JP2004141711A - Exhaust gas cleaning catalyst body, catalyst structure and method of manufacturing them - Google Patents

Exhaust gas cleaning catalyst body, catalyst structure and method of manufacturing them Download PDF

Info

Publication number
JP2004141711A
JP2004141711A JP2002306827A JP2002306827A JP2004141711A JP 2004141711 A JP2004141711 A JP 2004141711A JP 2002306827 A JP2002306827 A JP 2002306827A JP 2002306827 A JP2002306827 A JP 2002306827A JP 2004141711 A JP2004141711 A JP 2004141711A
Authority
JP
Japan
Prior art keywords
catalyst
slurry
metal lath
exhaust gas
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002306827A
Other languages
Japanese (ja)
Inventor
Eiji Miyamoto
宮本 英治
Yasuyoshi Kato
加藤 泰良
Kazunori Ito
伊藤 和典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2002306827A priority Critical patent/JP2004141711A/en
Publication of JP2004141711A publication Critical patent/JP2004141711A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust gas cleaning catalyst structure capable of preventing an increase in pressure loss caused by a stagnated liquid even if a catalytic component is supported on a metal lath substrate by a slurry coating method. <P>SOLUTION: In the exhaust gas cleaning catalyst structure formed by applying a catalyst slurry to a sheetlike metal lath substrate molded into a flat sheet shape or molded so as to have a corrugated, uneven or step-like cross section, a large number of catalyst bodies each having the liquid sump of the catalyst slurry, which is applied to one side parallel to the advance direction at the time of lath processing of the metal lath substrate of each catalyst body, are laminated so that the sides where a liquid stagnation is formed become parallel to a gas flow direction to be housed in a frame body. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、排ガス浄化用触媒体、触媒構造体およびその製造方法に係り、特に、メタルラス基材に触媒成分含有スラリをコーティングした排ガス浄化用触媒体、触媒構造体およびその製造方法であって、圧力損失の増加を抑制することができる排ガス浄化用触媒体、触媒構造体およびその製造方法に関する。
【0002】
【従来の技術】
発電所などから排出される排煙中のNOxは酸性雨などの原因物質であり、その効果的な除去方法として、例えばNH3 を還元剤として選択的接触還元を行う排煙脱硝法が火力発電所を中心に幅広く用いられている。脱硝触媒としては、通常ハニカム状、板状等に成形された、バナジウム(V)、モリブデン(Mo)、またはタングステン(W)を活性成分とする酸化チタン(TiO2 )系触媒が使用されており、各種の製造法が提案されている。例えば、酸化チタンとV、Mo、Wなどの触媒活性成分の塩類を水と共に混練した後、成形、焼成する混練法、酸化チタンを成形、焼成した担体に触媒活性成分塩類の混合溶液を含浸させる含浸法(特開2000−308832号公報)、あらかじめ調製した触媒成分粉末をスラリ化したものを金属製またはセラミック製基材にコーティングするスラリーコーティング法(特開昭50−128681号公報、特公昭53−34195号公報、特開昭63−234224号公報)等が知られている。これらのうち、スラリーコーティング法は、触媒成分を含むスラリ中に触媒基材を浸漬して前記触媒成分を担持させるものであり、触媒基材の薄板化、軽量化に適した方法である。
【特許文献1】特開昭50−128681号公報
【特許文献2】特公昭53−034195号公報
【特許文献3】特開昭63−234224号公報
【0003】
【発明が解決しようとする課題】
しかしなから、このようなスラリーコーティング法で触媒体を製造する際には、液溜りの問題を避けることはできない。
すなわち、スラリーコーティング法によって、触媒基材、特にメタルラス基材にその開孔部を塞いだ状態に触媒成分含有スラリをコーティングするためには、触媒成分含有スラリ(以下、単に触媒スラリまたはスラリという)に浸漬したメタルラス基材を、該メタルラスの製造時におけるラス加工時の進行方向を上下方向にして引上げる必要があるが、ラス加工時の進行方向(目開き方向)に沿って触媒スラリから引上げたスラリコーティングメタルラス基材を、引き上げたままの位置関係で乾燥および/または焼成するとラス加工時の進行方向と直交する二辺のうち前記引上げ時に下方となった端部に、触媒スラリが厚くコーティングされた液溜まりが形成される。
【0004】
図6は、従来のスラリーコーティング法によって調製された触媒体および、該触媒体を多数積層した触媒構造体の説明図である。図6において(A)は、メタルラス基材を触媒スラリに浸漬した後、ラス加工時の進行方向Aに沿って引上げ、引き上げたままの上下関係で乾燥および/または焼成した触媒体の平面図であり、触媒体6のラス加工時の進行方向下端の一辺に液溜まり5が形成されている。
【0005】
ここで、メタルラス基材に触媒スラリをコーティングした触媒体において、基材のラス加工時の進行方向寸法は触媒体自体の長さとなり、通常、触媒体を多数積層した触媒構造体において被処理ガスの流れ方向に沿って配置される。このため、図6(A)の触媒体を多数積層して触媒枠に収納して触媒構造体を形成すると、触媒体の液溜まりが形成された辺は、触媒枠の開口部、すなわち被処理ガスの入口または出口に配置されることになる。図6(B)は、図6(A)の触媒体6を多数積層して触媒枠10に収納した触媒構造体7の一部切欠斜視図である。図において、触媒体6の液溜まり5が形成された辺は触媒枠10の開孔部11側に配置されている。このように触媒枠10の開孔部11に位置する液溜まり5は、被処理ガス3の流路断面積を減少させることとなり、特に積層ピッチが小さい触媒構造体においては、液溜まりの近傍で被処理ガスの縮流が生じ易くなり、圧力損失が増加する一因となっていた。
【0006】
本発明の課題は、上記従来技術の問題点を解決し、スラリコーティグ法によってメタルラス基材に触媒成分を担持させた場合であっても、液溜まりによる圧力損失の増加を防止することができる、排ガス浄化用触媒体、触媒構造体およびその製造方法を提供することにある。
【0007】
【課題を解決するための手段】
上記課題を解決するため本願で特許請求する発明は以下のとおりである。
(1)平板状または断面波形、凸凹状もしくは階段状に成形された板状のメタルラス基材に触媒成分含有スラリをコーティングした排ガス浄化用触媒体であって、前記メタルラス基材のラス加工時の進行方向と平行な一辺に、前記コーティングされた触媒成分含有スラリの液溜りが形成されていることを特徴とする排ガス浄化用触媒体。
(2)上記(1)に記載の触媒体を、前記液溜まりが形成された辺がガス流れ方向と平行になるように多数積層して枠体内に収納したことを特徴とする排ガス浄化用触媒構造体。
【0008】
(3)平板状または断面波形、凸凹状もしくは階段状に成形された板状のメタルラス基材を触媒成分含有スラリに浸漬して該スラリをコーティングした後、乾燥および/または焼成する排ガス浄化用触媒体の製造方法において、前記メタルラス基材を触媒成分含有スラリに浸漬し、該メタルラス基材のラス加工時の進行方向が上側または下側となるように引き上げた後、前記ラス加工時の進行方向と平行な一辺が上側または下側となるようにして乾燥および/または焼成し、該乾燥および/または焼成時に下側となった辺に前記コーティングした触媒成分含有スラリの液溜まりを形成させることを特徴とする排ガス浄化用触媒体の製造方法。
(4)上記(3)で調製した触媒体を、前記液溜まりが形成された辺がガス流れ方向と平行になるように多数積層して枠体内に収納することを特徴とする排ガス浄化用触媒構造体の製造方法。
【0009】
次に、本発明の原理を図1〜図3を用いて詳細に説明する。図1は、メタルラス基材を示す説明図、図2は、触媒スラリに浸漬したメタルラス基材の引上げ方向を示す説明図、図3は、本発明方法によって調製された触媒体および触媒構造体を示す説明図である。
【0010】
触媒スラリに浸漬したメタルラス基材を引き上げる際、該メタルラス基材の開孔部を塞ぐように付着した触媒スラリは、図1のA方向から受ける張力に対しては安定であるが、これと垂直なB方向からの張力に対しては不安定である。すなわち、メタルラス基材が触媒スラリの液面を通過して引上げられる際、基材に付着した触媒スラリは液面の表面張力により、液中に引っ張られるので、図2に示すように、図1のA方向を上下方向としてA方向に引上げることにより、基材開孔部を塞いた状態にスラリを塗布することができる。
【0011】
一方、メタルラスを触媒基材として用いる場合、前記メタルラスは調製すべき触媒体の長さに合わせて切断されるため、ラス加工時の進行方向、すなわち図1におけるA方向寸法は触媒体の長さとなり、被処理ガスの流れ方向に沿って配置されることになる。従って、メタルラス基材に触媒スラリをコーティングした触媒体および触媒構造体において、触媒調製時にメタルラス基材を触媒スラリから引上げる方向と、調製された触媒構造体における実用時の被処理ガスの流れ方向とは通常一致する。
【0012】
ここで、スラリーコーティング法においては、浸漬後触媒スラリ槽から引き上げられたメタルラス基材に付着したスラリは重力により下方に移動するので、引上げたままの状態(方向)で乾燥等させると、上述した図6(B)に示されるように、触媒構造体7における触媒枠10の開口部11に液溜まり5部分が配置されることとなり、これによってガス流路断面が狭められ、圧力損失が増加するという問題が生じていた。
【0013】
本発明においては、触媒スラリに浸漬したメタルラス基材を、該メタルラス基材のラス加工時の進行方向(図1のA方向)を上下方向にして引き上げた後、該メタルラス基材のラス加工時の進行方向(図1のA方向)と平行な辺が上側または下側となるように(図1のB方向)、換言すれば、引き上げたスラリ付着メタルラス基材を、その平面に沿って90度回転させた状態で乾燥および/または焼成するようにしたので、図3(A)に示したように、乾燥および/または焼成時に下側となった、前記ラス加工時の進行方向Aと平行な一辺に液溜まり5が形成された触媒体6が得られる。そして、得られた触媒体6を前記液溜まり5が形成された辺がガス流れ方向と平行になるように多数積層して触媒枠10に収納することにより、図3(B)に示したように、触媒枠の開孔部11が触媒体6の液溜まり5で狭められるという状態が回避され、これによって触媒構造体7における圧力損失の増大が抑制されることになる。
【0014】
本発明において、メタルラス基材はローラ掛け,プレスなどにより圧延されていてもよい。また、メタルラス基材は図4(A)〜(D)のようにその断面が階段状、波型、凹凸状等に成形されていてもよく、平板のままで用いることもできる。
本発明において、触媒成分としては、例えば酸化チタンを主成分にし、バナジウム(V)、モリブデン(Mo)、タングステン(W)などが含まれたものが、剥離が少なく良好な結果が得られるとして好適に適用されるが、特に限定されるものではない。
【0015】
本発明において、触媒スラリに浸漬したメタルラス基材は該メタルラス基材のラス加工時の進行方向(図1のA方向)を上側または下側にして引き上げられるが、上側にして引き上げることがより好ましい。重力によって下方に移動しようとする触媒スラリを扇型の開孔の円弧部分で受け止められるので、その移動量が低減されるからである。
本発明において、液溜まりとは、メタルラス基材を触媒スラリに浸漬したのち引上げ、乾燥および/または焼成する際、前記基材に付着したスラリが重力によって下方に移動することによって、下方端に形成される前記触媒スラリが厚くコーティングされた部分をいう。
【0016】
本発明において、メタルラス基材および触媒体の形状は、典型的には正方形または長方形の板状体であり、液溜まりは乾燥および/または焼成時に下方に位置する端辺に形成される。
本発明において、触媒体を多数積層して触媒構造体を構成する際、前記触媒体における液溜まりが形成された辺はガス流れ方向と平行となるように配置されるが、液溜まりが全て枠体内の同じ側となるように積層してもよいが、所定の規則性をもってまたは不規則に枠体内の両側に位置するように積層することもできる。
【0017】
本発明において、メタルラス基材をあらかじめ図5(A)〜(E)のように、成形済みのメタルラスのみを多数積層するか、または成型済みのメタルラスと平板状のメタルラスとを交互に多数積層して担体構造体とし、この担体構造体をスラリに浸漬して触媒構造体とすることもできる。
【0018】
【発明の実施の形態】
次に、本発明を実施例を用いてより詳細に説明する。
実施例1
メタバナジン酸アンモン306.5gおよび三酸化モリブデン275.9gを2850gの水に混ぜ、約20時間攪拌した後、シリカゾル1432gを混ぜた溶液に、長さ約100μm、繊維径9μmのEガラス製無機繊維1123gおよび酸化チタン1313gを加えて、粘度1.5dPa・sの触媒スラリを得た。
【0019】
一方、送りピッチ0.35mm、板厚0.64mm、開孔率74.0%のメタルラスに、図1のA方向と平行に山部を成形し、該山部に直交する断面形状が図4(D)となる、幅458mm×長さ500mm、山高さ3mmの触媒基材を得た。
この触媒基材を上記触媒スラリに浸漬した後、図1のA方向を上下方向にして矢印Aの方向に引上げ、液切りし、その後、図1のB方向が上下方向になるように触媒基材の板状に沿って90°回転させ、矢印B方向を上にして120℃で10分間乾燥した後、500℃で2時間焼成し、図1のA方向に沿った一辺に厚さ約0.9mmの液溜まりが形成された触媒体を得た。得られた触媒体を触媒枠内に、液溜まりの形成された一辺が触媒枠の内面側に配置されるように積層し、図5(C)に示される構造と同様の触媒構造体を得た。
【0020】
比較例1
実施例1で得られた触媒基材を、同じく実施例1で得られた触媒スラリに浸漬した後、図1のA方向を上下方向にしてA方向に引上げ、液切りし、その後、方向を変えることなく矢印Aの方向を上にして120℃で10分間乾燥し、500℃で2時間焼成し、図1のA方向と垂直な一端辺に厚さ約1.1mmの液溜まりが形成された触媒体を得た。得られた触媒体を触媒枠内に、液溜まりの形成された端辺が触媒枠の開口側に配置されるようにして多数積層し、図5(C)に示される構造と同様の触媒構造体を得た。
【0021】
比較例2
実施例1のメタルラスに、図1のB方向に平行に山部を成形し、該山部に直交する断面形状が図4(D)となるような、幅458mm×長さ500mm、山高さ3mmの触媒基材を得た。
この触媒基材を、実施例1で得られた触媒成分スラリに浸漬した後、図1のB方向を上下方向にして引上げ、液切りし、その後、方向を変えることなく120℃で10分間乾燥し、500℃で2時間焼成し、図1のA方向に平行な一つの端辺に厚さ約0.9mmの液溜まりの形成された触媒体を得た。得られた触媒体を触媒枠内に、液溜まりの形成された端部が触媒枠の内面側に配置されるように積層し、図5(C)に示される構造と同様の触媒構造体を得た。
【0022】
実施例1、比較例1および比較例2の触媒構造体の脱硝率および圧力損失を表1に示した条件で測定し、その結果を表2に示した。表中、活性比率は体積基準総括反応速度定数の比である。触媒活性、圧力損失ともに、実施例1の値を1.0とし、その相対値として示した。
【0023】
第1表

Figure 2004141711
第2表
Figure 2004141711
表2から、実施例1の触媒構造体では、液溜まりのある触媒体端部がガス流路を狭めていないので、液溜まりでガス流路が狭められている比較例1に比べて、圧力損失が低くなっていることが分かる。また、引上げ時から図1のB方向を上下方向とした比較例2は、引上げ時にメタルラスの開孔部からスラリが流れ落ちたために前記開孔部を触媒スラリで塞ぐことができず、触媒体の有効面積が減少した結果、実施例1に比べて活性が低下している。
【0024】
実施例1によれば、触媒基材の薄板、軽量化に有効なスラリーコーティング法に特有の、液溜りに起因する圧力損失の増加を抑制することができる。またこれによってより薄板基材の使用が可能となるので、触媒重量および製造コストを低減することができ、石炭焚き用の排ガス浄化触媒であればSO2 酸化率の低減も可能となる。
【0025】
【本発明の効果】
本願の請求項1に記載の発明によれば、触媒活性を維持しつつ、圧力損失の増加を抑制することができる排ガス浄化用触媒構造体を構成するのに好適な触媒体が得られる。
本願の請求項2に記載の発明によれば、触媒活性を維持しつつ、圧力損失の増加を抑制することができる排ガス浄化用触媒構造体が得られる。
【0026】
本願の請求項3に記載の発明によれば、触媒活性を維持しつつ、圧力損失の増加を抑制することができる排ガス浄化用触媒構造体を構成するのに好適な触媒体が得られる。
本願の請求項4に記載の発明によれば、触媒活性を維持しつつ、圧力損失の増加を抑制することができる排ガス浄化用触媒構造体が得られる。
【図面の簡単な説明】
【図1】メタルラス基材におけるラス加工時の進行方向を示す説明図。
【図2】スラリ浸漬後のメタルラス基材の引上げ方向を示す説明図。
【図3】本発明の触媒体および触媒構造体の一例を示す図。
【図4】本発明に適用されるメタルラス基材の断面形状の一例を示す図。
【図5】本発明に適用される触媒基材構造体の一例を示す説明図。
【図6】従来技術を示す説明図。
【符号の説明】
1…メタルラス、2…メタルラス引上げ方向を示す矢印、3…ガス流れ方向を示す矢印、5…液溜まり、6…触媒体、7…触媒構造体、8…スラリ液面、10…触媒枠、11…触媒枠の開口部。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an exhaust gas purifying catalyst, a catalyst structure and a method for producing the same, and in particular, relates to an exhaust gas purifying catalyst in which a metal lath substrate is coated with a slurry containing a catalyst component, a catalyst structure, and a method for producing the same. The present invention relates to an exhaust gas purifying catalyst, a catalyst structure, and a method for manufacturing the same, which can suppress an increase in pressure loss.
[0002]
[Prior art]
NOx in flue gas emitted from power plants and the like is a causative substance such as acid rain. As an effective method for removing NOx, for example, a flue gas denitration method of performing selective catalytic reduction using NH 3 as a reducing agent is known as thermal power generation. It is widely used in places. As the denitration catalyst, a titanium oxide (TiO 2 ) -based catalyst containing vanadium (V), molybdenum (Mo), or tungsten (W) as an active component, which is usually formed into a honeycomb shape, a plate shape, or the like, is used. Various production methods have been proposed. For example, after kneading titanium oxide and salts of a catalytically active component such as V, Mo, W, etc. with water, molding and sintering, a kneading method, molding a titanium oxide, and impregnating a mixed solution of the catalytically active components with a baked carrier. An impregnation method (Japanese Patent Application Laid-Open No. 2000-308832) and a slurry coating method in which a slurry prepared from a previously prepared catalyst component powder is coated on a metal or ceramic substrate (Japanese Patent Application Laid-Open No. 50-128681, Japanese Patent Publication No. Sho 53-53) No. 34195, JP-A-63-234224) and the like are known. Among them, the slurry coating method is a method in which a catalyst base is immersed in a slurry containing the catalyst component to support the catalyst component, and is a method suitable for making the catalyst base thinner and lighter.
[Patent Document 1] Japanese Patent Application Laid-Open No. Sho 50-128681 [Patent Document 2] Japanese Patent Publication No. Sho 53-034195 [Patent Document 3] Japanese Patent Application Laid-Open No. Sho 63-234224
[Problems to be solved by the invention]
However, when producing a catalyst body by such a slurry coating method, the problem of liquid pool cannot be avoided.
In other words, in order to coat the catalyst component-containing slurry in a state in which the opening is closed on the catalyst substrate, particularly the metal lath substrate, by the slurry coating method, the catalyst component-containing slurry (hereinafter, simply referred to as catalyst slurry or slurry) is used. It is necessary to pull up the metal lath base material immersed in the metal lath with the traveling direction of lath processing during the production of the metal lath up and down, but pull up from the catalyst slurry along the traveling direction (opening direction) during lath processing. The slurry coated metal lath base material is dried and / or baked in the positional relationship as it is pulled up, and the catalyst slurry is coated thickly on the lower end of the two sides perpendicular to the direction of progress of the lath processing. A formed liquid pool is formed.
[0004]
FIG. 6 is an explanatory diagram of a catalyst body prepared by a conventional slurry coating method and a catalyst structure in which many of the catalyst bodies are stacked. In FIG. 6, (A) is a plan view of a catalyst body obtained by immersing a metal lath base material in a catalyst slurry, pulling up the metal lath base along a traveling direction A during lath processing, and drying and / or calcining in a vertical relationship as it is raised. In addition, a liquid pool 5 is formed on one side of the lower end in the traveling direction of the catalyst body 6 during lathing.
[0005]
Here, in the catalyst body in which the catalyst slurry is coated on the metal lath base material, the dimension in the traveling direction at the time of lath processing of the base material is the length of the catalyst body itself. Are arranged along the flow direction. For this reason, when a large number of the catalyst bodies of FIG. 6A are stacked and housed in the catalyst frame to form a catalyst structure, the side where the liquid pool of the catalyst body is formed is an opening of the catalyst frame, that is, the processing target. It will be located at the gas inlet or outlet. FIG. 6B is a partially cutaway perspective view of a catalyst structure 7 in which a large number of the catalyst bodies 6 of FIG. In the figure, the side of the catalyst body 6 where the liquid pool 5 is formed is arranged on the opening 11 side of the catalyst frame 10. As described above, the liquid pool 5 located in the opening portion 11 of the catalyst frame 10 reduces the cross-sectional area of the flow path of the gas to be treated 3, and particularly in a catalyst structure having a small stacking pitch, the liquid pool 5 is located near the liquid pool. The gas to be treated tends to be contracted easily, which is one of the causes of an increase in pressure loss.
[0006]
The object of the present invention is to solve the above problems of the prior art, and even when a catalyst component is supported on a metal lath substrate by a slurry coating method, it is possible to prevent an increase in pressure loss due to liquid pool, An object of the present invention is to provide an exhaust gas purifying catalyst, a catalyst structure, and a method for producing the same.
[0007]
[Means for Solving the Problems]
The invention claimed in the present application to solve the above problems is as follows.
(1) An exhaust gas purifying catalyst body in which a slurry containing a catalyst component is coated on a plate-shaped metal lath base material formed in a plate shape or a cross-sectional waveform, an uneven shape or a step shape, and is used for lath processing of the metal lath base material. A catalyst body for purifying exhaust gas, wherein a liquid pool of the coated catalyst component-containing slurry is formed on one side parallel to a traveling direction.
(2) An exhaust gas purifying catalyst, wherein a large number of the catalyst bodies according to (1) are stacked and housed in a frame so that the side where the liquid reservoir is formed is parallel to a gas flow direction. Structure.
[0008]
(3) A catalyst for exhaust gas purification in which a metal lath base material in the form of a flat plate or a cross-sectional waveform, an uneven shape or a step shape is dipped in a slurry containing a catalyst component to coat the slurry, and then dried and / or fired. In the method for producing a medium, the metal lath base material is immersed in a catalyst component-containing slurry, and the metal lath base material is pulled up so that the traveling direction during lathing is upward or downward, and then the traveling direction during lathing. Drying and / or sintering such that one side parallel to the above is the upper side or the lower side, and forming a liquid pool of the coated catalyst component-containing slurry on the lower side during the drying and / or sintering. A method for producing a catalyst body for purifying exhaust gas.
(4) An exhaust gas purifying catalyst, wherein a large number of the catalyst bodies prepared in the above (3) are stacked and housed in a frame so that the side where the liquid pool is formed is parallel to the gas flow direction. The method of manufacturing the structure.
[0009]
Next, the principle of the present invention will be described in detail with reference to FIGS. FIG. 1 is an explanatory diagram showing a metal lath substrate, FIG. 2 is an explanatory diagram showing a pulling direction of a metal lath substrate immersed in a catalyst slurry, and FIG. 3 is a diagram showing a catalyst body and a catalyst structure prepared by the method of the present invention. FIG.
[0010]
When pulling up the metal lath substrate immersed in the catalyst slurry, the catalyst slurry adhered so as to close the opening of the metal lath substrate is stable against the tension received from the direction A in FIG. It is unstable with respect to the tension from the direction B. That is, when the metal lath base material is pulled up through the surface of the catalyst slurry, the catalyst slurry attached to the base material is pulled into the liquid by the surface tension of the liquid surface, and as shown in FIG. By pulling up in the A direction with the A direction as the vertical direction, the slurry can be applied in a state in which the base material opening is closed.
[0011]
On the other hand, when a metal lath is used as a catalyst substrate, the metal lath is cut in accordance with the length of the catalyst body to be prepared. And are arranged along the flow direction of the gas to be treated. Therefore, in the catalyst body and the catalyst structure in which the metal lath base material is coated with the catalyst slurry, the direction in which the metal lath base material is pulled up from the catalyst slurry in preparing the catalyst and the flow direction of the gas to be treated in the prepared catalyst structure in practical use Usually matches.
[0012]
Here, in the slurry coating method, since the slurry attached to the metal lath base material pulled up from the catalyst slurry tank after immersion moves downward due to gravity, it is described above that the slurry is dried while being pulled up (direction). As shown in FIG. 6 (B), the liquid pool 5 is disposed in the opening 11 of the catalyst frame 10 in the catalyst structure 7, whereby the cross section of the gas passage is narrowed and the pressure loss increases. The problem had arisen.
[0013]
In the present invention, the metal lath base material immersed in the catalyst slurry is pulled up with the traveling direction (A direction in FIG. 1) of the metal lath base material during lathing, and then the metal lath base material is lathed. 1 in such a manner that the side parallel to the traveling direction (A direction in FIG. 1) is on the upper side or the lower side (B direction in FIG. 1). As shown in FIG. 3 (A), since drying and / or baking is performed in a state of being rotated by degrees, it is parallel to the traveling direction A at the time of lath processing, which is on the lower side during drying and / or baking. The catalyst body 6 having the liquid pool 5 formed on one side is obtained. Then, a large number of the obtained catalyst bodies 6 are stacked and accommodated in the catalyst frame 10 such that the side where the liquid pool 5 is formed is parallel to the gas flow direction, and as shown in FIG. In addition, it is possible to avoid a situation where the opening 11 of the catalyst frame is narrowed by the liquid pool 5 of the catalyst body 6, thereby suppressing an increase in pressure loss in the catalyst structure 7.
[0014]
In the present invention, the metal lath base material may be rolled by rolling or pressing. Moreover, the metal lath base material may be formed in a stepped shape, a corrugated shape, an uneven shape, or the like as shown in FIGS. 4A to 4D, or may be used as a flat plate.
In the present invention, as the catalyst component, for example, those containing titanium oxide as a main component and containing vanadium (V), molybdenum (Mo), tungsten (W), etc., are preferable because good results are obtained with little peeling. , But is not particularly limited.
[0015]
In the present invention, the metal lath base material immersed in the catalyst slurry can be pulled up with the traveling direction (direction A in FIG. 1) of the metal lath base material during lathing upward or downward, but it is more preferable to pull up with the upward direction. . This is because the catalyst slurry, which tends to move downward due to gravity, is received by the arc portion of the fan-shaped opening, so that the amount of movement is reduced.
In the present invention, the liquid pool is formed at the lower end by immersing the metal lath base material in the catalyst slurry, then pulling up, drying and / or firing, the slurry attached to the base material moves downward due to gravity. Refers to a portion of the catalyst slurry that is thickly coated.
[0016]
In the present invention, the shapes of the metal lath base material and the catalyst body are typically square or rectangular plate-like bodies, and the liquid pool is formed at an edge located below during drying and / or firing.
In the present invention, when a catalyst structure is formed by stacking a large number of catalyst bodies, the sides of the catalyst body where the liquid pool is formed are arranged so as to be parallel to the gas flow direction, but all the liquid pools are framed. The layers may be laminated so as to be on the same side in the body, or may be laminated so as to be positioned on both sides in the frame with a predetermined regularity or irregularly.
[0017]
In the present invention, as shown in FIGS. 5 (A) to 5 (E), the metal lath base material is formed by previously laminating a large number of molded metal laths or by laminating a large number of molded metal laths and plate-shaped metal laths alternately. The carrier structure may be immersed in a slurry to form a catalyst structure.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the present invention will be described in more detail with reference to examples.
Example 1
306.5 g of ammonium metavanadate and 275.9 g of molybdenum trioxide were mixed in 2850 g of water and stirred for about 20 hours, and then 1123 g of E glass inorganic fiber having a length of about 100 μm and a fiber diameter of 9 μm was added to a solution obtained by mixing 1432 g of silica sol. Then, 1313 g of titanium oxide was added to obtain a catalyst slurry having a viscosity of 1.5 dPa · s.
[0019]
On the other hand, a peak is formed in a metal lath having a feed pitch of 0.35 mm, a plate thickness of 0.64 mm, and a hole ratio of 74.0% in parallel with the direction A in FIG. (D) A catalyst base material having a width of 458 mm × a length of 500 mm and a peak height of 3 mm was obtained.
After immersing this catalyst base material in the catalyst slurry, pull up in the direction of arrow A with the direction A in FIG. 1 up and down, drain the liquid, and then set the catalyst base so that the direction B in FIG. After rotating at 90 ° along the plate shape of the material, drying at 120 ° C. for 10 minutes with the direction of arrow B facing upward, baking at 500 ° C. for 2 hours, and a thickness of about 0 on one side along the direction A in FIG. A catalyst body having a liquid pool of 0.9 mm was obtained. The obtained catalyst body is laminated in the catalyst frame such that one side where the liquid pool is formed is arranged on the inner surface side of the catalyst frame, and a catalyst structure similar to the structure shown in FIG. 5C is obtained. Was.
[0020]
Comparative Example 1
After immersing the catalyst base material obtained in Example 1 in the catalyst slurry similarly obtained in Example 1, pulling up in the A direction with the A direction in FIG. Drying at 120 ° C. for 10 minutes with the direction of arrow A upward without change, and baking at 500 ° C. for 2 hours, a liquid pool having a thickness of about 1.1 mm is formed at one end perpendicular to the direction A in FIG. A catalyst body was obtained. A large number of the obtained catalyst bodies are stacked in the catalyst frame such that the edge where the liquid pool is formed is arranged on the opening side of the catalyst frame, and a catalyst structure similar to the structure shown in FIG. Got a body.
[0021]
Comparative Example 2
A peak is formed on the metal lath of Example 1 in parallel to the direction B in FIG. 1, and the cross section perpendicular to the peak is as shown in FIG. 4D, width 458 mm × length 500 mm, peak height 3 mm Was obtained.
After immersing this catalyst base material in the catalyst component slurry obtained in Example 1, pulling it up with the direction B in FIG. 1 up and down, draining, and then drying at 120 ° C. for 10 minutes without changing the direction Then, the resultant was calcined at 500 ° C. for 2 hours to obtain a catalyst body having a liquid pool having a thickness of about 0.9 mm formed at one end parallel to the direction A in FIG. The obtained catalyst body is stacked in the catalyst frame such that the end where the liquid pool is formed is disposed on the inner surface side of the catalyst frame, and a catalyst structure similar to the structure shown in FIG. Obtained.
[0022]
The denitration rate and pressure loss of the catalyst structures of Example 1, Comparative Example 1 and Comparative Example 2 were measured under the conditions shown in Table 1, and the results are shown in Table 2. In the table, the activity ratio is a ratio of a volume-based overall reaction rate constant. The value of Example 1 was set to 1.0 for both the catalyst activity and the pressure loss, and the values were shown as relative values.
[0023]
Table 1
Figure 2004141711
Table 2
Figure 2004141711
From Table 2, it can be seen that in the catalyst structure of Example 1, the end of the catalyst body having the liquid pool did not narrow the gas flow path, so that the pressure was lower than in Comparative Example 1 in which the gas flow path was narrowed by the liquid pool. It can be seen that the loss is low. In addition, in Comparative Example 2 in which the direction B in FIG. 1 was vertically moved from the time of pulling, the slurry could not be closed by the catalyst slurry because the slurry flowed down from the opening of the metal lath at the time of pulling. As a result of the decrease in the effective area, the activity is lower than in Example 1.
[0024]
According to the first embodiment, it is possible to suppress an increase in pressure loss caused by liquid pool, which is peculiar to a slurry coating method effective for reducing the thickness and weight of a catalyst base. Further, this enables the use of a thinner substrate, so that the weight and production cost of the catalyst can be reduced, and the SO 2 oxidation rate can be reduced in the case of an exhaust gas purifying catalyst for coal burning.
[0025]
[Effects of the present invention]
According to the invention described in claim 1 of the present application, it is possible to obtain a catalyst suitable for forming an exhaust gas purifying catalyst structure capable of suppressing an increase in pressure loss while maintaining catalytic activity.
According to the invention described in claim 2 of the present application, an exhaust gas purifying catalyst structure that can suppress an increase in pressure loss while maintaining catalytic activity is obtained.
[0026]
According to the invention described in claim 3 of the present application, it is possible to obtain a catalyst body suitable for forming an exhaust gas purifying catalyst structure capable of suppressing an increase in pressure loss while maintaining catalyst activity.
According to the invention described in claim 4 of the present application, an exhaust gas purifying catalyst structure capable of suppressing an increase in pressure loss while maintaining catalytic activity is obtained.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a traveling direction during lath processing on a metal lath base material.
FIG. 2 is an explanatory diagram showing a pulling direction of a metal lath base material after immersion in a slurry.
FIG. 3 is a view showing an example of a catalyst body and a catalyst structure of the present invention.
FIG. 4 is a diagram showing an example of a cross-sectional shape of a metal lath base material applied to the present invention.
FIG. 5 is an explanatory view showing an example of a catalyst substrate structure applied to the present invention.
FIG. 6 is an explanatory view showing a conventional technique.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Metal lath, 2 ... Arrow indicating direction of pulling up metal lath, 3 ... Arrow indicating direction of gas flow, 5 ... Liquid reservoir, 6 ... Catalyst, 7 ... Catalyst structure, 8 ... Slurry level, 10 ... Catalyst frame, 11 ... the opening of the catalyst frame.

Claims (4)

平板状または断面波形、凸凹状もしくは階段状に成形された板状のメタルラス基材に触媒成分含有スラリをコーティングして形成した排ガス浄化用触媒体であって、前記メタルラス基材のラス加工時の進行方向と平行な一辺に、前記コーティングされた触媒成分含有スラリの液溜りが形成されていることを特徴とする排ガス浄化用触媒体。An exhaust gas purifying catalyst formed by coating a slurry containing a catalyst component on a plate-shaped metal lath substrate formed in a flat or cross-sectional waveform, an uneven shape or a step shape. A catalyst body for purifying exhaust gas, wherein a liquid pool of the coated catalyst component-containing slurry is formed on one side parallel to the traveling direction. 請求項1に記載の触媒体を、前記液溜まりが形成された辺がガス流れ方向と平行になるように多数積層して枠体内に収納したことを特徴とする排ガス浄化用触媒構造体。A catalyst structure for purifying exhaust gas, wherein a large number of the catalyst bodies according to claim 1 are stacked and accommodated in a frame so that a side where the liquid reservoir is formed is parallel to a gas flow direction. 平板状または断面波形、凸凹状もしくは階段状に成形された板状のメタルラス基材を触媒成分含有スラリに浸漬して該スラリをコーティングした後、乾燥および/または焼成する排ガス浄化用触媒体の製造方法において、前記メタルラス基材を触媒成分含有スラリに浸漬し、該メタルラス基材のラス加工時の進行方向が上側または下側となるように引き上げた後、前記ラス加工時の進行方向と平行な一辺が上側または下側となるようにして乾燥および/または焼成し、該乾燥および/または焼成時に下側となった辺に前記コーティングした触媒成分含有スラリの液溜まりを形成させることを特徴とする排ガス浄化用触媒体の製造方法。Production of an exhaust gas purifying catalyst body in which a plate-shaped or laminar metal lath substrate formed into a corrugated shape, uneven shape or step shape is immersed in a slurry containing a catalyst component, coated with the slurry, and then dried and / or calcined. In the method, the metal lath base material is immersed in a slurry containing a catalyst component, and after the metal lath base material is pulled up so that the traveling direction during lathing is upward or downward, the metal lath substrate is parallel to the traveling direction during lathing. Drying and / or baking such that one side is on the upper side or lower side, and forming a liquid pool of the coated catalyst component-containing slurry on the lower side during the drying and / or baking. A method for producing an exhaust gas purifying catalyst. 請求項3で調製した触媒体を、前記液溜まりが形成された辺がガス流れ方向と平行になるように多数積層して枠体内に収納することを特徴とする排ガス浄化用触媒構造体の製造方法。4. A method for manufacturing an exhaust gas purifying catalyst structure, comprising: stacking a large number of the catalyst bodies prepared in claim 3 such that the side where the liquid reservoir is formed is parallel to a gas flow direction, and storing the catalyst bodies in a frame. Method.
JP2002306827A 2002-10-22 2002-10-22 Exhaust gas cleaning catalyst body, catalyst structure and method of manufacturing them Pending JP2004141711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002306827A JP2004141711A (en) 2002-10-22 2002-10-22 Exhaust gas cleaning catalyst body, catalyst structure and method of manufacturing them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002306827A JP2004141711A (en) 2002-10-22 2002-10-22 Exhaust gas cleaning catalyst body, catalyst structure and method of manufacturing them

Publications (1)

Publication Number Publication Date
JP2004141711A true JP2004141711A (en) 2004-05-20

Family

ID=32453465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002306827A Pending JP2004141711A (en) 2002-10-22 2002-10-22 Exhaust gas cleaning catalyst body, catalyst structure and method of manufacturing them

Country Status (1)

Country Link
JP (1) JP2004141711A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009525856A (en) * 2006-02-07 2009-07-16 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト Catalyst with improved activity behavior
WO2022030521A1 (en) * 2020-08-04 2022-02-10 三菱パワー株式会社 Denitration catalyst and method for purifying exhaust gas

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009525856A (en) * 2006-02-07 2009-07-16 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト Catalyst with improved activity behavior
WO2022030521A1 (en) * 2020-08-04 2022-02-10 三菱パワー株式会社 Denitration catalyst and method for purifying exhaust gas
CN116056791A (en) * 2020-08-04 2023-05-02 三菱重工业株式会社 Denitration catalyst and exhaust gas purification method
CN116056791B (en) * 2020-08-04 2024-01-16 三菱重工业株式会社 Denitration catalyst and exhaust gas purification method
JP7474854B2 (en) 2020-08-04 2024-04-25 三菱パワー株式会社 Denitrification catalyst and exhaust gas purification method

Similar Documents

Publication Publication Date Title
EP1660216B1 (en) Layered ammonia oxidation catalyst
JP5401049B2 (en) Slurry for producing denitration catalyst, method for producing the slurry, method for producing denitration catalyst using the slurry, and denitration catalyst produced by the method
WO2015072567A1 (en) Denitration catalyst and method for producing same
EP3380233B1 (en) Method of preparation of a monolithic catalyst for selective catalytic reduction of nitrogen oxides
US7825060B2 (en) Method for production of catalyst and catalyst produced by the method
CN108430628B (en) Catalyst and method for producing a catalyst
JP2004141711A (en) Exhaust gas cleaning catalyst body, catalyst structure and method of manufacturing them
EP3380232B1 (en) Method of preparation of a monolithic catalyst for selective catalytic reduction of nitrogen oxides
JP2020062627A (en) Ammonia cleaning catalyst
JP4020354B2 (en) Manufacturing method of plate-like catalyst structure
JPH06246176A (en) Production of plate catalyst and processing solution of metal substrate for the catalyst
JP2002119868A (en) Catalytic structural body for purifying waste gas
KR102610338B1 (en) Honeycomb catalyst for removing nitrogen oxides in flue gas and exhaust gas and method for manufacturing the same
JP2004267969A (en) Exhaust gas purification equipment, catalyst for purifying exhaust gas as well as its manufacturing method
JP2005111330A (en) Manufacturing method of catalyst structure
JP2014046299A (en) Manufacturing method of denitration catalyst
JP2004195295A (en) Method for manufacturing catalytic structure for exhaust gas cleaning
EP3984635A1 (en) Method for the manufacture of a plate catalyst
JP7474854B2 (en) Denitrification catalyst and exhaust gas purification method
JP2001252574A (en) Catalyst structure for cleaning exhaust gas and reticulated material used for this
DK180289B1 (en) Monolithic honeycomb oxidation catalyst and process for its preparation
JP2003159534A (en) Catalyst structure for cleaning exhaust gas and manufacturing method therefor
JP2000126615A (en) Production of wear-resistant catalyst
JP4944588B2 (en) Metal substrate for catalyst and method for producing plate-shaped denitration catalyst
JP2001104801A (en) Catalyst structure for cleaning exhaust gas