【0001】
【発明の属する技術分野】
本発明は、コストを抑えるとともに小型化が図れる水素発生装置に関する。
【0002】
【従来の技術】
新しい発電手法とし、燃料電池の実用化が急ピッチで行われている。燃料電池は水素と酸素とを反応させることで電気エネルギーを発生させる機器であるため、水素と酸素との供給が必須となる。酸素は大気(空気)から得ることができるが、水素は大規模には水素発生プラント設備、小規模には改質器と称する小型水素発生装置が必要となる。
【0003】
例えば、炭化水素(イソブタン)を原料として水素を生成するには、炭化水素を水、空気と共に改質触媒に接触させて水素を得る。このときの反応を反応式に表すと、以下のようになる。
【0004】
【化1】
【0005】
上記の式▲1▼及び式▲2▼は、イソブタンと水蒸気とを改質触媒に接触させて反応させる水蒸気改質反応を示し、式▲3▼及び式▲4▼は、イソブタンと酸素とを改質触媒に接触させて反応させる部分酸化反応を示し、式▲5▼及び式▲6▼は、イソブタンと水蒸気と酸素とを改質触媒に接触させて反応させて、上記の水蒸気改質反応と部分酸化反応とを組み合わせた併用改質反応を示すものであり、各反応も水素、二酸化炭素及び一酸化炭素を生成する。
【0006】
上記の改質反応により生成した水素を、他のガスから分離する膜分離の技術が提案されている(例えば、特許文献1。)。
【0007】
【特許文献1】
米国特許第5229102号明細書(第3−5欄、図1)
【0008】
特許文献1の図1を以下の図10で説明する。なお、符号は振り直した。
図10は従来の水素発生装置の断面図であり、金属管101内に管状のセラミック膜102を収納し、これらの金属管101とセラミック膜102との間に触媒103を充填し、金属管101の周囲にガスバーナー104を配置し、金属管101の一端部側面に、H2O、CH4及びH2を供給する連結管105を取付け、金属管101の一端にH2Oを供給する連結管106を取付け、金属管101の他端部側面に、H2O、CO2及びCOを排出する連結管107を取付け、金属管101の他端にH2O及びH2を排出する連結管108を取付けた水素発生装置としての反応装置110が記載されている。
触媒103により改質したガス中の水素のみがセラミック膜102を透過して回収される。
【0009】
【発明が解決しようとする課題】
上記技術では、水素をセラミック膜102を介して分離するために供給するガスの圧力を高める必要がある。金属管101内は密閉されていないから、内部の圧力を高めるために供給するガスの圧力を高くしなければならない。従って、ガスを供給するために、容量の大きなポンプを必要とする。これでは、コストが嵩むとともに、反応装置110の小型化が難しくなる。
【0010】
そこで、本発明の目的は、水素発生装置を改良することで、コストを抑えるとともに小型化を図ることにある。
【0011】
【課題を解決するための手段】
上記目的を達成するために請求項1は、通気性壁で周面を構成した回転筒を、放射状に延びる隔壁で複数の室に区分し、これらの各室に改質触媒を充填するとともに、周面の大部分をチャンバで囲い、且つこのチャンバに臨む通気性壁の面を水素分離膜で構成し、チャンバと干渉しない部位に原料ガス供給口を設けることで、この原料ガス供給口から炭化水素又は脂肪族アルコールからなる原料ガスを通気性壁を介して室へ吹き込み、回転筒を回すことで室をチャンバに臨ませ、この原料ガスを改質触媒により改質ガスに改質させ、水素分離膜により改質ガス中の水素をチャンバへ分離し、チャンバを介して水素を回収することを特徴とする。
【0012】
原料ガスを一旦密閉に近い状態の室内へ吹き込み、回転筒を回転させている間に原料ガスを改質させて室内の圧力を高め、高まった圧力で改質ガス中の水素を水素分離膜でチャンバへ分離するため、室内へ供給する原料ガスの圧力を大きくする必要がなく、原料ガスを供給するポンプを設けずに済む、又はポンプを設ける場合でも、ポンプの負荷を小さくすることができる。
従って、ポンプが不要、又はポンプの容量を小さくできるため、水素発生装置のコストを抑えることができるとともに小型化を図ることができる。
【0013】
【発明の実施の形態】
本発明の実施の形態を添付図に基づいて以下に説明する。なお、図面は符号の向きに見るものとする。
図1は本発明に係る水素発生装置の断面図であり、水素発生装置10は、フレーム11に回転可能に取付けた筒型容器12と、この筒型容器12内に充填した改質触媒13…(…は複数個を示す。以下同じ。)と、筒型容器12内に原料ガスを供給するために筒型容器12の側壁14に臨ませた原料ガス供給口としてのガス入口15と、筒型容器12内の反応後のガスを外部に排出するために側壁14に臨ませたガス出口16と、筒型容器12内で生成した水素を回収するために筒型容器12の側壁14のほぼ全周を囲むように配置した周壁17と、この周壁17及び筒型容器12の側壁14で形成したチャンバとしての水素回収室18と、この水素回収室18内の水素を外部に取り出す水素出口19と、筒型容器12内のガスが外部に漏れないようにガス入口15及びガス出口16を含む筒型容器12の側壁14を囲むように形成した密閉壁21,22と、筒型容器12を駆動する電動モータ23とからなる。
【0014】
フレーム11は、ガス入口15側及びガス出口16側の密閉壁21,22を支持する支持フレーム25と、周壁17の水素出口19側を支持する支持フレーム26と、これらの支持フレーム25,26を連結する連結フレーム27,28と、電動モータ23を固定するために連結フレーム28に取付けたモータフレーム31とからなる。なお、32…及び33(32,33共に手前側のみ示す)は取付ボルトである。
【0015】
筒型容器12の側壁14は、原料ガスをガス入口15から筒型容器12内に供給するための通気性壁41と、筒型容器12内で生成した水素を水素回収室18内へ流すための通気性壁42と、筒型容器12内で生成した水素のみを水素回収室18内へ分離するための通気性壁42の表面に形成した水素分離膜43と、筒型容器12内の反応後の残留ガスをガス出口16へ排出するための通気性壁44と、密閉壁21,22及び周壁17の内側にそれぞれ設けたシール材46…を当てる摺動壁47,48,51,52とからなる。
【0016】
改質触媒13は、例えば、外径φ3の球状のアルミナにルテニウム(Ru)を担持したものであるが、また、改質触媒13としては、8族〜10族の金属(Fe、Co、Ni、Ru、Pd、Ptなど)を含有するものが好ましく、Ni、Ru、Rhを担持した触媒又はNiO含有触媒が特に好ましい。
【0017】
ガス入口15は、筒型容器12内への原料ガスを供給するために、シール材56を介して通気性壁41に当てて密閉壁21に取付けた部材である。
【0018】
ガス出口16は、弁体とこの弁体を閉じる方向に押し付けるスプリングとから構成することで筒型容器12内からガス排出管57側への反応後の残留ガスの流れを許容する一方向弁を備え、シール材58を介して通気性壁44に当て、密閉壁22に取付けた部材である。
【0019】
水素出口19は、水素回収室18内から外部へ水素を取り出すために周壁17の側部に取付けた部材である。
【0020】
電動モータ23は、出力軸62を備え、この出力軸62に筒型容器12の回転軸63を連結したものである。64,65はブッシュである。
【0021】
通気性壁41,42,44としては、例えば、金属又はセラミック製の多孔質体や金属不織布、更に改質触媒13が通過しない目を有する金網が好適である。水素分離膜43は、水素のみを選択的に透過させることで改質ガスから水素を分離する耐熱性を有する膜であり、例えば、膜厚が20μm以下で材質がパラジウム又はパラジウム含有合金が好適である。
【0022】
上記のパラジウム含有合金としては、パラジウムを10wt%以上含有するものが好ましい。
また、パラジウム以外では、Ptなどの10族元素、Rh、Irなどの9族元素、Ruなどの8族元素、Cu、Ag、Auなどの11族元素を含むものが好ましい。この他には、バナジウム(V)を含有する合金、例えばNi−Co−V合金にパラジウムをコーティングしたものでもよい。
【0023】
図2は本発明に係る筒型容器の斜視図であり、筒型容器12の側壁14に、通気性壁41,42,44(通気性壁42は不図示)を環状に設け、通気性壁42の表面に水素分離膜43を形成し、筒状とした密閉壁21で通気性壁41の周囲を覆い、ほぼ環状とした周壁17で水素分離膜43を覆い、筒状とした密閉壁22で通気性壁44を覆ったことを示す。
【0024】
図3は図1の3−3線断面図であり、筒型容器12内を隔壁67…で複数の反応室68…に区分(ここでは、筒型容器12内を扇状に区分して16の反応室68を形成した。)し、これらの反応室68…にそれぞれ改質触媒13を充填したことを示す。
【0025】
ガス入口15は、一つの反応室68に臨み、その反応室68へ原料ガスを供給することができる。
筒型容器12を密閉壁21で囲うので、反応室68に原料ガスを供給後に原料ガスが外部に漏れることはない。密閉壁21と筒型容器12との間の隙間は、密閉壁21に対して筒型容器12が回転し得る最小値に設定するのが望ましい。
【0026】
72,73はシール材であり、筒型容器12と密閉壁21との間の隙間を周方向に区分して、原料ガスの供給を受ける反応室68の側と原料ガスの供給後に反応が進行中の反応室68の側とを区分する部材である。
【0027】
図1において、密閉室22と筒型容器12との間の隙間も、上記したシール材72,73と同様なシール材にて周方向に区分したものである。
【0028】
図4は図1の4−4線断面図であり、筒型容器12内の反応室68…のうち、ガス出口16側の一部を除いて周壁17で覆ったことを示す。ここでは、ガス出口16側の3つの反応室68…は周壁17で覆っておらず、反応室68…内のガスが漏れないように、周壁17に取付けたカバー75で覆った。
【0029】
以上に述べた水素発生装置の水素生成の作用を次に説明する。
図5は本発明に係る水素発生装置の水素生成の作用を示すフローであり、図6〜図8とともに説明する。図6(a),(b)は本発明に係る水素発生装置の水素生成の作用を示す第1作用図、図7(a),(b)は本発明に係る水素発生装置の水素生成の作用を示す第2作用図、図8は本発明に係る水素発生装置の水素生成の作用を示す第3作用図である。なお、図中のSTXXはステップ番号を示す。
ST01…原料ガスをガス入口から供給する、即ち、図6(a)において、ガス入口15から一つの反応室68A(ここでは、反応室68の一つを特定して反応室68Aとし、この反応室68Aだけの作用を説明するが、他の反応室68の作用も同様である。)内へ以下に示す組成の原料ガスを供給する。
【0030】
原料ガスの組成:
イソブタン:1400cm3/min(気体)
水 : 9cm3/min(液体)
【0031】
ST02…筒型容器を回転させる、即ち、図6(b)において、電動モータを作動させて、筒型容器12を回転させ、反応室68Aが水素回収室18に臨むようにする。筒型容器12の回転数は9rpmである。
【0032】
ST03…原料ガスを改質反応させる、即ち、図6(b)において、反応室68A内では改質触媒13…によって水蒸気改質反応が始まり、反応室68A内の圧力が高まる。このとき筒型容器12は図示せぬバーナーにて550℃に加熱した状態にある。
ST04…水素分離膜で水素を分離する、即ち、図6(b)及び図7(a)において、筒型容器12が回転しているうちに、反応室68A内は改質反応の進行に伴って更に圧力が高まり、反応室68A内の水素が水素分離膜43を透過して、水蒸気改質反応により生成したガス中から水素が分離する。このときに使用した水素分離膜43は、Pdを圧延して20μmとし、通気性壁としての多孔質アルミナ支持体に貼り付けたものである。
【0033】
ST05…水素を回収する、即ち、図7(a)において、水素分離膜43を透過した水素は水素回収室18で回収する。そして、水素回収室18内の水素を水素出口19から外部に排出する。このとき、15000cm3/minの水素を得た。
【0034】
ST06…残留ガスをガス出口から排出する、即ち、図7(b)において、反応室68Aがガス入口15の位置に戻ったら、図8において、再び、原料ガスをガス入口15から反応室68A内へ供給する。この結果、矢印で示すように、反応室68A内で既に反応し終えて残った残留ガスが原料ガスによって追いやられ、一方向弁を開けてガス出口16から排出する、即ち、原料ガスが残留ガスと入れ替わる。
【0035】
図9(a),(b)は水素発生装置の比較例を示す断面図であり、(a)は水素発生装置の縦断面図、(b)は(a)のb−b線断面図である。
(a)において、水素発生装置120は、筒型容器121と、この筒型容器121内に設けた円筒状の通気性壁122と、この通気性壁122内に充填した改質触媒123…と、通気性壁122の外周面に設けた水素分離膜124と、通気性壁122内に原料ガスを供給するガス入口126と、通気性壁122内の反応後の残留ガスを排出するガス出口127と、筒型容器121の内側であって水素分離膜124の外側に形成した水素回収室131と、この水素回収室131に連通させた水素排出口132とからなる。なお、133はガス出口127に設けた一方向弁(通気性壁122内から外部へのみガスが流れる。)、134,135は粒状の改質触媒123…がガス入口126及びガス出口127内に移動しないようにする金網である。
【0036】
改質触媒123は、外径3mmの球状のアルミナにルテニウムを担持したものである。
水素分離膜124は、Pdを圧延して厚さを20μmとし、外径40mm、全長220mmの多孔質アルミナ支持管で構成する通気性壁122の外側に貼り付けたものである。
【0037】
(b)は、通気性壁122の周囲を筒型容器121で囲い、環状の水素回収室131を形成したことを示す。
【0038】
(a)において、例えば、改質触媒123…をバーナーで550℃まで加熱し、ガス入口126から原料ガス(原料ガスの組成は、イソブタン1400cm3/min、水9cm3/minである。)を供給すると、原料ガスは改質触媒123…によって改質反応を起こし、水素が生成する。この水素は水素分離膜124を透過し、水素回収室131に貯まるので、ガス出口127から外部に排出する。
【0039】
水素を連続的に生成するには、生成した水素が水素分離膜124を透過しやすくするために通気性壁122内の圧力を高める必要がある。ガスを流しながら通気性壁122内の圧力を高めるには、原料ガスの流量を増やさなければならない。従って、原料ガスを供給するためにポンプの容量を大きくする必要がある。上記の水素回収室131での水素回収量を15000cm3/minとするのに、通気性壁122内の圧力を0.2MPa(ゲージ圧)まで高めた。
これに対して、本発明の実施の形態(図5〜図8参照)では、原料ガスの供給圧力をほとんど高めていない。(図6(a)に示した原料ガスを供給後の反応室68A内の圧力はほぼ大気圧(0.005MPa(ゲージ圧)以下)であった。)
【0040】
以上の図1及び図4で説明したように、本発明は、通気性壁41,42,44で周面を構成した筒型容器12を、放射状に延びる隔壁67…で複数の反応室68…に区分し、これらの反応室68…にそれぞれ改質触媒13…を充填するとともに、周面の大部分を水素回収室18で囲い、且つこの水素回収室18に臨む通気性壁42の外面を水素分離膜43で構成し、水素回収室18と干渉しない部位にガス入口15を設けることで、このガス入口15から炭化水素又は脂肪族アルコールからなる原料ガスを通気性壁41を介して反応室68へ吹き込み、筒型容器12を回すことで反応室68を水素回収室18に臨ませ、この原料ガスを改質触媒13…により改質ガスに改質させ、水素分離膜43により改質ガス中の水素を水素回収室18へ分離し、水素回収室18を介して水素を回収することを特徴とする。
【0041】
原料ガスを一旦密閉に近い状態の反応室68内へ吹き込み、筒型容器12を回転させている間に原料ガスを改質させて反応室68内の圧力を高め、高まった圧力で改質ガス中の水素を水素分離膜43で水素回収室18へ分離するため、反応室68内へ供給する原料ガスの圧力を大きくする必要がなく、原料ガスを供給するポンプを設けずに済む、又はポンプを設ける場合でも、ポンプの負荷を小さくすることができる。
【0042】
従って、ポンプが不要で原料ガスのガスボンベの圧力のみで原料ガスを供給することができる、又はポンプの容量を小さくできるため、水素発生装置10のコストを抑えることができるとともに小型化を図ることができる。
【0043】
更に、回転する各反応室68に順次原料ガスを吹き込めば、水素を連続的に回収することができ、負荷の小さなポンプを連続運転しても消費電力を抑えることができる。
【0044】
尚、本発明の実施の形態では、筒型容器の側壁の外面に水素分離膜を形成したが、これに限らず、側壁の内面に水素分離膜を設けてもよい。
また、原料ガスの供給を、一つの反応室毎に行ったが、これに限らず、複数の反応室(例えば、3つの反応室)に同時に原料ガスを供給してもよい。
【0045】
【発明の効果】
本発明は上記構成により次の効果を発揮する。
請求項1の水素発生装置は、通気性壁で周面を構成した回転筒を、放射状に延びる隔壁で複数の室に区分し、これらの各室に改質触媒を充填するとともに、周面の大部分をチャンバで囲い、且つこのチャンバに臨む通気性壁の面を水素分離膜で構成し、チャンバと干渉しない部位に原料ガス供給口を設けることで、この原料ガス供給口から炭化水素又は脂肪族アルコールからなる原料ガスを通気性壁を介して室へ吹き込み、回転筒を回すことで室をチャンバに臨ませ、この原料ガスを改質触媒により改質ガスに改質させ、水素分離膜により改質ガス中の水素をチャンバへ分離し、チャンバを介して水素を回収するので、原料ガスを一旦密閉に近い状態の室内へ吹き込み、回転筒を回転させている間に原料ガスを改質させて室内の圧力を高め、高まった圧力で改質ガス中の水素を水素分離膜でチャンバへ分離するため、室内へ供給する原料ガスの圧力を大きくする必要がなく、原料ガスを供給するポンプを設けずに済む、又はポンプを設ける場合でも、ポンプの負荷を小さくすることができる。
従って、ポンプが不要、又はポンプの容量を小さくできるため、水素発生装置のコストを抑えることができるとともに小型化を図ることができる。
【0046】
更に、回転する各室に順次原料ガスを吹き込めば、水素を連続的に回収することができ、負荷の小さなポンプを連続運転しても消費電力を抑えることができる。
【図面の簡単な説明】
【図1】本発明に係る水素発生装置の断面図
【図2】本発明に係る筒型容器の斜視図
【図3】図1の3−3線断面図
【図4】図1の4−4線断面図
【図5】本発明に係る水素発生装置の水素生成の作用を示すフロー
【図6】本発明に係る水素発生装置の水素生成の作用を示す第1作用図
【図7】本発明に係る水素発生装置の水素生成の作用を示す第2作用図
【図8】本発明に係る水素発生装置の水素生成の作用を示す第3作用図
【図9】水素発生装置の比較例を示す断面図
【図10】従来の水素発生装置の断面図
【符号の説明】
10…水素発生装置、12…回転筒(筒型容器)、13…改質触媒、15…原料ガス供給口(ガス入口)、18…チャンバ(水素回収室)、41,42,44…通気性壁、43…水素分離膜、67…隔壁、68…室(反応室)。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hydrogen generator capable of reducing costs and reducing the size.
[0002]
[Prior art]
As a new power generation method, fuel cells are being put to practical use at a rapid pace. Since a fuel cell is a device that generates electric energy by reacting hydrogen and oxygen, supply of hydrogen and oxygen is indispensable. Oxygen can be obtained from the atmosphere (air), but hydrogen requires a large-scale hydrogen generation plant facility and small-scale requires a small-sized hydrogen generator called a reformer.
[0003]
For example, in order to generate hydrogen using a hydrocarbon (isobutane) as a raw material, the hydrocarbon is brought into contact with a reforming catalyst together with water and air to obtain hydrogen. The reaction at this time is represented by the following equation.
[0004]
Embedded image
[0005]
The above formulas (1) and (2) show a steam reforming reaction in which isobutane and steam are brought into contact with a reforming catalyst to cause a reaction, and formulas (3) and (4) show that isobutane and oxygen are reacted with each other. The partial oxidation reaction in which the catalyst is brought into contact with the reforming catalyst to cause the reaction is represented by the formulas (5) and (6). The above-mentioned steam reforming reaction is carried out by bringing isobutane, steam and oxygen into contact with the reforming catalyst and reacting them. And a partial oxidation reaction in combination, and each reaction also produces hydrogen, carbon dioxide and carbon monoxide.
[0006]
A membrane separation technique for separating hydrogen generated by the above-described reforming reaction from another gas has been proposed (for example, Patent Document 1).
[0007]
[Patent Document 1]
US Pat. No. 5,229,102 (columns 3-5, FIG. 1)
[0008]
FIG. 1 of Patent Document 1 will be described with reference to FIG. The reference numerals have been re-assigned.
FIG. 10 is a cross-sectional view of a conventional hydrogen generator, in which a tubular ceramic film 102 is housed in a metal tube 101, a catalyst 103 is filled between the metal tube 101 and the ceramic film 102, and a metal tube 101 is formed. , A connecting tube 105 for supplying H 2 O, CH 4 and H 2 is attached to one side of the metal tube 101, and a connecting tube for supplying H 2 O to one end of the metal tube 101. A pipe 106 is attached, a connecting pipe 107 for discharging H 2 O, CO 2 and CO is mounted on a side surface of the other end of the metal pipe 101, and a connecting pipe for discharging H 2 O and H 2 is provided on the other end of the metal pipe 101. A reactor 110 as a hydrogen generator equipped with 108 is described.
Only hydrogen in the gas reformed by the catalyst 103 permeates through the ceramic membrane 102 and is collected.
[0009]
[Problems to be solved by the invention]
In the above technique, it is necessary to increase the pressure of a gas supplied to separate hydrogen through the ceramic membrane 102. Since the inside of the metal tube 101 is not sealed, the pressure of the gas to be supplied must be increased in order to increase the internal pressure. Therefore, a large capacity pump is required to supply the gas. This increases costs and makes it difficult to reduce the size of the reactor 110.
[0010]
Therefore, an object of the present invention is to improve the hydrogen generator to reduce costs and reduce the size.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, claim 1 divides a rotating cylinder having a peripheral surface formed of a gas permeable wall into a plurality of chambers by radially extending partitions, and fills each of these chambers with a reforming catalyst. A large part of the peripheral surface is surrounded by a chamber, and the surface of a gas permeable wall facing the chamber is formed of a hydrogen separation membrane, and a source gas supply port is provided at a portion that does not interfere with the chamber. A raw material gas consisting of hydrogen or an aliphatic alcohol is blown into the chamber through a gas permeable wall, and the chamber is made to face the chamber by rotating a rotary cylinder. It is characterized in that hydrogen in the reformed gas is separated into a chamber by a separation membrane, and hydrogen is recovered through the chamber.
[0012]
Once the raw material gas is blown into the closed room, the raw material gas is reformed while rotating the rotating cylinder to increase the pressure inside the room, and the hydrogen in the reformed gas is increased by the hydrogen separation membrane at the increased pressure. Since the source gas is separated into the chamber, the pressure of the source gas supplied into the room does not need to be increased, and a pump for supplying the source gas need not be provided. Even when a pump is provided, the load on the pump can be reduced.
Therefore, a pump is unnecessary or the capacity of the pump can be reduced, so that the cost of the hydrogen generator can be suppressed and the size can be reduced.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described below with reference to the accompanying drawings. The drawings should be viewed in the direction of reference numerals.
FIG. 1 is a sectional view of a hydrogen generator according to the present invention. A hydrogen generator 10 includes a cylindrical container 12 rotatably mounted on a frame 11, a reforming catalyst 13 filled in the cylindrical container 12, and so on. (... denotes a plurality; the same applies hereinafter.), A gas inlet 15 serving as a raw material gas supply port facing a side wall 14 of the cylindrical container 12 for supplying a raw material gas into the cylindrical container 12, A gas outlet 16 facing the side wall 14 for discharging the reacted gas in the mold container 12 to the outside, and a substantially side wall 14 of the cylindrical container 12 for recovering hydrogen generated in the mold container 12. A peripheral wall 17 disposed so as to surround the entire periphery, a hydrogen recovery chamber 18 as a chamber formed by the peripheral wall 17 and the side wall 14 of the cylindrical container 12, and a hydrogen outlet 19 for taking out hydrogen in the hydrogen recovery chamber 18 to the outside. Gas in the cylindrical container 12 leaks to the outside Strangely the sealing wall 21, 22 which is formed to surround the side wall 14 of the cylindrical vessel 12 containing a gas inlet 15 and a gas outlet 16 and a motor 23 for driving the cylindrical container 12.
[0014]
The frame 11 includes a support frame 25 that supports the sealing walls 21 and 22 on the gas inlet 15 side and the gas outlet 16 side, a support frame 26 that supports the hydrogen outlet 19 side of the peripheral wall 17, and these support frames 25 and 26. It comprises connecting frames 27 and 28 to be connected, and a motor frame 31 attached to the connecting frame 28 for fixing the electric motor 23. 32 and 33 (both 32 and 33 are shown only on the near side) are mounting bolts.
[0015]
The side wall 14 of the cylindrical container 12 is provided with a gas permeable wall 41 for supplying a raw material gas from the gas inlet 15 into the cylindrical container 12, and for flowing hydrogen generated in the cylindrical container 12 into the hydrogen recovery chamber 18. And a hydrogen separation membrane 43 formed on the surface of the permeable wall 42 for separating only the hydrogen generated in the cylindrical container 12 into the hydrogen recovery chamber 18, and the reaction in the cylindrical container 12. A gas permeable wall 44 for discharging the remaining gas to the gas outlet 16, and sliding walls 47, 48, 51, 52 for applying sealing materials 46 provided inside the sealing walls 21, 22 and the peripheral wall 17, respectively. Consists of
[0016]
The reforming catalyst 13 is, for example, one in which ruthenium (Ru) is supported on spherical alumina having an outer diameter of φ3, and the reforming catalyst 13 is a metal belonging to Group 8 to Group 10 (Fe, Co, Ni). , Ru, Pd, Pt, etc.), and a catalyst supporting Ni, Ru, Rh or a NiO-containing catalyst is particularly preferable.
[0017]
The gas inlet 15 is a member attached to the air-permeable wall 41 via the sealing material 56 and attached to the closed wall 21 in order to supply a raw material gas into the cylindrical container 12.
[0018]
The gas outlet 16 is constituted by a valve body and a spring that presses the valve body in a closing direction, so that a one-way valve that allows the flow of residual gas after the reaction from the inside of the cylindrical container 12 to the gas exhaust pipe 57 side is provided. It is a member provided to the air permeable wall 44 via the sealing material 58 and attached to the sealing wall 22.
[0019]
The hydrogen outlet 19 is a member attached to the side of the peripheral wall 17 for extracting hydrogen from the inside of the hydrogen recovery chamber 18 to the outside.
[0020]
The electric motor 23 has an output shaft 62, and the rotation shaft 63 of the cylindrical container 12 is connected to the output shaft 62. 64 and 65 are bushes.
[0021]
As the air-permeable walls 41, 42, and 44, for example, a metal or ceramic porous body or a metal nonwoven fabric, and a wire mesh having a mesh through which the reforming catalyst 13 does not pass are preferable. The hydrogen separation membrane 43 is a heat-resistant membrane that separates hydrogen from the reformed gas by selectively permeating only hydrogen. For example, the material is preferably palladium or a palladium-containing alloy having a thickness of 20 μm or less. is there.
[0022]
As the palladium-containing alloy, an alloy containing 10% by weight or more of palladium is preferable.
In addition to palladium, those containing a Group 10 element such as Pt, a Group 9 element such as Rh and Ir, a Group 8 element such as Ru, and a Group 11 element such as Cu, Ag, and Au are preferable. Alternatively, an alloy containing vanadium (V), for example, a Ni—Co—V alloy coated with palladium may be used.
[0023]
FIG. 2 is a perspective view of a cylindrical container according to the present invention, in which gas-permeable walls 41, 42, and 44 (the gas-permeable wall 42 are not shown) are annularly provided on the side wall 14 of the cylindrical container 12. 42, a hydrogen separation membrane 43 is formed on the surface thereof, the periphery of the gas permeable wall 41 is covered with the cylindrical sealing wall 21, the hydrogen separation membrane 43 is covered with the substantially annular peripheral wall 17, and the cylindrical sealing wall 22 is formed. Indicates that the gas permeable wall 44 has been covered.
[0024]
FIG. 3 is a sectional view taken along line 3-3 in FIG. 1, and the inside of the cylindrical container 12 is divided into a plurality of reaction chambers 68 by partition walls 67 (here, the inside of the cylindrical container 12 is divided into a fan shape to form 16 reaction chambers). The reaction chambers 68 were formed.), Indicating that the reforming catalysts 13 were filled in these reaction chambers 68, respectively.
[0025]
The gas inlet 15 faces one reaction chamber 68 and can supply a source gas to the reaction chamber 68.
Since the cylindrical container 12 is surrounded by the sealing wall 21, the source gas does not leak to the outside after the source gas is supplied to the reaction chamber 68. The gap between the closed wall 21 and the cylindrical container 12 is desirably set to a minimum value at which the cylindrical container 12 can rotate with respect to the closed wall 21.
[0026]
Reference numerals 72 and 73 denote sealing materials which divide the gap between the cylindrical container 12 and the sealing wall 21 in the circumferential direction so that the reaction proceeds on the side of the reaction chamber 68 where the raw material gas is supplied and after the raw material gas is supplied. This is a member that separates the reaction chamber 68 from the inside.
[0027]
In FIG. 1, a gap between the closed chamber 22 and the cylindrical container 12 is also circumferentially divided by a sealing material similar to the sealing materials 72 and 73 described above.
[0028]
FIG. 4 is a cross-sectional view taken along line 4-4 in FIG. 1 and shows that the reaction chambers 68 in the cylindrical container 12 are covered with the peripheral wall 17 except for a part on the gas outlet 16 side. Here, the three reaction chambers 68 on the gas outlet 16 side are not covered with the peripheral wall 17 but are covered with a cover 75 attached to the peripheral wall 17 so that gas in the reaction chambers 68 does not leak.
[0029]
Next, the operation of the above-described hydrogen generator for generating hydrogen will be described.
FIG. 5 is a flow chart showing the action of hydrogen generation by the hydrogen generator according to the present invention, which will be described with reference to FIGS. FIGS. 6 (a) and 6 (b) are first operation diagrams showing the operation of hydrogen generation of the hydrogen generator according to the present invention, and FIGS. 7 (a) and 7 (b) are diagrams of hydrogen generation of the hydrogen generator according to the present invention. FIG. 8 is a second operation diagram showing the operation, and FIG. 8 is a third operation diagram showing the hydrogen generation operation of the hydrogen generator according to the present invention. STXX in the figure indicates a step number.
ST01: The raw material gas is supplied from the gas inlet. That is, in FIG. 6A, one reaction chamber 68A (here, one of the reaction chambers 68 is specified as the reaction chamber 68A, The operation of only the chamber 68A will be described, but the operation of the other reaction chambers 68 is also the same.) A source gas having the following composition is supplied into the chamber.
[0030]
Source gas composition:
Isobutane: 1400 cm 3 / min (gas)
Water: 9cm 3 / min (liquid)
[0031]
ST02: Rotate the cylindrical container, that is, in FIG. 6B, operate the electric motor to rotate the cylindrical container 12 so that the reaction chamber 68A faces the hydrogen recovery chamber 18. The rotation speed of the cylindrical container 12 is 9 rpm.
[0032]
ST03: The raw material gas undergoes a reforming reaction. That is, in FIG. 6B, a steam reforming reaction is started in the reaction chamber 68A by the reforming catalysts 13, and the pressure in the reaction chamber 68A increases. At this time, the cylindrical container 12 is in a state of being heated to 550 ° C. by a burner (not shown).
ST04: Separate hydrogen with the hydrogen separation membrane, that is, in FIG. 6 (b) and FIG. 7 (a), while the cylindrical container 12 is rotating, the inside of the reaction chamber 68A is accompanied by the progress of the reforming reaction. As a result, the pressure in the reaction chamber 68A further permeates through the hydrogen separation membrane 43, and hydrogen is separated from the gas generated by the steam reforming reaction. The hydrogen separation membrane 43 used at this time is obtained by rolling Pd to 20 μm and affixing it to a porous alumina support as a permeable wall.
[0033]
ST05: Recover hydrogen, that is, in FIG. 7A, the hydrogen that has passed through the hydrogen separation membrane 43 is recovered in the hydrogen recovery chamber 18. Then, the hydrogen in the hydrogen recovery chamber 18 is discharged from the hydrogen outlet 19 to the outside. At this time, 15,000 cm 3 / min of hydrogen was obtained.
[0034]
ST06: The residual gas is discharged from the gas outlet, that is, in FIG. 7B, when the reaction chamber 68A returns to the position of the gas inlet 15, the raw material gas is again supplied from the gas inlet 15 into the reaction chamber 68A in FIG. Supply to As a result, as indicated by the arrow, the residual gas which has already reacted in the reaction chamber 68A is driven away by the raw material gas, and the one-way valve is opened to be discharged from the gas outlet 16, ie, the raw material gas is discharged. Is replaced.
[0035]
9A and 9B are cross-sectional views illustrating a comparative example of the hydrogen generator, FIG. 9A is a longitudinal cross-sectional view of the hydrogen generator, and FIG. 9B is a cross-sectional view taken along line bb of FIG. is there.
In (a), the hydrogen generator 120 includes a cylindrical container 121, a cylindrical permeable wall 122 provided in the cylindrical container 121, and a reforming catalyst 123 filled in the permeable wall 122. A hydrogen separation membrane 124 provided on the outer peripheral surface of the gas permeable wall 122, a gas inlet 126 for supplying a raw material gas into the gas permeable wall 122, and a gas outlet 127 for discharging a residual gas after the reaction in the gas permeable wall 122. And a hydrogen recovery chamber 131 formed inside the cylindrical container 121 and outside the hydrogen separation membrane 124, and a hydrogen discharge port 132 communicated with the hydrogen recovery chamber 131. In addition, 133 is a one-way valve provided in the gas outlet 127 (gas flows only from the inside of the gas permeable wall 122 to the outside), and 134 and 135 are granular reforming catalysts 123 in the gas inlet 126 and the gas outlet 127. A wire mesh that keeps you from moving.
[0036]
The reforming catalyst 123 is obtained by supporting ruthenium on spherical alumina having an outer diameter of 3 mm.
The hydrogen separation membrane 124 is formed by rolling Pd to a thickness of 20 μm, and is attached to the outside of a gas permeable wall 122 formed of a porous alumina support tube having an outer diameter of 40 mm and a total length of 220 mm.
[0037]
(B) shows that the periphery of the gas permeable wall 122 was surrounded by the cylindrical container 121, and the annular hydrogen recovery chamber 131 was formed.
[0038]
In (a), for example, a reforming catalyst 123 ... was heated to 550 ° C. with a burner, a raw material gas from the gas inlet 126 (composition of the raw material gas is isobutane 1400 cm 3 / min, a water 9cm 3 / min.) And When supplied, the raw material gas undergoes a reforming reaction by the reforming catalysts 123 to generate hydrogen. Since this hydrogen passes through the hydrogen separation membrane 124 and is stored in the hydrogen recovery chamber 131, it is discharged to the outside from the gas outlet 127.
[0039]
In order to continuously generate hydrogen, it is necessary to increase the pressure in the gas permeable wall 122 so that the generated hydrogen can easily pass through the hydrogen separation membrane 124. In order to increase the pressure in the gas permeable wall 122 while flowing the gas, the flow rate of the source gas must be increased. Therefore, it is necessary to increase the capacity of the pump to supply the source gas. The pressure inside the permeable wall 122 was increased to 0.2 MPa (gauge pressure) so that the amount of hydrogen recovered in the hydrogen recovery chamber 131 was 15000 cm 3 / min.
On the other hand, in the embodiment of the present invention (see FIGS. 5 to 8), the supply pressure of the source gas is hardly increased. (The pressure in the reaction chamber 68A after the supply of the raw material gas shown in FIG. 6A was approximately atmospheric pressure (0.005 MPa (gauge pressure) or less).)
[0040]
As described above with reference to FIGS. 1 and 4, the present invention is directed to a method in which the cylindrical container 12 having the peripheral surface constituted by the permeable walls 41, 42, 44 is formed by dividing the reaction chambers 68 with the radially extending partitions 67. These reaction chambers 68 are filled with the reforming catalysts 13, respectively, and at the same time, the outer peripheral surface of the gas permeable wall 42 facing the hydrogen recovery chamber 18 is substantially surrounded by the hydrogen recovery chamber 18. The gas inlet 15 is provided at a portion that does not interfere with the hydrogen recovery chamber 18 by using the hydrogen separation membrane 43, and the raw material gas composed of hydrocarbon or aliphatic alcohol is supplied from the gas inlet 15 to the reaction chamber via the gas permeable wall 41. The reaction chamber 68 is exposed to the hydrogen recovery chamber 18 by turning the cylindrical container 12 and the raw material gas is reformed into a reformed gas by the reforming catalyst 13. Distributes the hydrogen inside to the hydrogen recovery chamber 18 And, and collecting the hydrogen through the hydrogen recovery chamber 18.
[0041]
The raw material gas is once blown into the reaction chamber 68 in a nearly closed state, and while the cylindrical container 12 is being rotated, the raw material gas is reformed to increase the pressure in the reaction chamber 68. Since the hydrogen inside is separated into the hydrogen recovery chamber 18 by the hydrogen separation membrane 43, it is not necessary to increase the pressure of the raw material gas supplied into the reaction chamber 68, and it is not necessary to provide a pump for supplying the raw material gas. Is provided, the load on the pump can be reduced.
[0042]
Therefore, the source gas can be supplied only by the pressure of the gas cylinder of the source gas without the need for a pump, or the capacity of the pump can be reduced, so that the cost of the hydrogen generator 10 can be suppressed and the size can be reduced. it can.
[0043]
Further, if the raw material gas is sequentially blown into each rotating reaction chamber 68, hydrogen can be continuously recovered, and power consumption can be suppressed even when a pump with a small load is continuously operated.
[0044]
In the embodiment of the present invention, the hydrogen separation membrane is formed on the outer surface of the side wall of the cylindrical container. However, the present invention is not limited to this, and the hydrogen separation membrane may be provided on the inner surface of the side wall.
Although the supply of the source gas is performed for each reaction chamber, the present invention is not limited to this. The source gas may be supplied to a plurality of reaction chambers (for example, three reaction chambers) at the same time.
[0045]
【The invention's effect】
The present invention has the following effects by the above configuration.
In the hydrogen generator according to the first aspect, a rotary cylinder having a peripheral surface formed by a gas-permeable wall is divided into a plurality of chambers by radially extending partition walls, and each of these chambers is filled with a reforming catalyst, and the peripheral surface of the rotary cylinder is formed. Most of the chamber is surrounded by a chamber, and the surface of a gas permeable wall facing the chamber is formed of a hydrogen separation membrane, and a source gas supply port is provided at a portion that does not interfere with the chamber. A raw material gas composed of an aromatic alcohol is blown into the chamber through a permeable wall, and the chamber is exposed to the chamber by rotating a rotary cylinder. The raw material gas is reformed into a reformed gas by a reforming catalyst, and the hydrogen separation membrane is used. Since the hydrogen in the reformed gas is separated into the chamber and the hydrogen is recovered through the chamber, the raw material gas is blown into a nearly closed room, and the raw material gas is reformed while rotating the rotary cylinder. To increase the pressure in the room, Since the hydrogen in the reformed gas is separated into the chamber by the hydrogen separation membrane at the accumulated pressure, there is no need to increase the pressure of the raw material gas supplied to the room, and there is no need to provide a pump for supplying the raw material gas, or a pump. Is provided, the load on the pump can be reduced.
Therefore, a pump is unnecessary or the capacity of the pump can be reduced, so that the cost of the hydrogen generator can be suppressed and the size can be reduced.
[0046]
Further, if the raw material gas is sequentially blown into each rotating chamber, hydrogen can be continuously recovered, and power consumption can be suppressed even when the pump with a small load is continuously operated.
[Brief description of the drawings]
1 is a cross-sectional view of a hydrogen generator according to the present invention; FIG. 2 is a perspective view of a cylindrical container according to the present invention; FIG. 3 is a cross-sectional view taken along line 3-3 in FIG. 1; FIG. 5 is a flow chart showing the operation of hydrogen generation of the hydrogen generator according to the present invention. FIG. 6 is a first operation diagram showing the operation of hydrogen generation of the hydrogen generator according to the present invention. FIG. 8 is a second operation diagram showing the operation of hydrogen generation of the hydrogen generator according to the present invention. FIG. 8 is a third operation diagram showing the operation of hydrogen generation of the hydrogen generator according to the present invention. FIG. 10 is a cross-sectional view of a conventional hydrogen generator.
DESCRIPTION OF SYMBOLS 10 ... Hydrogen generator, 12 ... Rotating cylinder (tubular container), 13 ... Reforming catalyst, 15 ... Source gas supply port (gas inlet), 18 ... Chamber (hydrogen recovery chamber), 41, 42, 44 ... Air permeability Wall: 43: hydrogen separation membrane, 67: partition wall, 68: chamber (reaction chamber).