JP2004141829A - Catalyst for contact decomposition of hydrcarbon and contact decomposition method using the same - Google Patents

Catalyst for contact decomposition of hydrcarbon and contact decomposition method using the same Download PDF

Info

Publication number
JP2004141829A
JP2004141829A JP2002312538A JP2002312538A JP2004141829A JP 2004141829 A JP2004141829 A JP 2004141829A JP 2002312538 A JP2002312538 A JP 2002312538A JP 2002312538 A JP2002312538 A JP 2002312538A JP 2004141829 A JP2004141829 A JP 2004141829A
Authority
JP
Japan
Prior art keywords
catalyst
catalytic cracking
raw material
contact decomposition
pentasil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002312538A
Other languages
Japanese (ja)
Other versions
JP4159853B2 (en
Inventor
Kenichi Wakui
涌井 顕一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP2002312538A priority Critical patent/JP4159853B2/en
Priority to PCT/JP2003/013424 priority patent/WO2004037414A1/en
Publication of JP2004141829A publication Critical patent/JP2004141829A/en
Application granted granted Critical
Publication of JP4159853B2 publication Critical patent/JP4159853B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/405Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst for contact decomposition of hydrocarbon which can selectively manufacture soft olefin, such as ethylene, and propylene, at a high yield stably for a long period of time by catalytically decomposing gaseous or liquid hydrocarbon as a raw material at a lower temperature and a contact decomposition method utilizing the same. <P>SOLUTION: The contact decomposition catalyst is a catalyst for contact decomposition of the hydrocarbon raw material and is composed of a crystalline aluminosilicate contalyst precursor of a pentasil type which is formed by synthesizing mordenite as a seed crystal and carries a rare earth element. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、炭化水素の接触分解用触媒及びこれを使用する接触分解方法に関し、さらに詳しくは、炭化水素原料を接触分解することにより、軽質オレフィン、主としてエチレン及びプロピレンを製造するための触媒、およびその触媒を使用する炭化水素の接触分解方法に関する。
【0002】
【従来の技術】
エチレン、プロピレン等の軽質オレフィンは各種化学品の基礎原料として重要な物質である。従来、これらの軽質オレフィンの製造方法としては、エタン、プロパン、ブタン等のガス状炭化水素あるいはナフサ等の液状炭化水素を原料とし、外熱式の管状炉内で水蒸気雰囲気下に加熱分解する方法が広く実施されている。しかしながら、この方法では、オレフィン収率を高めるため800℃以上の高温を必要とすること、またそのために高価な装置材料を使用しなければならないという経済的に不利な点を有している。
【0003】
このため、触媒を用いた炭化水素の接触分解法が種々検討されてきている。それらの中でも固体酸とくにZSM−5等のペンタシル型ゼオライトを用いた場合は、500〜700℃程度の反応温度で比較的高いエチレン・プロピレン収率(それぞれ約10〜30質量%)が得られるため、数多くの例が報告されている。例えば、特定の酸量や酸強度を有するZSM−5型触媒(例えば、特許文献1、2参照)、銅、コバルト等の遷移金属を含有させたZSM−5型触媒(例えば、特許文献3、4参照)による接触分解法が開示され、また、希土類元素を含有するZSM−5型触媒(例えば、特許文献5〜9参照)による接触分解法が開示されている。一般に、これらのゼオライト触媒を用いた反応では、炭化水素の過分解や水素移行反応で生成するカーボン(コーク)が触媒上に付着し、活性劣化を起こすという問題点があるため、流動床式反応による連続再生(例えば、特許文献5〜7参照)、あるいは大量のスチーム共存下での反応(例えば、特許文献8、9参照)等が必要となる。しかしながら、再生のために導入したスチームあるいはカーボンの燃焼によって生成する高温スチームによってゼオライト格子からの脱アルミニウムが起こり、このため触媒活性化の永久劣化が生じるという問題点がある。したがって、これらのゼオライト触媒を工業的に長時間使用するためには、ゼオライトの耐水熱安定性の向上が不可欠である。
【0004】
ゼオライトの耐水熱安定性は、一般に結晶性の向上あるいはSiO/Al比の増大に従って向上する。例えば、SiO/Alモル比10以上の高シリカ型ゼオライトが耐熱性に優れているとされている(非特許文献1参照)。しかしながら、これらの触媒は工業的条件でのより長期の使用には耐久性が不十分であり、そのため種々の改良が行われている。
例えば、Fe、Cu、Co、Ni、Cr、Mn等の遷移金属およびカリウムまたはセシウムを含有させた高耐水熱性ZSM−5型ゼオライト(例えば、特許文献10〜13参照)は、カリウム・セシウム等のアルカリ金属を含むため酸強度が低く、接触分解触媒としては使用できない。Mn含有ZSM−5型触媒で耐水熱性が向上することを記載する論文もあるが、接触分解における触媒性能は不明である(非特許文献2参照)。また、Mnおよび/またはRe含有ZSM−5型触媒を用いた炭化水素の接触分解反応が開示されているが、耐久性に関する記載はなく、副生成物である芳香族が多いためオレフィン選択率は40%以下と低い(特許文献14参照)。その他の修飾剤、例えばZr等についてもゼオライトの耐水熱安定性を向上することが開示されているが、400℃程度の比較的低い温度で検討されており、オレフィン製造に有効に利用できるかどうかについては不明である(例えば、特許文献15参照)。また、モルデナイトを種結晶として調整したZSM−5にCuを担持させた触媒ではCuの凝集が抑制され、耐久性の高い排ガス浄化触媒が得られることが開示されているが、オレフィン製造に関する適用可能性は不明である(特許文献16、17参照)。
【0005】
上記のように、炭化水素を接触分解し、オレフィンを高収率で長期間安定に製造できる触媒、およびそれを利用した炭化水素の接触分解方法は確立されていないのが現状である。
【0006】
【特許文献1】
特開平3−504737号公報
【特許文献2】
特開平6−346062号公報
【特許文献3】
特開平2−1413号公報
【特許文献4】
特開平2−184638号公報
【特許文献5】
米国特許第5232675号公報
【特許文献6】
米国特許第5380690号公報
【特許文献7】
欧州特許第727404号公報
【特許文献8】
特開平11−180902号公報
【特許文献9】
特開平11−253807号公報
【特許文献10】
特開平4−50115号公報
【特許文献11】
特開平4−55310号公報
【特許文献12】
特開平4−78443号公報
【特許文献13】
特開平4−78444号公報
【特許文献14】
特開平8−299166号公報
【特許文献15】
特開平3−505844号公報
【特許文献16】
特開平6−126184号公報
【特許文献17】
特開平8−299800号公報
【非特許文献1】
富永博夫編、「ゼオライトの科学と応用」、講談社サイエンティフィク社刊、1987年、p.93
【非特許文献2】
「Studies in Surface Science and
Catalysis」、1996年、105巻、p.1549
【0007】
【発明が解決しようとする課題】
本発明は、ガス状あるいは液状炭化水素を原料に、より低温で接触分解し、エチレン、プロピレン等の軽質オレフィンを、選択的に高収率で、かつ、長期間安定に製造することができる、炭化水素の接触分解用触媒およびそれを利用した接触分解方法を提供することを目的とする。
【0008】
【問題を解決するための手段】
本発明者らは、上記課題を解決すべく鋭意研究を進めた結果、モルデナイトを種結晶として合成されたペンタシル型の結晶性アルミノケイ酸塩よりなる触媒前躯体に、希土類元素を担持して構成した接触分解触媒では、耐水熱安定性が著しく向上し、炭化水素の接触分解反応において長期間安定してオレフィンが高収率で得られることを見出し、本発明を完成するに至った。
【0009】
すなわち、本発明は、
(1) 炭化水素原料の接触分解用の触媒であって、モルデナイトを種結晶として合成されたペンタシル型の結晶性アルミノケイ酸塩からなる触媒前駆体に、希土類元素を担持したものであることを特徴とする接触分解触媒、
(2) 前記モルデナイトが下表2の格子面間隔(d値)を持つことを特徴とする上記(1)記載の接触分解触媒、
【0010】
【表2】

Figure 2004141829
【0011】
(3) 前記ペンタシル型の結晶性アルミノケイ酸塩は、そのSiO/Al(モル比)が10以上であることを特徴とする上記(1)又は(2)記載の接触分解触媒、
(4) 前記ペンタシル型の結晶性アルミノケイ酸塩は、MFI構造を有することを特徴とする上記(1)〜(3)のいずれかに記載の接触分解触媒、
(5) 該触媒がさらに0.1〜5質量%のリンを含むことを特徴とする上記(1)〜(4)のいずれかに記載の接触分解触媒、および
(6) 炭化水素原料を、反応温度350〜750℃、質量時間空間速度0.02〜20h−1、水蒸気対供給原料の質量比0.01:1〜2:1で、上記(1)〜(5)のいずれかに記載の触媒と接触させることを特徴とする炭化水素の接触分解方法、
を提供するものである。
【0012】
【発明の実施の形態】
本発明の触媒は、モルデナイトを種結晶として合成されたペンタシル型の結晶性アルミノケイ酸塩よりなる触媒前躯体に、希土類元素を担持して構成されたことを特徴とするゼオライト触媒を主成分とする。
種結晶として使用するモルデナイトは、天然品、合成品のいずれでもよいが、上記表2の格子面間隔(d値)を持つものが好ましい。また、より好ましくは、細孔方向の長さが2μm以上のモルデナイトである。
本発明の触媒前躯体を調製する際の、種結晶としてのモルデナイトの添加量は、特に限定はないが、ペンタシル型結晶性アルミノケイ酸塩の製造原料中のシリカ(SiO)に対して、通常、0.01〜10質量%であり、好ましくは0.05〜5質量%である。
【0013】
前記ペンタシル型の結晶性アルミケイ酸塩とは、合成ゼオライトであって、構成基本単位が酸素5員環のものである。例えば、フェリエライト、モルデナイト、ZSM−5、ZSM−11等が該当する。
ペンタシル型結晶性アルミノケイ酸塩以外のゼオライトでは、耐水熱性が比較的低いため、希土類元素を担持した後の耐久性が低くなるおそれがある。
このようなペンタシル型結晶性アルミノケイ酸塩の中でも、SiO/Alモル比が10以上のものが好ましい。SiO/Alモル比が10未満のものの場合、耐水熱性が比較的低いため、希土類元素を担持した後の耐水性が低くなるおそれがある。
【0014】
また、上記ペンタシル型結晶性アルミノケイ酸塩のうち、MFI構造、MEL構造を有するものが好ましい。このMFI構造とは、ZSM−5と類似の構造を指し、例えばZSM−8、ゼータ1、ゼータ3、Nu−4、Nu−5、TZ−1、TPZ−1等の構造が該当する。またMEL構造とは、ZSM−11と類似の構造を指す。
【0015】
本発明の触媒の形状は任意であり、各種のバインダーを入れる等により、例えばペレット状、板状、格子状とすることができる。また、コージェライト、ムライト又はアルミナ等の格子状の担体及び金網等の基材上に触媒が被覆されたものとしてもよい。
【0016】
本発明に係る触媒は、モルデナイトを種結晶としてペンタシル型の結晶性アルミノケイ酸塩を合成した後、このペンタシル型結晶性アルミノケイ酸塩に希土類元素を各種の方法により担持させて調製する。
希土類元素としてはどのようなものでも使用できるが、好ましくは、ランタン、セリウム、プラセオジム、ネオジム、サマリウム、ガドリニウム、ジスプロシウム等を挙げることができる。希土類元素は、それぞれを単独で使用しても、また、2種以上を混合して使用してもよい。触媒への希土類の修飾は種々の塩、例えば酢酸塩、硝酸塩、ハロゲン化物、硫酸塩、炭酸塩、あるいはアルコキシド、アセチルアセトナト等を使用し、イオン交換法、含浸法あるいは水熱合成法その他の方法で行うことができる。
【0017】
このような本発明に係る触媒は、通常のゼオライトが希土類元素を担持して構成されたものとは構造的に異なるものになっていると推定される。すなわち、モルデナイトを種結晶として合成されたペンタシル型の結晶性アルミノケイ酸塩は、通常のゼオライトと比べて、粒子径が大きいという構造的な差異が生じているため、希土類元素担持後の触媒の耐久性の向上という効果が顕著に現れるものと考えられる。このような効果は、特に表2に示す格子面間隔(d値)を有する大結晶モルデナイトの場合に著しい。
【0018】
本発明の触媒において、希土類元素の担持量は特に限定されないが、ゼオライト構造中のアルミニウムに対し原子比で0.01〜20、好ましくは0.1〜10、さらに好ましくは0.5〜5であり、これらの値より担持量が少ない場合は副生成物である芳香族炭化水素や重質物の生成が多くなり、また担持量が多すぎる場合はゼオライト成分の量が相対的に少なくなるため、触媒重量あたりの活性が低くなる。また、これらの触媒はゼオライトおよび希土類元素以外の他の成分、例えばアルカリ元素、アルカリ土類元素、遷移金属、貴金属、ハロゲン、リン、バインダー等が含まれていてもよい。シリカ、アルミナ、マグネシアあるいは石英砂等の充填剤と混合して使用することも可能である。
【0019】
本発明の触媒を用いた炭化水素の接触分解で使用する炭化水素原料としては、常温、常圧でガス状または液状の炭化水素類が使用できる。一般的には、炭素数2〜30、好ましくは2〜20のパラフィン又はこれを主成分(10質量%以上)とする炭化水素原料が用いられる。このような炭化水素原料としては、例えば、エタン、プロパン、ブタン、ペンタン、ヘキサン等のパラフィン類、あるいはナフサ、軽油等の軽質炭化水素留分を挙げることができる。また、原料成分は飽和炭化水素に限定されるものではなく、不飽和結合を有する成分を含有するものでも使用できる。
【0020】
本発明の接触分解反応の様式は特に限定しないが、固定床、移動床、流動床等の形式の反応器を使用し、上記の触媒を充填した触媒層へ炭化水素原料を供給することにより行われる。このとき炭化水素原料は、窒素、水素、ヘリウムあるいは水蒸気等で希釈されていてもよい。
【0021】
反応温度は350〜750℃、好ましくは500〜700℃、さらに好ましくは600〜680℃の範囲である。780℃を超える温度でも実施できるが、メタンおよびコークの生成が急増する。また、350度以下では十分な活性が得られないため、一回通過あたりのオレフィン収量が少なくなる。供給する炭化水素の触媒に対する質量時間空間速度は0.02〜20h−1、より好ましくは0.1〜10h−1の範囲で行われる。反応圧力は常圧、減圧あるいは加圧のいずれでも実施できるが、通常は常圧からやや加圧が採用される。
【0022】
また、本反応は重質生成物やコークの副生を抑制するために、水蒸気の共存下に接触反応を行うのが好ましい。水蒸気の供給量は、炭化水素原料に対して質量比で0.01:1〜2:1、より好ましくは0.1:1〜1:1の範囲である。以上のような条件下に本発明の方法を実施すれば、低温で炭化水素原料を効率よく分解でき、エチレン、プロピレン等の軽質オレフィンをより選択的に製造することができる。
【0023】
【実施例】
以下に本発明の実施例を挙げてさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
【0024】
実施例1
まず、硫酸アルミニウム13.5g、硫酸(97%)14.5g、水330gよりなる溶液(溶液1とする)、水ガラス(SiO28.4%、NaO9.5%)211g、水200gよりなる溶液(溶液2とする)及び塩化ナトリウム39.5g、水92gよりなる溶液(溶液3とする)を用意した。次に、溶液1と溶液2を同時に溶液3中に徐々に滴下しながら混合した。この反応混合物を硫酸でpH9.6に調製した後、種結晶としてモルデナイト(SiO/Alモル比=20)0.5gを添加した。
次に、この反応混合物を1リットル容量のオートクレーブ中に入れ、自己圧力下170℃、300rpmで攪拌しながら20時間放置した。冷却後、この反応混合物を濾過し、沈殿物を過剰の純水で充分洗浄した。この後、120℃で20時間乾燥させることにより、ZSM−5構造(MFI構造)の結晶性アルミノケイ酸塩を合成した。次に、この結晶性アルミノケイ酸塩をマッフル炉中、550℃で4時間焼成した。得られた結晶性アルミノケイ酸塩のSiO/Alモル比は37であった。この合成ゼオライトを、0.6mol/リットルのHCl水溶液を用いてイオン交換・焼成を行い、プロトン型とした後に、希土類化合物での修飾を行った。
上記の方法で合成したプロトン型ゼオライト4gを、希土類元素として0.4gのランタンを含む酢酸ランタン水溶液(0.99gの酢酸ランタン1.5水和物を脱イオン水60mlに溶解させたもの)に含浸し、40℃で2時間攪拌した。生成したスラリーを減圧下、40〜60℃で攪拌しながら約2時間かけて水分を蒸発させ、白色の粉末を得た。得られた粉末を空気中、120℃で8時間乾燥した後、マッフル炉内で4時間かけて600℃まで昇温し、600℃で5時間焼成した。得られた白色粉末を回収し、圧縮、粉砕、篩い分けして粒径約1mmΦの粒子状に成型したものをLa/ZSM−5(1)触媒とした。触媒のLa/Al原子比は0.84であった。
【0025】
このようにして調製した触媒の高温水熱条件による耐久性を調べるために、一定条件で高温水蒸気処理を行った後の触媒活性を、n−ヘキサンのパルス分解反応により評価した。
すなわち、実施例1で調製したLa/ZSM−5(1)触媒(圧縮、粉砕、篩い分けを行って約1mmΦの粒状の触媒に成型したもの)1gを固定床管型反応器に充填し、700℃で24時間、窒素およびスチームを流通させて高温水蒸気処理を行った(スチーム分圧:40kPa)。スチーム処理終了後、反応器内を窒素でパージし、触媒床の温度を500℃に設定してn−ヘキサンのパルス分解反応を行った。キャリアーガスとして窒素を75cm/minで流通させ、n−ヘキサンのパルス(導入液量1μl)を打込んで出口のn−ヘキサンの転化率を測定した。結果を表4に示す。
【0026】
また、炭化水素の接触分解による反応生成物を調べるために、固定床反応器を用いてn−ブタンを流通反応で接触分解して反応生成物を分析した。
すなわち、実施例1で調製したLa/ZSM−5(1)触媒(圧縮、粉砕、篩い分けし、約1mmΦの粒状の触媒に成型したもの)1gを、内径10mmのステンレス製反応管(外径3mmの熱電対用内挿管付き)に充填した。触媒層の長さは約30mmであった。触媒層の上下には石英砂を充填した。この反応器に空気を40cm/min(0℃、1気圧換算、以下同じ)で流しながら触媒層の温度を650℃まで昇温し、そのまま1時間前処理を行った。前処理終了後、触媒層の温度を650℃に保持し、原料としてn−ブタンを3.0cm/min、窒素およびスチームをそれぞれ30cm/min、0.5g/hの流量で供給して、高温水熱条件下でのn−ブタンの接触分解反応を行った。
反応生成物の分析をガスクロマトグラフィーにより行い、生成物収率および原料転化率を次式により算出した。
生成物収率(質量%)=(各成分質量/供給原料質量)×100
原料転化率(%)=(1−未反応原料質量/供給原料質量)×100
反応結果を、表5に示す。
【0027】
実施例2
実施例1と同様にして得た溶液1〜溶液3の混合物を硫酸でpH9.6に調製した後、種結晶として下記表3の格子面間隔(d値)をもつ大結晶モルデナイト0.5gを添加した。この後、本反応混合物を実施例1と同様の条件下、オートクレーブで攪拌しながら保持した。冷却後、実施例1と同様な処理を行ってLa修飾を行い、得た触媒をLa/ZSM−5(2)触媒とした。触媒のLa/Al原子比は同じく0.84であった。
この触媒の、高温水蒸気処理後のn−ヘキサンのパルス分解反応の結果を表4に、n−ブタンの接触分解反応の結果を表5に示す。
【0028】
【表3】
Figure 2004141829
【0029】
実施例3
実施例2において、溶液3の塩化ナトリウムの代わりに硫酸ナトリウム48gを使用した以外は実施例2と同様にしてLaを担持した合成ゼオライト触媒を調製し、この触媒をLa/ZSM−5(3)触媒とした。触媒のLa/Al原子比は0.84であった。
この触媒の、高温水蒸気処理後のn−ヘキサンのパルス分解反応の結果を表4に、n−ブタンの接触分解反応の結果を表5に示す。
【0030】
実施例4
実施例1で調製したLa/ZSM−5触媒(1)の2gに対し、その2質量%に相当する0.04gのリンを含むリン酸水素二アンモニウム水溶液(リン酸水素二アンモニウム0.17gを脱イオン水20gに溶解させたもの)に含浸し、40℃で2時間攪拌した。生成したスラリーを減圧下、40〜60℃で攪拌しながら約2時間かけて水分を蒸発させ、白色の粉末を得た。得られた粉末を空気中、120℃で8時間乾燥した後、マッフル炉内で4時間かけて600℃まで昇温し、600℃で5時間焼成した。得られた白色粉末を回収し、圧縮、粉砕、篩い分けして粒径約1mmΦの粒子状に成型したものをP−La/ZSM−5(1)触媒とした。触媒のLa/Al原子比は0.84であった。
この触媒の、高温水蒸気処理後のn−ヘキサンのパルス分解反応の結果を表4に、n−ブタンの接触分解反応の結果を表6に示す。
【0031】
比較例1
実施例1と同様にして得た溶液1〜溶液3の混合物を硫酸でpH9.6に調製した後、種結晶に代えて、結晶化剤であるテトラプロピルアンモニウムブロミド26.6gを添加した。この後、本反応混合物を実施例1と同様の条件下、オートクレーブ中で攪拌しながら保持した。冷却後、実施例1と同様に洗浄と乾燥を行い、さらにマッフル炉中、550℃で8時間焼成することにより、ZSM−5構造の結晶性アルミノケイ酸塩を得た。この結晶性アルミノケイ酸塩のSiO/Alモル比は38であった。次に、実施例1と同様な処理を行ってLa修飾を行い、得た触媒をLa/ZSM−5(4)触媒とした。触媒のLa/Al原子比は0.86であった。
この触媒の、高温水蒸気処理後のn−ヘキサンのパルス分解反応の結果を表4に、n−ブタンの接触分解反応の結果を表6に示す。
【0032】
比較例2
比較例1においてモルデナイト種結晶を使用せずに調製したLa/ZSM−5触媒(4)の2gを用い、実施例4と同様な方法でさらにリンを担持した触媒を調製した。ここで得られた触媒をP−La/ZSM−5(2)触媒とした。触媒のLa/Al原子比は0.86であった。
この触媒の、高温水蒸気処理後のn−ヘキサンのパルス分解反応の結果を表4に、n−ブタンの接触分解反応の結果を表6に示す。
【0033】
【表4】
Figure 2004141829
【0034】
【表5】
Figure 2004141829
【0035】
【表6】
Figure 2004141829
【0036】
表4の高温水蒸気処理後のn−ヘキサンのパルス分解反応の結果によると、実施例1〜4と、比較例1〜2を比較して明らかなように、本発明の方法では高温水蒸気処理後の活性が比較例と比べて著しく高く保持されていることがわかる。
【0037】
表5、6のn−ブタンの接触分解反応の結果によると、比較例1〜2では、流通時間を長くした場合に転化率およびオレフィン収率の低下が大きく、長時間運転での耐久性に劣るのに対し、実施例1〜4では、転化率およびオレフィン収率が長時間高く保たれていることがわかる。
【0038】
【発明の効果】
本発明の方法によれば、ガス状あるいは液状炭化水素を原料とし、芳香族炭化水素や重質物等の副生成物を抑制し、長期間安定にエチレン、プロピレン等の軽質オレフィンを50%以上の高収率で製造することができる。また、従来の接触分解法に比較して100℃以上低い経済的に有利な条件でオレフィンの製造を実施できる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a catalyst for catalytic cracking of hydrocarbons and a catalytic cracking method using the same, and more specifically, a catalyst for producing light olefins, mainly ethylene and propylene, by catalytically cracking a hydrocarbon raw material, and It relates to a method for catalytically cracking hydrocarbons using the catalyst.
[0002]
[Prior art]
Light olefins such as ethylene and propylene are important substances as basic raw materials for various chemical products. Conventionally, as a method for producing these light olefins, there is a method in which a gaseous hydrocarbon such as ethane, propane, butane or a liquid hydrocarbon such as naphtha is used as a raw material and is thermally decomposed under a steam atmosphere in an externally heated tubular furnace. Is widely practiced. However, this method has an economic disadvantage that a high temperature of 800 ° C. or more is required to increase the olefin yield, and that expensive equipment materials must be used.
[0003]
For this reason, various catalytic cracking methods of hydrocarbons using a catalyst have been studied. Among them, when a solid acid, particularly a pentasil-type zeolite such as ZSM-5, is used, a relatively high ethylene / propylene yield (each about 10 to 30% by mass) can be obtained at a reaction temperature of about 500 to 700 ° C. Numerous examples have been reported. For example, a ZSM-5 type catalyst having a specific acid amount and acid strength (for example, see Patent Documents 1 and 2), a ZSM-5 type catalyst containing a transition metal such as copper and cobalt (for example, Patent Document 3, 4), and a catalytic cracking method using a ZSM-5 type catalyst containing a rare earth element (see, for example, Patent Documents 5 to 9). In general, in reactions using these zeolite catalysts, there is a problem that carbon (coke) generated by hydrocarbon overcracking or hydrogen transfer reaction adheres to the catalyst and causes deterioration of the activity. (For example, see Patent Documents 5 to 7) or a reaction in the presence of a large amount of steam (for example, see Patent Documents 8 and 9). However, there is a problem in that the steam introduced for regeneration or the high-temperature steam generated by burning carbon causes dealumination from the zeolite lattice, which causes permanent deterioration of catalyst activation. Therefore, in order to use these zeolite catalysts industrially for a long time, it is essential to improve the hydrothermal stability of the zeolite.
[0004]
The hydrothermal stability of zeolites generally improves with increasing crystallinity or increasing the SiO 2 / Al 2 O 3 ratio. For example, a high silica zeolite having a SiO 2 / Al 2 O 3 molar ratio of 10 or more is said to have excellent heat resistance (see Non-Patent Document 1). However, these catalysts have insufficient durability for longer-term use under industrial conditions, and various improvements have been made.
For example, a highly hydrothermally resistant ZSM-5 type zeolite containing a transition metal such as Fe, Cu, Co, Ni, Cr, and Mn and potassium or cesium (for example, see Patent Literatures 10 to 13) includes potassium cesium and the like. Since it contains an alkali metal, it has a low acid strength and cannot be used as a catalytic cracking catalyst. There is a paper describing that the MSM-containing ZSM-5 type catalyst improves hydrothermal resistance, but the catalytic performance in catalytic cracking is unknown (see Non-Patent Document 2). Further, a catalytic cracking reaction of hydrocarbons using a Mn and / or Re-containing ZSM-5 type catalyst is disclosed, but there is no description about durability, and olefin selectivity is high because there are many aromatic by-products. It is as low as 40% or less (see Patent Document 14). Other modifiers, such as Zr, have also been disclosed to improve the hydrothermal stability of zeolites, but have been studied at a relatively low temperature of about 400 ° C. to determine whether they can be effectively used for olefin production. Is unknown (for example, see Patent Document 15). Further, it is disclosed that a catalyst in which Cu is supported on ZSM-5 prepared by using mordenite as a seed crystal suppresses agglomeration of Cu, thereby obtaining a highly durable exhaust gas purifying catalyst. The sex is unknown (see Patent Documents 16 and 17).
[0005]
As described above, at present, a catalyst capable of stably producing an olefin in a high yield for a long period of time by catalytically cracking a hydrocarbon and a method of catalytically cracking a hydrocarbon using the catalyst have not been established.
[0006]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 3-504737 [Patent Document 2]
JP-A-6-346062 [Patent Document 3]
Japanese Patent Application Laid-Open No. 2-1413 (Patent Document 4)
Japanese Patent Application Laid-open No. Hei 2-184846 [Patent Document 5]
US Patent No. 5,232,675 [Patent Document 6]
US Pat. No. 5,380,690 [Patent Document 7]
European Patent No. 727404 [Patent Document 8]
JP-A-11-180902 [Patent Document 9]
JP-A-11-253807 [Patent Document 10]
JP-A-4-50115 [Patent Document 11]
JP-A-4-55310 [Patent Document 12]
JP-A-4-78443 [Patent Document 13]
JP-A-4-78444 [Patent Document 14]
JP-A-8-299166 [Patent Document 15]
JP-A-3-505844 [Patent Document 16]
JP-A-6-126184 [Patent Document 17]
JP-A-8-299800 [Non-Patent Document 1]
Hiroo Tominaga, ed., "Science and Application of Zeolite", Kodansha Scientific, 1987, p. 93
[Non-patent document 2]
“Studies in Surface Science and
Catalysis ", 1996, volume 105, p. 1549
[0007]
[Problems to be solved by the invention]
The present invention, gaseous or liquid hydrocarbons as raw materials, catalytic cracking at lower temperature, ethylene, light olefins such as propylene, selectively high yield, and can be produced stably for a long time, An object of the present invention is to provide a catalyst for catalytic cracking of hydrocarbons and a catalytic cracking method using the same.
[0008]
[Means to solve the problem]
The present inventors have made intensive studies to solve the above problems, and as a result, formed a catalyst precursor composed of a pentasil-type crystalline aluminosilicate synthesized using mordenite as a seed crystal, supporting a rare earth element. With the catalytic cracking catalyst, the hydrothermal stability was remarkably improved, and it was found that olefins could be stably obtained in a high yield in the catalytic cracking reaction of hydrocarbons for a long time, and the present invention was completed.
[0009]
That is, the present invention
(1) A catalyst for catalytic cracking of a hydrocarbon material, characterized in that a rare earth element is supported on a catalyst precursor composed of a pentasil-type crystalline aluminosilicate synthesized using mordenite as a seed crystal. Catalytic cracking catalyst,
(2) The catalytic cracking catalyst according to the above (1), wherein the mordenite has a lattice spacing (d value) shown in Table 2 below.
[0010]
[Table 2]
Figure 2004141829
[0011]
(3) The catalytic cracking catalyst according to (1) or (2), wherein the pentasil-type crystalline aluminosilicate has a SiO 2 / Al 2 O 3 (molar ratio) of 10 or more.
(4) The catalytic cracking catalyst according to any one of the above (1) to (3), wherein the pentasil-type crystalline aluminosilicate has an MFI structure.
(5) The catalytic cracking catalyst according to any one of the above (1) to (4), wherein the catalyst further contains 0.1 to 5% by mass of phosphorus, and (6) a hydrocarbon raw material, A reaction temperature of 350 to 750 ° C., a mass hourly space velocity of 0.02 to 20 h −1 , and a mass ratio of steam to feedstock of 0.01: 1 to 2: 1, described in any of the above (1) to (5). A method for catalytically cracking hydrocarbons, which is brought into contact with a catalyst of
Is provided.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
The catalyst of the present invention is mainly composed of a zeolite catalyst characterized by being constituted by supporting a rare earth element on a catalyst precursor composed of a pentasil-type crystalline aluminosilicate synthesized using mordenite as a seed crystal. .
The mordenite used as the seed crystal may be a natural product or a synthetic product, but preferably has a lattice spacing (d value) shown in Table 2 above. More preferably, the mordenite has a length in the pore direction of 2 μm or more.
When preparing the catalyst precursor of the present invention, the amount of mordenite added as a seed crystal is not particularly limited, but is usually based on silica (SiO 2 ) in a raw material for producing a pentasil-type crystalline aluminosilicate. , 0.01 to 10% by mass, and preferably 0.05 to 5% by mass.
[0013]
The pentasil-type crystalline aluminum silicate is a synthetic zeolite whose constituent basic unit is a 5-membered oxygen ring. For example, ferrierite, mordenite, ZSM-5, ZSM-11, etc. are applicable.
Since zeolites other than pentasil-type crystalline aluminosilicate have relatively low hydrothermal resistance, the durability after supporting the rare earth element may be reduced.
Among such pentasil-type crystalline aluminosilicates, those having a SiO 2 / Al 2 O 3 molar ratio of 10 or more are preferable. If the molar ratio of SiO 2 / Al 2 O 3 is less than 10, the hydrothermal resistance is relatively low, so that the water resistance after supporting the rare earth element may be low.
[0014]
Further, among the pentasil-type crystalline aluminosilicates, those having an MFI structure and a MEL structure are preferable. The MFI structure refers to a structure similar to ZSM-5, and corresponds to a structure such as ZSM-8, zeta 1, zeta 3, Nu-4, Nu-5, TZ-1, and TPZ-1. The MEL structure refers to a structure similar to ZSM-11.
[0015]
The catalyst of the present invention may have any shape, for example, into a pellet shape, a plate shape, or a lattice shape by adding various binders. The catalyst may be coated on a lattice-like carrier such as cordierite, mullite or alumina and a base material such as a wire mesh.
[0016]
The catalyst according to the present invention is prepared by synthesizing a pentasil-type crystalline aluminosilicate using mordenite as a seed crystal, and then supporting the pentasil-type crystalline aluminosilicate by a variety of methods.
Any rare earth element can be used, but preferably, lanthanum, cerium, praseodymium, neodymium, samarium, gadolinium, dysprosium and the like can be used. The rare earth elements may be used alone or in combination of two or more. Modification of the catalyst with rare earths can be carried out using various salts, for example, acetates, nitrates, halides, sulfates, carbonates, or alkoxides, acetylacetonates, etc., by ion exchange, impregnation or hydrothermal synthesis, etc. Can be done in a way.
[0017]
It is presumed that such a catalyst according to the present invention is structurally different from a catalyst in which ordinary zeolite supports a rare earth element. That is, since the pentasil-type crystalline aluminosilicate synthesized using mordenite as a seed crystal has a structural difference that the particle diameter is larger than that of a normal zeolite, the durability of the catalyst after supporting the rare earth element is high. It is considered that the effect of improving the performance is remarkably exhibited. Such an effect is particularly remarkable in the case of large crystal mordenite having the lattice spacing (d value) shown in Table 2.
[0018]
In the catalyst of the present invention, the amount of the rare earth element to be supported is not particularly limited, but is preferably 0.01 to 20, preferably 0.1 to 10, more preferably 0.5 to 5 by atomic ratio with respect to aluminum in the zeolite structure. Yes, if the supported amount is smaller than these values, the generation of aromatic hydrocarbons and heavy substances as by-products increases, and if the supported amount is too large, the amount of the zeolite component is relatively small, The activity per catalyst weight is reduced. Further, these catalysts may contain components other than zeolite and rare earth elements, for example, alkali elements, alkaline earth elements, transition metals, noble metals, halogens, phosphorus, binders and the like. It is also possible to use a mixture with a filler such as silica, alumina, magnesia or quartz sand.
[0019]
As the hydrocarbon raw material used in the catalytic cracking of hydrocarbons using the catalyst of the present invention, gaseous or liquid hydrocarbons at normal temperature and normal pressure can be used. Generally, a paraffin having 2 to 30 carbon atoms, preferably 2 to 20 carbon atoms, or a hydrocarbon raw material containing this as a main component (10% by mass or more) is used. Examples of such hydrocarbon raw materials include paraffins such as ethane, propane, butane, pentane, and hexane, and light hydrocarbon fractions such as naphtha and light oil. The raw material components are not limited to saturated hydrocarbons, and those containing components having unsaturated bonds can also be used.
[0020]
The mode of the catalytic cracking reaction of the present invention is not particularly limited, but the catalytic cracking reaction is carried out by using a reactor of a fixed bed, moving bed, fluidized bed, or the like, and supplying the hydrocarbon raw material to the catalyst bed filled with the catalyst. Is At this time, the hydrocarbon raw material may be diluted with nitrogen, hydrogen, helium, steam, or the like.
[0021]
The reaction temperature is in the range of 350 to 750C, preferably 500 to 700C, more preferably 600 to 680C. It can be carried out at temperatures above 780 ° C., but the production of methane and coke increases sharply. On the other hand, if the temperature is lower than 350 ° C., sufficient activity cannot be obtained, so that the yield of olefin per one pass decreases. The mass hourly space velocity of the hydrocarbon to be fed to the catalyst is in the range of 0.02 to 20 h -1 , more preferably 0.1 to 10 h -1 . The reaction can be carried out at normal pressure, reduced pressure or increased pressure, but usually from normal pressure to slightly increased pressure is employed.
[0022]
In addition, this reaction is preferably carried out in the coexistence of steam in order to suppress heavy products and by-products of coke. The supply amount of steam is in the range of 0.01: 1 to 2: 1, more preferably 0.1: 1 to 1: 1 by mass ratio to the hydrocarbon raw material. If the method of the present invention is carried out under the above conditions, the hydrocarbon raw material can be efficiently decomposed at a low temperature, and light olefins such as ethylene and propylene can be produced more selectively.
[0023]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
[0024]
Example 1
First, a solution composed of 13.5 g of aluminum sulfate, 14.5 g of sulfuric acid (97%), and 330 g of water (hereinafter referred to as solution 1), 211 g of water glass (28.4% of SiO 2 , 9.5% of Na 2 O), and 200 g of water (Solution 2) and a solution (solution 3) consisting of 39.5 g of sodium chloride and 92 g of water were prepared. Next, the solution 1 and the solution 2 were simultaneously mixed into the solution 3 while being gradually dropped. After adjusting the pH of the reaction mixture to 9.6 with sulfuric acid, 0.5 g of mordenite (SiO 2 / Al 2 O 3 molar ratio = 20) as a seed crystal was added.
Next, the reaction mixture was placed in a 1-liter autoclave, and allowed to stand at 170 ° C. and 300 rpm under self-pressure for 20 hours while stirring. After cooling, the reaction mixture was filtered, and the precipitate was sufficiently washed with excess pure water. Thereafter, by drying at 120 ° C. for 20 hours, a crystalline aluminosilicate having a ZSM-5 structure (MFI structure) was synthesized. Next, this crystalline aluminosilicate was calcined in a muffle furnace at 550 ° C. for 4 hours. The SiO 2 / Al 2 O 3 molar ratio of the obtained crystalline aluminosilicate was 37. The synthetic zeolite was subjected to ion exchange and calcination using a 0.6 mol / liter aqueous HCl solution to obtain a proton type, and then modified with a rare earth compound.
4 g of the proton type zeolite synthesized by the above method is added to an aqueous lanthanum acetate solution containing 0.4 g of lanthanum as a rare earth element (0.99 g of lanthanum acetate 1.5 hydrate dissolved in 60 ml of deionized water). Impregnated and stirred at 40 ° C. for 2 hours. The resulting slurry was stirred at 40 to 60 ° C. under reduced pressure to evaporate water for about 2 hours to obtain a white powder. The obtained powder was dried in air at 120 ° C. for 8 hours, then heated in a muffle furnace to 600 ° C. over 4 hours, and calcined at 600 ° C. for 5 hours. The obtained white powder was collected, compressed, pulverized, sieved, and formed into particles having a particle size of about 1 mmΦ to obtain a La / ZSM-5 (1) catalyst. The La / Al atomic ratio of the catalyst was 0.84.
[0025]
In order to examine the durability of the catalyst thus prepared under high-temperature hydrothermal conditions, the catalytic activity after high-temperature steam treatment under certain conditions was evaluated by a pulse decomposition reaction of n-hexane.
That is, 1 g of the La / ZSM-5 (1) catalyst prepared in Example 1 (compressed, pulverized, and sieved and formed into a granular catalyst of about 1 mmΦ) was charged into a fixed-bed tube reactor, High-temperature steam treatment was performed at 700 ° C. for 24 hours by flowing nitrogen and steam (steam partial pressure: 40 kPa). After completion of the steam treatment, the inside of the reactor was purged with nitrogen, and the temperature of the catalyst bed was set at 500 ° C. to perform a pulse decomposition reaction of n-hexane. Nitrogen was passed at 75 cm 3 / min as a carrier gas, and a pulse of n-hexane (introduced liquid amount of 1 μl) was injected to measure the conversion of n-hexane at the outlet. Table 4 shows the results.
[0026]
Further, in order to examine a reaction product due to catalytic cracking of hydrocarbons, n-butane was catalytically cracked by a flow reaction using a fixed bed reactor, and the reaction product was analyzed.
That is, 1 g of the La / ZSM-5 (1) catalyst (compressed, crushed, sieved and formed into a granular catalyst having a diameter of about 1 mm) prepared in Example 1 was used for a stainless steel reaction tube having an inner diameter of 10 mm (outer diameter). (With 3 mm thermocouple intubation). The length of the catalyst layer was about 30 mm. Quartz sand was filled above and below the catalyst layer. The temperature of the catalyst layer was raised to 650 ° C. while flowing air at 40 cm 3 / min (0 ° C., 1 atm conversion, the same applies hereinafter) through the reactor, and pretreatment was performed for 1 hour. Before After completion of the treatment, the temperature of the catalyst layer was held at 650 ° C., the n- butane as a raw material 3.0 cm 3 / min, nitrogen and steam was supplied at a flow rate of each 30cm 3 /min,0.5g/h And a catalytic cracking reaction of n-butane under high-temperature hydrothermal conditions.
The reaction product was analyzed by gas chromatography, and the product yield and the raw material conversion were calculated by the following equations.
Product yield (% by mass) = (weight of each component / weight of feedstock) × 100
Raw material conversion rate (%) = (1-mass of unreacted raw material / mass of feed material) x 100
Table 5 shows the reaction results.
[0027]
Example 2
A mixture of solutions 1 to 3 obtained in the same manner as in Example 1 was adjusted to pH 9.6 with sulfuric acid, and then 0.5 g of large crystal mordenite having a lattice spacing (d value) shown in Table 3 below as a seed crystal. Was added. Thereafter, the reaction mixture was kept under stirring in an autoclave under the same conditions as in Example 1. After cooling, the same treatment as in Example 1 was performed to perform La modification, and the obtained catalyst was used as a La / ZSM-5 (2) catalyst. The La / Al atomic ratio of the catalyst was also 0.84.
Table 4 shows the results of the pulse decomposition reaction of n-hexane after the high-temperature steam treatment of the catalyst, and Table 5 shows the results of the catalytic decomposition reaction of n-butane.
[0028]
[Table 3]
Figure 2004141829
[0029]
Example 3
A synthetic zeolite catalyst carrying La was prepared in the same manner as in Example 2 except that 48 g of sodium sulfate was used in place of sodium chloride in solution 3, and this catalyst was used as La / ZSM-5 (3) The catalyst was used. The La / Al atomic ratio of the catalyst was 0.84.
Table 4 shows the results of the pulse decomposition reaction of n-hexane after the high-temperature steam treatment of the catalyst, and Table 5 shows the results of the catalytic decomposition reaction of n-butane.
[0030]
Example 4
To 2 g of the La / ZSM-5 catalyst (1) prepared in Example 1, an aqueous solution of diammonium hydrogen phosphate containing 0.14 g of diammonium hydrogen phosphate containing 0.04 g of phosphorus corresponding to 2% by mass thereof was added. 20 g of deionized water) and stirred at 40 ° C. for 2 hours. The resulting slurry was stirred at 40 to 60 ° C. under reduced pressure to evaporate water for about 2 hours to obtain a white powder. The obtained powder was dried in air at 120 ° C. for 8 hours, then heated in a muffle furnace to 600 ° C. over 4 hours, and calcined at 600 ° C. for 5 hours. The obtained white powder was collected, compressed, pulverized, sieved and formed into particles having a particle size of about 1 mmΦ to obtain a P-La / ZSM-5 (1) catalyst. The La / Al atomic ratio of the catalyst was 0.84.
Table 4 shows the results of the pulse decomposition reaction of n-hexane after the high-temperature steam treatment of the catalyst, and Table 6 shows the results of the catalytic decomposition reaction of n-butane.
[0031]
Comparative Example 1
After the mixture of Solution 1 to Solution 3 obtained in the same manner as in Example 1 was adjusted to pH 9.6 with sulfuric acid, 26.6 g of a crystallization agent, tetrapropylammonium bromide, was added instead of seed crystals. Thereafter, the reaction mixture was kept under stirring in an autoclave under the same conditions as in Example 1. After cooling, washing and drying were carried out in the same manner as in Example 1, and calcination was carried out in a muffle furnace at 550 ° C. for 8 hours to obtain a crystalline aluminosilicate having a ZSM-5 structure. The SiO 2 / Al 2 O 3 molar ratio of this crystalline aluminosilicate was 38. Next, the same treatment as in Example 1 was performed to perform La modification, and the obtained catalyst was used as a La / ZSM-5 (4) catalyst. The La / Al atomic ratio of the catalyst was 0.86.
Table 4 shows the results of the pulse decomposition reaction of n-hexane after the high-temperature steam treatment of the catalyst, and Table 6 shows the results of the catalytic decomposition reaction of n-butane.
[0032]
Comparative Example 2
Using 2 g of the La / ZSM-5 catalyst (4) prepared in Comparative Example 1 without using the mordenite seed crystals, a catalyst further supporting phosphorus was prepared in the same manner as in Example 4. The catalyst obtained here was used as a P-La / ZSM-5 (2) catalyst. The La / Al atomic ratio of the catalyst was 0.86.
Table 4 shows the results of the pulse decomposition reaction of n-hexane after the high-temperature steam treatment of the catalyst, and Table 6 shows the results of the catalytic decomposition reaction of n-butane.
[0033]
[Table 4]
Figure 2004141829
[0034]
[Table 5]
Figure 2004141829
[0035]
[Table 6]
Figure 2004141829
[0036]
According to the results of the pulse decomposition reaction of n-hexane after the high-temperature steam treatment shown in Table 4, as is apparent from a comparison between Examples 1 to 4 and Comparative Examples 1 and 2, It can be seen that the activity of the compound was maintained significantly higher than that of the comparative example.
[0037]
According to the results of the catalytic cracking reaction of n-butane in Tables 5 and 6, in Comparative Examples 1 and 2, the conversion and the olefin yield were greatly reduced when the flow time was increased, and the durability in long-time operation was reduced. In contrast, in Examples 1 to 4, it is understood that the conversion and the olefin yield were kept high for a long time.
[0038]
【The invention's effect】
According to the method of the present invention, a gaseous or liquid hydrocarbon is used as a raw material, and by-products such as aromatic hydrocarbons and heavy substances are suppressed. It can be produced in high yield. Further, the production of olefins can be carried out under economically advantageous conditions lower by at least 100 ° C. as compared with the conventional catalytic cracking method.

Claims (6)

炭化水素原料の接触分解用の触媒であって、モルデナイトを種結晶として合成されたペンタシル型の結晶性アルミノケイ酸塩からなる触媒前駆体に、希土類元素を担持したものであることを特徴とする接触分解触媒。A catalyst for catalytic cracking of a hydrocarbon raw material, wherein the catalyst precursor comprises a pentasil-type crystalline aluminosilicate synthesized using mordenite as a seed crystal and a rare earth element supported thereon. Cracking catalyst. 前記モルデナイトが下表1の格子面間隔(d値)を持つことを特徴とする請求項1記載の接触分解触媒。
Figure 2004141829
The catalytic cracking catalyst according to claim 1, wherein the mordenite has a lattice spacing (d value) shown in Table 1 below.
Figure 2004141829
前記ペンタシル型の結晶性アルミノケイ酸塩は、そのSiO/Al(モル比)が10以上であることを特徴とする請求項1又は2記載の接触分解触媒。 3. The catalytic cracking catalyst according to claim 1, wherein the pentasil-type crystalline aluminosilicate has a SiO 2 / Al 2 O 3 (molar ratio) of 10 or more. 4. 前記ペンタシル型の結晶性アルミノケイ酸塩は、MFI構造を有することを特徴とする請求項1〜3のいずれかに記載の接触分解触媒。The catalytic cracking catalyst according to any one of claims 1 to 3, wherein the pentasil-type crystalline aluminosilicate has an MFI structure. 該触媒がさらに0.1〜5質量%のリンを含むことを特徴とする請求項1〜4のいずれかに記載の接触分解触媒。The catalytic cracking catalyst according to any one of claims 1 to 4, wherein the catalyst further contains 0.1 to 5% by mass of phosphorus. 炭化水素原料を、反応温度350〜750℃、質量時間空間速度0.02〜20h−1、水蒸気対供給原料の質量比0.01:1〜2:1で、請求項1〜5のいずれかに記載の触媒と接触させることを特徴とする炭化水素の接触分解方法。The hydrocarbon raw material is prepared at a reaction temperature of 350 to 750 ° C., a mass hourly space velocity of 0.02 to 20 h −1 , and a steam to feed mass ratio of 0.01: 1 to 2: 1. A catalytic cracking method for hydrocarbons, which is brought into contact with the catalyst described in 1 above.
JP2002312538A 2002-10-28 2002-10-28 Catalyst for catalytic cracking of hydrocarbon and catalytic cracking method using the same Expired - Fee Related JP4159853B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002312538A JP4159853B2 (en) 2002-10-28 2002-10-28 Catalyst for catalytic cracking of hydrocarbon and catalytic cracking method using the same
PCT/JP2003/013424 WO2004037414A1 (en) 2002-10-28 2003-10-21 Catalyst for catalytic cracking of hydrocarbon and method of catalytic cracking using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002312538A JP4159853B2 (en) 2002-10-28 2002-10-28 Catalyst for catalytic cracking of hydrocarbon and catalytic cracking method using the same

Publications (2)

Publication Number Publication Date
JP2004141829A true JP2004141829A (en) 2004-05-20
JP4159853B2 JP4159853B2 (en) 2008-10-01

Family

ID=32171135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002312538A Expired - Fee Related JP4159853B2 (en) 2002-10-28 2002-10-28 Catalyst for catalytic cracking of hydrocarbon and catalytic cracking method using the same

Country Status (2)

Country Link
JP (1) JP4159853B2 (en)
WO (1) WO2004037414A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007137840A (en) * 2005-11-21 2007-06-07 Idemitsu Kosan Co Ltd Method for producing xylenes
JP2012241019A (en) * 2011-05-13 2012-12-10 Idemitsu Kosan Co Ltd Manufacturing method of light olefin and/or monocyclic aromatic compound
US9919297B2 (en) 2013-08-05 2018-03-20 Mitsubishi Chemical Corporation Zeolite, and production method and use therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3271802B2 (en) * 1992-10-16 2002-04-08 出光興産株式会社 Exhaust gas purification catalyst and exhaust gas purification method using the same
CN1034586C (en) * 1993-11-05 1997-04-16 中国石油化工总公司 Catalytic conversion method of low-carbon olefines high-output
AU4910697A (en) * 1996-10-17 1998-05-11 Exxon Chemical Patents Inc. Hydrocarbon conversion using large crystal zeolite catalyst

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007137840A (en) * 2005-11-21 2007-06-07 Idemitsu Kosan Co Ltd Method for producing xylenes
JP2012241019A (en) * 2011-05-13 2012-12-10 Idemitsu Kosan Co Ltd Manufacturing method of light olefin and/or monocyclic aromatic compound
US9919297B2 (en) 2013-08-05 2018-03-20 Mitsubishi Chemical Corporation Zeolite, and production method and use therefor

Also Published As

Publication number Publication date
WO2004037414A1 (en) 2004-05-06
JP4159853B2 (en) 2008-10-01

Similar Documents

Publication Publication Date Title
KR100993452B1 (en) Process for producing olefin by catalytic cracking of hydrocarbon
US11766667B2 (en) Zeolite catalyst and method for producing lower olefin
WO2008122203A1 (en) Catalytic composition for producing olefins by catalytic cracking
JP4823655B2 (en) Method for producing xylenes
JP5535201B2 (en) Process for producing benzene, toluene (and naphthalene) from C1-C4 alkanes by simultaneous metering of hydrogen in separate locations
JP4452021B2 (en) Hydrocarbon catalytic cracking process
JP5668422B2 (en) Method for producing aluminosilicate
JP2011116707A (en) Method for producing lower hydrocarbon and aromatic compound and production catalyst
WO2005105710A1 (en) Method for producing lower olefin
JP2021506909A (en) Catalyst for the production of para-xylene by methylation of benzene and / or toluene
JP5600923B2 (en) Method for producing aluminosilicate
JP2014024007A (en) Zeolite catalyst, process for producing zeolite catalyst and process for producing lower olefin
JP5192493B2 (en) Zeolite / kaolin catalyst composition
JP3072348B2 (en) Method for producing lower olefin
JP6446033B2 (en) Process for producing unsaturated hydrocarbons
JP4159853B2 (en) Catalyst for catalytic cracking of hydrocarbon and catalytic cracking method using the same
JP4414169B2 (en) Olefin production method
JPS61289049A (en) Production of propylene
JP5674029B2 (en) Propylene and ethylene production method
US11358912B2 (en) Increased oligomer selectivity from olefin oligomerization by incorporation of boron
JP2021045722A (en) Partial oxidation catalyst of light hydrocarbon, and method for producing carbon monoxide and hydrogen by the catalyst
WO2014093440A1 (en) Conversion of methane to aromatic compounds using uzm-44 aluminosilicate zeolite
JP3068347B2 (en) Method for producing high octane gasoline base material
JPS62151490A (en) Production of gasoline having high octane value
CN106518604A (en) Ethylbenzene synthesis method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041215

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080716

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140725

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees