2017-02-07 Toyota Jidosha Kabushiki Kaisha Method for producing fuel cell including nanofibers of metal oxide
US9829463B2 (en) 2010-03-31 2017-11-28 Toyota Jidosha Kabushiki Kaisha Method for producing oxygen sensor
CN109437930A (en) * 2018-12-13 2019-03-08 云南大学 The utilization of the uniform dispersing method of sintering aid and the sintering aid in this method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100449834C (en) * 2006-12-22 2009-01-07 清华大学 Anode-electrolyte-cathode assembly of middly temp SOFC and preparation method thereof
CN100449835C (en) * 2006-12-22 2009-01-07 清华大学 Composite doped cerium oxide electrolyte and preparation method thereof
JP2008260673A (en) * 2007-03-20 2008-10-30 National Institute For Materials Science Rare earth element-doped ceria sintered body and its producing method
JP2011003343A (en) * 2009-06-17 2011-01-06 Nippon Telegr & Teleph Corp <Ntt> Method of manufacturing solid oxide fuel cell
JP2011213588A (en) * 2010-03-31 2011-10-27 Toyota Motor Corp High ion-conductive solid electrolyte
US9564653B2 (en) 2010-03-31 2017-02-07 Toyota Jidosha Kabushiki Kaisha Method for producing fuel cell including nanofibers of metal oxide
US9829463B2 (en) 2010-03-31 2017-11-28 Toyota Jidosha Kabushiki Kaisha Method for producing oxygen sensor
CN109437930A (en) * 2018-12-13 2019-03-08 云南大学 The utilization of the uniform dispersing method of sintering aid and the sintering aid in this method
CN109437930B (en) * 2018-12-13 2021-07-02 云南大学 Method for homogeneously dispersing sintering aid and use of sintering aid in such method

Similar Documents

Publication Publication Date Title
JP4608047B2 (en) Mixed ionic conductor and device using the same
CN110429288B (en) Cathode material and electrolyte of proton conductor fuel cell with B-site defects and preparation method of cathode material and electrolyte
JP5311913B2 (en) Method for producing high ion conductive solid electrolyte material
JP2000340240A (en) High ionic conductive solid electrolyte material and solid electrolyte fuel cell using the same
JP4352594B2 (en) Oxide ion conductor, method for producing the same, and fuel cell using the same
CA2331434A1 (en) Oxide ceramic
JP4796895B2 (en) Ceria buffer layer for air electrode of solid oxide fuel cell and method for producing the same
JP6100050B2 (en) Air electrode for fuel cell
JP2004143023A (en) Rare earth solid solution ceria poly crystalline body having high conductivity and transport number of oxide ion
JP3011387B2 (en) Ceramics, cylindrical solid electrolyte fuel cells using the same, and flat solid electrolyte fuel cells
JP6625855B2 (en) Cell for steam electrolysis and method for producing the same
JP4158966B2 (en) Composite oxide, oxide ion conductor, oxide ion conductive membrane and electrochemical cell
JPH09180731A (en) Solid electrolyte fuel cell
JP4479039B2 (en) Electrochemical devices
JP4367843B2 (en) Fuel electrode, electrochemical cell, and method of manufacturing fuel electrode
JP4889166B2 (en) Low-temperature sinterable solid electrolyte material, electrolyte electrode assembly and solid oxide fuel cell using the same
JP2004164878A (en) Manufacturing method of solid electrolyte type fuel cell
JP4039618B2 (en) Solid oxide fuel cell
JP4038628B2 (en) Oxide ion conductor, method for producing the same, and solid oxide fuel cell
KR101806441B1 (en) Zirconia-bismuth oxide sintered compound and manufacturing methods thereof
JP6562623B2 (en) Mixed air electrode material for solid oxide fuel cell and solid oxide fuel cell
JP2004303476A (en) High-temperature conductive ceramic powder, its sintered body, and solid oxide type fuel cell using it
JP2004273143A (en) Solid oxide fuel cell, and material for air electrode of solid oxide fuel cell
JP2012119327A (en) High ion-conductivity solid electrolytic material, sintered compact, and solid electrolyte fuel battery
JP2012150889A (en) Solid oxide fuel cell and manufacturing method for the same