JP2004141864A - High thermal resistant catalyst carrier, catalyst for emission gas purification, and its production method - Google Patents

High thermal resistant catalyst carrier, catalyst for emission gas purification, and its production method Download PDF

Info

Publication number
JP2004141864A
JP2004141864A JP2003337708A JP2003337708A JP2004141864A JP 2004141864 A JP2004141864 A JP 2004141864A JP 2003337708 A JP2003337708 A JP 2003337708A JP 2003337708 A JP2003337708 A JP 2003337708A JP 2004141864 A JP2004141864 A JP 2004141864A
Authority
JP
Japan
Prior art keywords
noble metal
catalyst
exhaust gas
gap
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003337708A
Other languages
Japanese (ja)
Other versions
JP4259253B2 (en
Inventor
Takaaki Kanazawa
金沢 孝明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003337708A priority Critical patent/JP4259253B2/en
Publication of JP2004141864A publication Critical patent/JP2004141864A/en
Application granted granted Critical
Publication of JP4259253B2 publication Critical patent/JP4259253B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress particulate growth of noble metal particles by suppressing movement of the supported noble metal particles. <P>SOLUTION: The noble metal is supported at least in spaces of a catalyst carrier composed of α-alumina having a multi-layered structure having spaces between the layers. Even at high temperature of 1,200°C, α-alumina is stable without causing sintering. The noble metal supported in the spaces between the layers of the catalyst carrier is in a sandwiched state between the layers, being restrained from moving even at a high temperature. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は、自動車のエンジンなどからの排ガスを浄化する排ガス浄化用触媒とその製造方法、及びその排ガス浄化用触媒に用いられるに高耐熱性触媒担体に関する。 The present invention relates to an exhaust gas purifying catalyst for purifying exhaust gas from an automobile engine and the like, a method for producing the same, and a highly heat-resistant catalyst carrier used for the exhaust gas purifying catalyst.

 従来より、自動車の排ガス浄化用触媒として、CO及びHCの酸化とNOx の還元とを同時に行って排気ガスを浄化する三元触媒が用いられている。このような三元触媒としては、コーディエライトなどからなる耐熱性基材にγ−アルミナからなる多孔質担体層を形成し、その多孔質担体層に白金(Pt)、ロジウム(Rh)などの貴金属を担持させたものが広く知られている。 BACKGROUND ART Conventionally, a three-way catalyst that purifies exhaust gas by simultaneously oxidizing CO and HC and reducing NO x has been used as a catalyst for purifying exhaust gas from automobiles. As such a three-way catalyst, a porous carrier layer made of γ-alumina is formed on a heat-resistant substrate made of cordierite or the like, and platinum (Pt), rhodium (Rh), or the like is formed on the porous carrier layer. Those supporting a noble metal are widely known.

 ところで近年、排ガス浄化用触媒の設置場所がエンジンに近いマニホールド直下とされる傾向があり、また高速走行時には排ガス温度が高くなることから、排ガス浄化用触媒は高温に晒される場合が多くなっている。ところが従来の排ガス浄化用触媒では、高温の排ガスによりγ−アルミナの焼結が進行し、これに伴う貴金属の粒成長によって触媒活性点が減少するため触媒性能が劣化するという不具合があった。 By the way, in recent years, the installation place of the exhaust gas purifying catalyst tends to be located immediately below the manifold close to the engine, and the exhaust gas temperature becomes high during high-speed running. Therefore, the exhaust gas purifying catalyst is often exposed to high temperatures. . However, the conventional exhaust gas purifying catalyst has a problem in that sintering of γ-alumina is advanced by high-temperature exhaust gas, and the catalytic growth is reduced due to grain growth of the noble metal, thereby deteriorating the catalytic performance.

 そこで、例えば特開平04−122441号公報には、予め熱処理されたアルミナを用いて貴金属を担持させる排ガス浄化用触媒の製造方法が開示されている。この製造方法によれば、アルミナは既に熱処理されているため、得られた排ガス浄化用触媒は高温の排ガスに晒されても焼結がほとんど進行せず、貴金属の粒成長を防止することができる。 Therefore, for example, Japanese Patent Application Laid-Open No. 04-122441 discloses a method for producing an exhaust gas purifying catalyst in which a noble metal is supported using alumina that has been heat-treated in advance. According to this production method, since the alumina has already been heat-treated, the obtained exhaust gas purifying catalyst hardly progresses in sintering even when it is exposed to high-temperature exhaust gas, and can prevent grain growth of the noble metal. .

 また近年では、二酸化炭素の排出量を抑制するために、酸素過剰の混合気を供給するリーンバーンエンジンが主流になっている。しかしながら上記公報に開示された製造方法で製造されたような排ガス浄化用触媒では、酸素過剰のリーン雰囲気下で 800℃以上の高温が作用した場合に貴金属の粒成長が著しく、触媒性能が低下するという不具合があった。 In recent years, lean-burn engines that supply an air-fuel mixture in excess of oxygen have become the mainstream in order to suppress carbon dioxide emissions. However, in the exhaust gas purifying catalyst manufactured by the manufacturing method disclosed in the above-mentioned publication, when a high temperature of 800 ° C. or more acts in a lean atmosphere containing excess oxygen, the noble metal grains grow remarkably, and the catalytic performance deteriorates. There was a problem.

 例えばアルミナ表面に担持されたPtは、高温で酸素が共存する雰囲気においてはPtO2となり、気相移動により拡散・凝集が促進される。そのため酸素過剰のリーン雰囲気又はストイキ雰囲気では、高温に晒されるとPtに粒成長が生じ表面積の低下により触媒性能が大きく低下する。 For example, Pt carried on alumina surface becomes PtO2 in an atmosphere where oxygen coexists at high temperature, and diffusion and aggregation are promoted by gas phase movement. Therefore, in an oxygen-excess lean atmosphere or stoichiometric atmosphere, when exposed to a high temperature, Pt grains grow and the catalyst performance is greatly reduced due to a decrease in surface area.

 そこで本願出願人は、特開平08−338897号公報にみられるように、貴金属を担持した担体を非酸化性雰囲気中にて 800℃以上で熱処理する製造方法を提案している。この製造方法によれば、多孔質担体が焼結して細孔が収縮するため、担持されている貴金属は多孔質担体で緊密に取り囲まれる。したがってリーン雰囲気下で高温が作用しても貴金属の移動が多孔質担体によって規制されているため、貴金属の粒成長を抑制することができる。 Therefore, the applicant of the present application has proposed a production method in which a carrier supporting a noble metal is heat-treated at 800 ° C. or more in a non-oxidizing atmosphere, as disclosed in JP-A-08-338897. According to this manufacturing method, since the porous carrier is sintered and the pores shrink, the supported noble metal is tightly surrounded by the porous carrier. Therefore, even if a high temperature acts in a lean atmosphere, the movement of the noble metal is regulated by the porous carrier, so that the grain growth of the noble metal can be suppressed.

 ところが特開平8-338897号公報に記載の製造方法で製造された排ガス浄化用触媒であっても、大気中など酸素過剰のリーン雰囲気下で 800℃を超える高温が長時間作用すると、貴金属に粒成長が生じることが明らかとなった。これは、細孔外に担持されている貴金属粒子が物理的及び化学的に担体に固定されておらず、自由に移動できることが原因であると考えられる。
特開平04−122441号公報 特開平08−338897号公報
However, even with the exhaust gas purifying catalyst produced by the production method described in JP-A-8-338897, when a high temperature exceeding 800 ° C is applied for a long time in an oxygen-rich lean atmosphere, such as in the air, particles of the noble metal are formed. It was found that growth occurred. This is considered to be due to the fact that the noble metal particles supported outside the pores are not physically and chemically fixed to the carrier and can move freely.
JP-A-04-122441 JP 08-338897 A

 本発明はこのような事情に鑑みてなされたものであり、担持されている貴金属粒子の移動を抑制することで粒成長を抑制できる排ガス浄化用触媒と、その排ガス浄化用触媒に用いられる高耐熱性触媒担体を提供することを目的とする。 The present invention has been made in view of such circumstances, and an exhaust gas purifying catalyst capable of suppressing grain growth by suppressing the movement of supported noble metal particles, and a high heat resistant catalyst used in the exhaust gas purifying catalyst. An object of the present invention is to provide a neutral catalyst carrier.

 上記課題を解決する本発明の高耐熱性触媒担体の特徴は、水酸化物を焼成することで形成され層間に隙間をもつ多層構造を有する酸化物からなることにある。層間に隙間をもつ多層構造を有するα−アルミナからなることが特に好ましいが、そのα−アルミナの製造方法はこれに限るものではない。 特 徴 A feature of the high heat-resistant catalyst carrier of the present invention that solves the above-mentioned problem is that it is formed of an oxide having a multilayer structure formed by firing a hydroxide and having a gap between layers. It is particularly preferable to use α-alumina having a multilayer structure having a gap between layers, but the method for producing α-alumina is not limited to this.

 また上記課題を解決する本発明の排ガス浄化用触媒の特徴は、水酸化物を焼成することで形成され層間に隙間をもつ多層構造を有する酸化物、又は層間に隙間をもつ多層構造を有するα−アルミナからなる高耐熱性触媒担体の少なくとも該隙間に貴金属を担持してなることにある。 Further, the feature of the exhaust gas purifying catalyst of the present invention that solves the above-mentioned problem is that an oxide having a multilayer structure with a gap between layers formed by calcining a hydroxide or an α with a multilayer structure with a gap between layers is used. -A precious metal is supported at least in the gaps of a highly heat-resistant catalyst carrier made of alumina.

 本発明の排ガス浄化用触媒において、前記隙間には前記貴金属と反応しない酸化物粒子がさらに担持されていることが望ましい。この酸化物粒子は、セリアであることが特に望ましい。 In the exhaust gas purifying catalyst of the present invention, it is preferable that oxide particles that do not react with the noble metal are further carried in the gap. The oxide particles are particularly preferably ceria.

 そして本発明の排ガス浄化用触媒の製造方法の特徴は、水酸化物を焼成することで形成され層間に隙間をもつ多層構造を有する酸化物、又は層間に隙間をもつ多層構造を有するα−アルミナからなる高耐熱性触媒担体に貴金属化合物溶液を含浸させ、蒸発乾固させて貴金属を担持する製造方法であって、蒸発乾固時に溶媒が完全に蒸発するまで外部から応力を加えることにある。 The method for producing an exhaust gas purifying catalyst according to the present invention is characterized in that an oxide having a multilayer structure with a gap between layers formed by calcining a hydroxide or α-alumina having a multilayer structure with a gap between layers A method for supporting a noble metal by impregnating a noble metal compound solution into a highly heat-resistant catalyst carrier comprising and evaporating to dryness, and applying external stress until the solvent is completely evaporated during evaporation to dryness.

 また本発明のもう一つの製造方法の特徴は、水酸化物を焼成することで形成され層間に隙間をもつ多層構造を有する酸化物、又は層間に隙間をもつ多層構造を有するα−アルミナからなる高耐熱性触媒担体の少なくとも該隙間に貴金属を担持し、その後少なくとも該隙間に酸化物粒子を担持することにある。 Further, another feature of the manufacturing method of the present invention is that the oxide is formed by firing a hydroxide and has a multilayer structure having a gap between layers, or an α-alumina having a multilayer structure having a gap between layers. The object of the present invention is to support a noble metal at least in the gaps of the high heat resistant catalyst carrier, and then to support oxide particles in at least the gaps.

 酸化物粒子はセリアであることが特に望ましい。 It is particularly desirable that the oxide particles be ceria.

 また本発明のさらにもう一つの製造方法の特徴は、水酸化物を焼成することで形成され層間に隙間をもつ多層構造を有する酸化物、又は層間に隙間をもつ多層構造を有するα−アルミナからなる高耐熱性触媒担体の少なくとも該隙間に貴金属を担持し、その後熱処理することで該貴金属を粒成長させることにある。 Still another feature of the production method of the present invention is that an oxide having a multilayer structure having a gap between layers formed by firing a hydroxide or α-alumina having a multilayer structure having a gap between layers is used. An object of the present invention is to support a noble metal in at least the gaps of a highly heat-resistant catalyst carrier, and then heat-treat the noble metal to grow grains of the noble metal.

 この製造方法では、熱処理は、酸化性雰囲気では 600〜 800℃に加熱し、非酸化性雰囲気では 900〜1200℃に加熱することで行うことが望ましい。また貴金属の担持後に、該隙間に該貴金属と反応しない酸化物粒子を担持することが望ましい。この酸化物粒子の担持は、貴金属の粒成長後に行うことが望ましい。また酸化物粒子はセリアであることが特に望ましい。 熱処理 In this manufacturing method, the heat treatment is desirably performed by heating to 600 to 800 ° C. in an oxidizing atmosphere and to 900 to 1200 ° C. in a non-oxidizing atmosphere. Further, after the noble metal is supported, it is desirable to support oxide particles that do not react with the noble metal in the gap. It is desirable that the loading of the oxide particles be performed after the grain growth of the noble metal. It is particularly desirable that the oxide particles be ceria.

 すなわち本発明の高耐熱性触媒担体によれば、層間に隙間をもつ多層構造を有している。したがってその隙間に貴金属を担持した本発明の排ガス浄化用触媒によれば、貴金属の粒成長が防止され、耐熱耐久性に優れている。 That is, according to the high heat resistant catalyst carrier of the present invention, it has a multilayer structure having a gap between layers. Therefore, according to the exhaust gas purifying catalyst of the present invention in which a noble metal is supported in the gap, grain growth of the noble metal is prevented, and the heat resistance is excellent.

 また貴金属と反応しない酸化物粒子をさらに担持することで、貴金属の移動がさらに抑制されるため、耐熱耐久性がさらに向上する。そして隙間に担持された貴金属をある程度粒成長させておけば、リーン・リッチの変動雰囲気下で使用した場合にも触媒活性の低下を大きく抑制することができる。 Further, by further supporting oxide particles that do not react with the noble metal, the movement of the noble metal is further suppressed, so that the heat resistance and durability are further improved. If the noble metal supported in the gaps is grown to some extent, the catalyst activity can be greatly reduced even when used in a lean-rich fluctuating atmosphere.

 本発明の高耐熱性触媒担体は、水酸化物を焼成することで形成され層間に隙間をもつ多層構造を有する酸化物、又は層間に隙間をもつ多層構造を有するα−アルミナからなる。1000℃以上の高温下で安定であれば、ジルコニア、チタニア、セリアなどを用いることもできるが、α−アルミナが特に好ましい材料である。すなわちα−アルミナは熱的にきわめて安定であり、1200℃の高温下でも安定であって焼結が生じない。 高 The highly heat-resistant catalyst carrier of the present invention is composed of an oxide formed by calcining a hydroxide and having a multilayer structure having gaps between layers, or α-alumina having a multilayer structure having gaps between layers. Zirconia, titania, ceria, and the like can be used as long as they are stable at a high temperature of 1000 ° C. or higher, but α-alumina is a particularly preferred material. That is, α-alumina is extremely stable thermally and is stable even at a high temperature of 1200 ° C. without sintering.

 本発明の高耐熱性触媒担体の層間の隙間に貴金属を担持してなる本発明の排ガス浄化用触媒では、担持された貴金属は層間の隙間に挟み込まれた状態となっているので、高温時においても貴金属粒子が移動するのが抑制され、貴金属粒子どうしが凝集して層間の間隔以上に粒成長するのが抑制される。また担体自身も高耐熱性であるので、担体自身の焼結による貴金属の粒成長も抑制されている。これらの相乗作用によって、酸素過剰のリーン雰囲気下で 800℃を超える高温が長時間作用しても、貴金属は高分散状態を維持し活性点が多く存在するため、本発明の排ガス浄化用触媒は高い活性が発現される。 In the exhaust gas purifying catalyst of the present invention in which a noble metal is supported in the gap between the layers of the high heat resistant catalyst carrier of the present invention, the supported noble metal is in a state of being sandwiched in the gap between the layers. Also, the movement of the noble metal particles is suppressed, and the noble metal particles are prevented from aggregating and growing more than the interval between the layers. Also, since the carrier itself has high heat resistance, grain growth of the noble metal due to sintering of the carrier itself is also suppressed. Due to these synergistic effects, even when a high temperature exceeding 800 ° C. is applied for a long time in a lean atmosphere containing excess oxygen, the noble metal maintains a highly dispersed state and has many active sites. High activity is expressed.

 層間に隙間をもつ多層構造を有するα−アルミナは、例えば、水酸化アルミニウムの結晶粒子を乾燥し、その後1200℃程度の高温で焼成することにより製造することができる。焼成時には、結晶内で層状に密着していた水酸化アルミニウムが収縮し、それによって層間に隙間が生成すると考えられる。水酸化アルミニウムは、住友化学(株)などから市販されているものを用いることができる。なお1000℃以下の焼成温度では、多層構造のα−アルミナを製造することが困難であることが明らかとなっている。 Αα-alumina having a multilayer structure having a gap between layers can be produced, for example, by drying crystal grains of aluminum hydroxide and then firing at a high temperature of about 1200 ° C. At the time of firing, it is considered that the aluminum hydroxide that has adhered in a layered manner in the crystal shrinks, thereby creating a gap between the layers. Aluminum hydroxide that is commercially available from Sumitomo Chemical Co., Ltd. or the like can be used. At a firing temperature of 1000 ° C. or less, it has been found that it is difficult to produce α-alumina having a multilayer structure.

 本発明の高耐熱性触媒担体における層間の間隔は、2nm〜50nmであることが望ましい。層間の間隔がこれより大きいと貴金属粒子が移動し易くなり、高温雰囲気で粒成長する恐れがある。また層間の間隔がこれより小さいと、層間の隙間に貴金属を担持することが困難となる。層間の間隔を調整するには、水酸化アルミニウムの焼成温度などを調整することで行うことができる。 間隔 The distance between the layers in the high heat resistant catalyst carrier of the present invention is desirably 2 nm to 50 nm. If the distance between the layers is larger than this, the noble metal particles are likely to move, and the particles may grow in a high-temperature atmosphere. If the distance between the layers is smaller than this, it becomes difficult to support a noble metal in the gap between the layers. The distance between the layers can be adjusted by adjusting the firing temperature of aluminum hydroxide and the like.

 本発明の高耐熱性触媒担体の少なくとも該隙間に担持される貴金属としては、Pt,Rh,Pd,Ir,Ruなど従来の排ガス浄化用触媒に用いられているものを用いることができる。特に、高い触媒活性を有するものの粒成長しやすいPtの場合に効果的である。また貴金属の担持量は、担体に対して 0.1重量%以上であり、好ましくは 0.5〜20重量%である。担持量がこの範囲より少ないと排ガス浄化用触媒としての活性が低すぎて実用的でなく、この範囲より多く担持しても活性が飽和するとともにコストが高騰してしまう。 貴 As the noble metal supported in at least the gap of the highly heat-resistant catalyst carrier of the present invention, those used in conventional exhaust gas purifying catalysts such as Pt, Rh, Pd, Ir, and Ru can be used. In particular, it is effective in the case of Pt which has a high catalytic activity but tends to grow grains. The amount of the noble metal carried is 0.1% by weight or more, preferably 0.5 to 20% by weight, based on the carrier. If the supported amount is less than this range, the activity as an exhaust gas purifying catalyst is too low to be practical, and if the supported amount is more than this range, the activity is saturated and the cost rises.

 本発明の高耐熱性触媒担体の層間の隙間に貴金属を担持するには、貴金属化合物薬液を用い毛細管現象を利用して隙間に含浸させ、その後蒸発乾固することで担持することができる。この場合、担体に吸着しにくい貴金属化合物薬液を用いることが望ましい。吸着しやすい薬液を用いると、該隙間以外に担持される貴金属が多くなり、それらが高温時に粒成長するという不具合がある。 貴 In order to support the noble metal in the gap between the layers of the highly heat-resistant catalyst carrier of the present invention, the noble metal compound can be supported by impregnating the gap using a capillary action using a noble metal compound chemical solution, and then evaporating to dryness. In this case, it is desirable to use a noble metal compound chemical that is not easily adsorbed on the carrier. When a chemical solution that is easily adsorbed is used, a large amount of noble metal is supported in a portion other than the gap, and there is a problem that the particles grow at a high temperature.

 なお蒸発乾固する際には、溶媒が完全に蒸発するまで撹拌など外部から応力を加えることが望ましい。特に、溶媒が完全に蒸発するまで撹拌などの外部剪断応力を加え続けることが望ましい。溶媒が残っている状態で撹拌などを停止すると、貴金属化合物薬液と担体とが分離して該隙間に貴金属を十分に担持することが困難となる。しかし溶媒が完全に蒸発するまで撹拌などの外部剪断応力を加え続ければ、貴金属化合物薬液と担体との分離が回避され、該隙間に貴金属を均一かつ十分に担持することができる。 When evaporating to dryness, it is desirable to apply external stress such as stirring until the solvent is completely evaporated. In particular, it is desirable to continue applying external shear stress such as stirring until the solvent is completely evaporated. When stirring or the like is stopped in a state where the solvent remains, the noble metal compound chemical solution and the carrier are separated, and it becomes difficult to sufficiently support the noble metal in the gap. However, if external shear stress such as stirring is continuously applied until the solvent is completely evaporated, separation of the noble metal compound chemical solution and the carrier is avoided, and the noble metal can be uniformly and sufficiently supported in the gap.

 本発明の排ガス浄化用触媒は、該隙間に酸化物粒子がさらに担持されていることが望ましい。この酸化物粒子が介在することによって貴金属粒子が隙間内を移動するのがさらに抑制されるので、貴金属の粒成長をさらに抑制することができる。 排 ガ ス In the exhaust gas purifying catalyst of the present invention, it is desirable that oxide particles are further supported in the gap. The movement of the noble metal particles in the gap is further suppressed by the presence of the oxide particles, so that the grain growth of the noble metal can be further suppressed.

 この酸化物粒子としては、隙間に担持されている貴金属と反応しないものであり、アルミナ,ジルコニア,セリア,チタニア,あるいはこれらから選ばれる複数種の複合酸化物などが例示される。シリカなどは、貴金属と反応して活性が低下するため好ましくない。特にセリアを担持すれば、高温耐久後の浄化活性の低下がほとんど生じないことが明らかとなっている。この理由は明らかではないが、セリアによる物理的な貴金属粒子の固定化作用と、セリアの酸素貯蔵放出能による化学的作用との協同によるものと考えられる。 The oxide particles do not react with the noble metal supported in the gaps, and include alumina, zirconia, ceria, titania, and a plurality of composite oxides selected from these. Silica or the like is not preferable because it reacts with a noble metal to lower the activity. In particular, it has been clarified that when ceria is supported, the purification activity after high-temperature durability hardly decreases. Although the reason for this is not clear, it is thought to be due to the cooperation between the physical immobilization of noble metal particles by ceria and the chemical action due to ceria's ability to store and release oxygen.

 酸化物粒子の担持量は特に制限されないが、高耐熱性触媒担体に対して1重量%以上とすることが望ましい。これ以下では担持した効果が発現されない。また酸化物粒子を該隙間に担持するには、焼成により酸化物となる可溶性塩の溶液を用い、貴金属と同様に含浸させた後に焼成することで担持することができる。 担 持 The amount of oxide particles to be carried is not particularly limited, but is desirably 1% by weight or more based on the high heat resistant catalyst carrier. Below this, the carried effect is not exhibited. In addition, in order to support the oxide particles in the gap, a solution of a soluble salt that becomes an oxide upon firing can be used, and can be supported by being impregnated in the same manner as the noble metal and then firing.

 なお先ず貴金属を担持し、その後に酸化物粒子を担持することが望ましい。この逆では、例えば酸化物粒子の担持量が多い場合など、該隙間への貴金属の担持が困難となる場合がある。 (4) It is desirable to support the noble metal first, and then support the oxide particles. On the contrary, for example, when the amount of the oxide particles carried is large, it may be difficult to carry the noble metal in the gap.

 ところが上記した本発明の排ガス浄化用触媒であっても、リーン雰囲気とリッチ雰囲気とが繰り返される変動雰囲気下で使用した場合には、触媒活性が低下する場合があることが明らかとなった。この原因は明らかではないが、担持されている貴金属が粒径が小さな間に層間の隙間から外に出てしまう場合があるためと考えられる。隙間から外に出た貴金属粒子は、担体の外表面上で容易に粒成長し活性点が急激に減少してしまう。 However, it has been clarified that, even when the exhaust gas purifying catalyst of the present invention is used in a fluctuating atmosphere in which a lean atmosphere and a rich atmosphere are repeated, the catalytic activity may decrease. Although the cause is not clear, it is considered that the carried noble metal may come out of the gap between the layers while the particle size is small. The noble metal particles that have come out of the gap easily grow on the outer surface of the carrier, and the active sites rapidly decrease.

 そこで、高耐熱性触媒担体の少なくとも該隙間に貴金属を担持し、その後熱処理することで該貴金属をある程度粒成長させておくことが望ましい。これにより貴金属が隙間内を移動するのがさらに抑制され、隙間から外に出てしまうことを抑制することができ、変動雰囲気下における触媒活性の低下を確実に抑制することが可能となる。 Therefore, it is desirable that a noble metal is supported at least in the gaps of the highly heat-resistant catalyst support and then heat-treated to grow the noble metal to some extent. As a result, the movement of the noble metal in the gap is further suppressed, it is possible to prevent the noble metal from going out of the gap, and it is possible to reliably suppress a decrease in the catalyst activity under a variable atmosphere.

 隙間に担持されている貴金属は、粒径を40Å程度まで粒成長させれば、外に出るのを十分に防止することができる。この程度に粒成長させる熱処理条件としては、酸化性雰囲気で 600〜 800℃に加熱すればよい。また非酸化性雰囲気では、 900〜1200℃に加熱すればよい。この温度範囲より低い温度では貴金属の粒成長が生じにくい。またこの温度より高い温度で焼成すると、貴金属が隙間の間隔以上に粒成長することはないと考えられるが、さらに粒成長が進展することで活性点の数が減少するので好ましくない。なお酸化性雰囲気又は非酸化性雰囲気のいずれか一方の条件で行うことが必要であり、変動雰囲気で加熱した場合には貴金属が隙間の外に出てしまう場合がある。 The noble metal supported in the gap can be sufficiently prevented from going out if the grain is grown to a grain size of about 40 °. As a heat treatment condition for grain growth to such an extent, heating may be performed at 600 to 800 ° C. in an oxidizing atmosphere. In a non-oxidizing atmosphere, heating may be performed at 900 to 1200 ° C. At a temperature lower than this temperature range, noble metal grain growth hardly occurs. Further, if the firing is performed at a temperature higher than this temperature, it is considered that the noble metal does not grow more than the interval of the gap, but it is not preferable because the number of active sites is reduced by further progressing the grain growth. It is necessary to perform the treatment under either an oxidizing atmosphere or a non-oxidizing atmosphere, and when heated in a fluctuating atmosphere, the noble metal may come out of the gap.

 この場合も、高耐熱性触媒担体の隙間にセリアなどの酸化物粒子がさらに担持されていることが望ましい。これにより、上記した酸化物粒子による作用と、粒成長による作用との相乗効果が発現され、貴金属の移動をさらに抑制することができ触媒活性の耐久性が格段に向上する。 In this case as well, it is desirable that oxide particles such as ceria are further supported in the gaps between the high heat resistant catalyst supports. As a result, a synergistic effect of the above-described action of the oxide particles and the action of the grain growth is exhibited, and the movement of the noble metal can be further suppressed, so that the durability of the catalytic activity is significantly improved.

 酸化物粒子を担持後に熱処理して貴金属を粒成長させることも可能であるが、微細な状態で担持されている貴金属粒子を酸化物粒子が覆ってしまい、その貴金属粒子の粒成長が困難となる場合がある。したがって、貴金属を粒成長させた後に酸化物粒子を担持することが好ましい。 It is possible to grow the noble metal by heat treatment after supporting the oxide particles, but the oxide particles cover the noble metal particles supported in a fine state, and it becomes difficult for the noble metal particles to grow. There are cases. Therefore, it is preferable to support the oxide particles after the noble metal is grown.

 本発明の排ガス浄化用触媒は、そのままで酸化触媒、三元触媒などとして利用することができ、さらにBaやKなどのNOx 吸蔵材を担持すればNOx 吸蔵還元型触媒として利用することができる。 The exhaust gas purifying catalyst of the present invention, the remains in the oxidation catalyst, can be utilized as a three-way catalyst, be further utilized as a NO x storage-and-reduction type catalyst if carrying the NO x storage material such as Ba and K it can.

 以下、実施例及び比較例により本発明を具体的に説明する。 Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.

 (実施例1)
 市販の水酸化アルミニウム結晶粒子(住友化学(株)製)を 120℃で2時間乾燥して脱水し、その後大気中にて1200℃で5時間焼成して、層間に隙間をもつ多層構造を有するα−アルミナを調製した。このα−アルミナ粒子は、平均一次粒子径が3μm、比表面積が数m2/g、層間の間隔は20〜50nmであった。
(Example 1)
Commercially available aluminum hydroxide crystal particles (manufactured by Sumitomo Chemical Co., Ltd.) are dried at 120 ° C. for 2 hours and dehydrated, and then fired in the air at 1200 ° C. for 5 hours to have a multilayer structure having gaps between layers. α-alumina was prepared. The α-alumina particles had an average primary particle size of 3 μm, a specific surface area of several m 2 / g, and an interlayer spacing of 20 to 50 nm.

 このα−アルミナ粉末に、所定濃度のジニトロジアンミン白金水溶液の所定量を含浸し、溶媒が完全に蒸発するまで撹拌しながら蒸発乾固させ、大気中にて 120℃で2時間乾燥し 400℃で2時間焼成してPtを担持した。Ptの担持量は1重量%である。得られた触媒粉末を圧粉成形して、 0.5mm〜 1.7mmのペレット触媒とした。 This α-alumina powder is impregnated with a predetermined amount of an aqueous solution of dinitrodiammine platinum having a predetermined concentration, evaporated to dryness with stirring until the solvent is completely evaporated, dried in the air at 120 ° C. for 2 hours, and dried at 400 ° C. By firing for 2 hours, Pt was supported. The supported amount of Pt is 1% by weight. The obtained catalyst powder was compacted to obtain a pellet catalyst of 0.5 mm to 1.7 mm.

 上記で調製されたα−アルミナ粒子の走査型電子顕微鏡写真を図1(1000倍),図2(1万倍)に示す。また上記で調製された触媒粒子を樹脂に埋めてFIBにて薄くスライスした断面の透過型電子顕微鏡写真を図3(2万倍),図4(10万倍),図5(20万倍)に示す。図4及び図5における灰色の部分がα−アルミナであり、白い部分が層間の隙間であり、層間に隙間をもつ多層構造となっていることがわかる。また黒い点がPt粒子であって、Ptは層間の隙間に担持されていることが認められる。 (1) Scanning electron micrographs of the α-alumina particles prepared above are shown in FIGS. 1 (1000 times) and 2 (10,000 times). In addition, the transmission electron micrographs of the sections prepared by embedding the catalyst particles in a resin and thinly slicing with FIB are shown in FIGS. 3 (20,000 times), 4 (100,000 times), and 5 (200,000 times). Shown in It can be seen that the gray portions in FIGS. 4 and 5 are α-alumina, the white portions are the gaps between the layers, and the multilayer structure has a gap between the layers. The black dots are Pt particles, and it is recognized that Pt is carried in the gap between the layers.

 (実施例2)
 実施例1で調製された触媒粉末に、所定濃度の硝酸セリウム水溶液の所定量を含浸し、溶媒が完全に蒸発するまで撹拌しながら蒸発乾固させ、大気中にて 120℃で2時間乾燥し 500℃で2時間焼成してセリア(CeO2)を担持した。セリアの担持量は3重量%である。得られた触媒粉末を圧粉成形して、 0.5mm〜 1.7mmのペレット触媒とした。
(Example 2)
The catalyst powder prepared in Example 1 is impregnated with a predetermined amount of a cerium nitrate aqueous solution having a predetermined concentration, evaporated to dryness while stirring until the solvent is completely evaporated, and dried at 120 ° C. for 2 hours in the atmosphere. By baking at 500 ° C. for 2 hours, ceria (CeO 2 ) was supported. The carried amount of ceria is 3% by weight. The obtained catalyst powder was compacted to obtain a pellet catalyst of 0.5 mm to 1.7 mm.

 (実施例3)
 実施例1で調製された触媒粉末に、所定濃度のオキシ硝酸ジルコニウム水溶液の所定量を含浸し、溶媒が完全に蒸発するまで撹拌しながら蒸発乾固させ、大気中にて 120℃で2時間乾燥し 500℃で2時間焼成してジルコニア(ZrO2)を担持した。ジルコニアの担持量は3重量%である。得られた触媒粉末を圧粉成形して、 0.5mm〜 1.7mmのペレット触媒とした。
(Example 3)
The catalyst powder prepared in Example 1 is impregnated with a predetermined amount of an aqueous solution of zirconium oxynitrate having a predetermined concentration, evaporated to dryness with stirring until the solvent is completely evaporated, and dried at 120 ° C. for 2 hours in the atmosphere. Then, it was baked at 500 ° C. for 2 hours to carry zirconia (ZrO 2 ). The loading of zirconia is 3% by weight. The obtained catalyst powder was compacted to obtain a pellet catalyst of 0.5 mm to 1.7 mm.

 (実施例4)
 実施例1で調製された触媒粉末に、所定濃度の硝酸アルミニウム水溶液の所定量を含浸し、溶媒が完全に蒸発するまで撹拌しながら蒸発乾固させ、大気中にて 120℃で2時間乾燥し 500℃で2時間焼成してアルミナ( Al2O3)を担持した。アルミナの担持量は3重量%である。得られた触媒粉末を圧粉成形して、 0.5mm〜 1.7mmのペレット触媒とした。
(Example 4)
The catalyst powder prepared in Example 1 is impregnated with a predetermined amount of a predetermined concentration of an aqueous solution of aluminum nitrate, evaporated to dryness with stirring until the solvent is completely evaporated, and dried at 120 ° C. for 2 hours in the atmosphere. It was calcined at 500 ° C. for 2 hours to carry alumina (Al 2 O 3 ). The amount of alumina carried is 3% by weight. The obtained catalyst powder was compacted to obtain a pellet catalyst of 0.5 mm to 1.7 mm.

 (実施例5)
 実施例1で調製された触媒粉末に、所定濃度の硝酸セリウムとオキシ硝酸ジルコニウムの混合水溶液の所定量を含浸し、溶媒が完全に蒸発するまで撹拌しながら蒸発乾固させ、大気中にて 120℃で2時間乾燥し 500℃で2時間焼成してCeO2−ZrO2複合酸化物を担持した。担持量はCeO2が 1.5重量%、ZrO2が 1.5重量%の合計3重量%である。得られた触媒粉末を圧粉成形して、 0.5mm〜 1.7mmのペレット触媒とした。
(Example 5)
The catalyst powder prepared in Example 1 was impregnated with a predetermined amount of a mixed aqueous solution of cerium nitrate and zirconium oxynitrate at a predetermined concentration, and evaporated to dryness while stirring until the solvent was completely evaporated. carrying CeO 2 -ZrO 2 composite oxide was calcined for 2 hours at 2 h dried 500 ° C. at ° C.. The loading amount is 1.5% by weight of CeO 2 and 1.5% by weight of ZrO 2, for a total of 3% by weight. The obtained catalyst powder was compacted to obtain a pellet catalyst of 0.5 mm to 1.7 mm.

 (比較例1)
 市販のγ−アルミナ粉末(「 MI386」グレース(株)製)を用意し、実施例1と同様にしてPtを担持し、ペレット触媒とした。このγ−アルミナ粉末は、平均一次粒子径(針状の長さ方向)が10nm、平均二次粒子径が4μm、比表面積が 150〜 200m2/gである。またTEM観察の結果、Ptは全体に均一に高分散担持されていることが確認された。
(Comparative Example 1)
A commercially available γ-alumina powder (“MI386” manufactured by Grace Co., Ltd.) was prepared, loaded with Pt in the same manner as in Example 1, and used as a pellet catalyst. This γ-alumina powder has an average primary particle diameter (in the lengthwise direction of a needle) of 10 nm, an average secondary particle diameter of 4 μm, and a specific surface area of 150 to 200 m 2 / g. As a result of TEM observation, it was confirmed that Pt was uniformly and highly dispersed and supported throughout.

 <試験例1・評価>
 実施例1及び比較例1のペレット触媒について、それぞれ大気中にて 700℃, 800℃, 900℃,1000℃の各温度でそれぞれ5時間加熱する耐久試験を行った。そして耐久試験後の各ペレット触媒を評価装置に配置し、表1に示すストイキ雰囲気のモデルガス流通下にて、空間速度SV=21万/hで、 500℃×20分の前処理後20℃/分で連続昇温して、その間のHC浄化率を連続的に測定した。この結果からHCの50%浄化温度を算出し、結果を図6に示す。また実施例2〜5のペレット触媒については、大気中にて 800℃でそれぞれ5時間加熱する耐久試験を行い、その後同様にしてHC50%浄化温度を測定した結果を図6に示す。
<Test Example 1 / Evaluation>
The pellet catalysts of Example 1 and Comparative Example 1 were subjected to an endurance test of heating at 700 ° C., 800 ° C., 900 ° C., and 1000 ° C. for 5 hours in the air. Then, each of the pellet catalysts after the durability test was placed in an evaluation device, and under a stoichiometric atmosphere model gas flow shown in Table 1, at a space velocity SV = 210,000 / h, and after pretreatment at 500 ° C. × 20 minutes and 20 ° C. / Min, and the HC purification rate was continuously measured during the heating. From this result, the 50% purification temperature of HC was calculated, and the result is shown in FIG. The pellet catalysts of Examples 2 to 5 were subjected to an endurance test in which each was heated at 800 ° C. for 5 hours in the atmosphere, and thereafter the HC 50% purification temperature was measured in the same manner. FIG. 6 shows the results.

Figure 2004141864
Figure 2004141864

 図6より、比較例1の触媒は耐久試験後の活性が低いのに対し、各実施例の触媒は比表面積が小さいにも関わらず耐久試験後にも高い活性を示している。すなわち比較例1の触媒では、Ptの粒成長によって活性が低下したと考えられ、実施例1の触媒ではPtの粒成長が抑制されたため活性の低下が抑制されたと考えられる。これは、層間に隙間をもつ多層構造を有するα−アルミナからなる触媒担体の少なくとも該隙間に貴金属を担持した効果であることが明らかである。 よ り From FIG. 6, the catalyst of Comparative Example 1 has a low activity after the durability test, whereas the catalyst of each Example shows a high activity after the durability test despite the small specific surface area. That is, it is considered that the activity of the catalyst of Comparative Example 1 was reduced due to the growth of Pt particles, and that the activity of the catalyst of Example 1 was suppressed because the growth of Pt particles was suppressed. It is clear that this is an effect of supporting a noble metal in at least the gaps of the catalyst carrier made of α-alumina having a multilayer structure having gaps between layers.

 また、実施例1より実施例2〜5の触媒が耐久試験後も高い活性を示していることから、酸化物粒子をさらに担持するのが好ましいことも明らかである。そして実施例2の触媒は 800℃の耐久試験後にもほとんど劣化が認められず、酸化物粒子としてはセリアが最も好ましいこともわかる。 In addition, since the catalysts of Examples 2 to 5 show high activity even after the durability test than Example 1, it is clear that it is preferable to further support oxide particles. The catalyst of Example 2 showed almost no deterioration even after the endurance test at 800 ° C., indicating that ceria is the most preferable oxide particle.

 <試験例2・評価>
 上記試験例では、実施例1,2の触媒の劣化度合いの差が小さかったので、空間速度を81.4万/hとしたこと、実施例2の触媒ではセリアの担持量を5重量%としたこと以外は試験例1と同様にして、実施例1,2の触媒について大気中にて 800℃でそれぞれ5時間加熱する耐久試験を行い、その後のHCとNOx の50%浄化温度を測定した。実施例1の触媒については、耐久試験前の初期のHCとNOx の50%浄化温度も測定した。結果を図7に示す。
<Test Example 2 / Evaluation>
In the above test example, since the difference in the degree of deterioration of the catalysts of Examples 1 and 2 was small, the space velocity was 814,000 / h, and the amount of ceria carried was 5% by weight in the catalyst of Example 2. Except for the above, in the same manner as in Test Example 1, endurance tests were performed on the catalysts of Examples 1 and 2 at 800 ° C. for 5 hours in the atmosphere, and the subsequent 50% purification temperatures of HC and NO x were measured. For the catalyst of Example 1, 50% purification temperature of the initial HC and NO x before the durability test was also measured. FIG. 7 shows the results.

 図7より、実施例1の触媒は耐久試験後の浄化活性が低下しているのに対し、実施例2の触媒は耐久試験後も高い浄化活性を維持していることがわかり、これはセリアをさらに担持した効果であることが明らかである。 FIG. 7 shows that the catalyst of Example 1 had a low purification activity after the durability test, whereas the catalyst of Example 2 maintained a high purification activity after the durability test. It is clear that this is the effect of further supporting.

 そこで耐久試験後の実施例2の触媒を樹脂に埋めてFIBにて薄くスライスした断面の透過型電子顕微鏡写真(20万倍)と、その視野の黒い粒子と灰色の粒子の部分のEDXチャートを図8に示す。 Therefore, a transmission electron micrograph (200,000 times) of a cross section obtained by burying the catalyst of Example 2 in a resin and slicing thinly by FIB after the endurance test, and an EDX chart of black particles and gray particles in the visual field are shown. As shown in FIG.

 図8より黒い粒子はPtと認められ、灰色の粒子はセリアと認められる。そしてPt及びセリアは両方共層間の隙間に担持されている。そのため、Pt粒子の間にセリア粒子が介在することでPtがさらに移動しにくくなり、Ptの粒成長がさらに抑制されたと考えられる。 よ り From FIG. 8, black particles are recognized as Pt, and gray particles are recognized as ceria. Pt and ceria are both supported in the gap between the layers. Therefore, it is considered that the ceria particles intervene between the Pt particles, whereby the Pt became more difficult to move, and the grain growth of the Pt was further suppressed.

 (実施例6)
 実施例1と同様に調製されたα−アルミナ粉末に、実施例1と同様にしてPtが1重量%担持された触媒粉末を管状炉内に配置し、N2ガス流通下にて1100℃で5時間加熱する熱処理を行った。担持されているPtは、CO吸着法での測定の結果40〜60Åに粒成長していることが確認された。
(Example 6)
A catalyst powder carrying 1% by weight of Pt was placed in a tubular furnace in the same manner as in Example 1 on α-alumina powder prepared in the same manner as in Example 1, and heated at 1100 ° C. under N 2 gas flow. Heat treatment for heating for 5 hours was performed. As a result of measurement by the CO adsorption method, it was confirmed that the supported Pt had grown to a grain size of 40 to 60 °.

 次に、熱処理後の触媒粉末に所定濃度の硝酸セリウム水溶液の所定量を含浸し、溶媒が完全に蒸発するまで撹拌しながら蒸発乾固させ、大気中にて 120℃で2時間乾燥し 500℃で2時間焼成してセリア(CeO2)を担持した。セリアの担持量は30重量%である。得られた触媒粉末を圧粉成形して、 0.5mm〜 1.7mmのペレット触媒とした。 Next, the catalyst powder after the heat treatment is impregnated with a predetermined amount of an aqueous solution of cerium nitrate having a predetermined concentration, and evaporated to dryness while stirring until the solvent is completely evaporated, and dried at 120 ° C. for 2 hours in the air and 500 ° C. For 2 hours to carry ceria (CeO 2 ). The loading of ceria is 30% by weight. The obtained catalyst powder was compacted to obtain a pellet catalyst of 0.5 mm to 1.7 mm.

 (実施例7)
 熱処理しなかったこと以外は実施例6と同様の触媒粉末を用い、同様にセリアを担持して同様のペレット触媒を調製した。
(Example 7)
Except that the heat treatment was not performed, the same catalyst powder as in Example 6 was used, and ceria was similarly supported to prepare a similar pellet catalyst.

 <試験例3・評価> <Test Example 3 / Evaluation>

Figure 2004141864
Figure 2004141864

 実施例6及び実施例7のペレット触媒について、表2に示すリーンガスとリッチガスを2分間ずつ交互に繰り返し流す変動雰囲気下にて、 900℃,1000℃,1100℃の各温度でそれぞれ5時間加熱する耐久試験を行った。そして耐久試験前後の各ペレット触媒を評価装置にそれぞれ配置し、試験例1と同様にしてHC50%浄化温度を測定した。結果を図9に示す。 The pellet catalysts of Examples 6 and 7 are heated at 900 ° C., 1000 ° C., and 1100 ° C. for 5 hours in a fluctuating atmosphere in which a lean gas and a rich gas shown in Table 2 are alternately flown for 2 minutes. A durability test was performed. Each of the pellet catalysts before and after the durability test was placed in an evaluation device, and the HC 50% purification temperature was measured in the same manner as in Test Example 1. FIG. 9 shows the results.

 図9より、実施例6のペレット触媒は高温耐久後も高い活性を示し、これはN2ガス中での熱処理によってPtがある程度粒成長している効果であることが明らかである。 From FIG. 9, it is clear that the pellet catalyst of Example 6 shows high activity even after high-temperature durability, which is an effect that Pt has grown to some extent by heat treatment in N 2 gas.

 <試験例4>
 実施例1と同様に調製されたα−アルミナ粉末に、実施例1と同様にしてPtが1重量%担持された触媒粉末を 0.5mm〜 1.7mmのペレット触媒とした。このペレット触媒を管状炉内に配置し、N2ガス流通下にて 800℃, 900℃,1000℃,1100℃でそれぞれ5時間加熱する熱処理を行った。
<Test Example 4>
In the same manner as in Example 1, a catalyst powder in which 1 wt% of Pt was supported on α-alumina powder prepared in the same manner as in Example 1 was used as a pellet catalyst of 0.5 mm to 1.7 mm. This pellet catalyst was placed in a tubular furnace and subjected to a heat treatment of heating at 800 ° C., 900 ° C., 1000 ° C., and 1100 ° C. for 5 hours under N 2 gas flow.

 熱処理後の各ペレット触媒及び熱処理しなかったペレット触媒について、表2に示したリーンガスとリッチガスを2分間ずつ交互に繰り返し流す変動雰囲気下にて1100℃でそれぞれ5時間加熱する耐久試験を行った。そして耐久試験後の各ペレット触媒を評価装置にそれぞれ配置し、試験例1とは異なる条件下にて、HCとNOx について50%浄化温度を測定した。結果を図10に示す。 For each of the pellet catalysts after the heat treatment and the pellet catalysts not subjected to the heat treatment, a durability test was performed at 1100 ° C. for 5 hours under a fluctuating atmosphere in which a lean gas and a rich gas shown in Table 2 were alternately and repeatedly passed for 2 minutes. And each place each pellet catalysts after the durability test in the evaluation device, at different conditions as in Test Example 1, was measured 50% purification temperature for HC and NO x. The results are shown in FIG.

 図10より、N2ガス中での熱処理温度が高くなるほど耐久試験後の活性が向上していることが明らかであり、N2ガス中での熱処理温度は 800℃では効果が小さく 900〜1200℃が適当であると考えられる。 It is clear from FIG. 10 that the higher the heat treatment temperature in N 2 gas is, the higher the activity after the durability test is. The effect is small when the heat treatment temperature in N 2 gas is 800 ° C. and 900 to 1200 ° C. Is considered appropriate.

実施例1の触媒の粒子構造を示す走査型電子顕微鏡写真(1000倍)である。3 is a scanning electron micrograph (× 1000) showing the particle structure of the catalyst of Example 1. 実施例1の触媒の粒子構造を示す走査型電子顕微鏡写真(1万倍)である。3 is a scanning electron micrograph (× 10,000) showing the particle structure of the catalyst of Example 1. 実施例1の触媒の断面の粒子構造を示す透過型電子顕微鏡写真(2万倍)である。3 is a transmission electron micrograph (magnification: 20,000) showing a particle structure of a cross section of the catalyst of Example 1. 実施例1の触媒の断面の粒子構造を示す透過型電子顕微鏡写真(10万倍)である。3 is a transmission electron micrograph (× 100,000) showing a particle structure of a cross section of the catalyst of Example 1. 実施例1の触媒の断面の粒子構造を示す透過型電子顕微鏡写真(20万倍)である。3 is a transmission electron micrograph (magnification: 200,000) showing a particle structure of a cross section of the catalyst of Example 1. 実施例及び比較例の触媒の耐久試験後のHC50%浄化温度を示すグラフである。It is a graph which shows HC50% purification temperature after the endurance test of the catalyst of an example and a comparative example. 実施例1及び実施例2の触媒のHC50%浄化温度及びNOx 50%浄化温度を示すグラフである。Is a graph showing the HC50% purification temperature and the NO x 50% purification temperature of the catalyst of Example 1 and Example 2. 実施例2の触媒の耐久試験後の断面の粒子構造を示す透過型電子顕微鏡写真(20万倍)と、その要部のEDXチャートである。FIG. 5 shows a transmission electron micrograph (magnification: 200,000) showing a particle structure of a cross section of the catalyst of Example 2 after a durability test, and an EDX chart of a main part thereof. 実施例6及び実施例7の触媒の耐久試験後のHC50%浄化温度を示すグラフである。9 is a graph showing HC50% purification temperatures of catalysts of Example 6 and Example 7 after a durability test. 熱処理温度と耐久試験後のHC及びNOx の50%浄化温度との関係を示すグラフである。Is a graph showing the relationship between the 50% purification temperature of the HC and NO x after heat treatment temperature and the durability test.

Claims (13)

 水酸化物を焼成することで形成され層間に隙間をもつ多層構造を有する酸化物からなることを特徴とする高耐熱性触媒担体。 (4) A highly heat-resistant catalyst carrier comprising an oxide formed by firing a hydroxide and having a multilayer structure having a gap between layers.  層間に隙間をもつ多層構造を有するα−アルミナからなることを特徴とする高耐熱性触媒担体。 (4) A highly heat-resistant catalyst carrier comprising α-alumina having a multilayer structure having a gap between layers.  請求項1又は請求項2に記載の高耐熱性触媒担体の少なくとも前記隙間に貴金属を担持してなることを特徴とする排ガス浄化用触媒。 A catalyst for purifying exhaust gas, wherein a noble metal is carried in at least the gap of the highly heat-resistant catalyst carrier according to claim 1 or 2.  前記隙間には前記貴金属と反応しない酸化物粒子がさらに担持されている請求項3に記載の排ガス浄化用触媒。 The exhaust gas purifying catalyst according to claim 3, wherein oxide particles that do not react with the noble metal are further carried in the gap.  前記酸化物粒子はセリアである請求項4に記載の排ガス浄化用触媒。 The exhaust gas purifying catalyst according to claim 4, wherein the oxide particles are ceria.  請求項1又は請求項2に記載の高耐熱性触媒担体に貴金属化合物溶液を含浸させ、蒸発乾固させて貴金属を担持する製造方法であって、蒸発乾固時に溶媒が完全に蒸発するまで外部から応力を加えることを特徴とする排ガス浄化用触媒の製造方法。 A method for supporting a noble metal compound by impregnating a highly heat-resistant catalyst carrier according to claim 1 or 2 with a noble metal compound solution and evaporating to dryness to support a noble metal, wherein the solvent is completely evaporated during evaporation to dryness. A method for producing an exhaust gas purifying catalyst, wherein a stress is applied from a pressure.  請求項1又は請求項2に記載の高耐熱性触媒担体の少なくとも前記隙間に貴金属を担持し、その後少なくとも前記隙間に該貴金属と反応しない酸化物粒子を担持することを特徴とする排ガス浄化用触媒の製造方法。 3. A catalyst for purifying exhaust gas, wherein a noble metal is supported in at least the gap of the highly heat-resistant catalyst carrier according to claim 1 or 2, and oxide particles which do not react with the noble metal are supported in at least the gap. Manufacturing method.  前記酸化物粒子はセリアである請求項7に記載の排ガス浄化用触媒。 8. The exhaust gas purifying catalyst according to claim 7, wherein the oxide particles are ceria.  請求項1又は請求項2に記載の高耐熱性触媒担体の少なくとも前記隙間に貴金属を担持し、その後熱処理することで該貴金属を粒成長させることを特徴とする排ガス浄化用触媒の製造方法。 A method for producing an exhaust gas purifying catalyst, comprising: supporting a noble metal in at least the gap of the highly heat-resistant catalyst support according to claim 1 or 2;  前記熱処理は、酸化性雰囲気では 600〜 800℃に加熱し、非酸化性雰囲気では 900〜1200℃に加熱する請求項9に記載の排ガス浄化用触媒の製造方法。 10. The method for producing an exhaust gas purifying catalyst according to claim 9, wherein the heat treatment is performed by heating to 600 to 800 ° C in an oxidizing atmosphere and to 900 to 1200 ° C in a non-oxidizing atmosphere.  前記貴金属の担持後に、前記隙間に前記貴金属と反応しない酸化物粒子を担持する請求項9又は請求項10に記載の排ガス浄化用触媒の製造方法。 11. The method for producing an exhaust gas purifying catalyst according to claim 9, wherein an oxide particle that does not react with the noble metal is supported in the gap after supporting the noble metal.  前記貴金属の粒成長後に前記酸化物粒子を担持する請求項11に記載の排ガス浄化用触媒の製造方法。 12. The method for producing an exhaust gas purifying catalyst according to claim 11, wherein the oxide particles are supported after the growth of the noble metal particles.  前記酸化物粒子はセリアである請求項11又は請求項12に記載の排ガス浄化用触媒の製造方法。 13. The method for producing an exhaust gas purifying catalyst according to claim 11, wherein the oxide particles are ceria.
JP2003337708A 2002-10-01 2003-09-29 Exhaust gas purification catalyst and method for producing the same Expired - Fee Related JP4259253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003337708A JP4259253B2 (en) 2002-10-01 2003-09-29 Exhaust gas purification catalyst and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002288731 2002-10-01
JP2003337708A JP4259253B2 (en) 2002-10-01 2003-09-29 Exhaust gas purification catalyst and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004141864A true JP2004141864A (en) 2004-05-20
JP4259253B2 JP4259253B2 (en) 2009-04-30

Family

ID=32473346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003337708A Expired - Fee Related JP4259253B2 (en) 2002-10-01 2003-09-29 Exhaust gas purification catalyst and method for producing the same

Country Status (1)

Country Link
JP (1) JP4259253B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006075748A (en) * 2004-09-10 2006-03-23 Toyota Motor Corp Catalyst for purification of exhaust gas
JP2006320840A (en) * 2005-05-19 2006-11-30 Mazda Motor Corp Catalyst for cleaning exhaust gas and its manufacturing method
JP2007152286A (en) * 2005-12-07 2007-06-21 Toyota Motor Corp High heat resistance catalyst carrier and its manufacturing method
JP2008080313A (en) * 2006-09-29 2008-04-10 Nichias Corp Metal oxide catalyst powder, method for producing the same, purifying filter, method for decomposing volatile organic solvent, and method for decomposing nitrogen compound

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006075748A (en) * 2004-09-10 2006-03-23 Toyota Motor Corp Catalyst for purification of exhaust gas
JP4538726B2 (en) * 2004-09-10 2010-09-08 トヨタ自動車株式会社 Exhaust gas purification catalyst
JP2006320840A (en) * 2005-05-19 2006-11-30 Mazda Motor Corp Catalyst for cleaning exhaust gas and its manufacturing method
JP2007152286A (en) * 2005-12-07 2007-06-21 Toyota Motor Corp High heat resistance catalyst carrier and its manufacturing method
JP2008080313A (en) * 2006-09-29 2008-04-10 Nichias Corp Metal oxide catalyst powder, method for producing the same, purifying filter, method for decomposing volatile organic solvent, and method for decomposing nitrogen compound

Also Published As

Publication number Publication date
JP4259253B2 (en) 2009-04-30

Similar Documents

Publication Publication Date Title
CN108472590B (en) Exhaust gas purification device
KR100881300B1 (en) Process for producing metal oxide particle and exhaust gas purifying catalyst
EP1952876A1 (en) Exhaust gas purifying catalyst and manufacturing method thereof
KR101438953B1 (en) LNT Catalysts with Enhanced Storage Capacities of Nitrogen Oxide at Low Temperature
US10118156B2 (en) Exhaust gas purification device
JP4707672B2 (en) Exhaust gas purification catalyst
JP5709005B2 (en) Exhaust gas purification catalyst and method for producing the same
JP2010510884A (en) Thermal aging resistant NOx storage materials and traps
JP2011147901A (en) Exhaust gas purifying catalyst
JPH10286462A (en) Catalyst of purifying exhaust gas
JP4238056B2 (en) Layered catalyst for exhaust gas purification
JP5827567B2 (en) Method for producing catalyst carrier or catalyst
JP4259253B2 (en) Exhaust gas purification catalyst and method for producing the same
JPH10277389A (en) Catalyst for cleaning exhaust gas
JP2005279437A (en) Catalyst for purifying exhaust gas
JP4538726B2 (en) Exhaust gas purification catalyst
JP3362532B2 (en) Exhaust gas purification catalyst and method for producing the same
JP3882422B2 (en) Method for producing exhaust gas purification catalyst
JP3879992B2 (en) Exhaust gas purification catalyst
JP2010269260A (en) Alumina carrier for exhaust gas purification catalyst, method of producing the alumina carrier, and catalyst for exhaust gas purification
JP2006320863A (en) Catalyst for cleaning exhaust gas and its manufacturing method
JP6639309B2 (en) Exhaust gas purification catalyst
JP4389159B2 (en) Exhaust gas purification catalyst
JP2005095762A (en) Exhaust gas cleaning system
JP2007152286A (en) High heat resistance catalyst carrier and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees