JP2004140665A - Instrument and method for measuring delay difference between transmission lines - Google Patents

Instrument and method for measuring delay difference between transmission lines Download PDF

Info

Publication number
JP2004140665A
JP2004140665A JP2002304443A JP2002304443A JP2004140665A JP 2004140665 A JP2004140665 A JP 2004140665A JP 2002304443 A JP2002304443 A JP 2002304443A JP 2002304443 A JP2002304443 A JP 2002304443A JP 2004140665 A JP2004140665 A JP 2004140665A
Authority
JP
Japan
Prior art keywords
phase
measured
transmission line
code error
output signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002304443A
Other languages
Japanese (ja)
Other versions
JP4037736B2 (en
Inventor
Chitatsu Kurioka
栗岡 千立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nef KK
Original Assignee
Nef KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nef KK filed Critical Nef KK
Priority to JP2002304443A priority Critical patent/JP4037736B2/en
Publication of JP2004140665A publication Critical patent/JP2004140665A/en
Application granted granted Critical
Publication of JP4037736B2 publication Critical patent/JP4037736B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a delay difference measuring method for a differential line which enables delay difference measurement of high precision needed for high-frequency signal transmission. <P>SOLUTION: A signal generator 1 generates and supplies the two positive and negative output signals of high frequency with a case wherein the differential transmission line 2 to be measured is actually used to one terminal of the differential transmission line to be measured. Phase shifters 3 and 4 are able to vary the phase of a cable output signal inputted from the other terminal of the transmission line to be measured individually positively and negatively. A code error detector 6 detects code errors of the output signals from the phase shifters. When the phase shifters vary the phases of the cable output signals both positively and negatively, the delay difference of the differential transmission line to be measured is found according to phase variation quantities in both the positive and negative directions when the code error detector detects a code error resulting in a great increase in code error rate. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は伝送線路の遅延の測定に関し、特に大きな損失をもつ伝送線路遅延測定もしくは高周波信号伝送に必要な高精度な遅延測定に好適な伝送線路間遅延差の測定装置および測定方法に関する。
【0002】
【従来の技術】
高速電気信号を伝送することができる媒体の一つとして差動伝送ケーブルが周知である。差動伝送ケーブルは、その断面の一例を図4に示すように、心線を絶縁体で囲った外周をスキン層で更に囲った一対の差動信号線にドレイン線を沿わせ、これらを外部シールドしたものである。
【0003】
従来、差動伝送ケーブルにおける差動信号線間の伝搬遅延時間差の測定は、差動信号線のそれぞれの伝搬遅延時間を測定し、その差を求めるという方法が一般的である。その具体的手法として、TDR(Time Domain Reflectmeter)法が知られている。TDR法とは、遠端が開放された被試験伝送線路の他端から試験パルスを印加し、測定点における電圧が試験パルスの振幅値の25%と75%に達する時間(往復の伝搬遅延時間)を測定し、それらの時間差を2で除算した時間を伝搬遅延時間として求める方法である。
【0004】
しかし、このようなTDR法は、伝送線路での信号の減衰が無い理想的な場合を想定したものであるが、現実には伝送線路では減衰が生じるため、試験パルスの波形に鈍りが起き、往復の伝搬遅延時間は開放端までの伝搬遅延時間の2倍に等しくならず、測定誤差が発生する。
【0005】
そこで、伝送線路の減衰値と測定誤差との対応関係を求めて補正データとしてデータテーブルに予め保存しておき、演算回路は、シミュレーションにより得られた減衰値と測定誤差の補正用データをデータテーブルから読み出し、実測により求められる伝搬遅延時間から、補正用の測定誤差を引くことで、より誤差の少ない伝搬遅延時間を求めるようにしている(例えば、特許文献1参照)。
【0006】
【特許文献1】
特開平10−38938(第3頁−4頁、図1、図2)
【0007】
【発明が解決しようとする課題】
しかしながら、数GHz以上の高速信号伝送に用いる差動伝送線路間の伝搬遅延時間差測定を行い、線路長の調整を行った場合に、差動線路間の伝搬遅延差の精度は、数十pS以上の精度が必要となる。ところが、上述した従来技術では、試験用のパルス信号を使用し、かつ被試験伝送線路も実際に使用される接続状態とは異なる状態で試験されるため、差動線路のそれぞれの伝搬遅延時間を測定した場合、シミュレーション精度および測定精度は要求される差動線路間の伝搬遅延差を満足できなくなるという問題がある。
【0008】
本発明の主な目的は、特に高周波信号伝送に必要な高精度の遅延差測定が可能となる差動線路の遅延差測定方法を提供することにある。
【0009】
【課題を解決するための手段】
本発明の伝送線路間遅延差測定装置は、被測定差動伝送線路(図1の2)が実際に使用される場合と同じ高周波の正負2つの出力信号を発生して被測定差動伝送線路の一方の端子に供給する信号発生器(図1の1)と、被測定伝送線路の他方の端子から入力するケーブル出力信号の位相を正負別個に変化させることが可能な位相可変器(図1の3および4)と、位相可変器からの出力信号の符号誤りを検出する符号誤り検出器(図1の6)とを含み、位相可変器においてケーブル出力信号の位相を正負両方向に変化させた場合に、符号誤り検出器が顕著な符号誤り率増加となる符号誤りを検出した時の正負両方向における位相変化量に基づいて被測定差動伝送線路の遅延差を求めることを特徴とする。
【0010】
本発明では、被測定差動伝送線路が実際に使用される場合と同じ高周波の正負2つの出力信号を被測定差動伝送線路の一方の端子に供給する。そして、被測定伝送線路の他方の端子から位相可変器に入力するケーブル出力信号の位相を正負別個に変化させ、位相可変器からの出力信号の符号誤りを検出する。その際、ケーブル出力信号の位相を正負両方向に変化させた場合に、符号誤り検出器が顕著な符号誤り率増加となる符号誤りを検出した時の正負両方向における位相変化量に基づいて被測定差動伝送線路の遅延差を求める。
【0011】
このように、本発明は、実際に使用される高周波数信号を使用し、かつ被試験伝送線路も実際に使用される接続状態で試験するため、高周波信号伝送に必要な高精度な差動線路間の伝搬遅延差の測定が可能になる。
【0012】
【発明の実施の形態】
次に、本発明の実施の形態について図面を参照して説明する。
【0013】
[構成の説明]
図1は本発明の伝送線路間遅延差測定装置の一実施例を示すブロック図である。図1において、信号発生器1の正負2つの出力は、それぞれ被測定差動伝送線路2の一端(左端)の2つの端子にそれぞれ接続されている。また、被測定伝送線路2の他端(右端)の一方の端子は、位相可変器3を介して波形等化再生器5の正の入力に接続され、被測定伝送線路2の他端の他方の端子は、位相可変器4を介して波形等化再生器5の負の入力に接続されている。波形等化再生器5の出力は符号誤り検出器6の入力に接続される。
【0014】
信号発生器1は、被測定差動伝送線路2が実際に使用される場合と同じく数GHz以上の高周波の出力信号101を発生する。被測定差動伝送線路2の断面は図7に示したとおりであって、数GHz以上の高速電気信号を伝送することができる。その両端は信号発生器1と位相可変器3,4に接続されているので、実際の使用状態を実現している。
【0015】
位相可変器3,4は、信号発生器1からの出力信号101が被測定差動伝送線路2を通過することにより損失,遅延の影響を受け、測定不能なほどに波形が劣化したケーブル出力信号102に対して、正の入力,負の入力の位相を調整する。位相の調整は、位相可変器3,4が備えているダイヤルの操作、または位相可変器3,4に供給されている電圧を制御することによって行う。位相を調整すると、後述するように、符号誤り検出器6で検出される符号誤り率が変化するので、これを利用することによって被測定差動伝送線路2の遅延時間差を求めるのである。
【0016】
波形等化再生器5は、位相可変器3,4からの位相可変器出力103の波形を整形し再生する。これは、位相可変器出力103の波形のままでは符号誤り検出器6における符号誤りの検出が困難であるため、位相可変器出力103の波形を整形し再生することにより、支障なく符号誤りを検出できるようにしたものである。
【0017】
符号誤り検出器6は、波形等化再生器出力104の符号誤りを検出する。符号誤りの検出は、位相可変器3,4の正負の位相差(正負の位相差を以下、「差動位相差」と記す)を変化させながら行う。波形等化再生器出力104の符号誤り率は、図3に示すように、位相可変器3,4の位相差によって変化する。そこで、符号誤り率の特徴的な点を求め、その結果に基づいて被測定差動伝送線路2の遅延差を算出する。
【0018】
[動作の説明]
以下、本実施例の動作につき、図2,図3および図5を用いて説明する。被測定差動伝送線路2は、図1に示したように信号発生器1と位相可変器3,4に接続され、波形再生等化器5および符号誤り検出器6も図1のとおりに取り付けられる。
【0019】
信号発生器1は、数GHz以上の高周波の出力信号101を発生し、出力信号101は劣化のないまま、被測定差動伝送線路2に入力される。出力信号101は被測定差動伝送線路2を通過すると、伝送線路の損失,遅延の影響により、測定不可能なほどに波形が著しく劣化する。そのケーブル出力信号102は位相可変器3,4により調整され、位相可変器信号103が得られる。
【0020】
位相可変器出力103は、波形等化再生器5により、等化再生され、波形等化再生器信号104となる。波形等化再生器信号104は、符号誤り検出器6に入力され、そこで符号誤り率が判定される。
【0021】
ここで、波形等化再生器5の入力端おける位相可変器出力103の差動位相差は、被測定差動伝送線路2の遅延差と位相可変器3,4の位相差との和(以下、「差動間遅延」と記す)で定まるが、図2に示すように、その差動間遅延の量により、波形等化再生器出力信号104のジッタ量が変化する。
【0022】
図2(A)は差動間遅延が0の場合における波形等化再生器出力信号104の波形を示しており、ジッタが見られない。図2(B)は差動間遅延が中の場合における波形等化再生器出力信号104の波形を示しており、ジッタが目立っているが、アイパターンの幅の方がジッタの幅より広くて符号の識別はまだ可能な状態である。しかし、図2(C)に示すように、差動間遅延が大きくなって、アイパターンの幅のよりジッタの幅の方が広くなると、符号の識別は不能な状態となり、符号誤り検出器6は符号誤りを検出する。
【0023】
図3は、位相可変器3,4を調整し、波形等化再生器5の入力端における差動間遅延を変化させ、波形等化再生器5の出力の符号誤りを符号誤り検出回路6により検出し、その結果により求めた符号誤り率をプロットした符号誤り率曲線を示す。図3を参照すると、符号誤り率は、符号誤りのないA点等の状態からB点およびC点において急増していることが読み取れる。
【0024】
次に、被測定差動伝送線路2の差動遅延差を求める方法について図5を参照して具体的に説明する。
【0025】
いま、被測定差動伝送線路2の遅延差をX、試験信号の周期をSとする。この場合、図5▲1▼に示すように、ケーブル出力信号102の差動遅延差はXとなる。位相可変器3,4の位相差を0に調整した場合、図5▲2▼に示すように、位相可変器出力103の差動間遅延は、図5▲1▼におけるケーブル出力信号102の差動遅延差と同じXとなる。このときの可変器出力103の差動間遅延を図3においてA点として示している。この状態では、図2(A)に示したように、波形等化再生器出力信号104の波形にジッタは見られない。
【0026】
この状態から、例えば、位相可変器3の位相を正方向に変化させる。すると、図2(B)に示したように、波形等化再生器出力信号104の波形にジッタが現れ、位相可変器3の位相が正方向へ進むにつれてジッタの幅が拡大していく。そして、ついには図2(C)に示したように、ジッタの幅の方がアイパターンの幅より広くなって符号の識別が不能となるに到り、符号誤り検出器6は符号誤りを検出する。
【0027】
そして、一旦符号誤りが検出されると、正誤の閾値を超えたことにより符号誤り率は急増する。このときの符号誤り率が急激に劣化した点を図3ではB点として示している。また、このときの位相可変器3の図5▲2▼からの位相変化量を図5▲3▼でYとして示している。
【0028】
次に、位相可変器3の位相を負方向に変化させる。すると、図2(B)の状態を経て図2(C)の状態に到る。このときの符号誤り率が急激に劣化した点を図3ではC点として示している。また、このときの位相可変器3の図5▲2▼からの位相変化量を図5▲3▼でZとして示している。
【0029】
以上のS,X,YおよびZの間には、Y=S+X、Z=S−Yの関係があることが図5から明らかである。この2つの式より、X=(Y−Z)/2となり、Y(B点)とZ(C点)の測定により、被測定差動伝送線路2の遅延差Xを求めることができる。図3では、B点とC点の中心をD点として示しているので、D点とA点との差Eを求めることにより、結果として被測定差動伝送線路2の遅延差Xは図3におけるEで示されることがわかる。
【0030】
【発明の効果】
以上説明したように、本発明は、実際に使用される高周波数信号を使用し、かつ被試験伝送線路も実際に使用される接続状態で試験するため、高周波信号伝送に必要な高精度な差動線路間の伝搬遅延差の測定が可能になるという効果がある。
【図面の簡単な説明】
【図1】本発明の伝送線路間遅延差測定装置の一実施例を示すブロック図
【図2】本発明において差動間遅延を変化させた場合における波形等化再生器出力信号のジッタ発生の様子を示す図
【図3】本発明における符号誤り検出に基づく符号誤り率を差動間遅延に対してプロットした図
【図4】一般的な差動伝送ケーブルの一例を示す断面図
【図5】本発明において被測定差動伝送線路間の遅延差を求める場合の差動信号の位相遷移図
【符号の説明】
1   信号発生器
2   被測定差動伝送線路
3   位相可変器
4   位相可変器
5   波形等化再生器
6   符号誤り検出器
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a measurement of a delay in a transmission line, and more particularly to a measurement apparatus and a measurement method of a delay difference between transmission lines suitable for measuring a transmission line having a large loss or a highly accurate delay required for high-frequency signal transmission.
[0002]
[Prior art]
2. Description of the Related Art A differential transmission cable is known as one of media that can transmit high-speed electric signals. As shown in FIG. 4, an example of the cross section of the differential transmission cable is such that a drain wire extends along a pair of differential signal lines whose core is surrounded by an insulator and whose outer periphery is further surrounded by a skin layer. It is shielded.
[0003]
Conventionally, a method of measuring a propagation delay time difference between differential signal lines in a differential transmission cable generally measures a propagation delay time of each differential signal line and obtains the difference. As a specific technique, a TDR (Time Domain Reflectmeter) method is known. The TDR method is a method in which a test pulse is applied from the other end of a transmission line under test whose far end is open, and the time at which the voltage at the measurement point reaches 25% and 75% of the amplitude value of the test pulse (the round-trip propagation delay time) ) Is measured, and a time obtained by dividing the time difference by 2 is obtained as a propagation delay time.
[0004]
However, such a TDR method assumes an ideal case where there is no signal attenuation in the transmission line, but in reality, attenuation occurs in the transmission line, so that the waveform of the test pulse becomes dull. The round-trip propagation delay time is not equal to twice the propagation delay time to the open end, and a measurement error occurs.
[0005]
Therefore, the correspondence between the attenuation value of the transmission line and the measurement error is obtained and stored in the data table in advance as correction data, and the arithmetic circuit stores the attenuation value obtained by the simulation and the data for correction of the measurement error in the data table. , And a measurement error for correction is subtracted from a propagation delay time obtained by actual measurement, thereby obtaining a propagation delay time with a smaller error (for example, see Patent Document 1).
[0006]
[Patent Document 1]
JP-A-10-38938 (pages 3-4, FIGS. 1 and 2)
[0007]
[Problems to be solved by the invention]
However, when the propagation delay time difference between the differential transmission lines used for high-speed signal transmission of several GHz or more is measured and the line length is adjusted, the accuracy of the propagation delay difference between the differential lines is several tens pS or more. Accuracy is required. However, in the above-described prior art, a test pulse signal is used, and the transmission line under test is also tested in a state different from the connection state actually used. When measured, there is a problem that the simulation accuracy and the measurement accuracy cannot satisfy the required propagation delay difference between the differential lines.
[0008]
A main object of the present invention is to provide a differential line delay difference measuring method that enables highly accurate delay difference measurement particularly required for high-frequency signal transmission.
[0009]
[Means for Solving the Problems]
The apparatus for measuring a delay difference between transmission lines of the present invention generates two positive and negative output signals of the same high frequency as the case where the differential transmission line to be measured (2 in FIG. 1) is actually used, and outputs the differential transmission line to be measured. A signal generator (1 in FIG. 1) that supplies the signal to one terminal of the transmission line and a phase variable device (FIG. 1) that can separately change the phase of the cable output signal input from the other terminal of the transmission line to be measured. 3 and 4) and a code error detector (6 in FIG. 1) for detecting a code error of an output signal from the phase variable device, wherein the phase of the cable output signal is changed in both positive and negative directions in the phase variable device. In this case, the delay difference of the differential transmission line to be measured is determined based on the amount of phase change in both the positive and negative directions when the code error detector detects a code error that causes a remarkable increase in the code error rate.
[0010]
In the present invention, two output signals of the same high frequency as the case where the differential transmission line to be measured is actually used are supplied to one terminal of the differential transmission line to be measured. Then, the phase of the cable output signal input from the other terminal of the transmission line to be measured to the phase variable device is changed positively or negatively, and a code error of the output signal from the phase variable device is detected. At this time, when the phase of the cable output signal is changed in both the positive and negative directions, the measured error is determined based on the amount of phase change in both the positive and negative directions when the code error detector detects a code error that significantly increases the code error rate. Find the delay difference of the dynamic transmission line.
[0011]
As described above, the present invention uses the actually used high-frequency signal and also tests the transmission line under test in the actually used connection state, so that the high-precision differential line required for high-frequency signal transmission is used. Measurement of the propagation delay difference between the two.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings.
[0013]
[Description of configuration]
FIG. 1 is a block diagram showing an embodiment of a transmission line delay difference measuring apparatus according to the present invention. In FIG. 1, two positive and negative outputs of a signal generator 1 are respectively connected to two terminals at one end (left end) of a differential transmission line 2 to be measured. One terminal of the other end (right end) of the transmission line 2 to be measured is connected to the positive input of the waveform equalizer / regenerator 5 via the phase changer 3 and the other end of the transmission line 2 to be measured is connected to the other end. Is connected to the negative input of the waveform equalizer / regenerator 5 via the phase variable unit 4. The output of the waveform equalizer / regenerator 5 is connected to the input of a code error detector 6.
[0014]
The signal generator 1 generates an output signal 101 of a high frequency of several GHz or more as in the case where the differential transmission line 2 to be measured is actually used. The cross section of the differential transmission line 2 to be measured is as shown in FIG. 7, and a high-speed electric signal of several GHz or more can be transmitted. Since both ends are connected to the signal generator 1 and the phase changers 3 and 4, an actual use state is realized.
[0015]
The phase variable units 3 and 4 are affected by loss and delay when the output signal 101 from the signal generator 1 passes through the differential transmission line 2 to be measured, and the cable output signal whose waveform has deteriorated so that it cannot be measured. For 102, the phases of the positive input and the negative input are adjusted. The adjustment of the phase is performed by operating a dial provided in the phase changers 3 and 4 or controlling the voltage supplied to the phase changers 3 and 4. When the phase is adjusted, as will be described later, the bit error rate detected by the bit error detector 6 changes. Therefore, the delay time difference of the differential transmission line 2 to be measured is obtained by using this.
[0016]
The waveform equalizer / reproducer 5 shapes and reproduces the waveform of the phase variable device output 103 from the phase variable devices 3 and 4. This is because it is difficult to detect a code error in the code error detector 6 without changing the waveform of the phase variable device output 103. Therefore, by shaping and reproducing the waveform of the phase variable device output 103, the code error can be detected without any trouble. It was made possible.
[0017]
The code error detector 6 detects a code error of the output 104 of the waveform equalizer / reproducer. The detection of a code error is performed while changing the positive / negative phase difference between the phase changers 3 and 4 (the positive / negative phase difference is hereinafter referred to as “differential phase difference”). As shown in FIG. 3, the code error rate of the waveform equalizer / regenerator output 104 changes depending on the phase difference between the phase changers 3 and 4. Therefore, a characteristic point of the bit error rate is obtained, and a delay difference of the measured differential transmission line 2 is calculated based on the result.
[0018]
[Description of operation]
Hereinafter, the operation of this embodiment will be described with reference to FIGS. 2, 3, and 5. FIG. The differential transmission line 2 to be measured is connected to the signal generator 1 and the phase changers 3 and 4 as shown in FIG. 1, and the waveform reproduction equalizer 5 and the code error detector 6 are also attached as shown in FIG. Can be
[0019]
The signal generator 1 generates an output signal 101 of a high frequency of several GHz or more, and the output signal 101 is input to the differential transmission line 2 to be measured without deterioration. When the output signal 101 passes through the differential transmission line 2 to be measured, the waveform is significantly deteriorated so as to be unmeasurable due to the effects of transmission line loss and delay. The cable output signal 102 is adjusted by the phase changers 3 and 4, and a phase changer signal 103 is obtained.
[0020]
The phase variable device output 103 is equalized and reproduced by the waveform equalizer / reproducer 5, and becomes a waveform equalizer / reproducer signal 104. The waveform equalizer / reproducer signal 104 is input to the code error detector 6, where the bit error rate is determined.
[0021]
Here, the differential phase difference of the phase variable device output 103 at the input terminal of the waveform equalizer / regenerator 5 is the sum of the delay difference of the measured differential transmission line 2 and the phase difference of the phase variable devices 3 and 4 (hereinafter, referred to as the phase difference). , "Delay between differentials"), as shown in FIG. 2, the amount of jitter of the waveform equalizer / reproducer output signal 104 changes depending on the amount of the differential delay.
[0022]
FIG. 2A shows the waveform of the waveform equalizer / reproducer output signal 104 when the differential delay is 0, and no jitter is observed. FIG. 2B shows the waveform of the waveform equalizer / reproducer output signal 104 when the delay between the differentials is medium. The jitter is conspicuous, but the width of the eye pattern is wider than the width of the jitter. Code identification is still possible. However, as shown in FIG. 2C, if the delay between differentials becomes large and the width of the jitter becomes wider than the width of the eye pattern, the code cannot be identified, and the code error detector Detects a code error.
[0023]
FIG. 3 shows that the phase variable devices 3 and 4 are adjusted to change the differential delay at the input terminal of the waveform equalizer 5, and the code error of the output of the waveform equalizer 5 is detected by the code error detection circuit 6. 7 shows a bit error rate curve in which the bit error rates obtained by the detection and obtained are plotted. Referring to FIG. 3, it can be seen that the code error rate has rapidly increased at points B and C from a state such as point A where there is no code error.
[0024]
Next, a method for obtaining the differential delay difference of the measured differential transmission line 2 will be specifically described with reference to FIG.
[0025]
Now, let X be the delay difference of the measured differential transmission line 2, and let S be the cycle of the test signal. In this case, the differential delay difference of the cable output signal 102 is X as shown in FIG. When the phase difference between the phase changers 3 and 4 is adjusted to 0, as shown in FIG. 5 (2), the differential delay of the phase changer output 103 becomes the difference between the cable output signal 102 in FIG. It becomes X which is the same as the dynamic delay difference. The delay between the differentials of the variable device output 103 at this time is shown as point A in FIG. In this state, no jitter is seen in the waveform of the waveform equalizer / regenerator output signal 104 as shown in FIG.
[0026]
From this state, for example, the phase of the phase variable device 3 is changed in the positive direction. Then, as shown in FIG. 2B, jitter appears in the waveform of the waveform equalizer / reproducer output signal 104, and the width of the jitter increases as the phase of the phase variable device 3 advances in the positive direction. Then, finally, as shown in FIG. 2C, the width of the jitter becomes wider than the width of the eye pattern and the code cannot be identified, and the code error detector 6 detects the code error. I do.
[0027]
Then, once a code error is detected, the code error rate suddenly increases due to exceeding a correct / false threshold. At this point, the point at which the bit error rate has rapidly deteriorated is shown as point B in FIG. The amount of phase change of the phase variable device 3 from FIG. 5 (2) at this time is shown as Y in FIG. 5 (3).
[0028]
Next, the phase of the phase variable device 3 is changed in the negative direction. Then, the state of FIG. 2C is reached via the state of FIG. At this point, the point at which the bit error rate has rapidly deteriorated is shown as point C in FIG. In addition, the amount of phase change of the phase variable device 3 from FIG. 5 (2) at this time is shown as Z in FIG. 5 (3).
[0029]
It is apparent from FIG. 5 that there is a relationship of Y = S + X and Z = SY between S, X, Y and Z described above. From these two equations, X = (YZ) / 2, and the delay difference X of the measured differential transmission line 2 can be obtained by measuring Y (point B) and Z (point C). In FIG. 3, since the center between the points B and C is shown as the point D, the difference E between the points D and A is obtained, and as a result, the delay difference X of the differential transmission line 2 to be measured is shown in FIG. It can be understood that E is indicated by E in FIG.
[0030]
【The invention's effect】
As described above, the present invention uses the actually used high-frequency signal, and also tests the transmission line under test in the actually used connection state. There is an effect that the propagation delay difference between the traffic lines can be measured.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an embodiment of a transmission line delay difference measuring apparatus according to the present invention; FIG. 2 is a diagram showing jitter generation of a waveform equalizer / regenerator output signal when a differential delay is changed in the present invention; FIG. 3 is a diagram showing the appearance; FIG. 3 is a diagram in which the bit error rate based on the bit error detection in the present invention is plotted against the differential delay; FIG. 4 is a cross-sectional view showing an example of a general differential transmission cable; A phase transition diagram of a differential signal when a delay difference between differential transmission lines to be measured is obtained in the present invention.
REFERENCE SIGNS LIST 1 signal generator 2 differential transmission line to be measured 3 phase variable device 4 phase variable device 5 waveform equalizer / reproducer 6 code error detector

Claims (3)

被測定差動伝送線路が実際に使用される場合と同じ高周波の正負2つの出力信号を発生して被測定差動伝送線路の一方の端子に供給する信号発生器と、
前記被測定伝送線路の他方の端子から入力するケーブル出力信号の位相を正負別個に変化させることが可能な位相可変器と、
前記位相可変器からの出力信号の符号誤りを検出する符号誤り検出器とを含み、
前記位相可変器において前記ケーブル出力信号の位相を正負両方向に変化させた場合に、前記符号誤り検出器が顕著な符号誤り率増加となる符号誤りを検出した時の正負両方向における位相変化量に基づいて前記被測定差動伝送線路の遅延差を求めることを特徴とする伝送線路間遅延差測定装置。
A signal generator that generates two positive and negative output signals of the same high frequency as the case where the measured differential transmission line is actually used and supplies the output signal to one terminal of the measured differential transmission line;
A phase variable device that can change the phase of the cable output signal input from the other terminal of the transmission line to be measured separately for positive and negative;
Including a code error detector that detects a code error of an output signal from the phase variable device,
When the phase of the cable output signal is changed in both the positive and negative directions in the phase variable device, based on the amount of phase change in both the positive and negative directions when the code error detector detects a code error that significantly increases the code error rate. A delay difference between the differential transmission lines to be measured.
前記位相可変器からの出力信号を等化再生する波形等化再生器を前記位相可変器と前記符号誤り検出器との間に挿入したことを特徴とする請求項1に記載の伝送線路間遅延差測定装置。The delay between transmission lines according to claim 1, wherein a waveform equalizer for equalizing and reproducing the output signal from the phase variable device is inserted between the phase variable device and the code error detector. Difference measuring device. 被測定差動伝送線路が実際に使用される場合と同じ高周波の正負2つの出力信号を被測定差動伝送線路の一方の端子に供給する手順と、
前記被測定伝送線路の他方の端子から位相可変器に入力するケーブル出力信号の位相を正負別個に変化させる手順と、
前記位相可変器からの出力信号の符号誤りを検出する手順と、
前記ケーブル出力信号の位相を正負両方向に変化させた場合に、前記符号誤り検出器が顕著な符号誤り率増加となる符号誤りを検出した時の正負両方向における位相変化量に基づいて前記被測定差動伝送線路の遅延差を求める手順とを有することを特徴とする伝送線路間遅延差測定方法。
Supplying two output signals of the same high frequency as the case where the differential transmission line to be measured is actually used to one terminal of the differential transmission line to be measured;
A procedure for separately changing the phase of the cable output signal input to the phase variable device from the other terminal of the transmission line to be measured, positively and negatively,
A step of detecting a code error of an output signal from the phase variable device,
When the phase of the cable output signal is changed in both the positive and negative directions, the measured error is determined based on the amount of phase change in both the positive and negative directions when the code error detector detects a code error that causes a significant increase in the bit error rate. Obtaining a delay difference between dynamic transmission lines.
JP2002304443A 2002-10-18 2002-10-18 Apparatus and method for measuring delay difference between transmission lines Expired - Fee Related JP4037736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002304443A JP4037736B2 (en) 2002-10-18 2002-10-18 Apparatus and method for measuring delay difference between transmission lines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002304443A JP4037736B2 (en) 2002-10-18 2002-10-18 Apparatus and method for measuring delay difference between transmission lines

Publications (2)

Publication Number Publication Date
JP2004140665A true JP2004140665A (en) 2004-05-13
JP4037736B2 JP4037736B2 (en) 2008-01-23

Family

ID=32451866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002304443A Expired - Fee Related JP4037736B2 (en) 2002-10-18 2002-10-18 Apparatus and method for measuring delay difference between transmission lines

Country Status (1)

Country Link
JP (1) JP4037736B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11693046B2 (en) * 2017-07-20 2023-07-04 Tektronix, Inc. Monitoring waveforms from waveform generator at device under test

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11693046B2 (en) * 2017-07-20 2023-07-04 Tektronix, Inc. Monitoring waveforms from waveform generator at device under test

Also Published As

Publication number Publication date
JP4037736B2 (en) 2008-01-23

Similar Documents

Publication Publication Date Title
EP2253964B1 (en) Method and apparatus for evaluating and optimizing a signaling system
US8069378B2 (en) Method and apparatus for evaluating and optimizing a signaling system
US5459440A (en) Automatic impedance matching with potential monitoring means
JP5004953B2 (en) Jitter compensation and generation in communication device testing
JPH0862308A (en) Timing calibration method for measuring signal of semiconductor testing device and its circuit
GB2340278A (en) Recording location of errors.
US20050149784A1 (en) Testing apparatus and testing method
JP2009159256A (en) Device and method for adjusting transmission characteristic, and circuit board
WO2004019501A2 (en) Methods for transmitting a waveform having a controllable attenuation and propagation velocity
WO2007131130A2 (en) Interface test circuit
JP2020112553A (en) Testing/measuring device and waveform composition method
JP2009171509A (en) Evaluation system for test circuit of equalizer and integrated circuit
US20020099513A1 (en) Systems and methods for testing multi-gigahertz digital systems and components
US2209064A (en) Measurement of phase shift
JP4037736B2 (en) Apparatus and method for measuring delay difference between transmission lines
JP2005318630A (en) Method for phase-shifting bits in digital signal pattern
US20070197169A1 (en) Systems and methods for transmitter and channel characterization
JP5170939B2 (en) Test apparatus and test method
CN112782440B (en) Method and system for determining and/or adjusting the phase of at least two electrical signals
US6407609B1 (en) Distortion precompensator and method of compensating for distortion in a transmission medium
CN111381104A (en) Method and device for measuring impedance of transmission channel
US2030814A (en) Testing the susceptibility of telegraph lines to interference
CN110958057B (en) System and method for time signal measurement of a Device Under Test (DUT) and method of forming a system
CN108628795B (en) Ternary signal generating device and ternary signal generating method
US2249164A (en) Electrical measuring system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071101

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees