JP2004142427A - Manufacturing process for three-dimensionally shaped product - Google Patents

Manufacturing process for three-dimensionally shaped product Download PDF

Info

Publication number
JP2004142427A
JP2004142427A JP2003281259A JP2003281259A JP2004142427A JP 2004142427 A JP2004142427 A JP 2004142427A JP 2003281259 A JP2003281259 A JP 2003281259A JP 2003281259 A JP2003281259 A JP 2003281259A JP 2004142427 A JP2004142427 A JP 2004142427A
Authority
JP
Japan
Prior art keywords
layer
powder
low
sintered layer
density sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003281259A
Other languages
Japanese (ja)
Other versions
JP3599056B2 (en
Inventor
Hirohiko Tougeyama
峠山 裕彦
Isao Fuwa
不破 勲
Tokuo Yoshida
吉田 徳雄
Shuji Kaminaga
上永 修士
Satoshi Abe
阿部 諭
Masataka Takenami
武南 正孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2003281259A priority Critical patent/JP3599056B2/en
Priority to TW092127081A priority patent/TWI232786B/en
Publication of JP2004142427A publication Critical patent/JP2004142427A/en
Application granted granted Critical
Publication of JP3599056B2 publication Critical patent/JP3599056B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/38Process control to achieve specific product aspects, e.g. surface smoothness, density, porosity or hollow structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/37Process control of powder bed aspects, e.g. density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/366Scanning parameters, e.g. hatch distance or scanning strategy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

<P>PROBLEM TO BE SOLVED: To enhance the bonding strength at the transitional part from a high density sintering layer to a low density sintering layer. <P>SOLUTION: In manufacturing a three-dimensionally shaped product which has multiple sintering layers laminated and integrated therein by the repetition of forming a sintering layer by irradiating a light beam L on a specified part of the layer of a powder material and sintering the powder of the specified part, a high density sintering layer 11H formed under a high sintering condition and a low density sintering layer 11L formed under a low sintering condition are selectively formed and, in shifting from the high sintering condition to the low sintering condition, a medium density sintering layer 11M is formed on the high density sintering layer 11H by irradiating the light beam under a medium sintering condition between the both conditions, and on this medium density sintering layer 11M there is formed the low density sintering layer 11L. Interposing the medium density sintering layer between the high and low density sintering layers prevents the lowering of the bonding strength. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は粉末材料を光ビームで焼結硬化させることで三次元形状造形物を製造する三次元形状造形物の製造方法に関するものである。 The present invention relates to a method for producing a three-dimensional shaped article, which produces a three-dimensional shaped article by sintering and hardening a powder material with a light beam.

 光造形法として知られている三次元形状造形物の製造方法がある。特許第2620353号(特許文献1)などに示された該製造方法は、無機質あるいは有機質の粉末材料の層の所定箇所に光ビームを照射して該当箇所の粉末を焼結(融着)することで焼結層を形成し、この焼結層の上に粉末材料の新たな層を被覆して該粉末層の所定箇所に光ビームを照射して該当箇所の粉末を焼結することで下層の焼結層と一体になった新たな焼結層を形成するということを繰り返すことで、複数の焼結層が積層一体化された粉末焼結部品(三次元形状造形物)を作成するものであり、三次元形状造形物の設計データ(CADデータ)であるモデルを所望の層厚みにスライスして生成する各層の断面形状データをもとに光ビームを照射することから、マシニングセンターのような装置が無くとも任意形状の三次元形状造形物を製造することができるほか、切削加工などによる製造方法に比して、迅速に所望の形状の造形物を得ることができる。 There is a method for producing a three-dimensional shaped object known as stereolithography. The manufacturing method disclosed in Japanese Patent No. 2620353 (Patent Document 1) sinters (fuses) the powder at a corresponding portion by irradiating a predetermined portion of the layer of the inorganic or organic powder material with a light beam. A sintered layer is formed by coating a new layer of the powder material on the sintered layer, and a predetermined portion of the powder layer is irradiated with a light beam to sinter the powder at the corresponding portion, thereby lowering the lower layer. By repeating the formation of a new sintered layer integrated with the sintered layer, a powder sintered part (three-dimensional shaped object) in which a plurality of sintered layers are laminated and integrated is created. There is a device such as a machining center because a light beam is irradiated based on cross-sectional shape data of each layer generated by slicing a model, which is design data (CAD data) of a three-dimensional shaped object, into a desired layer thickness. 3D shape modeling of any shape even without Addition can be produced, compared to the manufacturing method such as by cutting, it is possible to obtain a molded article rapidly desired shape.

 この時、造形時間や内部応力による反り・割れなどの問題を考慮すると、造形物全体を一様な焼結条件で一様な密度で仕上げるのではなく、必要な部分のみを高焼結条件による高密度焼結層とし、他の部分は低焼結条件による低密度焼結層として造形するのが好ましい。たとえば、製作しようとする造形物が射出成形金型である場合、成形品が転写される表層部分や冷却水用配管部については高密度に、他の部分は低密度で仕上げるのが好ましい。 At this time, considering problems such as warping and cracking due to modeling time and internal stress, the entire model is not finished with uniform density under uniform sintering conditions, but only necessary parts are subjected to high sintering conditions. It is preferable that the high density sintered layer is formed and the other part is formed as a low density sintered layer under low sintering conditions. For example, when the molded article to be manufactured is an injection mold, it is preferable to finish the surface layer portion and the cooling water piping portion to which the molded product is transferred at a high density and the other portions at a low density.

 ところで、高焼結条件で形成する高密度焼結層は、粉末をほぼ完全溶融させて固化させるために仕上げ後の面は非常にきれいであるとともに、冷却水の配管を造形した場合にも水漏れを起こさないが、粉末を薄く敷いた粉末層の密度が50〜60%であるのに対して、上記高密度焼結層はほぼ100%の密度となっていることから、図11に示すように、厚みt0で形成した粉末層10に対して高焼結条件での光ビームLを照射して高密度焼結層11Hを形成した時、粉末層10の表面よりも高密度焼結層11の表面はδだけ低くなることになる。 By the way, the high-density sintered layer formed under high sintering conditions has a very clean finished surface because the powder is almost completely melted and solidified. Although no leakage occurs, the density of the powder layer in which the powder is thinly spread is 50 to 60%, whereas the high-density sintered layer has a density of almost 100%. As described above, when the high-density sintered layer 11H is formed by irradiating the powder layer 10 formed with the thickness t0 with the light beam L under the high sintering condition, the high-density sintered layer is more than the surface of the powder layer 10. The surface of 11 will be lowered by δ.

 また、形成する粉末層10の厚みを図12に示すように、ステージ20の一定下降量で決定している場合、高密度焼結層11Hの上に形成した粉末層10の厚みは、設計値tよりも上記δ分だけ厚いものとなり、さらにこの粉末層10を高焼結条件で焼結して高密度焼結層11Hとすると、粉末層10の表面よりも高密度焼結層11の表面は段差δa(δa>δ)だけ低くなることになる。 In addition, as shown in FIG. 12, when the thickness of the powder layer 10 to be formed is determined by the constant descending amount of the stage 20, the thickness of the powder layer 10 formed on the high-density sintered layer 11H is a design value. When the powder layer 10 is sintered under high sintering conditions to form a high-density sintered layer 11H, the surface of the high-density sintered layer 11 is larger than the surface of the powder layer 10. Is lowered by the step δa (δa> δ).

 そして更に粉末層10を形成し、今度は低焼結条件で低密度焼結層11Lを形成すると、図13に示すようにこの時の粉末層10の厚みは設計値tよりも上記段差δa分だけ厚いものとなる。 Further, when the powder layer 10 is formed and this time the low-density sintered layer 11L is formed under low sintering conditions, the thickness of the powder layer 10 at this time is higher than the design value t by the step δa as shown in FIG. Only thicker.

 ここにおいて、低密度焼結条件で照射する光ビームLは、厚みがtである粉末層10を前提にその条件が決定されていることから、設計値tよりも段差δa分が厚くなってしまっている粉末層10に対しては、その下部まで焼結させることができなかったり、焼結させることができても下層に位置する高密度焼結層11Hとの結合力(密着力)が弱くて剥がれが発生しやすい低密度焼結層11Lしか得ることができなくなる。
特許第2620353号公報
Here, the light beam L irradiated under the low density sintering condition is determined on the premise of the powder layer 10 having a thickness t, so that the step δa is thicker than the design value t. For the powder layer 10 that is present, the bonding force (adhesion) with the high-density sintered layer 11H located in the lower layer is weak even if the powder layer 10 cannot be sintered to the lower part or can be sintered. Thus, only the low-density sintered layer 11L that easily peels off can be obtained.
Japanese Patent No. 2620353

 本発明は上記の点に鑑みなされたものであって、その目的とするところは高密度焼結層から低密度焼結層に移行する部分の結合力を高めることができる三次元形状造形物の製造方法を提供するにある。 The present invention has been made in view of the above points. The object of the present invention is to provide a three-dimensional shaped object that can increase the bonding force of the portion that moves from the high-density sintered layer to the low-density sintered layer. To provide a manufacturing method.

 しかして本発明は、無機質あるいは有機質の粉末材料の層の所定箇所に光ビームを照射して該当箇所の粉末を焼結させて焼結層を形成し、この焼結層の上に粉末材料の新たな層を被覆して所定箇所に光ビームを照射して該当箇所の粉末を焼結させることで下層の焼結層と一体になった新たな焼結層を形成することを繰り返して複数の焼結層が積層一体化された三次元形状造形物を製造するにあたり、高焼結条件で形成した高密度焼結層と低焼結条件で形成した低密度焼結層とを選択的に形成するとともに、高密度焼結層のための高焼結条件から低密度焼結層のための低焼結条件への移行に際し、両条件の中間の焼結条件で光ビームを照射した中密度焼結層を高密度焼結層上に形成し、この中密度焼結層上に低密度焼結層を形成することに第1の特徴を有している。高密度焼結層と低密度焼結層との間に中密度焼結層を介在させることで結合力の低下が生じないようにしたものである。 Therefore, the present invention irradiates a predetermined portion of the layer of the inorganic or organic powder material with a light beam to sinter the powder at the corresponding portion to form a sintered layer, and the powder material is formed on the sintered layer. A plurality of layers are formed by repeatedly forming a new sintered layer integrated with the lower sintered layer by coating a new layer and irradiating a predetermined part with a light beam to sinter the powder at the corresponding part. When manufacturing a three-dimensional shaped object in which sintered layers are laminated and integrated, a high-density sintered layer formed under high sintering conditions and a low-density sintered layer formed under low sintering conditions are selectively formed. In addition, during the transition from the high sintering condition for the high-density sintered layer to the low sintering condition for the low-density sintered layer, the medium-density sintering irradiated with the light beam under the intermediate sintering condition of both conditions The first step is to form a binder layer on the high-density sintered layer and to form a low-density sintered layer on the medium-density sintered layer. It has a feature of. By interposing a medium density sintered layer between the high density sintered layer and the low density sintered layer, a decrease in the bonding force is prevented.

 この時、中密度焼結層を複数層積層するとともに、これらの中密度焼結層のための焼結条件を暫時低密度焼結層のための低焼結条件に近づけて上層の中密度焼結層ほど密度を低くするようにして、高密度焼結層と低密度焼結層との間の特性差をなだらかにしたり、中密度焼結層のための焼結条件を、粉末層の厚みに応じて決定するようにして、適切な焼結条件での中密度焼結層を形成することができるようにしてもよい。 At this time, a plurality of medium density sintered layers are laminated, and the sintering conditions for these medium density sintered layers are temporarily brought close to the low sintering conditions for the low density sintered layer, and the medium density sintered layer of the upper layer is sintered. The density of the sintered layer is reduced by increasing the density of the sintered layer, so that the characteristic difference between the high-density sintered layer and the low-density sintered layer is smoothed. The medium density sintered layer may be formed under appropriate sintering conditions.

 また本発明は、無機質あるいは有機質の粉末材料の層の所定箇所に光ビームを照射して該当箇所の粉末を焼結させて焼結層を形成し、この焼結層の上に粉末材料の新たな層を被覆して所定箇所に光ビームを照射して該当箇所の粉末を焼結させることで下層の焼結層と一体になった新たな焼結層を形成することを繰り返して複数の焼結層が積層一体化された三次元形状造形物を製造するにあたり、高焼結条件で形成した高密度焼結層と低焼結条件で形成した低密度焼結層とを選択的に形成するとともに、高密度焼結層のための高焼結条件から低密度焼結層のための低焼結条件への移行に際し、最上層の高密度焼結層上に厚みが所定の値よりも小さい粉末層を設け、この粉末層を低焼結条件で焼結して低密度焼結層を形成することに他の特徴を有している。低密度焼結層とする粉末層の厚みが厚くなりすぎないようにコントロールするのである。 The present invention also provides a method for irradiating a predetermined portion of a layer of an inorganic or organic powder material with a light beam to sinter the powder at the corresponding portion to form a sintered layer, and forming a new powder material on the sintered layer. A plurality of firings by repeatedly forming a new sintered layer that is integrated with the underlying sintered layer by irradiating a predetermined portion with a light beam and sintering the powder at that location to sinter the desired layer. When manufacturing a three-dimensional shaped object in which the layers are laminated and integrated, a high density sintered layer formed under high sintering conditions and a low density sintered layer formed under low sintering conditions are selectively formed. In addition, the thickness of the uppermost high-density sintered layer is smaller than a predetermined value when shifting from the high-sintered condition for the high-density sintered layer to the low-sintered condition for the low-density sintered layer. Another feature is to provide a powder layer and sinter this powder layer under low sintering conditions to form a low density sintered layer. It is. The thickness of the powder layer used as the low density sintered layer is controlled so as not to be too thick.

 また本発明は、無機質あるいは有機質の粉末材料の層の所定箇所に光ビームを照射して該当箇所の粉末を焼結させて焼結層を形成し、この焼結層の上に粉末材料の新たな層を被覆して所定箇所に光ビームを照射して該当箇所の粉末を焼結させることで下層の焼結層と一体になった新たな焼結層を形成することを繰り返すとともに、焼結層の形成後にそれまでに作成した造形物の表面部及びまたは不要部分の除去を行う工程を複数回の焼結層の作成工程中に挿入して複数の焼結層が積層一体化された所要の三次元形状造形物を製造するにあたり、高焼結条件で形成した高密度焼結層と低焼結条件で形成した低密度焼結層とを選択的に形成するとともに、高密度焼結層のための高焼結条件から低密度焼結層のための低焼結条件への移行に際し、最上層の高密度焼結層上に厚みが所定の値よりも小さい粉末層を設け、この粉末層を高焼結条件で焼結して余剰高密度焼結層を形成し、次いで余剰高密度焼結層上に低密度焼結層を形成することに特徴を有している。高密度焼結層で段差を埋めた後に低密度焼結層を形成するのである。 The present invention also provides a method for irradiating a predetermined portion of a layer of an inorganic or organic powder material with a light beam to sinter the powder at the corresponding portion to form a sintered layer, and forming a new powder material on the sintered layer. And repeatedly forming a new sintered layer that is integrated with the underlying sintered layer by irradiating a predetermined portion with a light beam to sinter the powder at that location and sintering the powder at that location. The process of removing the surface part and / or unnecessary part of the shaped object created so far after the formation of the layer is inserted into the process of creating the sintered layer multiple times, and the multiple sintered layers are laminated and integrated In producing a three-dimensional shaped article, a high-density sintered layer formed under high sintering conditions and a low-density sintered layer formed under low sintering conditions are selectively formed, and a high-density sintered layer is formed. In transition from high sintering conditions for low-sintering conditions for low-density sintered layers, A powder layer having a thickness smaller than a predetermined value is provided on the upper high-density sintered layer, and this powder layer is sintered under high sintering conditions to form an excessive high-density sintered layer, and then the excessive high-density sintered layer is formed. It is characterized by forming a low density sintered layer on the bonding layer. After the step is filled with the high-density sintered layer, the low-density sintered layer is formed.

 最上層の高密度焼結層上に厚みが所定の値よりも小さい粉末層を設けるにあたっては、それまでに形成した造形物を載せているステージの粉末層の厚みを決定する降下量をゼロとして次の粉末層を形成してもよい。ステージの下降に要する時間を削減することができる。 When providing a powder layer with a thickness smaller than a predetermined value on the uppermost high-density sintered layer, the amount of descent that determines the thickness of the powder layer of the stage on which the molded object formed so far is set to zero The next powder layer may be formed. The time required for lowering the stage can be reduced.

 また、高密度焼結層のための高焼結条件から低密度焼結層のための低焼結条件への移行に際して、それまでに形成した造形物の高さの測定結果に基づいて次の粉末層の厚みとこの粉末層の焼結条件とを決定したり、前回の粉末層の形成の際に粉末層表面を均すブレードの駆動負荷の測定結果に基づいて次の粉末層の厚みとこの粉末層の焼結条件とを決定してもよい。低密度焼結層とする粉末層の厚みが厚くなり過ぎることを確実に防ぐことができる。 In the transition from high sintering conditions for high-density sintered layers to low sintering conditions for low-density sintered layers, Determine the thickness of the powder layer and the sintering conditions for this powder layer, and determine the thickness of the next powder layer based on the measurement results of the driving load of the blade that smoothes the surface of the powder layer during the previous powder layer formation. You may determine the sintering conditions of this powder layer. It can be reliably prevented that the thickness of the powder layer as the low density sintered layer becomes too thick.

 また本発明は、高焼結条件で形成した高密度焼結層と低焼結条件で形成した低密度焼結層とを選択的に形成するとともに、高密度焼結層のための高焼結条件から低密度焼結層のための低焼結条件への移行に際し、高密度焼結層を設計値以上の高さまで形成し、次いで高密度焼結層を設計値まで切削除去し、その後、低密度焼結層を形成することに特徴を有している。低密度焼結層が本来始まる高さまで高密度焼結層を追加することで、低密度焼結層とする粉末層の厚みが本来の値になるようにしたものである。 In addition, the present invention selectively forms a high-density sintered layer formed under high sintering conditions and a low-density sintered layer formed under low sintering conditions, and provides high sintering for high-density sintered layers. In the transition from the condition to the low sintering condition for the low density sintered layer, the high density sintered layer is formed to a height higher than the design value, and then the high density sintered layer is cut and removed to the design value. It is characterized by forming a low density sintered layer. By adding the high-density sintered layer to a height at which the low-density sintered layer originally starts, the thickness of the powder layer used as the low-density sintered layer is set to the original value.

 以上のように本発明にあっては、高密度焼結層と低密度焼結層との間に介在させた中密度焼結層の存在や、粉末層の厚みのコントロールあるいは余剰高密度焼結層の形成などによって低密度焼結層とする粉末層の厚みが厚くなりすぎることがないようにしているために、低密度焼結層と高密度焼結層との間で剥離が生じることがないものである。 As described above, in the present invention, the presence of the medium density sintered layer interposed between the high density sintered layer and the low density sintered layer, the control of the thickness of the powder layer, or the excessive high density sintered layer. Since the thickness of the powder layer used as the low-density sintered layer is not excessively increased due to the formation of the layer, separation may occur between the low-density sintered layer and the high-density sintered layer. There is nothing.

 以下本発明を実施の形態の一例に基づいて詳述すると、光造形による三次元形状造形物の製造装置としては、どのような形態のものを用いてもよいが、図示例では造形タンク25で外周が囲まれた空間内に上下昇降するステージ20を配して、造形タンク25内のステージ20上に供給した無機質あるいは有機質の粉末材料をスキージング用ブレードでならすことで所定厚みの粉末層10を形成するとともに、スキャン光学系を介して上記粉末層10の所定箇所に光ビーム(レーザ)Lを照射することで焼結層11を形成するものを用いている。 Hereinafter, the present invention will be described in detail based on an example of an embodiment. As an apparatus for producing a three-dimensional shaped object by stereolithography, any form may be used, but in the illustrated example, a modeling tank 25 is used. A stage 20 that moves up and down in the space surrounded by the outer periphery is arranged, and the powder layer 10 having a predetermined thickness is obtained by smoothing the inorganic or organic powder material supplied onto the stage 20 in the modeling tank 25 with a squeezing blade. And forming the sintered layer 11 by irradiating a predetermined portion of the powder layer 10 with a light beam (laser) L through a scanning optical system.

 また、上記光ビームLを出力する光ビーム出力手段には、光ビームLの走査ピッチや走査速度を変更することができるものを用いて、走査ピッチを小さくしたり走査速度を遅くした高焼結条件での照射時に高密度焼結層11Hを形成し、走査ピッチを粗くしたり走査速度を速くした低密度条件での照射時に低密度焼結層11Lを形成することができるようにしている。なお、光ビーム出力手段の出力自体を変更することで上記条件変更を行うようにしたものであってもよい。 Further, as the light beam output means for outputting the light beam L, one that can change the scanning pitch and scanning speed of the light beam L is used, and the high sintering is achieved by reducing the scanning pitch or slowing the scanning speed. The high-density sintered layer 11H is formed at the time of irradiation under conditions, and the low-density sintered layer 11L can be formed at the time of irradiation under low-density conditions where the scanning pitch is roughened or the scanning speed is increased. The condition may be changed by changing the output itself of the light beam output means.

 今、図1に示すように、ステージ20上に高焼結条件(たとえばレーザ出力200W、走査ピッチ0.2mm、走査速度50mm/sec)で2層の高密度焼結層11H,11Hを形成した後、低焼結条件(たとえばレーザ出力200W、走査ピッチ0.5mm、走査速度300mm/sec)で低密度焼結層11Lを形成するにあたっては、両条件の中間の焼結条件(たとえばレーザ出力200W、走査ピッチ0.3mm、走査速度100mm/sec)で光ビームLを照射した中密度焼結層11Mをまず形成し、その後、低密度焼結層11Lを形成する。低密度焼結層11Lを形成するための低焼結条件での光ビームLでは十分な熱を加えることができない厚みの粉末層10でも、中焼結条件での光ビームLでは十分な熱を加えることができるために高密度焼結層11Hとの間で剥離が生じることはない。 As shown in FIG. 1, two high-density sintered layers 11H and 11H are formed on the stage 20 under high sintering conditions (for example, laser output 200W, scanning pitch 0.2 mm, scanning speed 50 mm / sec). Thereafter, when the low density sintered layer 11L is formed under low sintering conditions (for example, laser output 200W, scanning pitch 0.5 mm, scanning speed 300 mm / sec), sintering conditions intermediate between the two conditions (for example, laser output 200W). The medium density sintered layer 11M irradiated with the light beam L at a scanning pitch of 0.3 mm and a scanning speed of 100 mm / sec is first formed, and then the low density sintered layer 11L is formed. Even in the case of the powder layer 10 having a thickness that cannot be applied sufficiently with the light beam L under the low sintering condition for forming the low density sintered layer 11L, the light beam L under the intermediate sintering condition has sufficient heat. Since it can be added, peeling does not occur between the high-density sintered layer 11H.

 この時、図2に示すように、中密度焼結層を複数層11Ma,11Mb,11Mc形成するとともに、これら中密度焼結層11Ma,11Mb,11Mcのための焼結条件を暫時低密度焼結層11Lのための低焼結条件に近づけていくようにしてもよい。たとえば、高密度焼結層11Hに接する中密度焼結層11Maはレーザ出力200W、走査ピッチ0.3mm、走査速度100mm/secの焼結条件で、中密度焼結層11Mbはレーザ出力200W、走査ピッチ0.35mm、走査速度150mm/secの焼結条件で、低密度焼結層11Lに接することになる中密度焼結層11Mcはレーザ出力200W、走査ピッチ0.4mm、走査速度200mm/secの焼結条件で焼結するのである。 At this time, as shown in FIG. 2, a plurality of medium density sintered layers 11Ma, 11Mb, and 11Mc are formed, and the sintering conditions for these medium density sintered layers 11Ma, 11Mb, and 11Mc are temporarily low-density sintered. You may make it approach the low sintering conditions for layer 11L. For example, the medium density sintered layer 11Ma in contact with the high density sintered layer 11H has a laser output of 200 W, a scanning pitch of 0.3 mm, and a scanning speed of 100 mm / sec. The medium density sintered layer 11Mc that comes into contact with the low density sintered layer 11L under the sintering conditions of pitch 0.35 mm and scanning speed 150 mm / sec has a laser output of 200 W, a scanning pitch of 0.4 mm, and a scanning speed of 200 mm / sec. Sintering is performed under sintering conditions.

 また、高密度焼結層11Hの形成後、図3に示すように、粉末層10の表面と高密度焼結層11Hの表面との高さの差δaの値を高さ測定用プローブPなどを用いて測定することで、次の粉末層10の厚み(t+δa)を求め、この厚み(t+δa)の値に応じた中焼結条件で中密度焼結層11Mを形成するようにしてもよい。なお、厚み(t+δa)の値に応じた中焼結条件は実験結果などから予め定めておくものとする。 Further, after the formation of the high-density sintered layer 11H, as shown in FIG. 3, the height difference probe δa between the surface of the powder layer 10 and the surface of the high-density sintered layer 11H is set to a height measuring probe P or the like. To obtain the thickness (t + δa) of the next powder layer 10 and form the medium density sintered layer 11M under the medium sintering conditions corresponding to the value of the thickness (t + δa). . Note that the intermediate sintering conditions corresponding to the value of the thickness (t + δa) are determined in advance from experimental results and the like.

 図4に他例を示す。高密度焼結層11Hの次に低密度焼結層11Lを形成するにあたり、通常であればステージ20を所定量tだけ降下させるのであるが、ここでは降下量を所定量tよりも小さく(降下量ゼロを含む)することで、次の粉末層10の厚みが厚くなりすぎないようにしておき、この状態で低焼結条件での低密度焼結層11Lの形成を行っている。 Figure 4 shows another example. In forming the low-density sintered layer 11L next to the high-density sintered layer 11H, the stage 20 is normally lowered by a predetermined amount t, but here the amount of lowering is smaller than the predetermined amount t (falling down). In this state, the low-density sintered layer 11L is formed under low sintering conditions by keeping the thickness of the next powder layer 10 from becoming too thick.

 このほか、図5に示すように、粉末層10の表面と高密度焼結層11Hの上面との間の高さδaの段差を解消するために、高密度焼結層11Hの焼結が終わった後、ステージ20を下降させることなく(もしくはステージ20の下降量を設計値tより小さい値として)粉末の供給を行って、上記段差の部分に粉末を埋め、この状態で高焼結条件での高密度焼結層11H’を形成することで段差を低くした後、低焼結条件での低密度焼結層11Lの作製を行うようにしてもよい。なお、上記段差が大きい場合は、上記高密度焼結層11H’を上記と同じ手順で複数層形成するとよい。この場合、厚みが漸次薄くなる高密度焼結層11H’が積層された後、低密度焼結層11Lが形成されることになる。図中21はスキージング用ブレードである。 In addition, as shown in FIG. 5, the sintering of the high-density sintered layer 11 </ b> H is finished in order to eliminate the step of the height δa between the surface of the powder layer 10 and the upper surface of the high-density sintered layer 11 </ b> H. After that, the powder is supplied without lowering the stage 20 (or the lowering amount of the stage 20 is set to a value smaller than the design value t), and the powder is filled in the stepped portion. After the step is lowered by forming the high-density sintered layer 11H ′, the low-density sintered layer 11L may be manufactured under low sintering conditions. If the step is large, a plurality of high-density sintered layers 11H ′ may be formed by the same procedure as described above. In this case, the low-density sintered layer 11L is formed after the high-density sintered layer 11H 'whose thickness is gradually reduced is laminated. In the figure, reference numeral 21 denotes a squeegee blade.

 また、前述の高さ測定用プローブPなどを用いて図6(a)にも示すように粉末層10の表面と高密度焼結層11Hの表面との高さの差δaの値を測定する場合、この測定結果に応じて上記高密度焼結層11H’を形成した後に低密度焼結層11Lの形成を行うか、あるいは上記高密度焼結層11H’を形成することなく低密度焼結層11Lの形成を行うかを決定するようにしてもよい。差δaが大きい場合には、図6(b)に示すように、ステージ20を下降させることなく粉末の供給を行って上記高密度焼結層11H’を形成することで差δaを小さくし、差δaが当初から小さい場合はステージ20を下降させて粉末を供給し、低密度焼結層11Lを形成するのである。 Further, as shown in FIG. 6 (a), the height difference δa between the surface of the powder layer 10 and the surface of the high-density sintered layer 11H is measured using the above-described height measuring probe P or the like. In this case, the low density sintered layer 11L is formed after the high density sintered layer 11H ′ is formed according to the measurement result, or the low density sintered layer 11H ′ is not formed without forming the high density sintered layer 11H ′. You may make it determine whether formation of the layer 11L is performed. When the difference δa is large, as shown in FIG. 6B, the powder is supplied without lowering the stage 20 to form the high-density sintered layer 11H ′, thereby reducing the difference δa. When the difference δa is small from the beginning, the stage 20 is lowered and the powder is supplied to form the low density sintered layer 11L.

 上記高さの差δaの検出は、図7に示すように、ブレード21を動かして粉末を均す際にブレード21の駆動に必要な力(ブレード21にかかる負荷)Fを検出することで代用してもよい。負荷Fが小さい場合は、ブレード21と高密度焼結層11Hとの間の間隔が大(図7(a))であることから、次層もステージ20を下降させることなく粉末の供給を行うものとし、負荷Fが大である場合は、ブレード21と高密度焼結層11Hとの間の間隔が微小(図7(b))であることから、次層はステージ20を下降させた上で粉末を供給するのである。 As shown in FIG. 7, the height difference δa is detected by detecting a force F (load applied to the blade 21) F required to drive the blade 21 when the blade 21 is moved to level the powder. May be. When the load F is small, the distance between the blade 21 and the high-density sintered layer 11H is large (FIG. 7A), so that the next layer also supplies the powder without lowering the stage 20. When the load F is large, the distance between the blade 21 and the high-density sintered layer 11H is very small (FIG. 7 (b)). To supply the powder.

 ちなみに、ブレード21にかかる負荷が大きいと移動指令に追従しようとして駆動用のモータに流れる電流が大きくなり、逆に負荷が小さいとブレード21を動かすだけの電流に限りなく近づく。ここで、前回焼結した面の上をブレード21が通過する場合、通常は上記の面の凹凸のために抵抗を受けてこれが負荷となるものであり、ブレード21が上記面から離れておれば、上記抵抗を受けることはない。従って図7(c)に示すように、始動電流が流れた等速移動中の電流値を監視し、この電流値が予め実験結果などから定めた閾値より大きいか小さいかでステージ20を下降させるか下降させないかを判断する。 Incidentally, when the load applied to the blade 21 is large, the current flowing through the drive motor increases in order to follow the movement command, and conversely, when the load is small, the current that moves the blade 21 is approached as much as possible. Here, when the blade 21 passes over the previously sintered surface, it is usually subjected to resistance due to the unevenness of the surface, and this becomes a load, and if the blade 21 is separated from the surface, The above resistance is not received. Therefore, as shown in FIG. 7 (c), the current value during constant-velocity movement in which the starting current flows is monitored, and the stage 20 is lowered depending on whether this current value is larger or smaller than a threshold value determined in advance based on experimental results. Judge whether to lower or not.

 また、図8に示すように、高密度焼結層11Hから低密度焼結層11Lへ切り換える時、ステージ20の下降量を設計値t(たとえば50μm)よりも小さい値ts(たとえば20μm)に無条件に変更し、この状態で粉末層10を形成して低焼結条件での低密度焼結層11Lの形成を行うようにしてもよい。 Further, as shown in FIG. 8, when switching from the high-density sintered layer 11H to the low-density sintered layer 11L, the amount of lowering of the stage 20 is set to a value ts (for example, 20 μm) smaller than the design value t (for example, 50 μm). The conditions may be changed, and the powder layer 10 may be formed in this state to form the low-density sintered layer 11L under low sintering conditions.

 図9に更に他例を示す。これは高密度焼結層11Hのための高焼結条件から低密度焼結層11Lのための低焼結条件への移行に際し、高密度焼結層11Hを余分に形成して高密度焼結層11Hの高さを設計上の高さよりいったん高くし、次いで高密度焼結層11Hの上面を設計値まで切削除去し、その後、低密度焼結層11Lを形成するようにしたものである。 Fig. 9 shows another example. This is because the high-density sintered layer 11H is excessively formed in the transition from the high-sintered condition for the high-density sintered layer 11H to the low-sintered condition for the low-density sintered layer 11L. The height of the layer 11H is once higher than the designed height, and then the upper surface of the high-density sintered layer 11H is cut off to the design value, and then the low-density sintered layer 11L is formed.

 以上の各例では、一つの焼結層が高焼結条件もしくは低焼結条件あるいは中焼結条件のいずれかだけで焼結されるものを図で示したが、本発明は一つの焼結層中に高密度焼結部と低密度焼結部とが混在するものにおいても適用することができる。つまり、図10に示すように、ある焼結層中の高密度焼結部Hの上に他の焼結層の低密度焼結部Lが配設される部分に対しても適用することができる。図中Mは中密度焼結部である。 In each of the above examples, one sintered layer is shown in the figure as being sintered only under either high sintering conditions, low sintering conditions, or medium sintering conditions. The present invention can also be applied to a case where a high density sintered portion and a low density sintered portion are mixed in the layer. That is, as shown in FIG. 10, it can be applied to a portion where a low density sintered portion L of another sintered layer is disposed on a high density sintered portion H in a certain sintered layer. it can. In the figure, M is a medium density sintered part.

 なお、無機質の粉末材料としては、特開2001−152204号に示されている鉄系粉末を好適に用いることができ、有機質の粉末材料としては、ナイロン、ABS等を主成分とした熱可塑性樹脂を好適に用いることができる。 As the inorganic powder material, iron-based powders disclosed in JP-A-2001-152204 can be preferably used, and as the organic powder material, a thermoplastic resin mainly composed of nylon, ABS or the like. Can be suitably used.

本発明の実施の形態の一例の説明図である。It is explanatory drawing of an example of embodiment of this invention. 他例の説明図である。It is explanatory drawing of another example. 他の実施の形態の一例の説明図である。It is explanatory drawing of an example of other embodiment. 更に他の実施の形態の一例の説明図である。Furthermore, it is explanatory drawing of an example of other embodiment. 別の実施の形態の一例の説明図である。It is explanatory drawing of an example of another embodiment. 他の実施の形態の一例を示すもので、(a)(b)は夫々説明図である。An example of another embodiment is shown, and (a) and (b) are explanatory diagrams respectively. 更に他の実施の形態の一例を示すもので、(a)(b)(c)は夫々説明図である。Furthermore, an example of another embodiment is shown, and (a), (b), and (c) are explanatory diagrams respectively. 別の実施の形態の一例の説明図である。It is explanatory drawing of an example of another embodiment. 更に別の実施の形態の一例の説明図である。It is explanatory drawing of an example of another embodiment. 他例の断面図である。It is sectional drawing of another example. 従来例の説明図である。It is explanatory drawing of a prior art example. 同上の他の説明図である。It is another explanatory drawing same as the above. 同上の更に他の説明図である。It is another explanatory drawing same as the above.

符号の説明Explanation of symbols

   L 光ビーム
 11H 高密度焼結層
 11L 低密度焼結層
 11M 中密度焼結層
 20  ステージ
L Light beam 11H High-density sintered layer 11L Low-density sintered layer 11M Medium-density sintered layer 20 Stage

Claims (9)

 無機質あるいは有機質の粉末材料の層の所定箇所に光ビームを照射して該当箇所の粉末を焼結させて焼結層を形成し、この焼結層の上に粉末材料の新たな層を被覆して所定箇所に光ビームを照射して該当箇所の粉末を焼結させることで下層の焼結層と一体になった新たな焼結層を形成することを繰り返して複数の焼結層が積層一体化された三次元形状造形物を製造するにあたり、高焼結条件で形成した高密度焼結層と低焼結条件で形成した低密度焼結層とを選択的に形成するとともに、高密度焼結層のための高焼結条件から低密度焼結層のための低焼結条件への移行に際し、両条件の中間の焼結条件で光ビームを照射した中密度焼結層を高密度焼結層上に形成し、この中密度焼結層上に低密度焼結層を形成することを特徴とする三次元形状造形物の製造方法。 A light beam is irradiated to a predetermined portion of the layer of the inorganic or organic powder material to sinter the powder at the corresponding portion to form a sintered layer, and a new layer of the powder material is coated on the sintered layer. A plurality of sintered layers are laminated and integrated by repeating the formation of a new sintered layer that is integrated with the underlying sintered layer by irradiating a light beam to a predetermined location and sintering the powder at the corresponding location. In producing a three-dimensional shaped article, a high density sintered layer formed under high sintering conditions and a low density sintered layer formed under low sintering conditions are selectively formed and high density sintered During the transition from high sintering conditions for bonding to low sintering conditions for low density sintered layers, medium density sintered layers irradiated with a light beam under intermediate sintering conditions of both conditions are subjected to high density sintering. A three-dimensional shape characterized by forming a low-density sintered layer on this medium-density sintered layer. Method for producing a form product.  中密度焼結層を複数層積層するとともに、これらの中密度焼結層のための焼結条件を暫時低密度焼結層のための低焼結条件に近づけて上層の中密度焼結層ほど密度を低くすることを特徴とする請求項1記載の三次元形状造形物の製造方法。 Laminate multiple layers of medium density sintered layers, and bring the sintering conditions for these medium density sintered layers closer to the low sintering conditions for the low density sintered layers for some time. The method for producing a three-dimensional shaped article according to claim 1, wherein the density is lowered.  中密度焼結層のための焼結条件を、粉末層の厚みに応じて決定することを特徴とする請求項1または2記載の三次元形状造形物の製造方法。 The method for producing a three-dimensional shaped article according to claim 1 or 2, wherein the sintering conditions for the medium density sintered layer are determined according to the thickness of the powder layer.  無機質あるいは有機質の粉末材料の層の所定箇所に光ビームを照射して該当箇所の粉末を焼結させて焼結層を形成し、この焼結層の上に粉末材料の新たな層を被覆して所定箇所に光ビームを照射して該当箇所の粉末を焼結させることで下層の焼結層と一体になった新たな焼結層を形成することを繰り返して複数の焼結層が積層一体化された三次元形状造形物を製造するにあたり、高焼結条件で形成した高密度焼結層と低焼結条件で形成した低密度焼結層とを選択的に形成するとともに、高密度焼結層のための高焼結条件から低密度焼結層のための低焼結条件への移行に際し、最上層の高密度焼結層上に厚みが所定の値よりも小さい粉末層を設け、この粉末層を低焼結条件で焼結して低密度焼結層を形成することを特徴とする三次元形状造形物の製造方法。 A light beam is irradiated to a predetermined portion of the layer of the inorganic or organic powder material to sinter the powder at the corresponding portion to form a sintered layer, and a new layer of the powder material is coated on the sintered layer. A plurality of sintered layers are laminated and integrated by repeating the formation of a new sintered layer that is integrated with the underlying sintered layer by irradiating a light beam to a predetermined location and sintering the powder at the corresponding location. In producing a three-dimensional shaped article, a high density sintered layer formed under high sintering conditions and a low density sintered layer formed under low sintering conditions are selectively formed and high density sintered In the transition from the high sintering condition for the binder layer to the low sintering condition for the low density sintered layer, a powder layer having a thickness smaller than a predetermined value is provided on the uppermost high density sintered layer, Three-dimensional shape molding characterized by sintering this powder layer under low sintering conditions to form a low density sintered layer The method of production.  無機質あるいは有機質の粉末材料の層の所定箇所に光ビームを照射して該当箇所の粉末を焼結させて焼結層を形成し、この焼結層の上に粉末材料の新たな層を被覆して所定箇所に光ビームを照射して該当箇所の粉末を焼結させることで下層の焼結層と一体になった新たな焼結層を形成することを繰り返すとともに、焼結層の形成後にそれまでに作成した造形物の表面部及びまたは不要部分の除去を行う工程を複数回の焼結層の作成工程中に挿入して複数の焼結層が積層一体化された所要の三次元形状造形物を製造するにあたり、高焼結条件で形成した高密度焼結層と低焼結条件で形成した低密度焼結層とを選択的に形成するとともに、高密度焼結層のための高焼結条件から低密度焼結層のための低焼結条件への移行に際し、最上層の高密度焼結層上に厚みが所定の値よりも小さい粉末層を設け、この粉末層を高焼結条件で焼結して余剰高密度焼結層を形成し、次いで余剰高密度焼結層上に低密度焼結層を形成することを特徴とする三次元形状造形物の製造方法。 A light beam is irradiated to a predetermined portion of the layer of the inorganic or organic powder material to sinter the powder at the corresponding portion to form a sintered layer, and a new layer of the powder material is coated on the sintered layer. And repeatedly forming a new sintered layer integrated with the lower sintered layer by irradiating a predetermined part with a light beam to sinter the powder in the corresponding part, and after forming the sintered layer, The required three-dimensional shape modeling in which a plurality of sintered layers are laminated and integrated by inserting the process of removing the surface part and / or unnecessary part of the model created up to this point into the process of creating a plurality of sintered layers. In manufacturing a product, a high-density sintered layer formed under high sintering conditions and a low-density sintered layer formed under low sintering conditions are selectively formed, and In the transition from sintering conditions to low sintering conditions for low density sintered layers, the high density of the top layer A powder layer having a thickness smaller than a predetermined value is provided on the bonding layer, and the powder layer is sintered under a high sintering condition to form an excessive high-density sintered layer, and then the low-density sintered layer is formed on the excessive high-density sintered layer. A method for producing a three-dimensional shaped article, characterized by forming a density sintered layer.  最上層の高密度焼結層上に厚みが所定の値よりも小さい粉末層を設けるにあたり、それまでに形成した造形物を載せているステージの粉末層の厚みを決定する降下量をゼロとして次の粉末層を形成することを特徴とする請求項4または5記載の三次元形状造形物の製造方法。 When a powder layer having a thickness smaller than a predetermined value is provided on the uppermost high-density sintered layer, the amount of descending that determines the thickness of the powder layer of the stage on which the modeled object formed so far is set to zero is as follows. A method for producing a three-dimensional shaped article according to claim 4 or 5, wherein a powder layer is formed.  高密度焼結層のための高焼結条件から低密度焼結層のための低焼結条件への移行に際して、それまでに形成した造形物の高さの測定結果に基づいて次の粉末層の厚みとこの粉末層の焼結条件とを決定することを特徴とする請求項4〜6のいずれかの項に記載の三次元形状造形物の製造方法。 When shifting from high sintering conditions for high-density sintered layers to low sintering conditions for low-density sintered layers, the next powder layer is based on the measurement results of the height of the shaped object formed so far. The method for producing a three-dimensional shaped article according to any one of claims 4 to 6, wherein a thickness of the powder and a sintering condition of the powder layer are determined.  高密度焼結層のための高焼結条件から低密度焼結層のための低焼結条件への移行に際して、前回の粉末層の形成の際に粉末層表面を均すブレードの駆動負荷の測定結果に基づいて次の粉末層の厚みとこの粉末層の焼結条件とを決定することを特徴とする請求項4〜6のいずれかの項に記載の三次元形状造形物の製造方法。 When shifting from high sintering conditions for high-density sintered layers to low sintering conditions for low-density sintered layers, the drive load of the blade that leveles the powder layer surface during the previous powder layer formation The method for producing a three-dimensional shaped article according to any one of claims 4 to 6, wherein the thickness of the next powder layer and the sintering conditions of the powder layer are determined based on the measurement result.  無機質あるいは有機質の粉末材料の層の所定箇所に光ビームを照射して該当箇所の粉末を焼結させて焼結層を形成し、この焼結層の上に粉末材料の新たな層を被覆して所定箇所に光ビームを照射して該当箇所の粉末を焼結させることで下層の焼結層と一体になった新たな焼結層を形成することを繰り返すとともに、焼結層の形成後にそれまでに作成した造形物の表面部及びまたは不要部分の除去を行う工程を複数回の焼結層の作成工程中に挿入して複数の焼結層が積層一体化された所要の三次元形状造形物を製造するにあたり、高焼結条件で形成した高密度焼結層と低焼結条件で形成した低密度焼結層とを選択的に形成するとともに、高密度焼結層のための高焼結条件から低密度焼結層のための低焼結条件への移行に際し、高密度焼結層を設計値以上の高さまで形成し、次いで高密度焼結層を設計値まで切削除去し、その後、低密度焼結層を形成することを特徴とする三次元形状造形物の製造方法。 A light beam is irradiated to a predetermined portion of the layer of the inorganic or organic powder material to sinter the powder at the corresponding portion to form a sintered layer, and a new layer of the powder material is coated on the sintered layer. And repeatedly forming a new sintered layer integrated with the lower sintered layer by irradiating a predetermined part with a light beam to sinter the powder in the corresponding part, and after forming the sintered layer, The required three-dimensional shape modeling in which a plurality of sintered layers are laminated and integrated by inserting the process of removing the surface part and / or unnecessary part of the model created up to this point into the process of creating a plurality of sintered layers. In manufacturing a product, a high-density sintered layer formed under high sintering conditions and a low-density sintered layer formed under low sintering conditions are selectively formed, and During the transition from sintering conditions to low sintering conditions for low density sintered layers, Formed to a total value or more in height, then cutting and removing until design value dense sintered layer, then, the production method of three-dimensionally shaped object, and forming a low density sintered layer.
JP2003281259A 2002-09-30 2003-07-28 Manufacturing method of three-dimensional shaped object Expired - Lifetime JP3599056B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003281259A JP3599056B2 (en) 2002-09-30 2003-07-28 Manufacturing method of three-dimensional shaped object
TW092127081A TWI232786B (en) 2002-09-30 2003-09-30 Method of making a three-dimensional sintered product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002287768 2002-09-30
JP2003281259A JP3599056B2 (en) 2002-09-30 2003-07-28 Manufacturing method of three-dimensional shaped object

Publications (2)

Publication Number Publication Date
JP2004142427A true JP2004142427A (en) 2004-05-20
JP3599056B2 JP3599056B2 (en) 2004-12-08

Family

ID=32473306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003281259A Expired - Lifetime JP3599056B2 (en) 2002-09-30 2003-07-28 Manufacturing method of three-dimensional shaped object

Country Status (2)

Country Link
JP (1) JP3599056B2 (en)
TW (1) TWI232786B (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10344901B4 (en) * 2002-09-30 2006-09-07 Matsushita Electric Works, Ltd., Kadoma Method for producing a three-dimensional sintered product
JP2007070655A (en) * 2005-09-05 2007-03-22 Matsushita Electric Ind Co Ltd Three-dimensional structure and production method therefor
JP2010518933A (en) * 2007-02-21 2010-06-03 シャネル パルファン ボーテ Cosmetic applicator manufacturing method, applicator, package including applicator, and applicator batch
WO2010098479A1 (en) * 2009-02-24 2010-09-02 パナソニック電工株式会社 Process for producing three-dimensional shape and three-dimensional shape obtained thereby
JP2011512275A (en) * 2008-02-14 2011-04-21 ネーデルランツ オルガニサティー フォール トゥーゲパストナトゥールヴェテンシャッペリーク オンデルズーク テーエンオー Method and system for modeling tangible objects layer by layer
WO2012124828A1 (en) * 2011-03-17 2012-09-20 パナソニック株式会社 Production method for three-dimensionally shaped object and three-dimensionally shaped object
WO2016076211A1 (en) * 2014-11-10 2016-05-19 株式会社ブリヂストン Three-dimensional object manufacturing method and three-dimensional object
JP2016199026A (en) * 2015-04-10 2016-12-01 株式会社松浦機械製作所 Resin injection molding die
WO2017154971A1 (en) * 2016-03-09 2017-09-14 パナソニックIpマネジメント株式会社 Three-dimensional molded object production method
JP2019147985A (en) * 2018-02-27 2019-09-05 トヨタ自動車株式会社 Metal laminate forming method
JP2019209558A (en) * 2018-06-04 2019-12-12 株式会社日立製作所 Additive manufactured article and manufacturing method thereof
WO2020012615A1 (en) * 2018-07-12 2020-01-16 ヤマハ発動機株式会社 Mold
JP2021161881A (en) * 2020-03-31 2021-10-11 三菱パワー株式会社 Gas turbine combustor and method for manufacturing burner component

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10344901B4 (en) * 2002-09-30 2006-09-07 Matsushita Electric Works, Ltd., Kadoma Method for producing a three-dimensional sintered product
JP2007070655A (en) * 2005-09-05 2007-03-22 Matsushita Electric Ind Co Ltd Three-dimensional structure and production method therefor
JP2010518933A (en) * 2007-02-21 2010-06-03 シャネル パルファン ボーテ Cosmetic applicator manufacturing method, applicator, package including applicator, and applicator batch
JP2011512275A (en) * 2008-02-14 2011-04-21 ネーデルランツ オルガニサティー フォール トゥーゲパストナトゥールヴェテンシャッペリーク オンデルズーク テーエンオー Method and system for modeling tangible objects layer by layer
JPWO2010098479A1 (en) * 2009-02-24 2012-09-06 パナソニック株式会社 Manufacturing method of three-dimensional shaped object and three-dimensional shaped object obtained therefrom
CN102333607A (en) * 2009-02-24 2012-01-25 松下电工株式会社 Process for producing three-dimensional shape and three-dimensional shape obtained thereby
WO2010098479A1 (en) * 2009-02-24 2010-09-02 パナソニック電工株式会社 Process for producing three-dimensional shape and three-dimensional shape obtained thereby
KR101330977B1 (en) 2009-02-24 2013-11-18 파나소닉 주식회사 Process for producing three-dimensional shape and three-dimensional shape obtained thereby
US8738166B2 (en) 2009-02-24 2014-05-27 Panasonic Corporation Method for manufacturing three-dimensional shaped object and three-dimensional shaped object obtained by the same
JP5555222B2 (en) * 2009-02-24 2014-07-23 パナソニック株式会社 Manufacturing method of three-dimensional shaped object and three-dimensional shaped object obtained therefrom
WO2012124828A1 (en) * 2011-03-17 2012-09-20 パナソニック株式会社 Production method for three-dimensionally shaped object and three-dimensionally shaped object
JPWO2012124828A1 (en) * 2011-03-17 2014-07-24 パナソニック株式会社 Manufacturing method of three-dimensional shaped object and three-dimensional shaped object
JP5776004B2 (en) * 2011-03-17 2015-09-09 パナソニックIpマネジメント株式会社 Manufacturing method of three-dimensional shaped object and three-dimensional shaped object
US9902113B2 (en) 2011-03-17 2018-02-27 Panasonic Intellectual Property Management Co., Ltd. Method for manufacturing three-dimensional shaped object and three-dimensional shaped object
CN107073822A (en) * 2014-11-10 2017-08-18 株式会社普利司通 The manufacture method and three-dimensional body of three-dimensional body
JP2016089247A (en) * 2014-11-10 2016-05-23 株式会社ブリヂストン Method for manufacturing three-dimensional object, and tire mold
CN107073822B (en) * 2014-11-10 2019-12-27 株式会社普利司通 Method for manufacturing three-dimensional object and three-dimensional object
EP3219468A4 (en) * 2014-11-10 2017-11-22 Bridgestone Corporation Three-dimensional object manufacturing method and three-dimensional object
WO2016076211A1 (en) * 2014-11-10 2016-05-19 株式会社ブリヂストン Three-dimensional object manufacturing method and three-dimensional object
JP2016199026A (en) * 2015-04-10 2016-12-01 株式会社松浦機械製作所 Resin injection molding die
KR20180110075A (en) * 2016-03-09 2018-10-08 파나소닉 아이피 매니지먼트 가부시키가이샤 Method for manufacturing three dimensional shaped sculpture
KR102277612B1 (en) 2016-03-09 2021-07-14 파나소닉 아이피 매니지먼트 가부시키가이샤 Manufacturing method of 3D shape sculpture
WO2017154971A1 (en) * 2016-03-09 2017-09-14 パナソニックIpマネジメント株式会社 Three-dimensional molded object production method
JPWO2017154971A1 (en) * 2016-03-09 2019-01-10 パナソニックIpマネジメント株式会社 Manufacturing method of three-dimensional shaped object
US10898953B2 (en) 2016-03-09 2021-01-26 Panasonic Intellectual Property Management Co., Ltd. Method for manufacturing three-dimensional shaped object
JP2019147985A (en) * 2018-02-27 2019-09-05 トヨタ自動車株式会社 Metal laminate forming method
JP7003730B2 (en) 2018-02-27 2022-01-21 トヨタ自動車株式会社 Metal lamination modeling method
JP2019209558A (en) * 2018-06-04 2019-12-12 株式会社日立製作所 Additive manufactured article and manufacturing method thereof
WO2019234974A1 (en) * 2018-06-04 2019-12-12 株式会社日立製作所 Powder laminate molded article and production method therefor
JPWO2020012615A1 (en) * 2018-07-12 2020-07-16 ヤマハ発動機株式会社 Mold
WO2020012615A1 (en) * 2018-07-12 2020-01-16 ヤマハ発動機株式会社 Mold
US11325181B2 (en) 2018-07-12 2022-05-10 Yamaha Hatsudoki Kabushiki Kaisha Mold
JP2021161881A (en) * 2020-03-31 2021-10-11 三菱パワー株式会社 Gas turbine combustor and method for manufacturing burner component
JP7272989B2 (en) 2020-03-31 2023-05-12 三菱重工業株式会社 Method for manufacturing gas turbine combustor and burner parts
US11674688B2 (en) 2020-03-31 2023-06-13 Mitsubishi Heavy Industries, Ltd. Gas turbine combustor and method of manufacturing burner component

Also Published As

Publication number Publication date
TW200422123A (en) 2004-11-01
JP3599056B2 (en) 2004-12-08
TWI232786B (en) 2005-05-21

Similar Documents

Publication Publication Date Title
KR100553644B1 (en) Method of manufacturing a three dimensional object
US8974727B2 (en) Method for manufacturing three-dimensionally shaped object and three-dimensionally shaped object
JP3599056B2 (en) Manufacturing method of three-dimensional shaped object
US8999222B2 (en) Method for manufacturing three-dimensionally shaped object, three-dimensionally shaped object obtained thereby, and method for manufacturing molded article
JP3446733B2 (en) Method and apparatus for manufacturing three-dimensional shaped object
US7384252B2 (en) Method for producing tire vulcanizing mold and tire vulcanizing mold
JP4487636B2 (en) Manufacturing method of three-dimensional shaped object
US20170232511A1 (en) Methods and leading edge supports for additive manufacturing
KR100574268B1 (en) Method of manufacturing a three dimensional object
US20180029306A1 (en) Methods and ghost supports for additive manufacturing
CN102333607A (en) Process for producing three-dimensional shape and three-dimensional shape obtained thereby
JP4857056B2 (en) Powder sintering additive manufacturing apparatus and powder sintering additive manufacturing method
JP6888259B2 (en) Laminated modeling structure, laminated modeling method and laminated modeling equipment
JP6471975B2 (en) Manufacturing method of three-dimensional shaped object and three-dimensional shaped object
US20180200795A1 (en) Method for manufacturing three-dimensional shaped object and three-dimensional shaped object
US20060119017A1 (en) Method for making ceramic work piece and cermet work piece
JP5186316B2 (en) Manufacturing method of three-dimensional shaped object
JP3687667B2 (en) Metal powder for metal stereolithography
Ang et al. Study of trapped material in rapid prototyping parts
JP3433745B2 (en) Manufacturing method and manufacturing apparatus for three-dimensional shaped object
JP6643643B2 (en) Manufacturing method of three-dimensional shaped object
JP6964266B2 (en) Spur bush
JP3601535B1 (en) Manufacturing method of three-dimensional shaped object
JP4131230B2 (en) Mold as stereolithography
JP2002129203A (en) Method for manufacturing three-dimensional model by stereo lithography, and the three-dimensional model

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20040408

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20040423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040906

R151 Written notification of patent or utility model registration

Ref document number: 3599056

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 9

EXPY Cancellation because of completion of term